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PRESENTATIONS OF RINGS WITH NON-TRIVIAL

SELF-ORTHOGONAL MODULES

DAVID A. JORGENSEN, GRAHAM J. LEUSCHKE, AND SEAN SATHER-WAGSTAFF

Abstract. A result of Foxby, Reiten and Sharp says that a commutative
noetherian local ring R admits a dualizing module if and only if R is Cohen–
Macaulay and a homomorphic image of a local Gorenstein ring Q. We establish
an analogous result by showing that such a ring R having a dualizing mod-
ule admits a non-trivial finitely generated self-orthogonal module C satisfying
HomR(C, C) ∼= R if and only if R is the homomorphic image of a Goren-
stein ring in which the defining ideal decomposes in a non-trivial way, forcing
significant structural requirements on the ring R.

1. Introduction

Throughout this paper (R, m, k) is a commutative noetherian local ring.
A finitely generated R-module C is self-orthogonal if ExtiR(C, C) = 0 for all

i > 1. Examples of self-orthogonal R-modules include the finitely generated free R-
modules and the dualizing module of Grothendieck. (See Section 2 for definitions
and background information.) Results of Foxby [7], Reiten [14] and Sharp [15]
precisely characterize the local rings which possess dualizing modules: the ring R
admits a dualizing module if and only if R is Cohen–Macaulay and there exist a
Gorenstein local ring Q and an ideal I ⊂ Q such that R ∼= Q/I.

The point of this paper is to similarly characterize the local Cohen–Macaulay
rings with a dualizing module which admit certain non-trivial self-orthogonal mod-
ules. We show that the existence of such a module imposes considerable structural
implications on the ring via a Gorenstein presentation R ∼= Q/I. The specific
modules of interest are the semidualizing R-modules, i.e., the finitely generated
self-orthogonal R-modules such that HomR(C, C) ∼= R. A free R-module of rank 1
is semidualizing, as is a dualizing R-module, when one exists. For this investigation,
these are the trivial semidualizing R-modules.

Our main theorem is the following analog of the aforementioned result of Foxby,
Reiten and Sharp; we prove it in Section 3.

Theorem 1.1. Let R be a local Cohen–Macaulay ring that admits a dualizing

module D. Then R admits a semidualizing module that is neither dualizing nor free

if and only if there exist a Gorenstein local ring Q and ideals I1, I2 ⊂ Q satisfying

the following conditions:

(1) There are ring isomorphisms R ∼= Q/(I1 + I2) ∼= (Q/I1) ⊗Q (Q/I2);
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(2) For j = 1, 2 the quotient ring Q/Ij is Cohen–Macaulay with a dualizing

module Dj and is not Gorenstein;

(3) For j = 1, 2 we have G-dimQ/Ij
(R) = 0;

(4) There is an R-module isomorphism D1 ⊗Q D2
∼= D, and for all i > 1 we

have TorQ
i (D1, D2) = 0; and

(5) For all i > 1, we have TorQ
i (Q/I1, Q/I2) = 0; in particular, there is an

equality I1 ∩ I2 = I1I2.

Examples of rings that do not admit non-trivial semidualizing modules are easy
to come by.

Example 1.2. Let k be a field. The ring R = k[X, Y ]/(X2, XY, Y 2) is local with
maximal ideal m = (X, Y )R. It is artinian of type 2, hence Cohen–Macaulay and
non-Gorenstein with a dualizing module D. From the equality m

2 = 0, it is straight-
forward to deduce that the only semidualizing R-modules, up to isomorphism, are
R and D.

2. Background on Semidualizing Modules

We begin with relevant definitions. The following notions were introduced inde-
pendently (with different terminology) by Foxby [7], Golod [9], Grothendieck [10, 11]
Vasconcelos [16] and Wakamatsu [17].

Definition 2.1. Let C be an R-module. The homothety homomorphism is the
map χR

C : R → HomR(C, C) given by χR
C(r)(c) = rc.

The R-module C is semidualizing if it satisfies the following conditions:

(1) The R-module C is finitely generated;
(2) The homothety map χR

C : R → HomR(C, C), is an isomorphism; and

(3) For all i > 1, we have ExtiR(C, C) = 0.

An R-module D is dualizing if it is semidualizing and has finite injective dimension.

