PRESENTATIONS OF RINGS WITH NON-TRIVIAL SELF-ORTHOGONAL MODULES

DAVID A. JORGENSEN, GRAHAM J. LEUSCHKE, AND SEAN SATHER-WAGSTAFF

Abstract. A result of Foxby, Reiten and Sharp says that a commutative noetherian local ring R admits a dualizing module if and only if R is Cohen– Macaulay and a homomorphic image of a local Gorenstein ring Q. We establish an analogous result by showing that such a ring R having a dualizing module admits a non-trivial finitely generated self-orthogonal module C satisfying $Hom_R(C, C) \cong R$ if and only if R is the homomorphic image of a Gorenstein ring in which the defining ideal decomposes in a non-trivial way, forcing significant structural requirements on the ring R.

1. INTRODUCTION

Throughout this paper (R, \mathfrak{m}, k) is a commutative noetherian local ring.

A finitely generated R-module C is self-orthogonal if $\text{Ext}^i_R(C, C) = 0$ for all $i \geqslant 1$. Examples of self-orthogonal R-modules include the finitely generated free Rmodules and the dualizing module of Grothendieck. (See Section [2](#page-1-0) for definitions and background information.) Results of Foxby [\[7\]](#page-11-0), Reiten [\[14\]](#page-11-1) and Sharp [\[15\]](#page-11-2) precisely characterize the local rings which possess dualizing modules: the ring R admits a dualizing module if and only if R is Cohen–Macaulay and there exist a Gorenstein local ring Q and an ideal $I \subset Q$ such that $R \cong Q/I$.

The point of this paper is to similarly characterize the local Cohen–Macaulay rings with a dualizing module which admit certain non-trivial self-orthogonal modules. We show that the existence of such a module imposes considerable structural implications on the ring via a Gorenstein presentation $R \cong Q/I$. The specific modules of interest are the *semidualizing* R-modules, i.e., the finitely generated self-orthogonal R-modules such that $\text{Hom}_R(C, C) \cong R$. A free R-module of rank 1 is semidualizing, as is a dualizing R -module, when one exists. For this investigation, these are the *trivial* semidualizing R-modules.

Our main theorem is the following analog of the aforementioned result of Foxby, Reiten and Sharp; we prove it in Section [3.](#page-4-0)

Theorem 1.1. *Let* R *be a local Cohen–Macaulay ring that admits a dualizing module* D*. Then* R *admits a semidualizing module that is neither dualizing nor free if and only if there exist a Gorenstein local ring* Q and ideals $I_1, I_2 \subset Q$ *satisfying the following conditions:*

(1) *There are ring isomorphisms* $R \cong Q/(I_1 + I_2) \cong (Q/I_1) \otimes_Q (Q/I_2)$;

²⁰⁰⁰ Mathematics Subject Classification. 13C05, 13D07, 13H10.

Key words and phrases. Gorenstein rings, semidualizing modules, self-orthogonal modules, Tor-independence.

G. Leuschke was partly supported by NSF grant DMS 0556181. S. Sather-Wagstaff was supported in part by a grant from the NSA.

- (2) For $j = 1, 2$ the quotient ring Q/I_j is Cohen–Macaulay with a dualizing *module* D^j *and is not Gorenstein;*
- (3) *For* $j = 1, 2$ *we have* G-dim_{Q/I_j}(*R*) = 0*;*
- (4) *There is an R-module isomorphism* $D_1 \otimes_Q D_2 \cong D$, and for all $i \geq 1$ we *have* $\operatorname{Tor}^Q_i(D_1, D_2) = 0$ *; and*
- (5) For all $i \geq 1$, we have $\text{Tor}_i^Q(Q/I_1, Q/I_2) = 0$; in particular, there is an *equality* $I_1 \cap I_2 = I_1 I_2$.

Examples of rings that do not admit non-trivial semidualizing modules are easy to come by.

Example 1.2. Let k be a field. The ring $R = k[X, Y]/(X^2, XY, Y^2)$ is local with maximal ideal $\mathfrak{m} = (X, Y)R$. It is artinian of type 2, hence Cohen–Macaulay and non-Gorenstein with a dualizing module D. From the equality $\mathfrak{m}^2 = 0$, it is straightforward to deduce that the only semidualizing R-modules, up to isomorphism, are R and D.

2. Background on Semidualizing Modules

We begin with relevant definitions. The following notions were introduced independently (with different terminology) by Foxby [\[7\]](#page-11-0), Golod [\[9\]](#page-11-3), Grothendieck [\[10,](#page-11-4) [11\]](#page-11-5) Vasconcelos [\[16\]](#page-11-6) and Wakamatsu [\[17\]](#page-11-7).

Definition 2.1. Let C be an R-module. The *homothety homomorphism* is the map χ_C^R : $R \to \text{Hom}_R(C, C)$ given by $\chi_C^R(r)(c) = rc$.

The R-module C is *semidualizing* if it satisfies the following conditions:

- (1) The R -module C is finitely generated;
- (2) The homothety map $\chi_C^R: R \to \text{Hom}_R(C, C)$, is an isomorphism; and
- (3) For all $i \geq 1$, we have $\text{Ext}_{R}^{i}(C, C) = 0$.

An R-module D is *dualizing* if it is semidualizing and has finite injective dimension.

Fact 2.2. The R-module R is semidualizing, so every local ring admits a semidualizing module. Examples of non-trivial semidualizing modules were given independently by Foxby [\[6\]](#page-10-0) and Vasconcelos [\[16\]](#page-11-6).

