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PRESENTATIONS OF RINGS WITH NON-TRIVIAL
SELF-ORTHOGONAL MODULES

DAVID A. JORGENSEN, GRAHAM J. LEUSCHKE, AND SEAN SATHER-WAGSTAFF

ABSTRACT. A result of Foxby, Reiten and Sharp says that a commutative
noetherian local ring R admits a dualizing module if and only if R is Cohen—
Macaulay and a homomorphic image of a local Gorenstein ring ). We establish
an analogous result by showing that such a ring R having a dualizing mod-
ule admits a non-trivial finitely generated self-orthogonal module C satisfying
Hompg(C,C) = R if and only if R is the homomorphic image of a Goren-
stein ring in which the defining ideal decomposes in a non-trivial way, forcing
significant structural requirements on the ring R.

1. INTRODUCTION

Throughout this paper (R, m, k) is a commutative noetherian local ring.

A finitely generated R-module C is self-orthogonal if Extzé(C, C) = 0 for all
1 > 1. Examples of self-orthogonal R-modules include the finitely generated free R-
modules and the dualizing module of Grothendieck. (See Section 2] for definitions
and background information.) Results of Foxby [7], Reiten [I4] and Sharp [15]
precisely characterize the local rings which possess dualizing modules: the ring R
admits a dualizing module if and only if R is Cohen—-Macaulay and there exist a
Gorenstein local ring @ and an ideal I C @ such that R = Q/I.

The point of this paper is to similarly characterize the local Cohen—Macaulay
rings with a dualizing module which admit certain non-trivial self-orthogonal mod-
ules. We show that the existence of such a module imposes considerable structural
implications on the ring via a Gorenstein presentation R = @/I. The specific
modules of interest are the semidualizing R-modules, i.e., the finitely generated
self-orthogonal R-modules such that Hompg(C,C) = R. A free R-module of rank 1
is semidualizing, as is a dualizing R-module, when one exists. For this investigation,
these are the trivial semidualizing R-modules.

Our main theorem is the following analog of the aforementioned result of Foxby,
Reiten and Sharp; we prove it in Section Bl

Theorem 1.1. Let R be a local Cohen—Macaulay ring that admits a dualizing
module D. Then R admits a semidualizing module that is neither dualizing nor free
if and only if there exist a Gorenstein local ring @ and ideals I, Io C Q satisfying
the following conditions:

(1) There are ring isomorphisms R = Q/(I1 + I2) = (Q/11) ®¢ (Q/I2);
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(2) For j = 1,2 the quotient ring Q/I; is Cohen-Macaulay with a dualizing
module D; and is not Gorenstein;

(3) For j =1,2 we have G-dimg,, (R) = 0;

(4) There is an R-module isomorphism D1 ®¢g D2 = D, and for all i > 1 we
have Tor?(Dy, Dy) = 0; and

(5) For all i > 1, we have TOI‘?(Q/Il,Q/IQ) = 0; in particular, there is an
equality I N Iy = 1 I5.

Examples of rings that do not admit non-trivial semidualizing modules are easy
to come by.

Example 1.2. Let k be a field. The ring R = k[X,Y]/(X?, XY, Y?) is local with
maximal ideal m = (X,Y)R. It is artinian of type 2, hence Cohen-Macaulay and
non-Gorenstein with a dualizing module D. From the equality m? = 0, it is straight-

forward to deduce that the only semidualizing R-modules, up to isomorphism, are
R and D.

2. BACKGROUND ON SEMIDUALIZING MODULES

We begin with relevant definitions. The following notions were introduced inde-
pendently (with different terminology) by Foxby [7], Golod [9], Grothendieck [10,11]
Vasconcelos [16] and Wakamatsu [17].

Definition 2.1. Let C' be an R-module. The homothety homomorphism is the
map x&: R — Hompg(C, C) given by x&(r)(c) = re.

The R-module C is semidualizing if it satisfies the following conditions:

(1) The R-module C is finitely generated;

(2) The homothety map x&: R — Hompg(C,C), is an isomorphism; and

(3) For all i > 1, we have Extly(C, C) = 0.

An R-module D is dualizing if it is semidualizing and has finite injective dimension.

Fact 2.2. The R-module R is semidualizing, so every local ring admits a semidual-
izing module. Examples of non-trivial semidualizing modules were given indepen-
dently by Foxby [6] and Vasconcelos [16].