Fact 2.2. The R-module R is semidualizing, so every local ring admits a semidual-
izing module. Examples of non-trivial semidualizing modules were given indepen-
dently by Foxby [6] and Vasconcelos [16].

Fact 2.3. Let C be a semidualizing R-module. The isomorphism R ∼= HomR(C, C)
implies that AnnR(C) = 0 and AssR(C) = Ass(R). It follows that SuppR(C) =
Spec(R) and dimR(C) = dim(R). Furthermore, an element x ∈ m is C-regular if
and only if it is R-regular. When the element x ∈ m is R-regular, it is straightfor-
ward to show that Exti

R(R/xR, C) = 0 for all i 6= 1 and that the module

C/xC ∼= Ext1R(R/xR, C)

is semidualizing for R/xR. Thus, by induction on depth(R), we conclude that
depthR(C) = depth(R). In particular, when R is Cohen–Macaulay, every semidu-
alizing R-module is a maximal Cohen–Macaulay module. On the other hand, if R
admits a dualizing module, then R is Cohen–Macaulay.

Fact 2.4. Let C be a semidualizing R-module. If pdR(C) < ∞, then C ∼= R, as
follows. Assume that pdR(C) < ∞. The Auslander-Buchsbaum formula yields the
first equality in the following sequence while the second equality is from Fact 2.3:

pdR(C) = depth(R) − depthR(C) = 0.
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It follows that C is free, say C ∼= Rn. The isomorphisms

R ∼= HomR(C, C) ∼= HomR(Rn, Rn) ∼= Rn2

imply that n = 1, so C ∼= R.

The following definition and fact justify the term “dualizing”.

Definition 2.5. Let C and B be R-modules. The natural biduality homomor-

phism δB
C : C → HomR(HomR(C, B), B) is given by δB

C (c)(φ) = φ(c). When D is a
dualizing R-module, we set C† = HomR(C, D).

Fact 2.6. Assume that R is Cohen–Macaulay and admits a dualizing module D.
Let C be a semidualizing R-module. Fact 2.3 implies that C is a maximal Cohen–
Macaulay R-module. From standard duality theory, for all i 6= 0 we have

Exti
R(C, D) = 0 = Exti

R(HomR(C, D), D)

and the natural biduality homomorphism δD
C : C → HomR(HomR(C, D), D) is an

isomorphism; see, e.g., [4, (3.3.10)]. In particular, we have HomR(C†, D) ∼= C.
Furthermore C† is a semidualizing R-module by [5, (2.12)], and the evaluation map
C ⊗R C† → D given by c ⊗ φ 7→ φ(c) is an isomorphism by [8, (3.1)].

The following construction is also known as the “idealization” of M . It was
popularized by Nagata, but goes back at least to Hochschild [12]. It is the key
idea for the proof of the converse of Sharp’s result [15] given by Foxby [7] and
Reiten [14]. It has also been very helpful in the study of G-dimensions because of
the paper of Holm and Jørgensen [13]. The interested reader can find a survey of
some properties of this construction in the article of Anderson and Winders [1].

Definition 2.7. Let M be an R-module. The trivial extension of R by M is the ring
R⋉M , described as follows. As an additive abelian group, we have R⋉M ∼= R⊕M .
The multiplication in R ⋉ M is given by the formula

(r, m)(r′, m′) = (rr′, rm′ + r′m).

The multiplicative identity on R ⋉ M is (1, 0). We let ǫM : R → R ⋉ M and
τM : R ⋉ M → R denote the natural injection and surjection, respectively.

The next facts are straightforward to verify.

Fact 2.8. Let M be an R-module. The trivial extension R ⋉ M is a commutative
ring with identity. The maps ǫM and τM are ring homomorphisms, and Ker(τM ) =
0⊕M . We have (0⊕M)2 = 0, and so Spec(R⋉M) is in order-preserving bijection
with Spec(R). It follows that R ⋉ M is quasilocal and dim(R ⋉ M) = dim(R). If
M is finitely generated, then R is also noetherian and

depth(R ⋉ M) = depthR(R ⋉ M) = min{depth(R), depthR(M)}.

In particular, if R is Cohen–Macaulay and M is a maximal Cohen–Macaulay R-
module, then R ⋉ M is Cohen–Macaulay as well.

