
Principal component models for sparse functional dataGareth M. JamesMarshall School of Business, University of Southern California, Los Angeles,California 90089-0809gareth@usc.eduTrevor J. HastieDepartment of Statistics, Stanford University, California 94305-4065trevor@stat.stanford.eduand Catherine A. SugarMarshall School of Business, University of Southern California, Los Angeles,California 90089-0809sugar@usc.eduMarch 1, 2001SummaryThe elements of a multivariate data set are often curves rather than single points.Functional principal components can be used to describe the modes of variation ofsuch curves. If one has complete measurements for each individual curve or, as ismore common, one has measurements on a �ne grid taken at the same time pointsfor all curves, then many standard techniques may be applied. However, curves areoften measured at an irregular and sparse set of time points which can di�er widelyacross individuals. We present a technique for handling this more di�cult case usinga reduced rank mixed e�ects framework.Some key words: Functional data analysis; Principal components; Mixed e�ects model; Reducedrank estimation; Growth curve. 1. Introduction1�1. The problemWe present a technique for �tting principal component functions to data such as the growthcurves illustrated in Fig. 1(a). These data consist of measurements of spinal bone mineraldensity for forty-eight females taken at various ages. They are a subset of the data presentedin Bachrach et al. (1999). Even though only partial curves are available for each individual,there is a clear trend in the data. The solid curve gives an estimate for the mean function.1
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•Figure 1: The data are measurements of spinal bone mineral density for forty-eight whitefemales. There are between 2 and 4 measurements per subject (160 in all) indicated by thegrowth curve fragments in the plots. The solid line in (a) is an estimate for the populationmean growth curve. The residuals are shown in (b). The variability of the residuals issmallest in childhood and increases slightly during the period associated with the adolescentgrowth spurt.It highlights the rapid growth that occurs during puberty. However, the mean function doesnot explain all the variability in the data. The residual plot, Fig. 1(b), is narrower duringearly childhood, thickens during puberty, and then narrows again as adulthood approaches.It would be useful to be able to estimate both the entire growth curve for each individual andthe principal component curve or curves for the population as a whole. There is an extensiveliterature on such problems when individuals are measured at the same time points; for anearly example involving growth curve data see Gasser et al. (1984) and for a summary ofmore recent work see Ramsay & Silverman (1997). However, it is not clear what is the bestprocedure when the time points vary among individuals. We present an estimation tech-nique that is particularly useful when the data are sparse with measurements for individualsoccurring at possibly di�ering time points.1�2. A direct approachWhen a set of N curves is measured on a �ne grid of n equally spaced points the functionalprincipal components problem can be solved by applying standard principal componentsanalysis to the N by n matrix of observed data. Often the grid is sparse or the time-pointsare unequally spaced, although still common to all curves. In this case, one can imposesmoothness constraints on the principal components in several ways. One simple approachis to represent them using a set of smooth basis functions. This amounts to projecting theindividual rows of the data matrix on to the basis and then performing principal component2



analysis on the basis coe�cients. Alternatively one can use the basis coe�cients to estimatethe individual curves, sample the curves on a �ne grid and perform principal componentanalysis on the resulting `data.'When the curves are not measured at common time points one can still project eachcurve on to a common basis and then perform principal component analysis on the esti-mated coe�cients or curves. We call this procedure the direct method. It has two majordrawbacks. First, if there are individuals with few measurements it may not be possibleto produce a unique representation for every curve so the direct approach can't be used.Secondly, the direct method does not make optimal use of the available information becauseit treats estimated curves as if they were observed. All estimated values receive equal weightdespite the irregular spacing of the observed data. Intuitively it seems desirable to take intoaccount the relative accuracies of the estimated points; see Rice & Silverman (1991), Besse& Cardot (1996), Buckheit et al. (1997) and Besse, Cardot & Ferraty (1997) for