Fact 2.3. Let C be a semidualizing R-module. The isomorphism $R \cong \text{Hom}_{R}(C, C)$ implies that $\text{Ann}_R(C) = 0$ and $\text{Ass}_R(C) = \text{Ass}(R)$. It follows that $\text{Supp}_R(C) =$ $Spec(R)$ and $dim_B(C) = dim(R)$. Furthermore, an element $x \in \mathfrak{m}$ is C-regular if and only if it is R-regular. When the element $x \in \mathfrak{m}$ is R-regular, it is straightforward to show that $\text{Ext}^i_R(R/xR, C) = 0$ for all $i \neq 1$ and that the module

$$
C/xC \cong \text{Ext}^1_R(R/xR, C)
$$

is semidualizing for R/xR . Thus, by induction on depth (R) , we conclude that $\operatorname{depth}_R(C) = \operatorname{depth}(R)$. In particular, when R is Cohen–Macaulay, every semidualizing R-module is a maximal Cohen–Macaulay module. On the other hand, if R admits a dualizing module, then R is Cohen–Macaulay.

Fact 2.4. Let C be a semidualizing R-module. If $pd_R(C) < \infty$, then $C \cong R$, as follows. Assume that $pd_R(C) < \infty$. The Auslander-Buchsbaum formula yields the first equality in the following sequence while the second equality is from Fact [2.3:](#page-1-1)

$$
\mathrm{pd}_R(C) = \mathrm{depth}(R) - \mathrm{depth}_R(C) = 0.
$$

It follows that C is free, say $C \cong R^n$. The isomorphisms

$$
R \cong \text{Hom}_{R}(C, C) \cong \text{Hom}_{R}(R^{n}, R^{n}) \cong R^{n^{2}}
$$

imply that $n = 1$, so $C \cong R$.

The following definition and fact justify the term "dualizing".

Definition 2.5. Let C and B be R-modules. The natural *biduality homomor*phism δ_C^B : $C \to \text{Hom}_R(\text{Hom}_R(C, B), B)$ is given by $\delta_C^B(c)(\phi) = \phi(c)$. When D is a dualizing R-module, we set $C^{\dagger} = \text{Hom}_{R}(C, D)$.

Fact 2.6. Assume that R is Cohen–Macaulay and admits a dualizing module D . Let C be a semidualizing R-module. Fact [2.3](#page-1-1) implies that C is a maximal Cohen– Macaulay R-module. From standard duality theory, for all $i \neq 0$ we have

$$
\mathrm{Ext}^i_R(C, D) = 0 = \mathrm{Ext}^i_R(\mathrm{Hom}_R(C, D), D)
$$

and the natural biduality homomorphism δ_C^D : $C \to \text{Hom}_R(\text{Hom}_R(C, D), D)$ is an isomorphism; see, e.g., [\[4,](#page-10-1) (3.3.10)]. In particular, we have $\text{Hom}_R(C^{\dagger}, D) \cong C$. Furthermore C^{\dagger} is a semidualizing R-module by [\[5,](#page-10-2) (2.12)], and the evaluation map $C \otimes_R C^{\dagger} \to D$ given by $c \otimes \phi \mapsto \phi(c)$ is an isomorphism by [\[8,](#page-11-8) (3.1)].

The following construction is also known as the "idealization" of M . It was popularized by Nagata, but goes back at least to Hochschild [\[12\]](#page-11-9). It is the key idea for the proof of the converse of Sharp's result [\[15\]](#page-11-2) given by Foxby [\[7\]](#page-11-0) and Reiten [\[14\]](#page-11-1). It has also been very helpful in the study of G-dimensions because of the paper of Holm and Jørgensen [\[13\]](#page-11-10). The interested reader can find a survey of some properties of this construction in the article of Anderson and Winders [\[1\]](#page-10-3).

Definition 2.7. Let M be an R-module. The *trivial extension* of R by M is the ring $R \ltimes M$, described as follows. As an additive abelian group, we have $R \ltimes M \cong R \oplus M$. The multiplication in $R \ltimes M$ is given by the formula

$$
(r, m)(r', m') = (rr', rm' + r'm).
$$

The multiplicative identity on $R \times M$ is (1,0). We let $\epsilon_M : R \to R \times M$ and $\tau_M : R \ltimes M \to R$ denote the natural injection and surjection, respectively.

The next facts are straightforward to verify.

Fact 2.8. Let M be an R-module. The trivial extension $R \times M$ is a commutative ring with identity. The maps ϵ_M and τ_M are ring homomorphisms, and $\text{Ker}(\tau_M)$ = $0 \oplus M$. We have $(0 \oplus M)^2 = 0$, and so $Spec(R \ltimes M)$ is in order-preserving bijection with $Spec(R)$. It follows that $R \ltimes M$ is quasilocal and $dim(R \ltimes M) = dim(R)$. If M is finitely generated, then R is also noetherian and

 $depth(R \ltimes M) = depth_R(R \ltimes M) = min\{depth(R), depth_R(M)\}.$

In particular, if R is Cohen–Macaulay and M is a maximal Cohen–Macaulay R module, then $R \ltimes M$ is Cohen–Macaulay as well.

Here is a discussion of the correspondence between dualizing modules and Gorenstein presentations.

Fact 2.9. Sharp [\[15,](#page-11-2) (3.1)] showed that if R is Cohen–Macaulay and a homomorphic image of a local Gorenstein ring Q , then R admits a dualizing module. The proof proceeds as follows. Let Q be a local Gorenstein ring equipped with a ring epimorphism $\pi: Q \to R$, and set $g = \text{depth}(Q) - \text{depth}(R) = \dim(Q) - \dim(R)$. It follows that $\text{Ext}^i_Q(R, Q) = 0$ for $i \neq g$ and the module $\text{Ext}^g_Q(R, Q)$ is dualizing for R. Thus, by Cohen's structure theorem, every local complete Cohen–Macaulay ring has a dualizing module.