Here is a discussion of the correspondence between dualizing modules and Goren-
stein presentations.

Fact 2.9. Sharp [15, (3.1)] showed that if R is Cohen–Macaulay and a homomor-
phic image of a local Gorenstein ring Q, then R admits a dualizing module. The
proof proceeds as follows. Let Q be a local Gorenstein ring equipped with a ring
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epimorphism π : Q → R, and set g = depth(Q) − depth(R) = dim(Q) − dim(R).

It follows that Exti
Q(R, Q) = 0 for i 6= g and the module ExtgQ(R, Q) is dualizing

for R. Thus, by Cohen’s structure theorem, every local complete Cohen–Macaulay
ring has a dualizing module.

The same idea gives the following. Let A be a local Cohen–Macaulay ring with
a dualizing module D, and assume that R is Cohen–Macaulay and a module-finite
A-algebra. If h = depth(A) − depth(R) = dim(A) − dim(R), then ExtiA(R, D) = 0

for i 6= h and the module ExthA(R, D) is dualizing for R.

Fact 2.10. Independently, Foxby [7, (4.1)] and Reiten [14, (3)] proved the converse
of Sharp’s result from Fact 2.9. Namely, they showed the following: If R admits a
dualizing module, then it is Cohen–Macaulay and a homomorphic image of a local
Gorenstein ring Q. We sketch the proof here, as the main idea forms the basis of
our proof of Theorem 1.1.

Let D be a dualizing R-module. It follows that R is Cohen–Macaulay. Set
Q = R ⋉ D, which is Cohen–Macaulay with dim(Q) = dim(R); see Facts 2.3
and 2.8. The natural injection ǫD : R → Q makes Q into a module-finite R-algebra.
The module D is dualizing for R, so Fact 2.9 implies that the module HomR(Q, D)
is dualizing for Q. There is a sequence of R-module isomorphisms

HomR(Q, D) ∼= HomR(R ⊕ D, D) ∼= HomR(D, D) ⊕ HomR(R, D) ∼= R ⊕ D ∼= Q

and it is straightforward to show that the composition HomR(Q, D) ∼= Q is actually
a Q-module isomorphism. Fact 2.2 implies that Q is Gorenstein, so the natural
surjection τD : Q → R yields an presentation of R as a homomorphic image of the
local Gorenstein ring Q.

The last notion we need is Golod’s generalization [9] of Auslander and Bridger’s
G-dimension [2, 3].

Definition 2.11. Let C be a semidualizing R-module. An R-module G is totally

C-reflexive if it satisfies the following:

(1) The R-module G is finitely generated;
(2) The biduality map δC

G : G → HomR(HomR(G, C), C), is an isomorphism; and

(3) For all i > 1, we have ExtiR(G, C) = 0 = ExtiR(HomR(G, C), C).

Let M be a finitely generated R-module. Then M has finite GC-dimension if it
has a finite resolution by totally C-reflexive R-modules, that is, if there is an exact
sequence

0 → Gn → · · · → G1 → G0 → M → 0

such that each Gi is a totally C-reflexive R-module. The GC-dimension of M ,
when it is finite, is the length of the shortest finite resolution by totally C-reflexive
R-modules:

GC -dimR(M) = inf







n > 0

∣

∣

∣

∣

∣

∣

there is a finite resolution
0 → Gn → · · · → G0 → M → 0

by totally C-reflexive R-modules







.

When C = R, we write G-dimR(M) in place of GR- dimR(M).

Fact 2.12. Let C be a semidualizing R-module. The AB formula [5, (3.14)] says
that if M is a finitely generated R-module of finite GC -dimension, then

GC -dimR(M) = depth(R) − depthR(M).
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Fact 2.13. Let S be a Cohen–Macaulay local ring equipped with a module-finite
local ring homomorphism τ : S → R such that R is Cohen–Macaulay. Let C be
a semidualizing S-module. Then GC -dimS(R) < ∞ if and only if there exists

an integer g > 0 such that Exti
S(R, C) = 0 for all i 6= g and ExtgS(R, C) is a

semidualizing R-module; when these conditions hold, one has g = GC -dimS(R).
See [5, (6.1)].

