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Text Classification from Unlabeled Documents with Bootstrapping and 

Feature Projection Techniques 

 

ABSTRACT 

Many machine learning algorithms have been applied to text classification tasks. In the machine learning 

paradigm, a general inductive process automatically builds a text classifier by learning, generally known as 

supervised learning. However, the supervised learning approaches have some problems. The most notable 

problem is that they require a large number of labeled training documents for accurate learning. While unlabeled 

documents are easily collected and plentiful, labeled documents are difficultly generated because a labeling task 

must be done by human developers. In this paper, we propose a new text classification method based on 

unsupervised or semi-supervised learning. The proposed method launches text classification tasks with only 

unlabeled documents and the title word of each category for learning, and then it automatically learns text 

classifier by using bootstrapping and feature projection techniques. The results of experiments showed that the 

proposed method achieved reasonably useful performance compared to a supervised method. If the proposed 

method is used in a text classification task, building text classification systems will become significantly faster 

and less expensive. 
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1. INTRODUCTION 

With the rapid growth of the World Wide Web, the task of classifying natural language documents into a pre-

defined set of semantic categories has become one of the key methods for organizing online information. This 

task is commonly referred to as text classification. Since there has been an explosion of electronic texts from not 

only the World Wide Web but also various online sources (electronic mail, corporate databases, chat rooms, 

digital libraries, and so on) recently, one way of organizing this overwhelming amount of data is to classify them 

into topical categories. 

Since the machine learning paradigm emerged in the 90’s, many machine learning algorithms have been 

applied to text classification by supervised learning. The supervised learning algorithm finds a representation or 

decision rule from an example set of labeled documents for each class. A wide range of the supervised learning 

algorithms has been applied to this area using a training data set of labeled documents. For example, there are 

Naive Bayes (Ko and Seo, 2000; McCallum and Nigam, 1998), Rocchio (Lewis et al., 1996), Nearest Neighbor 

(k-NN) (Yang et al., 2002), and Support Vector Machine (SVM) (Joachims, 2001). 

However, the major bottleneck of the supervised learning algorithms is that they require a large number of 

labeled training documents for accurate learning. Since a labeling task must be done manually, it is a painfully 

time-consuming process. Furthermore, since the application area of automatic text classification has diversified 

from newswire articles and web pages to E-mails and newsgroup postings, it is also a difficult task to create 

training data for each application area (Nigam et al., 1998). McCallum et al. (1999) found that only 100 

documents could be hand-labeled in the 90 minutes and the result of a classifier learned from this small training 

set achieved just 30% accuracy in their experiments. Most users of a practical system, however, do not want to do 

the labeling task for a long time only to obtain this level of accuracy. They obviously prefer algorithms that have 

high accuracy, but do not require a large amount of manually labeling task.  

In this paper, we propose a new text classification method based on unsupervised or semi-supervised 

learning. The proposed method uses only unlabeled documents and the title word of each category as initial data 

for learning of text classification. While labeled data is difficultly obtained, unlabeled data is readily available 
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and plentiful. Therefore, this paper advocates an automatic labeling task using a bootstrapping technique and a 

robust text classifier using a feature projection technique. The input to the bootstrapping process is a large 

amount of unlabeled documents and a small amount of seed information to tell the learner about the specific task. 

Here, we consider a title word associated with a category as seed information. To automatically build up a text 

classifier with unlabeled documents, we must solve two problems; how we can automatically generate labeled 

training documents (machine-labeled data) from only a title word, and how we can handle incorrectly labeled 

documents in the machine-labeled data. This paper provides the solutions of both the problems. For the former, 

we employ the bootstrapping technique and, for the latter, we use the TCFP (Text Categorization using Feature 

Projections) classifier with robustness from noisy data (Ko and Seo, 2002). 

 

1.1 How can an Automatic Text Classifier be Built from Unlabeled Documents? 

Do you think that it is possible to build a text classifier with only unlabeled documents? Maybe we cannot gain 

any information from unlabeled documents for building a text classifier because the unlabeled documents do not 

contain the most important information, their category. In general, the existing supervised learning algorithms 

cannot construct any decision rules without the labeled data. Thus labeled training data must be obtained in order 

to use the existing supervised learning algorithms. Here, we explain how labeled data can be generated from the 

unlabeled data for text classification. Since text classification is a task based on the pre-defined categories, 

developers can at least know the categories for classifying documents. Knowing the categories means that they 

can at least choose a title word of each category. This is the starting point of the proposed method. As developers 

carry out a bootstrapping task from the title word, they can finally get labeled training data.  