The same idea gives the following. Let A be a local Cohen–Macaulay ring with a dualizing module D , and assume that R is Cohen–Macaulay and a module-finite A-algebra. If $h = \text{depth}(A) - \text{depth}(R) = \dim(A) - \dim(R)$, then $\text{Ext}_{A}^{i}(R, D) = 0$ for $i \neq h$ and the module $\text{Ext}_{A}^{h}(R, D)$ is dualizing for R.

Fact 2.10. Independently, Foxby $[7, (4.1)]$ and Reiten $[14, (3)]$ proved the converse of Sharp's result from Fact [2.9.](#page-2-0) Namely, they showed the following: If R admits a dualizing module, then it is Cohen–Macaulay and a homomorphic image of a local Gorenstein ring Q. We sketch the proof here, as the main idea forms the basis of our proof of Theorem [1.1.](#page-0-0)

Let D be a dualizing R -module. It follows that R is Cohen–Macaulay. Set $Q = R \times D$, which is Cohen–Macaulay with $\dim(Q) = \dim(R)$; see Facts [2.3](#page-1-1) and [2.8.](#page-2-1) The natural injection $\epsilon_D : R \to Q$ makes Q into a module-finite R-algebra. The module D is dualizing for R, so Fact [2.9](#page-2-0) implies that the module $\text{Hom}_{R}(Q, D)$ is dualizing for Q. There is a sequence of R-module isomorphisms

 $\text{Hom}_R(Q, D) \cong \text{Hom}_R(R \oplus D, D) \cong \text{Hom}_R(D, D) \oplus \text{Hom}_R(R, D) \cong R \oplus D \cong Q$

and it is straightforward to show that the composition $\text{Hom}_R(Q, D) \cong Q$ is actually a Q-module isomorphism. Fact [2.2](#page-1-2) implies that Q is Gorenstein, so the natural surjection $\tau_D : Q \to R$ yields an presentation of R as a homomorphic image of the local Gorenstein ring Q.

The last notion we need is Golod's generalization [\[9\]](#page-11-3) of Auslander and Bridger's G-dimension [\[2,](#page-10-4) [3\]](#page-10-5).

Definition 2.11. Let C be a semidualizing R-module. An R-module G is *totally* C*-reflexive* if it satisfies the following:

- (1) The R -module G is finitely generated;
- (2) The biduality map $\delta_G^C \colon G \to \text{Hom}_R(\text{Hom}_R(G, C), C)$, is an isomorphism; and
- (3) For all $i \geq 1$, we have $\text{Ext}^i_R(G, C) = 0 = \text{Ext}^i_R(\text{Hom}_R(G, C), C)$.

Let M be a finitely generated R -module. Then M has *finite G_C*-dimension if it has a finite resolution by totally C-reflexive R-modules, that is, if there is an exact sequence

$$
0 \to G_n \to \cdots \to G_1 \to G_0 \to M \to 0
$$

such that each G_i is a totally C-reflexive R-module. The G_C -dimension of M, when it is finite, is the length of the shortest finite resolution by totally C-reflexive R-modules:

$$
G_C\text{-dim}_R(M) = \inf \left\{ n \geqslant 0 \middle| \begin{array}{c} \text{there is a finite resolution} \\ 0 \to G_n \to \cdots \to G_0 \to M \to 0 \\ \text{by totally } C \text{-reflexive } R\text{-modules} \end{array} \right\}
$$

.

When $C = R$, we write G-dim_R (M) in place of G_R-dim_R (M) .

Fact 2.12. Let C be a semidualizing R-module. The AB formula [\[5,](#page-10-2) (3.14)] says that if M is a finitely generated R-module of finite G_C -dimension, then

 G_C -dim $_R(M) = \text{depth}(R) - \text{depth}_R(M)$.

Fact 2.13. Let S be a Cohen–Macaulay local ring equipped with a module-finite local ring homomorphism $\tau: S \to R$ such that R is Cohen–Macaulay. Let C be a semidualizing S-module. Then G_C -dim $_S(R) < \infty$ if and only if there exists an integer $g \geq 0$ such that $\text{Ext}^i_S(R, C) = 0$ for all $i \neq g$ and $\text{Ext}^g_S(R, C)$ is a semidualizing R-module; when these conditions hold, one has $g = G_C$ -dim $_S(R)$. See [\[5,](#page-10-2) (6.1)].

Assume that S has a dualizing module D. If G_C -dim $_S(R) < \infty$, then $R \otimes_S C^{\dagger}$ is a semidualizing R-module and $\text{Tor}_{i}^{S}(R, C_{i}^{\dagger}) = 0$ for all $i \geq 1$; see [\[5,](#page-10-2) (4.7),(5.1)]. In particular, if $G\text{-dim}_S(R) < \infty$, then $\text{Tor}_i^S(R, D) = 0$ for all $i \geq 1$ and $R \otimes_S D$ is a semidualizing R-module.

3. Proof of Theorem [1.1](#page-0-0)

Throughout this section, we assume that R is a Cohen–Macaulay ring with dualizing module D. We divide the proof of Theorem [1.1](#page-0-0) into several pieces. The first piece is the following lemma which covers one implication; the remaining pieces deal with the converse.

Lemma 3.1. *Assume that there exist a Gorenstein local ring* Q *and ideals* $I_1, I_2 \subset$ Q *satisfying the following conditions:*

- (1) *There are ring isomorphisms* $R \cong Q/(I_1 + I_2) \cong (Q/I_1) \otimes_Q (Q/I_2)$;
- (2) For $j = 1, 2$ the quotient ring Q/I_j is Cohen–Macaulay with a dualizing *module* D^j *and is not Gorenstein;*
- (3) For $j = 1, 2$ we have G- $\dim_{Q/I_j}(R) < \infty$; and
- (4) *There is an R-module isomorphism* $D_1 \otimes_Q D_2 \cong D$.