interestingapplications, variations and extensions of the direct method.1�3. A mixed e�ects approachMixed-e�ects models have been widely used in the analysis of curve data; see for instanceBrumback & Rice (1998). Shi, Weiss & Taylor (1996) and Rice & Wu (2000) suggest using amixed-e�ects approach to solve the functional principal components problem. Their modeluses a set of smooth basis functions, b`(t); ` = 1; : : : ; q, such as B-splines, to represent thecurves. Let Yi(t) be the value for the ith curve at time t and let b(t) = [b1(t); b2(t); : : : ; bq(t)]Tbe the vector of basis functions evaluated at time t. Denote by � an unknown but �xedvector of spline coe�cients, let i be a random vector of spline coe�cients for each curvewith population covariance matrix �, and let �i(t) be random noise with mean zero andvariance �2. The resulting mixed e�ects model has the formYi(t) = b(t)� + b(t)i + �i(t) i = 1; : : : ; N: (1)In practice Yi(t) is only observed at a �nite set of time points. Let Yi be the vector consistingof the ni observed values, let Bi be the corresponding ni by q spline basis matrix evaluatedat these time points, and let �i be the corresponding random noise vector with covariancematrix �2I. The mixed e�ects model then becomesYi = Bi� +Bii + �i i = 1; : : : ; N: (2)The �xed-e�ects term Bi� models the mean curve for the population and the random-e�ectstermBii allows for individual variation. The principal patterns of variation about the meancurve are referred to as functional principal component curves. Rice & Wu (2000) suggestmodelling the patterns of variation of the basis coe�cients, i, and then transforming back tothe original space. Since � is the covariance matrix of the i's, this is achieved by multiplyingthe eigenvectors of � by b(t).A general approach to �tting mixed e�ects models of this form uses the EM algorithmto estimate � and � (Laird & Ware, 1982). Given these estimates, predictions are obtainedfor the i's using best linear unbiased prediction (Henderson, 1950). For (2) above, the best3



linear unbiased prediction for i iŝi = (�̂�1=�2 +BTi Bi)�1BTi (Yi �Bi�̂): (3)Using the �tted values of � and � one can estimate the mean and principal componentcurves and by combining these estimates with the prediction for i one can also predict theindividual curve Yi(t).The mixed e�ects method has many advantages over the direct method. First, it es-timates the curve Yi(t) using all the observed data points rather than just those from theith individual. This means that the mixed e�ects method can be applied when there areinsu�cient data from each individual curve to use the direct method. Secondly, it usesmaximum likelihood to estimate � and �. Thus it automatically assigns the correct weightto each observation and the resulting estimators have all the usual asymptotic optimalityproperties. 1�4. Some problems with the mixed e�ects methodIf the dimension of the spline basis is q then in �tting � we must estimate q(q+1)=2 di�erentparameters. With a sparse data set these estimates can be highly variable. This not onlymakes the estimates suspect but also means that the likelihood tends to have many localmaxima. As a result, the EM algorithm will often fail to converge to the global maximum.Figure 2(a) illustrates a simulated dataset of sixteen curve fragments. Each curve wasgenerated by adding a random multiple of a single principal component curve to a meanfunction. Random normal noise, with standard deviation of 0:02, was added to produce the�nal data. Both the mean function and principal component curve are cubic splines withseven equally spaced knots. The goal is to estimate the principal component curve, a di�cultproblem since there were only �fty-one data points in total.The direct method can't even be applied to this dataset because there are too few mea-surements per curve for estimating a separate spline for each. The mixed e�ects model canbe applied but, after including a constant term, the dimension of the spline basis is eleven.As a result we are attempting to estimate sixty-six parameters using �fty-one data pointsand so there is no unique representation of �. This is not necessarily a problem since it is the�rst eigenvector of � that is of primary interest. In standard principal component analysis itis often possible to estimate well the �rst few eigenvectors, and hence the �rst few principalcomponents, even if the �tted covariance matrix is unstable. However, in functional principalcomponent analysis this is generally not the case, as illustrated in Fig. 2(b). The solid linegives the true principal component curve for the dataset. There are also three estimates,each using cubic splines with seven equally spaced knots. The two dashed lines are estimatesusing the mixed e�ects method with �fty and one-hundred EM iterations; the algorithm hadconverged after one-hundred iterations. The mixed e�ects method's estimates are poor inthe second half of the plot. Furthermore, the �t appears to be deteriorating as the numberof iterations increases. This suggests that the procedure is over-�tting the data. The forthline is the estimate produced by the reduced rank method introduced in this paper. Thismethod attempts to estimate the principal component curve directly rather than estimatingan entire covariance matrix and computing the �rst eigenvector. This involves estimating4