Fact 2.3. Let C be a semidualizing R-module. The isomorphism R 2 Homp(C, C)
implies that Anng(C) = 0 and Assg(C) = Ass(R). It follows that Suppr(C) =
Spec(R) and dimpg(C) = dim(R). Furthermore, an element = € m is C-regular if
and only if it is R-regular. When the element x € m is R-regular, it is straightfor-
ward to show that Exth(R/zR,C) = 0 for all i # 1 and that the module

C/xC = Extk(R/zR,C)

is semidualizing for R/xR. Thus, by induction on depth(R), we conclude that
depthyr(C) = depth(R). In particular, when R is Cohen—Macaulay, every semidu-
alizing R-module is a maximal Cohen—Macaulay module. On the other hand, if R
admits a dualizing module, then R is Cohen—Macaulay.

Fact 2.4. Let C be a semidualizing R-module. If pd;(C) < oo, then C = R, as
follows. Assume that pdp(C) < co. The Auslander-Buchsbaum formula yields the
first equality in the following sequence while the second equality is from Fact 2.3}

pdr(C) = depth(R) — depthr(C) = 0.
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It follows that C' is free, say C' = R™. The isomorphisms
R =~ Homp(C, C) = Homp(R", R") = R™
imply that n =1, so C = R.
The following definition and fact justify the term “dualizing”.

Definition 2.5. Let C' and B be R-modules. The natural biduality homomor-
phism 68 : C — Hompg(Hompg(C, B), B) is given by 658 (c)(¢) = ¢(c). When D is a
dualizing R-module, we set C' = Homg(C, D).

Fact 2.6. Assume that R is Cohen-Macaulay and admits a dualizing module D.
Let C be a semidualizing R-module. Fact implies that C' is a maximal Cohen—
Macaulay R-module. From standard duality theory, for all ¢ # 0 we have

Exth(C, D) = 0 = Extls(Homg(C, D), D)

and the natural biduality homomorphism 62 : C' — Hompg(Hompg(C, D), D) is an
isomorphism; see, e.g., [4, (3.3.10)]. In particular, we have Homzr(CT, D) = C.
Furthermore CT is a semidualizing R-module by [5 (2.12)], and the evaluation map
C ®r CT — D given by ¢ ® ¢ — ¢(c) is an isomorphism by [8] (3.1)].

The following construction is also known as the “idealization” of M. It was
popularized by Nagata, but goes back at least to Hochschild [12]. It is the key
idea for the proof of the converse of Sharp’s result [I5] given by Foxby [7] and
Reiten [14]. Tt has also been very helpful in the study of G-dimensions because of
the paper of Holm and Jorgensen [I3]. The interested reader can find a survey of
some properties of this construction in the article of Anderson and Winders [I].

Definition 2.7. Let M be an R-module. The trivial extension of R by M is the ring
Rx M, described as follows. As an additive abelian group, we have Rx M = R® M.
The multiplication in R x M is given by the formula

(r,m)(r',m') = (rr',rm’ +1'm).

The multiplicative identity on R x M is (1,0). We let epr: R — R x M and
v R X M — R denote the natural injection and surjection, respectively.

The next facts are straightforward to verify.

Fact 2.8. Let M be an R-module. The trivial extension R x M is a commutative
ring with identity. The maps ej; and 7 are ring homomorphisms, and Ker(7ys) =
0® M. We have (0 M)? = 0, and so Spec(R x M) is in order-preserving bijection
with Spec(R). It follows that R x M is quasilocal and dim(R x M) = dim(R). If
M is finitely generated, then R is also noetherian and

depth(R x M) = depthp(R x M) = min{depth(R), depth(M)}.
In particular, if R is Cohen—Macaulay and M is a maximal Cohen—Macaulay R-

module, then R x M is Cohen-Macaulay as well.

Here is a discussion of the correspondence between dualizing modules and Goren-
stein presentations.

Fact 2.9. Sharp [I5], (3.1)] showed that if R is Cohen-Macaulay and a homomor-
phic image of a local Gorenstein ring @), then R admits a dualizing module. The
proof proceeds as follows. Let @ be a local Gorenstein ring equipped with a ring
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epimorphism 7: @ — R, and set g = depth(Q) — depth(R) = dim(Q) — dim(R).
It follows that ExtiQ (R,Q) = 0 for i # g and the module Ext{,(R,Q) is dualizing
for R. Thus, by Cohen’s structure theorem, every local complete Cohen—Macaulay
ring has a dualizing module.