Then R *admits a semidualizing module that is neither dualizing nor free.*

Proof. For $j = 1, 2$ set $R_j = Q/I_j$. Condition [\(3\)](#page-4-1) implies that for $j = 1, 2$ we have $\operatorname{Tor}_i^{R_j}(R, D_j) = 0$ for all $i \geq 1$ and $C_j = R \otimes_{R_j} D_j$ is a semidualizing R-module by Fact [2.13.](#page-3-0) Since R_j is not Gorenstein, the R_j -module D_j is not cyclic. Thus, the R-module C_i is not cyclic, and hence not free.

Condition [\(4\)](#page-4-2) provides the first isomorphism in the next sequence:

$$
D \cong D_1 \otimes_Q D_2 \cong R \otimes_Q (D_1 \otimes_Q D_2) \cong (R \otimes_Q D_1) \otimes_R (R \otimes_Q D_2) = C_1 \otimes_R C_2.
$$

For the second isomorphism, use the fact that D_i is annihilated by I_i for $j = 1, 2$ to conclude that $D_1 \otimes_Q D_2$ is annihilated by $I_1 + I_2$; it follows that $D_1 \otimes_Q D_2$ is naturally a module over the quotient $Q/(I_1 + I_2) \cong R$, and hence the second isomorphism. The third isomorphism is standard. This, together with the fact that each C_i is not cyclic, yields the following (in)equalities of minimal numbers of generators:

$$
\mu_R(D) = \mu_R(C_1)\mu_R(C_2) > \mu_R(C_j)
$$

for $j = 1, 2$. It follows that $C_j \not\cong D$ for $j = 1, 2$ so each C_j is a semidualizing R-module that is not free and not dualizing, as desired. \Box

Assumption 3.2. For the rest of this section, assume that R admits a semidualizing module C that is neither dualizing nor free.

For the sake of readability, we include the following roadmap of the remainder of the proof.

Outline 3.3. The ring Q is constructed as an iterated trivial extension of R . As an R-module, it has the form $Q = R \oplus C \oplus C^{\dagger} \oplus D$ where $C^{\dagger} = \text{Hom}_{R}(C, D)$. The ideals I_j are then given as $I_1 = 0 \oplus 0 \oplus C^{\dagger} \oplus D$ and $I_2 = 0 \oplus C \oplus 0 \oplus D$. The details for these constructions are contained in Steps [3.4](#page-5-0) and [3.5.](#page-5-1) Conditions (1) – (3) of Theorem [1.1](#page-0-0) are then verified in Lemmas $3.6-3.8$. Theorem $1.1(5)$ $1.1(5)$ requires more work; it is proved in Lemma [3.12,](#page-9-0) with the help of Lemmas [3.9–](#page-7-0)[3.11.](#page-8-0) The proof concludes with Lemma [3.13](#page-10-6) where we establish Theorem [1.1](#page-0-0)[\(4\)](#page-1-5).

The following two steps contain notation and facts for use through the rest of the proof.

Step 3.4. Set $R_1 = R \ltimes C$, which is Cohen–Macaulay with $\dim(R_1) = \dim(R)$; see Facts [2.3](#page-1-1) and [2.8.](#page-2-1) The natural injection $\epsilon_C : R \to R_1$ makes R_1 into a module-finite R-algebra, so Fact [2.9](#page-2-0) implies that the module $D_1 = \text{Hom}_R(R_1, D)$ is dualizing for R_1 . There is a sequence of R -module isomorphisms

 $D_1 = \text{Hom}_R(R_1, D) \cong \text{Hom}_R(R \oplus C, D) \cong \text{Hom}_R(C, D) \oplus \text{Hom}_R(R, D) \cong C^{\dagger} \oplus D.$

It is straightforward to show that the resulting R_1 -module structure on $C^{\dagger} \oplus D$ is given by the following formula:

$$
(r,c)(\phi,d) = (r\phi,\phi(c) + rd).
$$

The kernel of the natural epimorphism $\tau_C : R_1 \to R$ is the ideal Ker(τ_C) ≅ 0 ⊕ D.

Fact [2.9](#page-2-0) implies that the ring $Q = R_1 \times D_1$ is local and Gorenstein. The Rmodule isomorphism in the next display is by definition:

$$
Q = R_1 \ltimes D_1 \cong R \oplus C \oplus C^{\dagger} \oplus D.
$$

It is straightforward to show that the resulting ring structure on Q is given by

$$
(r, c, \phi, d)(r', c', \phi', d') = (rr', rc' + r'c, r\phi' + r'\phi, \phi'(c) + \phi(c') + rd' + r'd).
$$

The kernel of the epimorphism $\tau_{D_1}: Q \to R_1$ is the ideal

$$
I_1 = \text{Ker}(\tau_{D_1}) \cong 0 \oplus 0 \oplus C^{\dagger} \oplus D.
$$

As a Q-module, this is isomorphic to the R_1 -dualizing module D_1 . The kernel of the composition $\tau_C \circ \tau_{D_1} \colon Q \to R$ is the ideal $\text{Ker}(\tau_C \tau_{D_1}) \cong 0 \oplus C \oplus C^{\dagger} \oplus D$.

Step 3.5. Set $R_2 = R \ltimes C^{\dagger}$, which is Cohen–Macaulay with $\dim(R_2) = \dim(R)$. The injection $\epsilon_{C^{\dagger}}$: $R \to R_2$ makes R_2 into a module-finite R-algebra, so the module $D_2 = \text{Hom}_R(R_2, D)$ is dualizing for R_2 . There is a sequence of R-module isomorphisms

$$
D_2 = \text{Hom}_R(R_2, D) \cong \text{Hom}_R(R \oplus C^{\dagger}, D) \cong \text{Hom}_R(C^{\dagger}, D) \oplus \text{Hom}_R(R, D) \cong C \oplus D.
$$

The last isomorphism is from Fact [2.6.](#page-2-2) The resulting R_2 -module structure on $C \oplus D$ is given by the following formula:

$$
(r, \phi)(c, d) = (r\phi, \phi(c) + rd).
$$

The kernel of the natural epimorphism $\tau_{C^{\dagger}}$: $R_2 \to R$ is the ideal Ker($\tau_{C^{\dagger}}$) ≅ 0⊕D.

