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ABSTRACT 

A novel algorithm for embedding a spread-
spectrum-based watermark into uncompressed, raw 
audio sequences is presented. The scheme 
efficiently takes advantage of masking phenomena 
in HAS in order to embed watermark data below 
the masking threshold of audio signal. Detection of 
the watermark is done by blind detection, without 
using the original audio. None of the 
transformations to and from frequency domain are 
performed either in embedding or extraction part 
of the proposed scheme, resulting in the 
calculation simplicity of the embedding and 
detection process. In experimental tests, the 
scheme proved to be robust against common 
attacks against audio watermarking algorithms. 
Subjective quality evaluation of the algorithm 
showed that embedded watermark introduces low, 
inaudible distortion of host audio signal. 

1. INTRODUCTION 

Today’s multimedia systems’ properties raise 
the question of copyright protection, monitoring of 
the broadcast signals, and development of 
algorithms and real-time applications that would 
disable illegal copying and redistribution of 
previously pirated material. One of the possible 
solutions in that area is data watermark, which is 
added to multimedia content by embedding an 
imperceptible and statistically undetectable 
signature. Thereby, multimedia data creators and 
distributors are able to prove ownership of 
intellectual property rights without forbidding 
other individuals to copy the multimedia content 
itself. Watermarking techniques were primarily 
developed for digital images and video sequences; 

interest and research in audio watermarking started 
slightly later.  

However, in the last five years, several 
algorithms for embedding and extraction of 
watermarks in audio sequences have been 
presented [1-6]. All of the cited algorithms take 
advantage of perceptual properties of the human 
auditory system (HAS), foremost its 
“vulnerability” to masking in the frequency and 
temporal domain, in order to add additional bits 
into a host signal in a perceptually transparent 
manner. Embedding of additional bits in audio 
signal is a considerably more tedious task than 
implementation of the same process on images and 
video, due to the dynamical superiority of HAS in 
comparison with the human visual system. As 
stated in [6], HAS receives information over a 
range of power of one billion to one and a range of 
frequencies greater than thousand to one. On the 
other hand, besides masking in temporal and 
frequency domain, HAS is insensitive to a constant 
relative phase change in a static waveform and 
some specific spectral distortions interpret as 
natural.  

Recently, we developed a robust audio 
watermarking algorithm for copyright protection of 
digital audio [8]. The procedure uses a time 
domain embedding algorithm and properties of 
spread spectrum communications as well as 
temporal and frequency-domain masking in HAS. 
None of the generally employed transformations to 
and from frequency domain are performed, either 
on embedding or extraction part of the proposed 
scheme. In the present paper, we improve the 
performance of our method by utilizing more of 
the HAS properties in the watermark embedding 
algorithm. The basic idea is that the spectrum of 
the m-sequence is shaped in accordance to the 
HAS in order to make the watermark even more 
imperceptible. We add an integration function with 
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a synchronization scheme in the receiver for better 
attack resistance and decrease of the computational 
complexity of the extraction algorithm. For 
handling time scaling attacks, a multiple chip 
embedding is used. With these enhancements, we 
achieve a considerably lower demand for 
computational power, blind watermark detection 
and better time scaling resistance than with our 
earlier algorithm. The experiments indicated 
excellent robustness to many watermark attacking 
schemes and good performance in the presence of 
mp3 and AAC compression as well. 

2. WATERMARK EMBEDDING 

Figure 1 gives a general overview of the 
watermark-embedding algorithm. The embedding 
scheme proposed in this paper modifies the 
original audio signal, which is represented as a 16-
bit sample sequence sampled at 44100 Hz, mono. 
The m-sequence is obtained from a shift register 
with feedback and represented in the bipolar form 
{-1,1}. Prior to further processing, the m-sequence 
is filtered in order to adjust it to masking 
thresholds of the human auditory system (HAS) in 
the frequency domain. The main goal is to adapt 
the watermark to such form that the energy of the 
watermark is maximized under the restriction of 
keeping auditory distortions to a minimum, 
although the SNR value is significantly decreased 
[see Table 1]. The frequency characteristic of the 
filter is the approximation of the threshold in quiet 
curve of the HAS, plotted in Figure 2. Despite the 
simplicity of the shaping process of the m-
sequence in frequency domain, the result is an 
inaudible watermark as the largest amounts of the 
shaped watermark’s power are concentrated in the 
frequency sub-bands with lower HAS sensitivity. 
In addition, these frequency sub-bands 
(frequencies below 500 Hz and above 11000Hz) 
are an essential part of the watermarked audio and 
cannot be removed from its spectrum without 
making serious damage to the perceptual quality. 
A significant number of computational operations 
needed for frequency analysis of audio, which 
have to be run in order to derive global masking 
thresholds in a predefined time window, are 
skipped, making this scheme appreciably faster. 
Although standard frequency analyses have more 