Assume that S has a dualizing module D. If GC -dimS(R) < ∞, then R ⊗S C†

is a semidualizing R-module and TorS
i (R, C†) = 0 for all i > 1; see [5, (4.7),(5.1)].

In particular, if G-dimS(R) < ∞, then TorS
i (R, D) = 0 for all i > 1 and R ⊗S D is

a semidualizing R-module.

3. Proof of Theorem 1.1

Throughout this section, we assume that R is a Cohen–Macaulay ring with
dualizing module D. We divide the proof of Theorem 1.1 into several pieces. The
first piece is the following lemma which covers one implication; the remaining pieces
deal with the converse.

Lemma 3.1. Assume that there exist a Gorenstein local ring Q and ideals I1, I2 ⊂
Q satisfying the following conditions:

(1) There are ring isomorphisms R ∼= Q/(I1 + I2) ∼= (Q/I1) ⊗Q (Q/I2);
(2) For j = 1, 2 the quotient ring Q/Ij is Cohen–Macaulay with a dualizing

module Dj and is not Gorenstein;

(3) For j = 1, 2 we have G-dimQ/Ij
(R) < ∞; and

(4) There is an R-module isomorphism D1 ⊗Q D2
∼= D.

Then R admits a semidualizing module that is neither dualizing nor free.

Proof. For j = 1, 2 set Rj = Q/Ij . Condition (3) implies that for j = 1, 2 we have

Tor
Rj

i (R, Dj) = 0 for all i > 1 and Cj = R ⊗Rj
Dj is a semidualizing R-module by

Fact 2.13. Since Rj is not Gorenstein, the Rj-module Dj is not cyclic. Thus, the
R-module Cj is not cyclic, and hence not free.

Condition (4) provides the first isomorphism in the next sequence:

D ∼= D1 ⊗Q D2
∼= R ⊗Q (D1 ⊗Q D2) ∼= (R ⊗Q D1) ⊗R (R ⊗Q D2) = C1 ⊗R C2.

For the second isomorphism, use the fact that Dj is annihilated by Ij for j = 1, 2
to conclude that D1 ⊗Q D2 is annihilated by I1 + I2; it follows that D1 ⊗Q D2

is naturally a module over the quotient Q/(I1 + I2) ∼= R, and hence the second
isomorphism. The third isomorphism is standard. This, together with the fact
that each Ci is not cyclic, yields the following (in)equalities of minimal numbers of
generators:

µR(D) = µR(C1)µR(C2) > µR(Cj)

for j = 1, 2. It follows that Cj 6∼= D for j = 1, 2 so each Cj is a semidualizing
R-module that is not free and not dualizing, as desired. �

Assumption 3.2. For the rest of this section, assume that R admits a semiduali-
zing module C that is neither dualizing nor free.

For the sake of readability, we include the following roadmap of the remainder
of the proof.
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Outline 3.3. The ring Q is constructed as an iterated trivial extension of R. As
an R-module, it has the form Q = R⊕C ⊕C† ⊕D where C† = HomR(C, D). The
ideals Ij are then given as I1 = 0⊕ 0⊕C†⊕D and I2 = 0⊕C ⊕ 0⊕D. The details
for these constructions are contained in Steps 3.4 and 3.5. Conditions (1)–(3) of
Theorem 1.1 are then verified in Lemmas 3.6–3.8. Theorem 1.1(5) requires more
work; it is proved in Lemma 3.12, with the help of Lemmas 3.9–3.11. The proof
concludes with Lemma 3.13 where we establish Theorem 1.1(4).

The following two steps contain notation and facts for use through the rest of
the proof.

Step 3.4. Set R1 = R⋉C, which is Cohen–Macaulay with dim(R1) = dim(R); see
Facts 2.3 and 2.8. The natural injection ǫC : R → R1 makes R1 into a module-finite
R-algebra, so Fact 2.9 implies that the module D1 = HomR(R1, D) is dualizing for
R1. There is a sequence of R-module isomorphisms

D1 = HomR(R1, D) ∼= HomR(R ⊕ C, D) ∼= HomR(C, D) ⊕ HomR(R, D) ∼= C† ⊕ D.

It is straightforward to show that the resulting R1-module structure on C† ⊕ D is
given by the following formula:

(r, c)(φ, d) = (rφ, φ(c) + rd).