Suppose that we are going to classify documents into an ‘Autos’ category. First, the title word of this 

category is selected ‘automobile,’ and then the related keywords (e.g. ‘car’, ‘gear’, ‘transmission’, ‘sedan’) of 

‘Auto’ are extracted by using co-occurrence information between the title word (‘automobile’) and the other 

words. In the proposed method, context is defined as a unit of meaning for the bootstrapping process from the 

title word; it has a middle size of sentences and documents (a sequence of 60 words in a document). Then the 
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bootstrapping process first extracts the most informative contexts for the category which include at least one 

among the title word and the keywords. The extracted contexts are called by centroid-contexts because they are 

regarded as contexts with the core meaning of each category. We can obtain many words directly co-occurred 

with the title word and the keywords from the centroid-contexts (e.g. ‘driver’, ‘clutch’, ‘trunk’, and so on); these 

words are in the first-order co-occurrence with the title word and the keywords. Since only the words in the first-

order co-occurrence cannot sufficiently describe the meaning of the category, we must collect more contexts by 

measuring similarities between centroid-contexts and remaining contexts; the remaining contexts do not have any 

title word and any keywords. The collected contexts contain the words in the second-order co-occurrence with 

the title word and the keywords. As a result, the context-cluster of the category is constructed as the combination 

of the centroid-contexts and the contexts collected by the similarity method. A Naive Bayes classifier can learn 

from the created context-cluster. Since the Naive Bayes classifier can assign each unlabeled document its label, 

the labeled training documents are obtained automatically; it is called by machine-labeled data.  

When the machine-labeled data is used to build up supervised mannered text classifiers, there is an 

additional problem in that the data has more incorrectly labeled documents than manually labeled data does. Thus 

we develop and employ the TCFP classifier with robustness from noisy data for learning from the machine-

labeled data. 

 

The rest of this paper is organized as follows. Section 2 presents previous related work. In section 3, we 

explain the bootstrapping technique to create machine-labeled data. Section 4 describes the TCFP classifier to 

learn from the machine-labeled data. Section 5 is devoted to the analysis of empirical results. In section 6, we 

discuss the proposed method and results. Finally, we describe conclusions and future work.  
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2. RELATED WORK 

In this literature, there are various studies that aim to reduce efforts for labeling tasks. Some studies are based on 

models that learn from labeled and unlabeled documents (Nigam, 2001; Ghani, 2002; Lanquillon, 2000), models 

that perform a partially supervised classification (Jeon and Landgrebe, 1999; Liu et al., 2002), or active learning 

(Roy and McCallum, 2001; Tong and Koller, 2001). An alternative strategy is to employ unsupervised clustering 

for text classification (Adami et al., 2003; Slonim et al., 2002).  

      The studies to support the manual labeling of documents focus on the labeling task of a restricted set of 

documents. Then they fulfill to a requirement of a minimum amount of labeled data for each category using 

unlabeled data. Nigam (1998) studied an Expected Maximization (EM) technique for combining labeled and 

unlabeled data for text classification in his dissertation. Ghani (2002) developed a framework to incorporate 

unlabeled data in the Error-Correcting Output Coding (ECOC) setup by first decomposing multiclass problems 

into multiple binary problems and using Co-Training to learn the individual binary classification problems. 

Lanquillon (2000) presented another approach for learning from labeled and unlabeled data. Since the most 

straightforward way to make use of unlabeled data is through unsupervised learning, he exploited partitional 

clustering methods. Jeon and Landgrebe (1999) proposed a new partially supervised classification method using 

unsupervised clustering, and Liu et al. (2002) studied the problem of classification with only partial information, 

one class of labeled (positive) documents, and a set of mixed documents. Roy and McCallum (2001) presented an 

active learning method that directly optimizes expected future errors, and Tong and Koller (2001) introduced a 

new algorithm for performing active learning with SVM. These previous studies always require a first sample set 

of labeled data while the proposed method uses only unlabeled data. 

In the other hand, there are several studies which used the clustering algorithms to text classification for 

not doing any labeling tasks. Slonim et al. (2002) suggested using clustering techniques for unsupervised 

document classification. When a collection of unlabeled documents was given, he attempted to find clusters 

that are highly correlated with the true topics of documents by a new clustering method, the sequential 

Information Bottleneck (sIB) algorithm. Adami et al. (2003) proposed a semi-automatic process whose aim is 



 

 7 

to minimize the work required to the administrators when creating, modifying, and maintaining taxonomy with 

labeled documents.  