accurate data about the audio spectrum, simulation 
tests done with selected audio clips showed a high 
level of similarity with the frequency masking 
thresholds derived from the masking model 
defined in ISO-MPEG Audio Psychoacoustic 
Model [7]. Parameter α can always be set to the 
value which places the masking curve of the 
algorithm near or under the most stringent local 
threshold value defined by standard masking 
model. 
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Figure 1: Watermark embedding scheme 

A cyclic shifted version c(n) is used to achieve 
a multi-bit payload for one particular watermark 
sequence s(n). Every possible shift may be 
associated with different information content. 
Therefore, information payload is directly 
proportional to the length of the m-sequence. The 
cyclical shifting of the shape-filtered m-sequence 
changes only the phase but not the amplitude of 
the spectrum; therefore, the desired spectral 
shaping is retained. There is always a possibility to 
make the trade-off between the embedded data size 
and robustness of the algorithm [4]; as the m-
sequence length is decreasing, the algorithm is able 
to add more bits into the host audio but the 
detection of the hidden bits and resistance to 
different attacks is decreased. We found that an m-
sequence length of 1023 samples is a good 
compromise between the amount of hidden content 
and the algorithm’s attack resistance.  

Host audio sequence is also analysed in the 
time domain, where a minimum or a maximum is 
determined in the block of audio signal that has the 
length of 7.6 ms. The goal of the temporal analysis 
is to place the watermark inside the raw audio 
without making any perceptual distortion to the 
host signal by using temporal masking 
characteristics of the HAS. The masker value 
determined from the temporal analysis is used as a 
reference point to determine the level of power of 
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the watermark sequence in the analysed block. 
With reference to temporal masking curves and the 
length of analysed audio frames, it was concluded 
that the added information should be at least 24 dB 
below the power level of the audio maximum in 
the frame. The algorithm equally uses both pre- 
and post-masking properties, therefore making the 
most significant error if the maximum of the host 
audio is situated at the end of the analysed block. 
However, the impact of sub-maximums and the 
maskers from the contiguous blocks is not 
negligible and it helps the current masker to fulfil 
its role. As the result of this analysis, the 
watermark samples are weighted by the coefficient 
a(n) in order to be adjusted to psycho-acoustic 
perceptual thresholds. 
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Figure 2: Threshold in quiet curve of HAS 

Therefore, the watermark signal is embedded 
into host audio using three time-aligned processes. 
In the first stage, the m-sequence has been filtered 
with the shaping filter, where a coloured-noise 
sequence s(n) is the output. Samples of the s(n) 
sequence are then cyclically shifted, where the 
shift value is dependant of the input information 
payload. At the output of the watermark 
embedding scheme, shifted version of s(n), 
sequence c(n) is being weighted and embedded to 
the original audio signal: 

)()()()( ncnanxny ⋅⋅+= α  

where x(n) denotes input audio signal, a(n) are 
coefficients from the temporal analysis block and 
α is a parameter that represents the trade-off 
between perceptual transparency and detection 
reliability. However, addition of the c(n) sequence 
in the embedding process is done repeatedly in 

order to make the system resistant to time scaling 
attacks that tend to de-synchronize the extraction 
process (see watermark extraction). As α 
increases, robustness of the embedded watermark 
is better, but it is limited by allowable perceptual 
distortion of the watermarked audio. Subjective 
listening tests were performed on different audio 
clips in order to experimentally determine the 
maximum value for α. High perceptual 
transparency was achieved for α∈(0.1,0.4), 
depending on the type of music. 