The kernel of the natural epimorphism τC : R1 → R is the ideal Ker(τC) ∼= 0 ⊕ D.
Fact 2.9 implies that the ring Q = R1 ⋉ D1 is local and Gorenstein. The R-

module isomorphism in the next display is by definition:

Q = R1 ⋉ D1
∼= R ⊕ C ⊕ C† ⊕ D.

It is straightforward to show that the resulting ring structure on Q is given by

(r, c, φ, d)(r′, c′, φ′, d′) = (rr′, rc′ + r′c, rφ′ + r′φ, φ′(c) + φ(c′) + rd′ + r′d).

The kernel of the epimorphism τD1
: Q → R1 is the ideal

I1 = Ker(τD1
) ∼= 0 ⊕ 0 ⊕ C† ⊕ D.

As a Q-module, this is isomorphic to the R1-dualizing module D1. The kernel of
the composition τC ◦ τD1

: Q → R is the ideal Ker(τCτD1
) ∼= 0 ⊕ C ⊕ C† ⊕ D.

Step 3.5. Set R2 = R ⋉ C†, which is Cohen–Macaulay with dim(R2) = dim(R).
The injection ǫC† : R → R2 makes R2 into a module-finite R-algebra, so the mod-
ule D2 = HomR(R2, D) is dualizing for R2. There is a sequence of R-module
isomorphisms

D2 = HomR(R2, D) ∼= HomR(R⊕C†, D) ∼= HomR(C†, D)⊕HomR(R, D) ∼= C⊕D.

The last isomorphism is from Fact 2.6. The resulting R2-module structure on C⊕D
is given by the following formula:

(r, φ)(c, d) = (rφ, φ(c) + rd).

The kernel of the natural epimorphism τC† : R2 → R is the ideal Ker(τC†) ∼= 0⊕D.
The ring Q′ = R2 ⋉D2 is local and Gorenstein. There is a sequence of R-module

isomorphisms

Q′ = R2 ⋉ D2
∼= R ⊕ C ⊕ C† ⊕ D
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and the resulting ring structure on R ⊕ C ⊕ C† ⊕ D is given by

(r, c, φ, d)(r′, c′, φ′, d′)

= (rr′, rc′ + r′c, rφ′ + r′φ, φ′(c) + φ(c′) + rd′ + r′d).

That is, we have an isomorphism of rings Q′ ∼= Q. The kernel of the epimorphism
τD2

: Q → R2 is the ideal

I2 = Ker(τD2
) ∼= 0 ⊕ C ⊕ 0 ⊕ D.

This is isomorphic, as a Q-module, to the dualizing module D2. The kernel of the

composition τ†
C ◦ τD2

: Q → R is the ideal Ker(τ†
CτD2

) ∼= 0 ⊕ C ⊕ C† ⊕ D.

We verify condition (1) from Theorem 1.1 in the next lemma.

Lemma 3.6. With the notation of Steps 3.4 and 3.5, there are ring isomorphisms

R ∼= Q/(I1 + I2) ∼= (Q/I1) ⊗Q (Q/I2).

Proof. The second isomorphism is standard. For the first one, consider the following
sequence of R-module isomorphisms:

Q/(I1 + I2) ∼= (R ⊕ C ⊕ C† ⊕ D)/((0 ⊕ 0 ⊕ C† ⊕ D) + (0 ⊕ C ⊕ 0 ⊕ D))

∼= (R ⊕ C ⊕ C† ⊕ D)/(0 ⊕ C ⊕ C† ⊕ D))
∼= R.

It is straightforward to check that these are ring isomorphisms. �

We verify condition (2) from Theorem 1.1 in the next lemma.

Lemma 3.7. With the notation of Steps 3.4 and 3.5, each ring Rj
∼= Q/Ij is

Cohen–Macaulay with a dualizing module and is not Gorenstein.

Proof. It remains to show that each ring Rj is not Gorenstein, that is, that Dj is
not isomorphic to Rj as an Rj-module.

For R1, suppose by way of contradiction that there is an R1-module isomorphism
D1

∼= R1. It follows that this is an R-module isomorphism via the natural injection
ǫC : R → R1. Thus, we have R-module isomorphisms

C† ⊕ D ∼= D1
∼= R1

∼= R ⊕ D.