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Figure 2: (a) A dataset simulated from a mean function plus one principal component curveplus random normal noise. Both the mean function and principal component are cubicsplines with seven equally spaced knots. (b) Estimates for the �rst principal componentcurve for the dataset in (a). The solid line is the true principal component curve we aretrying to estimate.fewer parameters and as a result the �tted curve is less variable and generally more accurate.The reduced rank and mixed e�ects methods are compared on the growth curve data in x 2and on more extensive simulated data in x 5. In x 3 we present the reduced rank model andcompare it to the mixed e�ects model. x 4 motivates and outlines the reduced rank �ttingprocedure. The simulations in x 5 suggest that the reduced rank method gives superior �tsand is less sensitive to sparse data. Methods for selecting the dimension of the spline basis,choosing the number of principal component curves, and producing con�dence intervals aregiven in x 6. x 7 relates the reduced rank method to standard principal components analysis.2. The growth curve dataHere we �t the reduced rank and mixed e�ects procedures to the growth curve data illustratedin Fig. 1. Estimates for the mean function and �rst principal component using natural cubicsplines with four, nine and fourteen equally spaced knots are shown in Fig. 3(a) - (f). Thetwo methods produce fairly similar estimates of the principal component curves but somedi�erences are apparent. Not surprisingly, both procedures display more variability as thenumber of knots increases. However, a sharp peak near the age of 13 followed by a levelingo� is apparent in all three of the reduced rank �ts. This is consistent with the residual plot inFig. 1(b). The mixed e�ects procedure only displays a strong peak for the nine-knot �t. The5



peak in the four-and fourteen-knot �ts is much less well de�ned. There is also an anomalousdip in the nine-knot mixed e�ects method �t around the age of 22. Naturally, given thesparseness of the data, one must be careful not to over-interpret the results. Figures 3(g)and (h) give new estimates for the mean and �rst principal component of the growth curvedata using natural cubic splines with knots at ages 12; 14; 16 and 18, a spacing suggestedby previous experience with this data set. This gives added exibility during the pubertyperiod when variability among individuals is likely to be highest. As with the previous knotselection, there appears to be a peak near age 13 that is much more marked in the reducedrank �t. 3. The reduced rank modelHere we develop our reduced rank model and show that one can interpret the mixed e�ectsmodel in terms of this framework. In the process, the reasons for some of the mixed e�ectsmethod's defects become apparent. Let Yi(t) be the measurement at time t for the ithindividual or curve. Let �(t) be the overall mean function, let fj be the jth principalcomponent function and let f = (f1; f2; : : : ; fk)T. To estimate k principal component curveswe �rst de�ne a general additive modelYi(t) = �(t) + kXj=1 fj(t)�ij + �i(t) i = 1; : : : ; N= �(t) + f(t)T�i + �i(t) i = 1; : : : ; N; (4)subject to the orthogonality constraint R fjfl = �jl, the Kronecker �. The random vector �igives the relative weights on the principal component functions for the ith individual and�i(t) is random measurement error. The �i's and �i's are all assumed to have mean zero.The �i's are taken to have a common covariance matrix, �, and the measurement errorsare assumed uncorrelated with a constant variance of �2. If � is diagonal one can interpret(4) as a principal factor decomposition of the covariance kernel of Yi(t). A more generalstructure, R, could be assumed for the error term covariance matrix. This would increasethe exibility of the model but would involve estimating extra parameters. For this paperwe have opted for the simpler covariance structure.In order to �t this model when the data are measured at only a �nite number of timepoints it is necessary to place some restrictions on the form of the mean and principal com-ponent curves. We choose to represent � and f using a basis of spline functions (Silverman,1985; Green & Silverman, 1994). Let b(t) be a spline basis with dimension q. Let � and ��be, respectively, a q by k matrix and a q-dimensional vector of spline coe�cients. Then�(t) = b(t)T��;f(t)T = b(t)T�:6