       

Basically, the problem we are attacking can be conceived as a bootstrapping technique using keywords for 

each category. Several bootstrapping techniques using keywords have studied in this literature (McCallum et al., 

2000; Urena-lopez et al., 2001). McCallum et al. (2000) presented a bootstrapping method for construction of a 

domain-specific search engine. In the domain specific search engine, more specific information such as 

category hierarchy, keyword, and phrases can be useful. With a category hierarchy and human-provided 

keywords, a rule-list classifier can be built and it preliminarily can label unlabeled documents. The 

bootstrapping iterations are EM steps that used unlabeled data and hierarchical shrinkage to estimate 

parameters of a Naive Bayes classifier. However, since they require specific preliminary information such as a 

category hierarchy and human-provided keywords to build a rule-list classifier, its application can be restricted.  

Urena-lopez et al. (2001) proposed an approach to text classification that is based on the integration of 

linguistic resources. They first presented the integration of the lexical database WordNet and the training 

collection for text classification, by means of the Vector Space Model and the Rocchio training algorithm. This 

integration is made with the help of word sense disambiguation (WSD). However, this method required the 

whole labeled training documents and did not exploit any unlabeled document. 
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3.   THE BOOTSTRAPPING TECHNIQUE TO GENERATE MACHINE-LABELED DATA 

The bootstrapping process consists of three modules as shown in Figure 1: a module to preprocess unlabeled 

documents, a module to construct context-clusters for training, and a module to build up the Naive Bayes 

classifier using context-clusters. Each module is described in the following sections in detail. 

 

Figure 1. The overview of the bootstrapping process                         

Collected
Documents

Preprocessing

Title Word List Pool of Contexts

Constructing Context-Clusters for Training

Context-Clusters

Learning Classifier

Creating Keyword Lists of Each Category

Extracting and Verifying Centroid-Contexts

Creating Context-Clusters
(Similarity Measure)

 

 

3.1 Preprocessing 

The preprocessing module has two main roles: extracting content words and reconstructing unlabeled documents 

into contexts. The Brill POS tagger is used to extract content words (Brill, 1995). Words with noun or verb POS 

tags are considered as content words. 

Generally, the supervised learning approach with labeled data regards a document as a unit of meaning. 

However, since machine-labeled data is created from only a title word, context is defined as a new unit of 
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meaning, and it is used as the meaning unit to bootstrap the meaning of each category; the linguistic definition of 

context is the part of a text that surrounds a particular word or a passage and determines its meaning (Manning 

and Schutze, 1999). Note that the final goal of the bootstrapping process is to build up labeled training documents 

from only title words automatically. Hence, the middle size processing unit, between word and document, is 

required. A sequence of 60 content words within a document is regarded as the window size for one context; we 

believe that words co-occurred with any keyword in a context have important meaning for each category. In order 

to choose this number of 60 words for the window size, we refer a study of bootstrapping technique applied to a 

WSD problem. Yarowsky recommended the optimal window size to be between 40 words and 100 words in his 

paper (Yarowsky, 1994). Thus we conducted simple experiments using various window sizes (40~100 words) 

and consequently chose 60 words for the window size. To extract the contexts from a document, we use a sliding 

window technique (Maarek et al., 1991). The window slides from the first content word to the last content word 

of the document in the size of the window (60 words) and with the interval of each window (30 words). That is, 

two successive contexts are overlapped in rear 30 words of the previous window and front 30 words of the next 

window. Therefore, the final output of preprocessing is a set of context vectors that are represented as content 

words of each context. 

 

3.2 Constructing a Context-Cluster as the Training Data of Each Category 

At first, keywords are automatically generated from a title word for each category using co-occurrence 

information. Then centroid-contexts are extracted by using the title word and keywords. Each centroid-context 

includes at least one of the title word and keywords. It is regarded as one of the most informative contexts for 

each category. Furthermore, more information of each category is obtained by assigning remaining contexts to 

each context-cluster by a similarity measure technique. 
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3.2.1 Creating Keyword Lists 

A title word presents the main meaning of each category, but it could be insufficient in representing any category 

for text classification. Thus keywords, which are semantically related to the title word, are added for each 

category. The degree of semantic similarity is estimated for extracting keywords by using co-occurrence 

information between the title word and other words in the unlabeled documents.  

The score of semantic similarity between a title word, T, and a word, W, is calculated by the cosine metric as 

follows: 
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where ti and wi represent the occurrence of words T and W in i-th document respectively; they are denoted by 

binary value, 0 or 1, and n is the total number of documents in the unlabeled documents. This formula calculates 

the similarity score between words based on the degree of their co-occurrence in the same document. 