Computing minimal numbers of generators, we have

µR(C†) + µR(D) = µR(C† ⊕ D) = µR(R ⊕ D) = µR(R) + µR(D) = 1 + µR(D).

It follows that µR(C†) = 1, that is, that C† is cyclic. By Fact 2.3, we have
AnnR(C) = 0, and hence C† ∼= R/ AnnR(C†) ∼= R. It follows that

C ∼= HomR(C†, D) ∼= HomR(R, D) ∼= D

contradicting the assumption that C is not dualizing for R.
Next, observe that C† is not free and is not dualizing for R; this follows from

the isomorphism C ∼= HomR(C†, D) contained in Fact 2.6, using the assumption
that C is not free and not dualizing. Hence, the proof that R2 is not Gorenstein
follows as in the previous paragraph. �

We verify condition (3) from Theorem 1.1 in the next lemma.

Lemma 3.8. With the notation of Steps 3.4 and 3.5, we have G-dimQ/Ij
(R) = 0

for j = 1, 2.
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Proof. First, note that it suffices to show that G-dimRj
(R) < ∞. Indeed, if

G-dimRj
(R) < ∞, then the AB formula from Fact 2.12 implies that

G-dimRj
(R) = depth(Rj) − depthRj

(R) = depth(Rj) − depth(R) = 0

as desired.
To show that G-dimR1

(R) < ∞, it suffices to show that ExtiR1
(R, R1) = 0 for all

i > 1 and that HomR1
(R, R1) ∼= C; see Fact 2.13. To this end, we note that there

are isomorphisms of R-modules

HomR(R1, C) ∼= HomR(R ⊕ C, C) ∼= HomR(C, C) ⊕ HomR(R, C) ∼= R ⊕ C ∼= R1

and it is straightforward to check that the composition HomR(R1, C) ∼= R1 is an
R1-module isomorphism. Furthermore, for i > 1 we have

Exti
R(R1, C) ∼= ExtiR(R ⊕ C, C) ∼= Exti

R(C, C) ⊕ Exti
R(R, C) = 0.

Let I be an injective resolution of C as an R-module. The previous two displays
imply that HomR(R1, I) is an injective resolution of R1 as an R1-module. Consider
the following commutative diagram of local ring homomorphisms

R
ǫC

//

idR
  A

A

A

A

A

A

A

A

R1

τC

��

R.

It follows that

HomR1
(R, HomR(R1, I)) ∼= HomR(R ⊗R1

R1, I) ∼= HomR(R, I) ∼= I

and hence

Exti
R1

(R, R1) ∼= Hi(HomR1
(R, HomR(R1, I))) ∼= Hi(I) ∼=

{

0 if i > 1

C if i = 0

as desired.1

The proof for R2 is similar, using the fact that C† is not free or dualizing. �

The next three results are for the proof of Lemma 3.12.

Lemma 3.9. With the notation of Steps 3.4 and 3.5, one has TorR
i (R1, R2) = 0

for all i > 1, and there is an R1-algebra isomorphism R1 ⊗R R2
∼= Q.

Proof. The Tor-vanishing comes from the following sequence of R-module isomor-
phisms

TorR
i (R1, R2) ∼= TorR

i (R ⊕ C, R ⊕ C†)

∼= TorR
i (R, R) ⊕ TorR

i (C, R) ⊕ TorR
i (R, C†) ⊕ TorR

i (C, C†)

∼=

{

R ⊕ C ⊕ C† ⊕ D if i = 0

0 if i 6= 0.

The first isomorphism is by definition; the second isomorphism is elementary; and
the third isomorphism is from Fact 2.6.

1Note that the finiteness of G-dimR1
(R) can also be deduced from [13, (2.16)].
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Moreover, it is straightforward to verify that (in the case i = 0) the isomorphism

R1 ⊗R R2
∼= Q has the form α : R1 ⊗R R2

∼=
−→ Q and is given by

(r, c) ⊗ (r′, φ′) 7→ (rr′, r′c, rφ′, φ′(c)).