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The resulting restricted model has the formYi(t) = b(t)T�� + b(t)T��i + �i(t); i = 1; : : : ; N; (5)�i(t) � (0; �2); �i � (0;D)subject to �T� = I; Z b(t)Tb(t)dt = 1; Z Z b(t)Tb(s)dtds = 0: (6)The equations in (6) impose orthogonality constraints on the principal component curves.Note that, if one does not assume a special structure for the covariance matrix of the �i's, �and � will be confounded. Thus we restrict the covariance matrix to be diagonal and denoteit by D.For each individual i, let ti1; ti2; : : : ; tini be the possibly di�erent time points at whichmeasurements are available. ThenYi = (Yi(ti1); : : : ; Yi(tini))T;Bi = (b(ti1); : : : ; b(tini))T:Note that Bi is the spline basis matrix for the ith individual. To approximate the orthogo-nality condition in (6) we choose b(�) so that BTB = I, where B is the basis matrix evaluatedon a �ne grid of time points. For instance, in the growth curve example the time intervalwas divided into 172 periods of 1=10th of a year each.The reduced rank model can then be written asYi = Bi�� +Bi��i + �i; i = 1; : : : ; N; (7)�T� = I; �i � (0; �2I); �i � (0;D):Fitting this model involves estimating ��;�;D and �2. A �tting procedure is presented inx 4. In practice q, the dimension of the spline, and k, the number of principal components,must also be chosen. Methods for making these choices are suggested in x 6. Note that thereduced rank model can also be interpreted as a mixed e�ects model with a rank constrainton the covariance matrix. This latter approach dates back to Anderson (1951).Recall that, in the mixed e�ects model (2), i is a random vector with unrestrictedcovariance matrix. Hence we can reparameterise i as[�;��]��i��i�where � and �i are de�ned as in (7), �� is a q by q�k dimensional matrix which is orthogonalto �, and ��i is a random vector of length q � k with a diagonal covariance matrix. As aresult the mixed e�ects model can be written asYi = Bi�� +Bi��i +Bi����i + �i; i = 1; : : : ; N: (8)8



Number Loglikelihoodof knots Constrained Reduced rank4 380:63 389:229 394:75 409:8114 399:00 411:36Table 1: Loglikelihoods for the �ts in Fig. 3(a) through (f).Thus the reduced rank model is a submodel of the mixed e�ects model. In the reduced rankmodel the ��i 's are set to zero and no attempt is made to estimate the additional parameters,��. To �t k principal component curves using the mixed e�ects method Rice & Wu (2000)calculate the �rst k eigenvectors of the estimate for �; recall that � is the covariance matrixof the i's. In other words, even though �� is estimated in the mixed e�ects procedure it isnever used. By employing the mixed e�ects method and then setting the ��i 's to zero one issimply �tting the reduced rank model using a di�erent algorithm.We call the likelihood obtained from the mixed e�ects �t, after setting the ��i 's to zero, theconstrained mixed e�ects likelihood. Since the mixed e�ects and reduced rank methods canbe considered as two di�erent approaches to �tting the reduced rank model, the constrainedmixed e�ects and reduced rank likelihoods can be meaningfully compared. For example,Table 1 provides the loglikelihoods up to a constant term for the three di�erent �ts to thegrowth curve data. The reduced rank likelihood must be at least as large as that of theconstrained likelihood. However, note that the reduced rank likelihood is in fact strictlyhigher. 4. Fitting the reduced rank model4�1. PreambleIn a functional principal component analysis setting the primary goal is to estimate � andf . A secondary goal is the prediction of the �i's, which, when combined with the estimatesof � and f , give predictions for the individual curves. Since we are assuming a spline �t tothe functions this is equivalent to estimating �� and � and predicting the �i's. Note that��, �, �2 and D are all unknown parameters. The elements of D give a measure of thevariability explained by each principal component curve and �2 provides a measure of thevariability left unexplained. To derive a �tting procedure we appeal to maximum likelihoodand penalised least squares ideas which in this instance lead to the same algorithm.4�2. Maximum likelihoodAssume that the �i's and �i's are normally distributed. ThenYi � N(Bi��; �2I +Bi�D�TBTi ) i = 1; : : : ; N; (9)9