3. WATERMARK EXTRACTION 

The diagram of the audio watermark detection 
scheme is shown in Figure 3. The proposed 
detection procedure does not require access to the 
original signal to detect the embedded watermark. 
The cornerstone of detection process is the mean 
removed cross-correlation between the 
watermarked audio signal and the equalized m-
sequence. If we define y*(n) as the watermarked 
audio samples and m(n) as equalized m-sequence 
samples, the raw cross-correlation values )(mcmy

 are 

defined as: 
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However, before the watermarked signal is 
segmented into blocks in order to measure the 
cross-correlation with the m-sequence, the 
detection algorithm filters it with the equalization 
filter [5]: 

y(n) = y*(n) * d(n); 
d(n) = [-1 2 -1] 

Equalization is also performed on the m-
sequence in order to match the incoming 
watermark samples as precisely as possible, 
regarding known modification (equalization) of 
watermarked audio. Generally, in a correlation 
detector scheme it is often assumed that the 
communication channel is white Gaussian. 
Nevertheless, statistics for real audio signals show 
that audio samples are highly correlated. Applying 
a whitening procedure should considerably reduce 
any correlation in the audio and thus achieve 
optimum detection. The equalization filter 
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suppresses the low-frequency components with 
high energy and emphasizes the high-frequency 
part of the audio spectrum in order to obtain a 
more flat, “noise-like” spectrum. Frequency 
domain shaping process of m-sequences performed 
in the embedding part of the scheme is repeated in 
the extraction as well, in order to optimise matched 
filtering performance. Hence, input sequences of 
the auto-correlation process are m-sequences with 
the same temporal and frequency domain 
characteristics, if there is no signal processing of 
the watermark and detection is synchronized. 
Before the start of the integration process, which 
determines the peak and the output value, the block 
power normalization part of the scheme makes 
uniform energies of the output blocks from 
correlation calculations. Thereby every output 
block (length 2045 samples) from the correlator 
has an approximately equal impact on the 
integration process that lasts for 84 consecutive 
frames. Otherwise, a “poor“ correlation result in a 
block with high amplitudes of the host audio 
diminishes the result of the many positive 
correlation detections, which could often happen in 
very dynamic signals as audio signal. The 
integration block sums the normalized output 
block from correlation detection and determines 
the peak and its position. The peak value is related 
directly to the detection reliability, whereas its 
position corresponds to the cyclic shift – 
information payload. The detection reliability 
depends strongly on the number of accumulated 
frames. In general, the trade-off is made between 
the time of integration and the amount of hidden 
data. 
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Figure 3: Watermark extraction scheme 

The correlation method and the watermark 
extraction algorithm in general are reliable only if 
correlation frames are aligned with those used in 
watermark embedding. Therefore, one of the 

malicious attacks can be de-synchronization of the 
cross-correlation procedure by time-scale 
modifications. In that case, the watermark detection 
scheme is not properly determining the shift value 
in the embedded watermark, resulting in high 
increase of the BER. One of the methods against 
time scaling, which has been chosen for this 
watermark extraction scheme, is to use redundancy 
in the watermark chip pattern, similar to one 
described in [3]. The basic idea is to spread each 
chip of the shaped m-sequence onto R consecutive 
samples of watermarked audio. It has been proved 
that, using such an embedding and detection 
scheme, the correlation is correctly calculated even 
if a linear shift of floor(R/2) samples across the 
temporal or frequency domain is induced. 
However, there is a trade-off between robustness of 
the algorithm and computational complexity, which 
is significantly increased by performing multiple 
correlation tests. 

4. EXPERIMENTAL RESULTS 

Subjective quality evaluation of the 
watermarking method has been done by listening 
tests involving ten persons. A total number of eight 
audio pieces were used as tests signals, of 10 s 
duration each. The audio excerpts were selected so 
that they represent a broad range of music genres, 
i.e. audio clips with different dynamic and spectral 
characteristics. In the first part of the test, 
participants listened to the original and the 
watermarked audio sequences and were asked to 
report dissimilarities between the two signals, 
using a 5-point impairment scale: (5: 
imperceptible, 4: perceptible but not annoying, 3: 
slightly annoying, 2:annoying 1: very annoying). 
Table 1 presents results of the first test, with the 
lowest and the highest value from the impairment 
scale and average MOS for given audio excerpt. In 
the second part, test participants were repeatedly 
presented with unwatermarked and watermarked 
audio clips and were asked to determine which one 
is the watermarked one. Experimental results are 
presented also in Table 1, values near to 50% show 
that the two audio clips (original audio sequence 
and watermarked audio signal) cannot be 
discriminated. 
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Table 1: SNR, mean opinion scores and discrimination 
of original and watermarked audio excerpts (α=0.3) 

file name SNR discrimination MOS range 
average 
MOS 

lovett 18 53% 4-5 4.6 
ritenour 18.2 49% 4-5 4.8 
yoyoma 19.2 50% 5 5 
titanic 18.1 52% 4-5 4.8 
yanni 17.7 47% 4-5 4.8 