It is routine to check that this is a ring homomorphism (that is, a ring isomorphism)
and that the following diagram of ring homomorphisms commutes

R1

ξ

��

ǫD1

$$I
I

I

I

I

I

I

I

I

I

R1 ⊗R R2 ∼=

α
// Q

where ξ is the natural map x 7→ x ⊗ 1. (To be precise, the map ξ is given by
(r, c) 7→ (r, c) ⊗ (1, 0), and ǫD1

is given by (r, c) 7→ (r, c, 0, 0).) It follows that
R1 ⊗R R2

∼= Q as an R1-algebra. �

Lemma 3.10. Continue with the notation of Steps 3.4 and 3.5. In the tensor

product R ⊗R1
Q we have 1 ⊗ (0, c, 0, d) = 0 for all c ∈ C and all d ∈ D.

Proof. Recall that Fact 2.6 implies that the evaluation map C ⊗R C† → D given
by c′ ⊗ φ 7→ φ(c′) is an isomorphism. Hence, there exist c′ ∈ C and φ ∈ C† such
that d = φ(c′). This explains the first equality in the sequence

1 ⊗ (0, 0, 0, d) = 1 ⊗ (0, 0, 0, φ(c′)) = 1 ⊗ [(0, c′)(0, 0, φ, 0)]

= [1(0, c′)] ⊗ (0, 0, φ, 0) = 0 ⊗ (0, 0, φ, 0) = 0.
(3.10.1)

The second equality is by definition of the R1-module structure on Q; the third
equality is from the fact that we are tensoring over R1; the fourth equality is from
the fact that the R1-module structure on R comes from the natural surjection
R1 → R, with the fact that (0, c) ∈ 0 ⊕ C which is the kernel of this surjection.

On the other hand, using similar reasoning, we have

1 ⊗ (0, c, 0, 0) = 1 ⊗ [(0, c)(1, 0, 0, 0)] = [1(0, c)] ⊗ (1, 0, 0, 0)

= 0 ⊗ (1, 0, 0, 0) = 0.
(3.10.2)

Combining (3.10.1) and (3.10.2) we have

1 ⊗ (0, c, 0, d) = [1 ⊗ (0, 0, 0, d)] + [1 ⊗ (0, c, 0, 0)] = 0

as claimed. �

Lemma 3.11. With the notation of Steps 3.4 and 3.5, one has TorR1

i (R, Q) = 0
for all i > 1, and there is a Q-module isomorphism R ⊗R1

Q ∼= R2.

Proof. Let P be an R-projective resolution of R2:

P = · · · → P1 → P0 → 0.

Lemma 3.9 implies that R1 ⊗R P is a projective resolution of R1 ⊗R R2
∼= Q as an

R1-module. From the following sequence of isomorphisms

R ⊗R1
(R1 ⊗R P ) ∼= (R ⊗R1

R1) ⊗R P ∼= R ⊗R P ∼= P

it follows that, for i > 1, we have

TorR1

i (R, Q) ∼= Hi(R ⊗R1
(R1 ⊗R P )) ∼= Hi(P ) = 0
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where the final vanishing comes from the assumption that P is a resolution of a
module and i > 1.

This reasoning also shows that there is an R-module isomorphism β : R2

∼=
−→

R ⊗R1
Q. This isomorphism is equal to the composition

R2

∼=
−→ R ⊗R R2

∼=
−→ R ⊗R1

(R1 ⊗R R2)
∼=

−−−−−→
R⊗R1

α
R ⊗R1

Q

and is therefore given by

(r, φ) 7→ 1 ⊗ (r, φ) 7→ 1 ⊗ [(1, 0) ⊗ (r, φ)] 7→ 1 ⊗ (r, 0, φ, 0).

We claim that β is a Q-module isomorphism. Recall that the Q-module structure
on R2 is given via the natural surjection Q → R2, and so is described as

(r, c, φ, d)(r′, φ′) = (r, φ)(r′, φ′) = (rr′, rφ′ + r′φ).

This explains the first equality in the following sequence

β((r, c, φ, d)(r′, φ′)) = β(rr′, rφ′ + r′φ)

= 1 ⊗ (rr′, r′c, rφ′ + r′φ, r′d + φ′(c))

= [1 ⊗ (rr′, 0, rφ′ + r′φ, 0)] + [1 ⊗ (0, r′c, 0, r′d + φ′(c))]

= [1 ⊗ (rr′, 0, rφ′ + r′φ, 0)].