The same idea gives the following. Let A be a local Cohen—Macaulay ring with
a dualizing module D, and assume that R is Cohen-Macaulay and a module-finite
A-algebra. If h = depth(A) — depth(R) = dim(A) — dim(R), then Ext’y(R, D) =0
for i # h and the module Ext", (R, D) is dualizing for R.

Fact 2.10. Independently, Foxby [7, (4.1)] and Reiten [14} (3)] proved the converse
of Sharp’s result from Fact Namely, they showed the following: If R admits a
dualizing module, then it is Cohen-Macaulay and a homomorphic image of a local
Gorenstein ring ). We sketch the proof here, as the main idea forms the basis of
our proof of Theorem [I.1]

Let D be a dualizing R-module. It follows that R is Cohen—Macaulay. Set
Q = R x D, which is Cohen-Macaulay with dim(Q) = dim(R); see Facts 2.3
and 2.8 The natural injection ep: R — @ makes ) into a module-finite R-algebra.
The module D is dualizing for R, so Fact implies that the module Homg(Q, D)
is dualizing for @). There is a sequence of R-module isomorphisms

Hompz(Q, D) = Hompg(R ® D, D) = Hompg(D, D) ® Homp(R,D) 2 R® D = Q

and it is straightforward to show that the composition Hompg(Q, D) = @ is actually
a Q-module isomorphism. Fact implies that @ is Gorenstein, so the natural
surjection 7p: @ — R yields an presentation of R as a homomorphic image of the
local Gorenstein ring Q.

The last notion we need is Golod’s generalization [9] of Auslander and Bridger’s
G-dimension [2] [3].

Definition 2.11. Let C be a semidualizing R-module. An R-module G is totally
C-reflexive if it satisfies the following:

(1) The R-module G is finitely generated;

(2) The biduality map 65 : G — Hompg(Hompg(G, C), C), is an isomorphism; and

(3) For all i > 1, we have Exth (G, C) = 0 = Extiy(Homg(G, C), C).

Let M be a finitely generated R-module. Then M has finite G¢o-dimension if it
has a finite resolution by totally C-reflexive R-modules, that is, if there is an exact
sequence

0—-G,—-—G —-Gy—M—0

such that each G; is a totally C-reflexive R-module. The Gg-dimension of M,
when it is finite, is the length of the shortest finite resolution by totally C-reflexive
R-modules:

there is a finite resolution
Ge-dimp(M)=inf{n>0| 0-G, —---—Gy— M —0
by totally C-reflexive R-modules

When C = R, we write G-dimpg(M) in place of Gr-dimp(M).

Fact 2.12. Let C be a semidualizing R-module. The AB formula [5, (3.14)] says
that if M is a finitely generated R-module of finite Go-dimension, then

Ge-dimp (M) = depth(R) — depthz(M).
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Fact 2.13. Let S be a Cohen—Macaulay local ring equipped with a module-finite
local ring homomorphism 7: S — R such that R is Cohen-Macaulay. Let C be
a semidualizing S-module. Then Geg-dimg(R) < oo if and only if there exists
an integer g > 0 such that Ext4(R,C) = 0 for all i # g and Ext%(R,C) is a
semidualizing R-module; when these conditions hold, one has ¢ = Ge-dimg(R).
See [5l (6.1)].

Assume that S has a dualizing module D. If G¢-dimg(R) < oo, then R ®g CT
is a semidualizing R-module and Tor? (R, CT) = 0 for all i > 1; see [5 (4.7),(5.1)].
In particular, if G-dimg(R) < oo, then Tor; (R, D) =0 for all i > 1 and R ®g D is
a semidualizing R-module.

3. PrROOF OF THEOREM [I.1]

Throughout this section, we assume that R is a Cohen-Macaulay ring with
dualizing module D. We divide the proof of Theorem [[T] into several pieces. The
first piece is the following lemma which covers one implication; the remaining pieces
deal with the converse.