The ring $Q' = R_2 \ltimes D_2$ is local and Gorenstein. There is a sequence of R-module isomorphisms

$$
Q' = R_2 \ltimes D_2 \cong R \oplus C \oplus C^{\dagger} \oplus D
$$

and the resulting ring structure on $R \oplus C \oplus C^{\dagger} \oplus D$ is given by

$$
(r, c, \phi, d)(r', c', \phi', d')
$$

= $(rr', rc' + r'c, r\phi' + r'\phi, \phi'(c) + \phi(c') + rd' + r'd).$

That is, we have an isomorphism of rings $Q' \cong Q$. The kernel of the epimorphism $\tau_{D_2}: Q \to R_2$ is the ideal

$$
I_2 = \text{Ker}(\tau_{D_2}) \cong 0 \oplus C \oplus 0 \oplus D.
$$

This is isomorphic, as a Q -module, to the dualizing module D_2 . The kernel of the composition $\tau_C^{\dagger} \circ \tau_{D_2} : Q \to R$ is the ideal $\text{Ker}(\tau_C^{\dagger} \tau_{D_2}) \cong 0 \oplus C \oplus C^{\dagger} \oplus D$.

We verify condition [\(1\)](#page-0-1) from Theorem [1.1](#page-0-0) in the next lemma.

Lemma 3.6. *With the notation of Steps [3.4](#page-5-0) and [3.5,](#page-5-1) there are ring isomorphisms* $R \cong Q/(I_1 + I_2) \cong (Q/I_1) \otimes_Q (Q/I_2).$

Proof. The second isomorphism is standard. For the first one, consider the following sequence of R-module isomorphisms:

$$
Q/(I_1 + I_2) \cong (R \oplus C \oplus C^{\dagger} \oplus D)/((0 \oplus 0 \oplus C^{\dagger} \oplus D) + (0 \oplus C \oplus 0 \oplus D))
$$

\cong
$$
(R \oplus C \oplus C^{\dagger} \oplus D)/(0 \oplus C \oplus C^{\dagger} \oplus D))
$$

\cong
$$
R.
$$

It is straightforward to check that these are ring isomorphisms.

We verify condition [\(2\)](#page-1-6) from Theorem [1.1](#page-0-0) in the next lemma.

Lemma 3.7. With the notation of Steps [3.4](#page-5-0) and [3.5,](#page-5-1) each ring $R_j \cong Q/I_j$ is *Cohen–Macaulay with a dualizing module and is not Gorenstein.*

Proof. It remains to show that each ring R_j is not Gorenstein, that is, that D_j is not isomorphic to R_j as an R_j -module.

For R_1 , suppose by way of contradiction that there is an R_1 -module isomorphism $D_1 \cong R_1$. It follows that this is an R-module isomorphism via the natural injection $\epsilon_C: R \to R_1$. Thus, we have R-module isomorphisms

$$
C^{\dagger} \oplus D \cong D_1 \cong R_1 \cong R \oplus D.
$$

Computing minimal numbers of generators, we have

$$
\mu_R(C^{\dagger}) + \mu_R(D) = \mu_R(C^{\dagger} \oplus D) = \mu_R(R \oplus D) = \mu_R(R) + \mu_R(D) = 1 + \mu_R(D).
$$

It follows that $\mu_R(C^{\dagger}) = 1$, that is, that C^{\dagger} is cyclic. By Fact [2.3,](#page-1-1) we have $\text{Ann}_R(C) = 0$, and hence $C^{\dagger} \cong R / \text{Ann}_R(C^{\dagger}) \cong R$. It follows that

$$
C \cong \text{Hom}_R(C^{\dagger}, D) \cong \text{Hom}_R(R, D) \cong D
$$

contradicting the assumption that C is not dualizing for R .

Next, observe that C^{\dagger} is not free and is not dualizing for R; this follows from the isomorphism $C \cong \text{Hom}_{R}(C^{\dagger}, D)$ contained in Fact [2.6,](#page-2-2) using the assumption that C is not free and not dualizing. Hence, the proof that R_2 is not Gorenstein follows as in the previous paragraph. \square

We verify condition [\(3\)](#page-1-3) from Theorem [1.1](#page-0-0) in the next lemma.

Lemma 3.8. With the notation of Steps [3.4](#page-5-0) and [3.5,](#page-5-1) we have G - $\dim_{Q/I_j}(R) = 0$ *for* $j = 1, 2$ *.*

Proof. First, note that it suffices to show that $G\text{-dim}_{R_j}(R) < \infty$. Indeed, if $\text{G-dim}_{R_j}(R) < \infty$, then the AB formula from Fact [2.12](#page-3-1) implies that

$$
\mathrm{G\text{-}dim}_{R_j}(R) = \mathrm{depth}(R_j) - \mathrm{depth}_{R_j}(R) = \mathrm{depth}(R_j) - \mathrm{depth}(R) = 0
$$

as desired.