and the observed likelihood for the joint distribution of the Yi's isNYi=1 1(2�)ni=2j�2I +Bi�D�TBTi j1=2 exp��12(Yi �Bi��)T(�2I +Bi�D�TBTi )�1(Yi �Bi��)� :(10)Unfortunately to maximise this likelihood over ��;�; �2 and D is a di�cult non-convexoptimisation problem. If the �i's were observed the joint likelihood would simplify toNYi=1 1(2�)(ni+k)=2�nijDj1=2 exp�� 12�2 (Yi �Bi�� �Bi��i)T(Yi �Bi�� �Bi��i)� 12�Ti D�1�i� :(11)This is a much easier expression to maximise which suggests treating the �i's as missingdata and employing the EM algorithm (Dempster, Laird & Rubin, 1977). Details of ouroptimization routine can be obtained from the web site www-rcf.usc.edu/�gareth.4�3. Penalised least squaresThe same algorithm can be motivated using penalised least squares. With this approach onechooses ��;� and the �i's to minimise the sum of squared residuals between the data pointsand predicted values, subject to a penalty term on the �i's, namely minimiseNXi=1 ((Yi �Bi�� �Bi��i)T(Yi �Bi�� �Bi��i) + �2 kXj=1 �2ijDjj) : (12)The algorithm is as follows. Fix the values of �2, D and the �i's, and minimise (12) withrespect to �� and �, giving values identical to those from the M-step of the EM algorithm.Next minimise (12) with respect to the �i's while holding all other parameters �xed. Thevalues of the �i's will be identical to those from the E-step of the EM algorithm. Finally,re�t �2 and D using the standard sample variance estimates. If the same initial values areused, iterating these three steps until convergence will yield the same �nal estimates as themaximum likelihood procedure of x 4�2. Note that the coe�cient in the penalty term is�2=Djj . Since Djj is the variance of the �ij 's the terms with lower variance are penalisedmore heavily.5. The reduced rank and mixed effects methods comparedIn x 3 we noted that the primary di�erence between the reduced rank and the constrainedmixed e�ects methods lies in the �tting procedures. Thus it is legitimate to compare thetwo methods directly using likelihoods. To do this we ran two simulation studies. In orderto make the simulated data more realistic and interpretable we based them on the growthcurve data. In the �rst study the data were generated from the mean function and principalcomponent curve corresponding to the reduced rank �t shown in Fig. 3(g) and (h). Forty-10



eight curve fragments were generated using the same time points as the growth curve data.The mixed e�ects and reduced rank procedures were �tted to ten such datasets using naturalcubic splines with the correct knot selection. The generating curves for the second study wereobtained just as in the �rst study except that splines with seven equally spaced knots wereused. Sixteen curve fragments were generated using the time points from a randomly selectedsubset of the original forty-eight partial growth curves. The mixed e�ects and reduced rankprocedures were �tted to ten such datasets again using cubic splines with the correct knotselection. The datasets in this simulation were more di�cult to �t because of the smallersample size and the higher dimensionality of the splines.Figure 4(a) shows the estimates for the principal component from the mixed e�ects andreduced rank �ts on a dataset from the �rst simulation study. The accuracy of the �t is typicalof the mixed e�ects procedure. The reduced rank �t was superior to the mixed e�ects �t forall ten datasets. The ratio of the true variance to the estimated variance gives a measureof goodness of �t. Figure 4(b) shows a plot of the variance ratio versus the loglikelihood.The constrained mixed e�ects and reduced rank �ts are represented, respectively, by squaresand triangles, �ts corresponding to the same dataset being joined up. This plot illustratestwo key points. First, the variance ratios for the mixed e�ects �ts are almost all greaterthan one, suggesting that the method tends to over�t the data; the reduced rank methodperforms much better in this respect. Secondly, the reduced rank procedure gives a higherlikelihood on all ten datasets.Figures 4(c) and (d) give the corresponding plots for the second simulation study. Onceagain the reduced rank procedure has done a substantially better job at estimating theprincipal component. It is clear that the large number of parameters involved in estimatingthe full covariance matrix has had a deleterious e�ect on the mixed e�ects method �t.Correspondingly, the over�tting problem has drastically increased. The mixed e�ects methodunderestimates the variance by up to a factor of �fty. In addition, the more the variance isunderestimated the worse the corresponding likelihood estimate becomes. Again, the reducedrank procedure consistently produces better variance estimates and higher likelihoods.6. Model selection and inference6�1. Selection of the number of knots in the spline basisA natural approach is to calculate the crossvalidated loglikelihood for di�erent numbersof knots and to select the number corresponding to the maximum. All examples in thissection use ten-fold crossvalidation, which involves removing 10% of the curves as a test set,�tting the model to the remaining curves, calculating the loglikelihood on the test set, andthen repeating the process nine more times. For the growth curve data, Fig. 5(a) showscrossvalidated loglikelihood estimates for models involving between zero and twelve evenlyspaced knots. It appears that the optimal number of knots is between four and six, and weopted for the more parsimonious model with four knots.To test the validity of this procedure we generated data from the model of the �rst simula-tion study in x 5 except that the random noise had a smaller standard deviation. Figure 5(b)shows that the crossvalidated likelihood is maximised for three knots with the second largest11