Lemma 3.1. Assume that there exist a Gorenstein local ring Q and ideals I, Is C
Q satisfying the following conditions:
(1) There are ring isomorphisms R = Q/(I1 + I2) = (Q/) ®¢ (Q/I2);
(2) For j = 1,2 the quotient ring Q/I; is Cohen-Macaulay with a dualizing
module D; and is not Gorenstein;
(3) For j =1,2 we have G-dimg,;, (R) < oo; and
(4) There is an R-module isomorphism D1 ®@¢g Dy = D.

Then R admits a semidualizing module that is neither dualizing nor free.

Proof. For j =1,2set R; = Q/I;. Condition (3] implies that for j = 1,2 we have
TorZRj (R,Dj) =0 for all i > 1 and C; = R®pg, D; is a semidualizing R-module by
Fact Since R; is not Gorenstein, the Rj-module D; is not cyclic. Thus, the
R-module Cj is not cyclic, and hence not free.

Condition {) provides the first isomorphism in the next sequence:

D>Di®gD: =2 RRqg (D1 ®gD2) =2 (R®qg D1) ®r (R®¢g D2) = C1 Qg Ca.

For the second isomorphism, use the fact that D; is annihilated by I; for j = 1,2
to conclude that D ®g Do is annihilated by I; 4 Io; it follows that D ®g Do
is naturally a module over the quotient Q/(I; + I2) = R, and hence the second
isomorphism. The third isomorphism is standard. This, together with the fact
that each C; is not cyclic, yields the following (in)equalities of minimal numbers of
generators:

pr(D) = pr(C1)ur(C2) > ur(Cy)

for j = 1,2. It follows that C; 2 D for j = 1,2 so each C} is a semidualizing
R-module that is not free and not dualizing, as desired. (]

Assumption 3.2. For the rest of this section, assume that R admits a semiduali-
zing module C that is neither dualizing nor free.

For the sake of readability, we include the following roadmap of the remainder
of the proof.
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Outline 3.3. The ring @ is constructed as an iterated trivial extension of R. As
an R-module, it has the form Q = R® C @ CT @ D where CT = Homp(C, D). The
ideals I; are then given as [} = 0p0aCteDand I, =06 C @ 0® D. The details
for these constructions are contained in Steps B4l and Conditions [I)-@]) of
Theorem [[]] are then verified in Lemmas Theorem [[T[B) requires more
work; it is proved in Lemma [312] with the help of Lemmas The proof
concludes with Lemma [B.13 where we establish Theorem [LTI{]).

The following two steps contain notation and facts for use through the rest of
the proof.

Step 3.4. Set Ry = Rx C, which is Cohen-Macaulay with dim(R;) = dim(R); see
FactsP3land 2.8 The natural injection ec: R — Ry makes Ry into a module-finite
R-algebra, so Fact implies that the module D1 = Hompg(R1, D) is dualizing for
R;y. There is a sequence of R-module isomorphisms

Dy = Hompg(Ry, D) = Homg(R @ C, D) = Homg(C, D) @ Homg(R, D) = CT @ D.

It is straightforward to show that the resulting R;-module structure on CT @ D is
given by the following formula:

(r,c)(¢,d) = (r¢, ¢(c) + rd).

The kernel of the natural epimorphism 7¢: Ry — R is the ideal Ker(7¢) 2 0& D.
Fact implies that the ring @ = Ry x D; is local and Gorenstein. The R-
module isomorphism in the next display is by definition:

Q=RixDi=ReCaoC'aD.
It is straightforward to show that the resulting ring structure on @ is given by
(ryc, g, d) (', ¢, ¢, d') = (rr',rd +7'c,rd’ + 19, ¢ (¢) + (') +rd +1'd).
The kernel of the epimorphism 7p, : Q@ — R; is the ideal
I =Ker(rp,) 20200 CT @ D.
As a @-module, this is isomorphic to the R;-dualizing module D;. The kernel of
the composition 7¢ o 7p, : Q — R is the ideal Ker(tc7mp,) 2 0@ C & CT @ D.

Step 3.5. Set Ry = R x CT, which is Cohen-Macaulay with dim(Ry) = dim(R).
The injection €qt: R — Rs makes Ry into a module-finite R-algebra, so the mod-
ule Dy = Hompg(R2, D) is dualizing for Ry. There is a sequence of R-module
isomorphisms

Dy = Hompg(Rsy, D) = Homg(R® CT, D) = Homg(C', D) ®Homg(R, D) = C® D.