To show that G-dim_{R₁} $(R) < \infty$, it suffices to show that $\text{Ext}_{R_1}^i(R, R_1) = 0$ for all $i \geq 1$ and that $\text{Hom}_{R_1}(R, R_1) \cong C$; see Fact [2.13.](#page-3-0) To this end, we note that there are isomorphisms of R-modules

$$
\text{Hom}_{R}(R_{1},C) \cong \text{Hom}_{R}(R \oplus C, C) \cong \text{Hom}_{R}(C, C) \oplus \text{Hom}_{R}(R, C) \cong R \oplus C \cong R_{1}
$$

and it is straightforward to check that the composition $\text{Hom}_R(R_1, C) \cong R_1$ is an R_1 -module isomorphism. Furthermore, for $i \geq 1$ we have

$$
\mathrm{Ext}^i_R(R_1,C)\cong \mathrm{Ext}^i_R(R\oplus C,C)\cong \mathrm{Ext}^i_R(C,C)\oplus \mathrm{Ext}^i_R(R,C)=0.
$$

Let I be an injective resolution of C as an R -module. The previous two displays imply that $\text{Hom}_R(R_1, I)$ is an injective resolution of R_1 as an R_1 -module. Consider the following commutative diagram of local ring homomorphisms

It follows that

$$
\text{Hom}_{R_1}(R, \text{Hom}_R(R_1, I)) \cong \text{Hom}_R(R \otimes_{R_1} R_1, I) \cong \text{Hom}_R(R, I) \cong I
$$

and hence

$$
\operatorname{Ext}_{R_1}^i(R, R_1) \cong \operatorname{H}^i(\operatorname{Hom}_{R_1}(R, \operatorname{Hom}_R(R_1, I))) \cong \operatorname{H}^i(I) \cong \begin{cases} 0 & \text{if } i \geqslant 1 \\ C & \text{if } i = 0 \end{cases}
$$

as desired.[1](#page-7-1)

The proof for R_2 is similar, using the fact that C^{\dagger} is not free or dualizing. \Box

The next three results are for the proof of Lemma [3.12.](#page-9-0)

Lemma 3.9. With the notation of Steps [3.4](#page-5-0) and [3.5,](#page-5-1) one has $\text{Tor}_{i}^{R}(R_1, R_2) = 0$ $for \ all \ i \geqslant 1, \ and \ there \ is \ an \ R_1\text{-}algebra \ isomorphism \ R_1\otimes_R R_2 \cong \check{Q}.$

Proof. The Tor-vanishing comes from the following sequence of R-module isomorphisms

$$
\operatorname{Tor}_i^R(R_1, R_2) \cong \operatorname{Tor}_i^R(R \oplus C, R \oplus C^{\dagger})
$$

\n
$$
\cong \operatorname{Tor}_i^R(R, R) \oplus \operatorname{Tor}_i^R(C, R) \oplus \operatorname{Tor}_i^R(R, C^{\dagger}) \oplus \operatorname{Tor}_i^R(C, C^{\dagger})
$$

\n
$$
\cong \begin{cases} R \oplus C \oplus C^{\dagger} \oplus D & \text{if } i = 0 \\ 0 & \text{if } i \neq 0. \end{cases}
$$

The first isomorphism is by definition; the second isomorphism is elementary; and the third isomorphism is from Fact [2.6.](#page-2-2)

¹Note that the finiteness of G-dim_{R₁}(*R*) can also be deduced from [\[13,](#page-11-10) (2.16)].

Moreover, it is straightforward to verify that (in the case $i = 0$) the isomorphism $R_1 \otimes_R R_2 \cong Q$ has the form α : $R_1 \otimes_R R_2 \stackrel{\cong}{\longrightarrow} Q$ and is given by

$$
(r,c) \otimes (r',\phi') \mapsto (rr',r'c,r\phi',\phi'(c)).
$$

It is routine to check that this is a ring homomorphism (that is, a ring isomorphism) and that the following diagram of ring homomorphisms commutes

where ξ is the natural map $x \mapsto x \otimes 1$. (To be precise, the map ξ is given by $(r, c) \mapsto (r, c) \otimes (1, 0)$, and ϵ_{D_1} is given by $(r, c) \mapsto (r, c, 0, 0)$.) It follows that $R_1 \otimes_R R_2 \cong Q$ as an R_1 -algebra.

Lemma 3.10. *Continue with the notation of Steps [3.4](#page-5-0) and [3.5.](#page-5-1) In the tensor product* $R \otimes_{R_1} Q$ *we have* $1 \otimes (0, c, 0, d) = 0$ *for all* $c \in C$ *and all* $d \in D$ *.*

Proof. Recall that Fact [2.6](#page-2-2) implies that the evaluation map $C \otimes_R C^{\dagger} \to D$ given by $c' \otimes \phi \mapsto \phi(c')$ is an isomorphism. Hence, there exist $c' \in C$ and $\phi \in C^{\dagger}$ such that $d = \phi(c')$. This explains the first equality in the sequence

(3.10.1)
$$
1 \otimes (0,0,0,d) = 1 \otimes (0,0,0,\phi(c')) = 1 \otimes [(0,c')(0,0,\phi,0)] = [1(0,c')] \otimes (0,0,\phi,0) = 0 \otimes (0,0,\phi,0) = 0.
$$

The second equality is by definition of the R_1 -module structure on Q ; the third equality is from the fact that we are tensoring over R_1 ; the fourth equality is from the fact that the R_1 -module structure on R comes from the natural surjection $R_1 \to R$, with the fact that $(0, c) \in \{0 \oplus C\}$ which is the kernel of this surjection.