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Figure 4: Results from two simulation studies. Figures (a) and (c) give the �rst principalcomponent curve for two datasets from, respectively, the �rst and second simulation studies.Figures (b) and (d) give the corresponding plots of variance ratio versus loglikelihood for thedatasets in each simulation study. Fits to the same dataset are joined.12
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Figure 5: Crossvalidated loglikelihoods for (a) the growth curve data and (b) a datasetsimulated from a spline with four knots.likelihood corresponding to the correct value of four knots. The procedure seems to be se-lecting approximately the correct number of knots but this simulation illustrates that theplot should be treated as a guide rather than an absolute rule.Crossvalidation is a computationally expensive procedure. Rice & Wu (2000) suggestusing AIC and BIC which require fewer computations. In the datasets they examined AIC,BIC and crossvalidation all produced qualitatively comparable results.6�2. Selection of the rank, kWith functional principal component analysis it is particularly important to identify thenumber of important principal components, k, because the �ts of the di�erent components arenot independent. As examples involving the mixed e�ects procedure have shown, choosingto �t too many principal components can degrade the �t of them all. In this section weoutline two alternative procedures for choosing the number of principal components. Notethat this is equivalent to selecting the rank of the covariance matrix.A natural �rst approach is to calculate the proportion of variability explained by eachprincipal component. It is di�cult to compute this quantity directly in functional principalcomponent analysis. However, if �2 is close to zero and the curves are all measured at similartime points it can be shown that the proportion of the total variation in the �i's associatedwith each component is a good approximation. Recall that D is the diagonal covariance13
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levelled o� after k = 2. To determine whether the jump between k = 1 and k = 2 is largeenough to warrant using the second principal component, note that twice the di�erence inloglikelihoods is asymptotically �25, if truly k = 1 since the model with k = 2 involves �tting�ve extra parameters. Twice the observed di�erence in loglikelihoods is 19:28 yielding ap-value of 0:002. This suggests that the second principal component is signi�cant. However,since this dataset is sparse one should use caution when invoking an asymptotic result.To check the accuracy of the two procedures we tested them on the simulated datasetfrom x6.1, generated using a single principal component curve. It turned out that the �rstprocedure, which calculates the proportion of variation explained, worked well; the �rstprincipal component explained about 96% of the variability. However, the second procedure,using the loglikelihood, was more ambiguous. The plot suggested that there could be any-where from one to three principal components and when the �2 rule was applied, k = 3 waschosen. From our experience the �rst procedure appears to be more reliable.6�3. Con�dence intervalsThe bootstrap can be used to produce pointwise con�dence intervals for the overall meanfunction, the principal components and the individual curves. There are two obvious waysto bootstrap curve data. The �rst involves resampling the individual curves. The secondinvolves resampling the estimated �i's and residuals and generating new partial curves basedon these values. The �rst method has the advantage of not requiring any parametric assump-tions, while the second has the advantage that the bootstrap datasets have observations atthe same time points as the original dataset. When the data are sparse, especially in thetails, the �rst procedure performs poorly, and we therefore present results using the secondprocedure on the growth curve data.We generated one-hundred bootstrap datasets and �tted the reduced rank method withk = 2 to each. Using the bootstrap percentile method (Efron & Tibshirani, 1993) weproduced pointwise con�dence intervals by taking the �=2 and 1��=2 quantile