The last isomorphism is from Fact The resulting Ro-module structure on C® D
is given by the following formula:

(r,¢)(c,d) = (r¢, ¢(c) + rd).

The kernel of the natural epimorphism 7o+ : Ro — R is the ideal Ker(7¢1) 2 0@ D.
The ring Q' = Ry X D5 is local and Gorenstein. There is a sequence of R-module
isomorphisms

Q =RyxDy2ReCa®C &D
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and the resulting ring structure on R ® C @& CT @ D is given by
(T7 C, ¢, d) (,rl’ C/, ¢/, d/)
= (rr',rcd +7'c,rd +1'd, ¢ (c) + ¢() + rd +1'd).
That is, we have an isomorphism of rings Q' = ). The kernel of the epimorphism
Tp,: @@ — Ra is the ideal
I, =Ker(tp,) 206 C®0& D.
This is isomorphic, as a @Q-module, to the dualizing module D5. The kernel of the
composition Tg oTp,: @ — R is the ideal Ker(TgTD2) ~0eCaClaD.

We verify condition () from Theorem [[T]in the next lemma.

Lemma 3.6. With the notation of Steps[34] and[F2, there are ring isomorphisms
R=Q/(I +12) = (Q/11) ®q (Q/I2).
Proof. The second isomorphism is standard. For the first one, consider the following
sequence of R-module isomorphisms:
Q/(L+L)=Z(ReCaC'oD)/(0p0®CTe D)+ (00 Co0@ D))
~(RaCaC oD)/ (06 CaC o D))
>~ R.
It is straightforward to check that these are ring isomorphisms. O

We verify condition (2]) from Theorem [[LTlin the next lemma.

Lemma 3.7. With the notation of Steps and [33, each ring R; = Q/I; is
Cohen—Macaulay with a dualizing module and is not Gorenstein.

Proof. It remains to show that each ring R; is not Gorenstein, that is, that D; is
not isomorphic to R; as an Rj-module.

For Ry, suppose by way of contradiction that there is an R;-module isomorphism
Dy = R;. It follows that this is an R-module isomorphism via the natural injection
€c: R — R;. Thus, we have R-module isomorphisms

C'eD>~D =R ~Re&D.
Computing minimal numbers of generators, we have
pr(CY) + pr(D) = pr(CT ® D) = pr(R@® D) = pr(R) + pr(D) = 1 + ur(D).

It follows that pur(CT) = 1, that is, that CT is cyclic. By Fact 23, we have
Anng(C) = 0, and hence CT = R/ Anng(CT) = R. Tt follows that

C = Homg(CT, D) = Homg(R, D) = D

contradicting the assumption that C' is not dualizing for R.

Next, observe that CT is not free and is not dualizing for R; this follows from
the isomorphism C' = Hompg(CT, D) contained in Fact 6} using the assumption
that C' is not free and not dualizing. Hence, the proof that Rs is not Gorenstein
follows as in the previous paragraph. ([

We verify condition (B]) from Theorem [[Tlin the next lemma.

Lemma 3.8. With the notation of Steps and [3.3, we have G-dimg,r, (R) =0
forj=1,2.
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Proof. First, note that it suffices to show that G-dimg,(R) < oo. Indeed, if
G-dimpg, (R) < oo, then the AB formula from Fact .12 implies that

G-dimp, (R) = depth(R;) — depthp (R) = depth(R;) — depth(R) = 0

as desired.

To show that G-dimpg, (R) < oo, it suffices to show that Ext%1 (R, Ry) =0 for all
i > 1 and that Hompg, (R, R1) = C; see Fact 2131 To this end, we note that there
are isomorphisms of R-modules

HOmR(Rl,C) = HomR(R@ C, C) = HomR(C, O) &) HomR(R, C) XROC=ZRy

and it is straightforward to check that the composition Homg(R;,C) & R; is an
Ri-module isomorphism. Furthermore, for i > 1 we have

Exth(Ry,0) = Exth(R® C,C) = Exth(C, C) @ Exth(R,C) = 0.