joecocker 16.4 49% 4-5 4.5 
abba 16.4 54% 3-5 4.2 

eurythmics 17.4 45% 3-5 4.1 
total average MOS 4.56 

 
In order to evaluate the algorithm’s resistance to 
common attacks, the sequences were tested against 
mp3 and AAC coding, and a set of other modifying 
functions. The audio segments used in experiments 
were mono signals, 20 seconds long, sampled at 
44.1 KHz with 16 bits resolution. Processing was 
performed in MatLab and CoolEdit 2000. 
Additional 100 bits were embedded in each of the 
eight audio sequences; the time of integration in 
watermark extraction scheme was set to two 
seconds, resulting in a watermark bit rate of 5b/s. 
The audio clips were compressed to MPEG layer-3 
files, at a rate of 32 kb/s using Syntrillium’s 
commercial mp3 coder based on software 
implementation licensed from the Fraunhofer IIS. 
The extraction results after the employed 
compression are presented in Table 2. A similar 
test was executed for the AAC compression. The 
audio sequences were encoded with Freeware 
Advanced Audio Coder/Decoder at the rate of 
48kb/s. The detection performance of the 
algorithm was also tested against common signal 
processing attacks [5]: 
 

1. All-pass filtering using system function: 
H(z)=(0.81z2 - 1.64z + 1) / (z2 - 1.64z + 
0.81) 

2. Echo-addition (delay 100ms, decay 50%) 
3. Band-pass filtering using a second order 

Butterworth filter with cut-off frequencies 
100 Hz and 3000 Hz 

4. Amplitude compression (8.91:1 for A>-
29dB, 1.73:1 for –46dB<A<-29dB and 
1:1.61 for A<-46dB) 

5. Equalization (6-band equalizer, signal 
suppressed or amplified by 6 dB in each 
band) 

6. Noise addition (with uniform white noise. 
Maximum magnitude of 200 quantization 
steps) 

7. Time-scale modification of –4% or +4%, 
where the pitch remains unaffected. 

Detection results for the various attacks 
described above are shown in the Table 2. 
Columns beneath the attack description list the 
number of incorrectly detected bits (of 100 bits 
embedded in total) after the attack was performed. 
The algorithm obtained a perfect detection result in 
the cases of equalization, all-pass filtering, 
amplitude compression, echo addition, and noise 
addition. In the attacks done by mp3 and AAC 
compression and time-scaling, the bit error rate is 
higher than in the case of other attacks, but 
detection performance is still within an acceptable 
range. In general, experimental tests showed that 
the watermark was embedded in accordance with 
HAS properties, using temporal and frequency 
domain masking techniques yielding good average 
MOS and low discrimination between the original 
and watermarked audio sequence. The algorithm 
has high detection results, after different signal 
processing and compression attacks, with the worst 
results after mp3 and AAC coding and time-
scaling. 

Table 2: Extraction results after attacks (α=0.3) 

Watermark 
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type/ 
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lovett 4 0 0 0 0 0 0 3 5 0 

ritenour 0 0 0 0 0 0 0 0 0 0 

yoyoma 0 0 0 0 0 0 0 0 0 0 

titanic 0 0 0 0 0 2 0 5 3 0 

yanni 0 0 0 0 0 0 0 0 0 0 

joecocker 3 1 0 0 0 0 0 0 0 0 

abba 3 5 0 0 0 0 0 1 3 0 

eurythmics 3 5 0 0 0 0 0 2 1 0 

total 13 11 0 0 0 2 0 11 12 0 

mean BER 
(%) 

1.62 1.38 0 0 0 0.25 0 1.38 1.5 0 
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The reason for poorer extraction capabilities after 
mp3 and AAC coding is that these compression 
techniques crop high frequency spectrum of the 
watermarked audio, where most of the watermark 
energy is situated. Time scaling (stretching, 
DA/AD conversion, etc.) is always one of the most 
malicious attacks on watermarking algorithms 
based on time domain, but this algorithm showed a 
good performance after that kind of attack as well. 

5. CONCLUSION 

Based on widely employed spread-spectrum 
watermarking, we have developed a new algorithm 
for embedding and extraction of watermarks in 
digital audio sequences. The algorithm does not 
use commonly performed transformations to and 
from frequency domain. Experimental tests 
showed that the watermark was embedded in 
accordance with HAS properties, using temporal 
and frequency domain masking techniques. 
Detection of the watermark is done by blind 
watermark detection, without using the non-
watermarked audio. The algorithm has high 
detection results, after MPEG layer-3 compression 
at 32 kb/s and AAC compression at 48kb/s, and 
against other commonly applied signal processing 
attacks. 
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