at each timepoint. Figure 7 gives 80% and 90% con�dence intervals for the mean function, the principalcomponents and an individual curve for the growth curve data. Despite the sparsity of thedata, the intervals for the mean function are relatively narrow with some widening in theright tail where there were few observations. The con�dence intervals for the �rst principalcomponent are much wider, particularly in the right tail. The large dip in the con�denceband in this region occurs because approximately 20% of the bootstrap principal componentcurves exhibited an inverted U shape. There appear to be two distinctly di�erent possibleshapes for this component. Interestingly, given the variability of the �rst component, theintervals for the second component follow the general shape of the estimated curve quitetightly. In Fig. 7(d) the four circles show the observed data values for one of the forty-eightindividuals. As one would expect the intervals are very narrow near the observed points andfan out as one extrapolates. 15
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7. Comparison of the reduced rank method and classical principalcomponentsWe begin by considering the linear modelXi = �� +��i + �i; i = 1; : : : ; N; (14)�i � N(0;�); �i � N(0;D);where the Xi are q-dimensional data vectors and � is an orthogonal matrix. The solutionsto factor analysis and standard principal components can be derived from this model. If �is diagonal, �tting (14) via maximum likelihood yields the factor analysis solution. If � isfurther restricted to have the form �2I, then the limit as �2 approaches zero of the maximumlikelihood estimates gives the classical principal components solution. Taking this limit isequivalent to minimising NXi=1 jjXi � �� ���ijj2: (15)In this context, the columns of � represent the principal components and the �i's are weight-ings for the components. Recall from x 3 that the reduced rank model isYi = Bi�� +Bi��i + �i; cov(�i) = �2I: (16)If the covariance structure of the �i's were relaxed to be an arbitrary diagonal matrix then thereduced rank model would become a generalisation of the factor analysis model. However,we will not pursue this point further. Instead we concentrate on generalizations of principalcomponents. Referring to (12), one sees that if, in analogy with classical principal componentanalysis, �2 is sent to zero in (16) then the procedure for �tting the reduced rank modelsimply minimises NXi=1 jjYi �Bi�� �Bi��ijj2: (17)Let ̂i = (BTi Bi)�1BTi Yi. Note that ̂i is the least squares estimates of the spline coe�cientsfor the ith curve. Then one can transform (17) intoNXi=1 jjYi �Bîijj2 + NXi=1 jjBîi �Bi�� �Bi��ijj2= C(Y ) + NXi=1 jĵi � �� ���ijj2BTi Bi (18)17



Therefore, since C(Y ) is a constant with respect to the parameters, to minimise (17) it issu�cient to minimise NXi=1 jĵi � �� ���ijj2BTi Bi: (19)Note that if Bi is not full column rank then the indeterminate parts of ̂i are given weightzero by the metric BTi Bi. Suppose that all curves are measured at the same set of timepoints. Then Bi = B is the common spline basis matrix. Without loss of generality onemay assume that BTB = I, and so minimising (19) is equivalent to performing standardprincipal components on the spline coe�cients. Note that this is the approach taken by thedirect method of x 1�2.Standard principal components takes q dimensional data and �nds the k (< q)-dimensionalplane that minimises the squared Euclidean distance to each point. As seen above, whenall curves are measured at the same time points the reduced rank method also �nds thebest �tting plane using the Euclidean metric. It is apparent from (19) that when the curvesare not sampled at identical time points the reduced rank procedure still identi�es the best�tting plane. However, the distance between the plane and each data point is measuredrelative to the metric BTi Bi which may be di�erent for each individual. Taking this view ofthe reduced rank method as a generalisation of classical principal component analysis pro-vides some useful geometric intuition. One of the di�culties with visualising the functionalprincipal components problem is that the curves are points in an in�nite-dimensional space.Equation (19) shows that one can visualise the data as lying in a single q-dimensional spaceat the expense of assigning each point a unique distance metric. Figure 8 provides a pictorialrepresentation of such a non-Euclidean principal components �t.ACKNOWLEDGMENTSThe authors would like to thank the Editor and referee for many constructive suggestions.Trevor Hastie was partially supported by grants from the National Science Foundation andthe National Institutes of Health. A AppendixIn this section we provide details of the Reduced Rank �tting algorithm. Steps 1 and 2 makeup the M-step and Step 3 makes up the E-step.