Let I be an injective resolution of C' as an R-module. The previous two displays
imply that Hompg(Ry, I) is an injective resolution of Ry as an Ri-module. Consider
the following commutative diagram of local ring homomorphisms

Ri> Ry
A
idg
R.
It follows that
Hompg, (R, Homg(R;,1)) 2 Homg(R ®g, R1,I) 2 Homgr(R,I) =1
and hence
. . . 0 if 2 > 1
Extly, (R, Ry) 2 ' (Homp, (R, Homp(Ry, 1)) & H'(1) { C oo
ifi =

as desired/[]
The proof for Ry is similar, using the fact that CT is not free or dualizing. O

The next three results are for the proof of Lemma [3.17]

Lemma 3.9. With the notation of Steps and [33, one has Tor®(Ry, Ry) = 0
for alli > 1, and there is an Ri-algebra isomorphism Ry ®pr Re = Q.

Proof. The Tor-vanishing comes from the following sequence of R-module isomor-
phisms

Torf(Ry, Ry) = Torf(R& C,R & CT)
= Torf (R, R) ® Tor{(C, R) ® Tor{(R, C") @ Tor;(C,CT)
N {R@CEBCT@D iti=0
0 if i # 0.
The first isomorphism is by definition; the second isomorphism is elementary; and

the third isomorphism is from Fact

I'Note that the finiteness of G-dimp, (R) can also be deduced from [I3} (2.16)].
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Moreover, it is straightforward to verify that (in the case ¢ = 0) the isomorphism
Ry ®pr Ro =2 @ has the form a: R; ®r Ro =, Q@ and is given by

(r,c) @ (r', @) — (rr' ;7' c,re’, ¢ (c)).

It is routine to check that this is a ring homomorphism (that is, a ring isomorphism)
and that the following diagram of ring homomorphisms commutes

R’

s

R1®RR2;—>Q

where £ is the natural map = — x ® 1. (To be precise, the map £ is given by
(r,e) — (r,¢) ® (1,0), and €p, is given by (r,¢) — (r,¢,0,0).) It follows that
Ry ®pr Ry = @ as an Rj-algebra. O

Lemma 3.10. Continue with the notation of Steps and [38  In the tensor
product R ®p, Q we have 1 ® (0,¢,0,d) =0 for all c € C and all d € D.

Proof. Recall that Fact implies that the evaluation map C ®g CT — D given
by ¢ ® ¢ — ¢(c') is an isomorphism. Hence, there exist ¢’ € C' and ¢ € CT such
that d = ¢(c¢’). This explains the first equality in the sequence

1®(0,0,0,d) =1® (0,0,0,6(c')) =1®[(0,)(0,0,¢,0)]

=[1(0,)] ® (0,0, 6,0) = 0® (0,0, $,0) = 0.

The second equality is by definition of the R;-module structure on Q; the third
equality is from the fact that we are tensoring over R;p; the fourth equality is from
the fact that the R;-module structure on R comes from the natural surjection

Ry — R, with the fact that (0,c¢) € 0@ C which is the kernel of this surjection.
On the other hand, using similar reasoning, we have

1®(0,¢,0,0) =1®[(0,¢)(1,0,0,0)] = [1(0,¢)] ® (1,0,0,0)
—0®(1,0,0,0) = 0.
Combining (BI0) and BI0.2) we have
19 (0,¢,0,d) = [1® (0,0,0,d)] + [1 ® (0,¢,0,0)] = 0

(3.10.1)

(3.10.2)

as claimed. O

Lemma 3.11. With the notation of Steps and [33, one has Torf (R, Q) = 0
for alli > 1, and there is a Q-module isomorphism R ®p, Q = Ra.

Proof. Let P be an R-projective resolution of Rs:
P=---—P—F—0

Lemma implies that Ry ® g P is a projective resolution of Ry ® g R = @ as an
Ri-module. From the following sequence of isomorphisms

R®p, (R1®r P) = (R®p, R1)®r P2 Rz PP
it follows that, for ¢ > 1, we have

Tor/" (R, Q) = H;(R ®g, (R1 ®r P)) 2 H;(P) =0
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where the final vanishing comes from the assumption that P is a resolution of a
module and 7 > 1.

This reasoning also shows that there is an R-module isomorphism (§: Rs =R
R ®p, Q. This isomorphism is equal to the composition

o

Ro =, R®Rr R» =, R®pg, (R1 ®r R2) oo

R®r, Q

and is therefore given by
(r,¢) = 1®(r,¢) =1 [(1,0)® (r,¢)] = 1® (r,0,¢,0).