The second equality is by definition; the third equality is by bilinearity; and the
fourth equality is by Lemma 3.10. On the other hand, the definition of β explains
the first equality in the sequence

(r, c, φ, d)β(r′, φ′) = (r, c, φ, d)[1 ⊗ (r′, 0, φ′, 0)]

= 1 ⊗ [(r, c, φ, d)(r′, 0, φ′, 0)]

= 1 ⊗ (rr′, r′c, rφ′ + r′φ, r′d + φ′(c))

= [1 ⊗ (rr′, 0, rφ′ + r′φ, 0)] + [1 ⊗ (0, r′c, 0, r′d + φ′(c))]

= 1 ⊗ (rr′, 0, rφ′ + r′φ, 0).

The second equality is from the definition of the Q-modules structure on R⊗R1
Q;

the third equality is from the definition of the multiplication in Q; the fourth
equality is by bilinearity; and the fifth equality is by Lemma 3.10. Combining these
two sequences, we conclude that β is a Q-module isomorphism, as claimed. �

We verify condition (5) from Theorem 1.1 in the next lemma.

Lemma 3.12. With the notation of Steps 3.4 and 3.5, one has TorQ
i (Q/I1, Q/I2) =

0 for all i > 1; in particular, there is an equality I1 ∩ I2 = I1I2.

Proof. Let L be a projective resolution of R over R1. Lemma 3.11 implies that the
complex L ⊗R1

Q is a projective resolution of R ⊗R1
Q ∼= R2 over Q. We have

isomorphisms

(L ⊗R1
Q) ⊗Q R1

∼= L ⊗R1
(Q ⊗Q R1) ∼= L ⊗R1

R1
∼= L

and it follows that, for i > 1 we have

TorQ
i (R2, R1) ∼= Hi((L ⊗R1

Q) ⊗Q R1) ∼= Hi(L) = 0

since L is a projective resolution.
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The equality I1 ∩ I2 = I1I2 follows from the direct computation

I1 ∩ I2 = (0 ⊕ 0 ⊕ C† ⊕ D) ∩ (0 ⊕ C ⊕ 0 ⊕ D) = 0 ⊕ 0 ⊕ 0 ⊕ D = I1I2

or from the sequence (I1 ∩ I2)/(I1I2) ∼= TorQ
1 (Q/I1, Q/I2) = 0. �

We verify condition (4) from Theorem 1.1 in the next lemma.

Lemma 3.13. With the notation of Steps 3.4 and 3.5, there is an R-module iso-

morphism D1 ⊗Q D2
∼= D, and for all i > 1 we have TorQ

i (D1, D2) = 0.

Proof. There is a short exact sequence of Q-module homomorphisms

0 → D1 → Q
τD1−−→ R1 → 0.

For all i > 1, we have TorQ
i (Q, R2) = 0 = TorQ

i (R1, R2), so the long exact sequence

in TorQ
i (−, R2) associated to the displayed sequence implies that TorQ

i (D1, R2) = 0
for all i > 1. Consider the next short exact sequence of Q-module homomorphisms

0 → D2 → Q
τD2−−→ R2 → 0.

The associated long exact sequence in TorQ
i (D1,−) implies that TorQ

i (D1, D2) = 0
for all i > 1.

It is straightforward to verify the following sequence of Q-module isomorphisms

R ⊗R1
D1

∼=

(

R ⋉ C

0 ⊕ C

)

⊗R⋉C (C† ⊕ D) ∼=
C† ⊕ D

(0 ⊕ C)(C† ⊕ D)
∼=

C† ⊕ D

0 ⊕ D
∼= C†

and similarly

R ⊗R2
D2

∼= C.

These combine to explain the third isomorphism in the following sequence:

D1 ⊗Q D2
∼= R ⊗Q (D1 ⊗Q D2) ∼= (R ⊗Q D1) ⊗R (R ⊗Q D2) ∼= C† ⊗R C ∼= D.

For the first isomorphism, use the fact that Dj is annihilated by Dj = Ij for j = 1, 2
to conclude that D1 ⊗Q D2 is annihilated by I1 + I2; it follows that D1 ⊗Q D2 is
naturally a module over the quotient Q/(I1 + I2) ∼= R. The second isomorphism is
standard, and the fourth one is from Fact 2.6. �

This completes the proof of Theorem 1.1.
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