On the other hand, using similar reasoning, we have

$$
(3.10.2) \quad 1 \otimes (0, c, 0, 0) = 1 \otimes [(0, c)(1, 0, 0, 0)] = [1(0, c)] \otimes (1, 0, 0, 0)
$$
\n
$$
= 0 \otimes (1, 0, 0, 0) = 0.
$$

Combining $(3.10.1)$ and $(3.10.2)$ we have

$$
1 \otimes (0, c, 0, d) = [1 \otimes (0, 0, 0, d)] + [1 \otimes (0, c, 0, 0)] = 0
$$

as claimed. $\hfill \square$

Lemma 3.11. With the notation of Steps [3.4](#page-5-0) and [3.5,](#page-5-1) one has $\text{Tor}_{i}^{R_1}(R,Q) = 0$ *for all* $i \geq 1$ *, and there is a Q-module isomorphism* $R \otimes_{R_1} Q \cong R_2$ *.*

Proof. Let P be an R-projective resolution of R_2 :

$$
P=\cdots\rightarrow P_1\rightarrow P_0\rightarrow 0.
$$

Lemma [3.9](#page-7-0) implies that $R_1 \otimes_R P$ is a projective resolution of $R_1 \otimes_R R_2 \cong Q$ as an R_1 -module. From the following sequence of isomorphisms

$$
R\otimes_{R_1}(R_1\otimes_R P)\cong (R\otimes_{R_1} R_1)\otimes_R P\cong R\otimes_R P\cong P
$$

it follows that, for $i \geqslant 1$, we have

$$
\operatorname{Tor}^{R_1}_i(R, Q) \cong \operatorname{H}_i(R \otimes_{R_1} (R_1 \otimes_R P)) \cong \operatorname{H}_i(P) = 0
$$

where the final vanishing comes from the assumption that P is a resolution of a module and $i \geqslant 1$.

This reasoning also shows that there is an R-module isomorphism β : $R_2 \stackrel{\cong}{\longrightarrow}$ $R \otimes_{R_1} Q$. This isomorphism is equal to the composition

$$
R_2 \xrightarrow{\cong} R \otimes_R R_2 \xrightarrow{\cong} R \otimes_{R_1} (R_1 \otimes_R R_2) \xrightarrow[R \otimes_{R_1} \alpha] R \otimes_{R_1} Q
$$

and is therefore given by

$$
(r,\phi) \mapsto 1 \otimes (r,\phi) \mapsto 1 \otimes [(1,0) \otimes (r,\phi)] \mapsto 1 \otimes (r,0,\phi,0).
$$

We claim that β is a Q-module isomorphism. Recall that the Q-module structure on R_2 is given via the natural surjection $Q \to R_2$, and so is described as

$$
(r, c, \phi, d)(r', \phi') = (r, \phi)(r', \phi') = (rr', r\phi' + r'\phi).
$$

This explains the first equality in the following sequence

$$
\beta((r, c, \phi, d)(r', \phi')) = \beta(r r', r \phi' + r' \phi)
$$

= 1 \otimes (r r', r' c, r \phi' + r' \phi, r' d + \phi'(c))
= [1 \otimes (r r', 0, r \phi' + r' \phi, 0)] + [1 \otimes (0, r' c, 0, r' d + \phi'(c))]
= [1 \otimes (r r', 0, r \phi' + r' \phi, 0)].

The second equality is by definition; the third equality is by bilinearity; and the fourth equality is by Lemma [3.10.](#page-8-3) On the other hand, the definition of β explains the first equality in the sequence

$$
(r, c, \phi, d)\beta(r', \phi') = (r, c, \phi, d)[1 \otimes (r', 0, \phi', 0)]
$$

= 1 $\otimes [(r, c, \phi, d)(r', 0, \phi', 0)]$
= 1 $\otimes (rr', r'c, r\phi' + r'\phi, r'd + \phi'(c))$
= [1 $\otimes (rr', 0, r\phi' + r'\phi, 0)] + [1 \otimes (0, r'c, 0, r'd + \phi'(c))]$
= 1 $\otimes (rr', 0, r\phi' + r'\phi, 0).$

The second equality is from the definition of the Q-modules structure on $R \otimes_{R_1} Q$; the third equality is from the definition of the multiplication in Q ; the fourth equality is by bilinearity; and the fifth equality is by Lemma [3.10.](#page-8-3) Combining these two sequences, we conclude that β is a Q-module isomorphism, as claimed. \square

We verify condition [\(5\)](#page-1-4) from Theorem [1.1](#page-0-0) in the next lemma.

Lemma 3.12. With the notation of Steps [3.4](#page-5-0) and [3.5,](#page-5-1) one has $\text{Tor}_i^Q(Q/I_1, Q/I_2)$ = 0 *for all* $i \geq 1$ *; in particular, there is an equality* $I_1 \cap I_2 = I_1 I_2$ *.*

Proof. Let L be a projective resolution of R over R_1 . Lemma [3.11](#page-8-0) implies that the complex $L \otimes_{R_1} Q$ is a projective resolution of $R \otimes_{R_1} Q \cong R_2$ over Q . We have isomorphisms

 $(L \otimes_{R_1} Q) \otimes_Q R_1 \cong L \otimes_{R_1} (Q \otimes_Q R_1) \cong L \otimes_{R_1} R_1 \cong L$

and it follows that, for $i \geq 1$ we have

$$
\operatorname{Tor}^Q_i(R_2,R_1)\cong \operatorname{H}_i((L\otimes_{R_1}Q)\otimes_QR_1)\cong \operatorname{H}_i(L)=0
$$

since L is a projective resolution.

The equality $I_1 \cap I_2 = I_1 I_2$ follows from the direct computation

$$
I_1 \cap I_2 = (0 \oplus 0 \oplus C^{\dagger} \oplus D) \cap (0 \oplus C \oplus 0 \oplus D) = 0 \oplus 0 \oplus 0 \oplus D = I_1 I_2
$$

or from the sequence $(I_1 \cap I_2)/(I_1 I_2) \cong \text{Tor}_1^Q(Q/I_1, Q/I_2) = 0.$

We verify condition [\(4\)](#page-1-5) from Theorem [1.1](#page-0-0) in the next lemma.

Lemma 3.13. *With the notation of Steps [3.4](#page-5-0) and [3.5,](#page-5-1) there is an* R*-module isomorphism* $D_1 \otimes_Q D_2 \cong D$, and for all $i \geqslant 1$ we have $\text{Tor}_i^Q(D_1, D_2) = 0$.