We claim that 3 is a Q-module isomorphism. Recall that the )-module structure
on R is given via the natural surjection ) — Rz, and so is described as

(r.e,6,d)(r"¢) = (r,6)(r",¢') = (11’ ,v¢/ +179).
This explains the first equality in the following sequence
B((r,e, ¢, d)(1",¢")) = B(rr’,r¢" +1"¢)
=1@ (rr',r'e,rg’ +1'¢,r'd + ¢/ (c))
=[1® (r',0,7¢ +1'$,0)] + [1 ® (0,7¢,0,r'd + ¢'(c))]
=[1®(rr,0,7¢" +1'$,0)].

The second equality is by definition; the third equality is by bilinearity; and the
fourth equality is by Lemma [3. 10l On the other hand, the definition of 8 explains
the first equality in the sequence

(r,c, ¢, d)B(r',¢') = (r.c,¢,d)[1 ® (+",0,¢',0)]
=1®[(r,e,¢,d)(r',0,¢',0)]
=1® (rr',r'c,r¢’ +1r'¢,r'd + ¢'(c))
=[1® (", 0,7¢" +7¢,0)] + [1 @ (0,7¢c,0,7"d + ¢'(c))]
=1® (rr',0,7¢' +1'¢,0).

The second equality is from the definition of the -modules structure on R ®pg, Q;
the third equality is from the definition of the multiplication in @Q; the fourth
equality is by bilinearity; and the fifth equality is by Lemma[3.10 Combining these
two sequences, we conclude that § is a @-module isomorphism, as claimed. (Il

We verify condition (Bl from Theorem [[T]in the next lemma.

Lemma 3.12. With the notation of Steps[3.4] and[3D, one has Tor? (Q/,Q/5) =
0 for all i > 1; in particular, there is an equality Iy N Iy = 1 I5.

Proof. Let L be a projective resolution of R over R;. Lemma [BIT]implies that the
complex L ®p, @ is a projective resolution of R ®p, @ = Ry over (). We have
isomorphisms

(L®R, Q) ®Q R1 2 L®R, (Q®q R1) =X L®R, R1 =L
and it follows that, for ¢ > 1 we have
Tor? (Ra, R1) = H;((L ®r, Q) ®q R1) = Hy(L) =0

since L is a projective resolution.
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The equality Iy N I = I 15 follows from the direct computation
hnNh=000CTeoD)N0®C®0&D)=00000® D =11,
or from the sequence (I N Iy)/(I115) = Tor?(Q/1,Q/ 1) = 0. O
We verify condition (@) from Theorem [[T]in the next lemma.

Lemma 3.13. With the notation of Steps and [30, there is an R-module iso-
morphism D1 ®qg D2 =2 D, and for all it > 1 we have Tor?(Dl, Dy) =0.

Proof. There is a short exact sequence of Q-module homomorphisms
O—>D1—>QTL>R1—>O.

For all i > 1, we have Tor?(Q, Ry) = 0 = Tor?(R;, Ry), so the long exact sequence
in Tor?(—, R5) associated to the displayed sequence implies that ToriQ (D1,R2) =0
for all 4 > 1. Consider the next short exact sequence of @-module homomorphisms

0— Dy —Q 22 Ry —0.

The associated long exact sequence in Tor? (D1, —) implies that ToriQ(Dl7 Dy)=0
for all 7 > 1.

It is straightforward to verify the following sequence of -module isomorphisms
RxC ctep _C'eD

~
0 C 0eC)CteD)  0@&D =

R®R1 Dlg ( >®R><C (OT@D)'%
and similarly
R®pg, Dy =C.

These combine to explain the third isomorphism in the following sequence:
D1 ®g Dy 2 R®¢ (D1 ®g D2) = (R®¢g D1) ®r (R®qg D) = CT @5 C = D.

For the first isomorphism, use the fact that D; is annihilated by D; = I; for j = 1,2
to conclude that D ®¢g D is annihilated by I; + Iy; it follows that Dy ®g D3 is
naturally a module over the quotient Q/(I; + Iz) & R. The second isomorphism is
standard, and the fourth one is from Fact O

This completes the proof of Theorem [T
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