The most important criterion for good keywords of a category is a similarity with the title word of each topic 

category, and it can be measured by formula 1. Then the ambiguity of words must be considered. That is, if any 

word has a high similarity with title words of two or more categories, the word must be excluded from keywords 

because it does not have the power to discriminate these categories. To apply the former criterion to the proposed 

method, each word is first assigned to the keyword candidate list of a category with the maximum similarity score. 

For latter criterion, the important score of each assigned word is recalculated by using the following formula:  

 

)),(),((),(),(
maxsecmaxmaxmax

WTsimWTsimWTsimcWScore
ond

                                          (2) 

 

where  Tmax is a title word with the maximum similarity score of a word W, cmax is the category of the title word 

Tmax, and Tsecondmax is other title word with the second high similarity score of the word W. 



 

 11 

This formula means that a word in high ranking has a high similarity score with the title word (sim(Tmax,W)) 

and a high similarity score difference with other title words (sim(Tmax,W)- sim(Tsecondmax,W)). Words assigned to 

each category are sorted out according to the score calculated by formula 2 in a descending order. Then top m 

words are chosen as keywords in the category. Table 1 shows the list of keywords (top 5) for each category in the 

WebKB data set.  

 

Table 1. The list of keywords in the WebKB data set 

Category Title Word Keywords 

Course course assignments, hours, instructor, class, fall 

Faculty professor associate, ph.d, fax, interests, publications 

Project project System, systems, research, software, information 

Student student graduate, computer, science, page, university 

 

3.2.2 Extracting and Verifying Centroid-Contexts 

A context with a keyword or a title word of any category is selected as a centroid-context. From the 

selected contexts, we can obtain a set of words in the first-order co-occurrence from centroid-contexts of each 

category. But, among the selected centroid-contexts, some contexts could not have effective features of a 

category even though they include a keyword or a title word of the category. Thus the importance score of each 

centroid-context is measured and it is ranked according to the calculated importance score. First of all, the 

weight of each word is calculated using Term Frequency (TF) within a category and Inverse Category 

Frequency (ICF) (Cho and Kim, 1997). Using word weights (TWij), the score of a centroid-context (Sk) in j-th 

category (cj) is computed as follows: 
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TWTWTW
cSScore

Njjj

jk




...
),(

21
                                                           (3) 



 

 12 

 

where N is the  number of content words in each centroid-context. 

The centroid-contexts of each category are sorted in a descending order according to their calculated 

importance scores. This order of the centroid-contexts is used in the following section.  

 

3.2.3 Creating the Context-Cluster of each category 

We here gather the second-order co-occurrence information by assigning remaining contexts to the context-

cluster of each category. For the assigning criterion, we calculate similarities between remaining contexts and the 

centroid-contexts of each category. Thus we employ the similarity measure algorithm by Karov and Edelman 

(1998). In the proposed method, a part of this algorithm is reformed for our purposes, and remaining contexts are 

assigned to each context-cluster by this algorithm.  

 

1) Measurement of word and context similarities 

As similar words tend to appear in similar contexts, the similarity is calculated by using contextual information. 

Words and contexts play complementary roles. Contexts are similar to the extent that they contain similar words, 

and words are similar to the extent that they appear in similar contexts. This definition is circular. Thus it is 

applied iteratively using two matrices, Word Similarity Matrix (WSM) and Context Similarity Matrix (CSM); the 

rows and columns of WSM are labeled by all the content words encountered in the centroid-contexts of each 

category and input remaining contexts, and the rows of CSM correspond to the centroid-contexts and the columns 

to the remaining contexts. Each category has one WSM and one CSM. In each iteration n, WSMn, whose cell (i,j) 

holds a value between 0 and 1, is updated, and the value of each cell indicates the extent to which the i-th word is 

contextually similar to the j-th word. Also, CSMn, which holds similarities among contexts, is kept and updated. 

In this paper, the number of input contexts of row and column in CSM is limited to 200 as considering execution 

time and memory allocation, and the number of iterations is set as 3 as it is recommended by Karov and Edelman 

(1998). 
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To estimate the similarities, WSM is initialized to the identity matrix. That is, each word is fully similar (1) 

to itself and completely dissimilar (0) to other words. The following steps are iterated until the changes in the 

similarity values are small enough. 