18



1. Given current estimates for �i; �� and � we estimate �2 and D as�̂2 = 1Pni NXi=1 E[�Ti �ijYi]= 1Pni NXi=1 E[(Yi �Bi�̂� �Bi�̂�i)T (Yi �Bi�̂� �Bi�̂�i)jYi]= 1Pni NXi=1 �(Yi �Bi�̂� �Bi�̂�̂i)T (Yi �Bi�̂� �Bi�̂�̂i)+ trace[Bi�̂(D̂�1 + �̂TBTi Bi�̂=�̂2)�1�̂TBTi ]� (20)D̂jj = 1N NXi=1 E[�2ijjYi] = 1N NXi=1 ��̂2ij + (D̂�1 + �̂TBTi Bi�̂=�̂2)�1jj � (21)Equations (20) and (21) derive from the facts thatE(X2jY ) = (E(XjY ))2 + V ar(XjY ) (22)and�ijYi � N �(�2D�1 +�TBTi Bi�)�1�BTi (Yi �Bi��); (D�1 +�TBTi Bi�=�2)�1� (23)2. Given current estimates for �2;D and �i we estimate � and �� by minimizingNXi=1 h(Yi �Bi�̂� �Bi�̂�̂i)T (Yi �Bi�̂� �Bi�̂�̂i)i (24)Minimizing (24) involves a second iterative procedure, in which each column of � isestimated separately holding all other columns �xed. First notice thatNXi=1 jjYi �Bi�� �Bi��ijj2= NXi=1 jj(Yi �Bi��i)�Bi��jj2so the estimate for �� iŝ�� =  NXi=1 BTi Bi!�1 NXi=1 BTi (Yi �Bi�̂�̂i) (25)19



To estimate the columns of � we note thatNXi=1 jjYi �Bi�� �Bi��ijj2= NXi=1 jj(Yi �Bi�� � �i2Bi�2 � � � � � �ikBi�k)� �i1Bi�1jj2Therefore the estimate for �1 is�̂1 =  NXi=1 c�2i1BTi Bi!�1 NXi=1 BTi (�̂i1(Yi �Bi�̂�)� d�i1�i2Bi�̂2 � � � � � d�i1�ikBi�̂k) (26)We repeat this procedure for each column of � and iterate until there is no furtherchange.3. The E-step consists of predicting �i and �i�Ti .�̂i = E(�ijYi; �̂�; �̂; �̂2; D̂) = (�̂2D̂�1 + �̂TBTi Bi�̂)�1�̂TBTi (Yi �Bi�̂�) (27)d�i�Ti = E(�i�Ti jYi; �̂�; �̂; �̂2; D̂) = �̂i�̂Ti + (D̂�1 + �̂TBTi Bi�̂=�̂2)�1 (28)Both predictions make use of equations (22) and (23).4. We then return to Step 1 and repeat until we reach convergence.5. The matrix � produced by this procedure will not be orthogonal. We orthogonalize itby producing the reduced rank estimate for �,�̂ = �̂D̂�̂T (29)and setting � equal to the �rst k eigenvectors of �̂.ReferencesAnderson, T. W. (1951). Estimating linear restrictions on regression coe�cients for mul-tivariate normal distributions. Ann. Math. Statist. 22, 327{51.Bachrach, L., Hastie, T., Wang, M., Narasimhan, B. & Marcus, R. (1999). Bonemineral acquisition in healthy asian, hispanic, black and caucasian youth; a longitudinalstudy. Clinical Endocrinol. Metabol. 84, 4702{12.Besse, C. & Cardot, H. (1996). Spline approximation of the prediction of a functionalautoregressive process of order 1 (in French). Can. Statist. 24, 467{87.Besse, C., Cardot, H. & Ferraty, F. (1997). Simultaneous non-parametric regressionsof unbalanced longitudinal data. Comp. Statist. Data Anal. 24, 255{70.20
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Figure 8: A depiction of non-Euclidean principal components in R2. Each point has anassociated metric �i with which to measure distance. We seek the line that minimises thesum of squared distances to the points. x1
x 2
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