Proof. There is a short exact sequence of Q-module homomorphisms

$$
0 \to D_1 \to Q \xrightarrow{\tau_{D_1}} R_1 \to 0.
$$

For all $i \geq 1$, we have $\text{Tor}_i^Q(Q, R_2) = 0 = \text{Tor}_i^Q(R_1, R_2)$, so the long exact sequence in Tor^Q $(-, R_2)$ associated to the displayed sequence implies that Tor_{i}^Q $(D_1, R_2) = 0$ for all $i \geq 1$. Consider the next short exact sequence of Q-module homomorphisms

$$
0 \to D_2 \to Q \xrightarrow{\tau_{D_2}} R_2 \to 0.
$$

The associated long exact sequence in $\text{Tor}_i^Q(D_1, -)$ implies that $\text{Tor}_i^Q(D_1, D_2) = 0$ for all $i \geqslant 1$.

It is straightforward to verify the following sequence of Q-module isomorphisms

$$
R \otimes_{R_1} D_1 \cong \left(\frac{R \ltimes C}{0 \oplus C}\right) \otimes_{R \ltimes C} (C^{\dagger} \oplus D) \cong \frac{C^{\dagger} \oplus D}{(0 \oplus C)(C^{\dagger} \oplus D)} \cong \frac{C^{\dagger} \oplus D}{0 \oplus D} \cong C^{\dagger}
$$

and similarly

$$
R\otimes_{R_2}D_2\cong C.
$$

These combine to explain the third isomorphism in the following sequence:

$$
D_1 \otimes_Q D_2 \cong R \otimes_Q (D_1 \otimes_Q D_2) \cong (R \otimes_Q D_1) \otimes_R (R \otimes_Q D_2) \cong C^{\dagger} \otimes_R C \cong D.
$$

For the first isomorphism, use the fact that D_j is annihilated by $D_j = I_j$ for $j = 1, 2$ to conclude that $D_1 \otimes_Q D_2$ is annihilated by $I_1 + I_2$; it follows that $D_1 \otimes_Q D_2$ is naturally a module over the quotient $Q/(I_1 + I_2) \cong R$. The second isomorphism is standard, and the fourth one is from Fact [2.6.](#page-2-2)

This completes the proof of Theorem [1.1.](#page-0-0)

ACKNOWLEDGMENTS

We are grateful to Lars W. Christensen for helpful comments about this work.

REFERENCES

- 1. D.D. Anderson and M. Winders, *Idealization of a module*, J. Commut. Algebra 1 (2009), no. 1, 3–56. MR 2462381
- 2. M. Auslander, Anneaux de Gorenstein, et torsion en algèbre commutative, Séminaire d'Algèbre Commutative dirigé par Pierre Samuel, vol. 1966/67, Secrétariat mathématique, Paris, 1967. MR 37 #1435
- 3. M. Auslander and M. Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969. MR 42 #4580
- 4. W. Bruns and J. Herzog, Cohen-Macaulay rings, revised ed., Studies in Advanced Mathematics, vol. 39, University Press, Cambridge, 1998. MR 1251956 (95h:13020)
- 5. L. W. Christensen, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1839–1883. MR 2002a:13017
- 6. H.-B. Foxby, unpublished notes, 1987.
- 7. , Gorenstein modules and related modules, Math. Scand. 31 (1972), 267–284 (1973). MR 48 #6094
- 8. A. A. Gerko, On the structure of the set of semidualizing complexes, Illinois J. Math. 48 (2004), no. 3, 965–976. MR 2114263
- 9. E. S. Golod, G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov. 165 (1984), 62–66, Algebraic geometry and its applications. MR 85m:13011
- 10. A. Grothendieck, Théorèmes de dualité pour les faisceaux algébriques cohérents, Séminaire Bourbaki, Vol. 4, Soc. Math. France, Paris, 1995, pp. Exp. No. 149, 169–193. MR 1610898
- 11. R. Hartshorne, Local cohomology, A seminar given by A. Grothendieck, Harvard University, Fall, vol. 1961, Springer-Verlag, Berlin, 1967. MR 0224620 (37 #219)
- 12. G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math. (2) 46 (1945), 58–67. MR 0011076 (6,114f)
- 13. H. Holm and P. Jørgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205 (2006), no. 2, 423–445. MR 2203625
- 14. I. Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417–420. MR 0296067 (45 #5128)
- 15. R. Y. Sharp, On Gorenstein modules over a complete Cohen-Macaulay local ring, Quart. J. Math. Oxford Ser. (2) 22 (1971), 425–434. MR 0289504 (44 #6693)
- 16. W. V. Vasconcelos, Divisor theory in module categories, North-Holland Publishing Co., Amsterdam, 1974, North-Holland Mathematics Studies, No. 14, Notas de Matemática No. 53. [Notes on Mathematics, No. 53]. MR 0498530 (58 #16637)
- 17. T. Wakamatsu, On modules with trivial self-extensions, J. Algebra 114 (1988), no. 1, 106–114. MR 931903 (89b:16020)

David A. Jorgensen, Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019 USA

 $\it E\mbox{-}mail\;address:$ djorgens@uta.edu URL: http://dreadnought.uta.edu/~dave/

Graham J. Leuschke, Mathematics Department, 215 Carnegie Hall, Syracuse University, Syracuse, NY 13244 USA

E-mail address: gjleusch@math.syr.edu URL: http://www.leuschke.org/

Sean Sather-Wagstaff, Department of Mathematics, NDSU Dept # 2750, PO Box 6050, Fargo, ND 58108-6050 USA

E-mail address: Sean.Sather-Wagstaff@ndsu.edu URL: http://math.ndsu.nodak.edu/faculty/ssatherw/