 

1. Update the context similarity matrix CSMn, using the word similarity matrix WSMn. 

2. Update the word similarity matrix WSMn, using the context similarity matrix CSMn. 

 

2) Affinity formula 

To simplify the symmetric iterative treatment of similarities between words and contexts, an auxiliary relation 

between words and contexts is expressed as affinity and is represented by affn(X,W). A word W is assumed to 

have a certain affinity to every context X, which is a real number between 0 and 1. It reflects the contextual 

relationships between W and the words of the context. If W belongs to a context X, its affinity to X is 1. If W is 

totally unrelated to X, the affinity is close to 0. If W is contextually similar to the words of X, its affinity to X is 

between 0 and 1. In a similar manner, a context X has some affinity to every word, reflecting the similarity of X to 

the contexts involving that word.  

Affinity formulae are defined as follows (Karov and Edelman, 1998). In these formulae, W  X means that a 

word W belongs to a context X: 

 

                  ),(max),(
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In the above formulae, n denotes the iteration number, and the similarity values are defined by WSMn and CSMn. 

Every word has some affinity to a context, and the context can be represented by a vector indicating the affinity 

of each word to it.  
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3) Similarity formulae 

The similarity of W1 to W2 is the average affinity of the contexts that include W1 to W2, and the similarity of a 

context X1 to X2 is a weighted average of the affinity of the words in X1 to X2. Similarity formulae are defined as 

follows: 
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The weights in formula 6 are calculated by a methodology described in Appendix. Since each weight in formula 

7 is a reciprocal of the number of contexts that contain W1, the sum of the weights is 1. These values are used to 

update the corresponding entries of WSMn and CSMn. 

 

4) Assignment of remaining contexts to a category 

The similarity value of each remaining context for each category is decided by using the following formula: 
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In formula 8, X is a remaining context,  
m

cccC ,...,,
21

 is a category set, and  
nc

SSCC
i

,...,
1

 is a controid-contexts 

set of category ci. 



 

 15 

Each remaining context is assigned to a category with the maximum similarity value. However, there may 

exist remaining contexts which do not belong to any category. To remove these remaining contexts, we set up a 

dropping threshold using normal distribution of similarity values as follows (Ko and Seo, 2000): 

 

                         } ),(sim max{
Cc i

 


i
cX                                                (9) 

 

where X is a remaining context,  is an average of similarity values, ),(
i

Cc

cXsim
i


,  is a standard deviation of 

similarity values, and  is a numerical value corresponding to the threshold (%) in normal distribution table. 

Finally, a remaining context is assigned to the context-cluster of any category, when the category has a 

maximum similarity above the dropping threshold value. In this paper, we empirically set a 15% threshold value 

from an experiment using a validation set. 

 

3.3 Learning a Naive Bayes Classifier Using Context-Clusters 

In above section, we obtained labeled contexts training data: context-clusters. Since the training documents are 

labeled as the context unit, a Naive Bayes classifier is selected to learn from context-clusters because it can be 

built by only estimating words probabilities in each category. That is, the Naive Bayes classifier can learn not 

from word distribution within each document but from words distribution within each category. Therefore, the 

Naive Bayes classifier is constructed by estimating words distribution in the context-cluster of each category, and 

it finally classify unlabeled documents into each category. 

The Naive Bayes classifier is built up with minor modifications based on Kullback-Leibler Divergence 

(Craven et al., 2000). This method makes exactly the same classifications as Naive Bayes, but produce 

classification scores that are less extreme. Thus better reflect uncertainty than those produced by Naive Bayes. A 

document di is classified by to the following formula: 
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where n is the number of words in document di, wt is the t-th word in the vocabulary, N(wt,di) is the frequency of 

word wt in document di. 

 

4. USING A FEATURE PROJECTION TECHNIQUE FOR HANDLING THE NOISY DATA 

OF THE MACHINE-LABELED DATA 

The labeled data of a documents unit is finally obtained through the bootstrapping process, machine-labeled data. 

Now text classifiers can learn from the machine labeled data. But since the machine-labeled data is created by the 

proposed bootstrapping method, it generally includes more incorrectly labeled documents than the human-labeled 

data. In order to effectively handle them, a feature projection technique is applied to our text classifier (TCFP) 

(Ko and Seo, 2002). By the property of the feature projection technique, the TCFP classifier can have robustness 

from noisy data. In the experiment results, TCFP showed better performance than other conventional classifiers 

in using machine-labeled data. 

 

4.1 The TCFP Classifier with Robustness from Noisy Data  

We here explain our TCFP classifier using the feature projection technique. In this classifier, the classification 

knowledge is represented as a set of projections of training data on each feature dimension. The classification of 

a test document is based on the voting of each feature (word) of the test document. That is, the final prediction 

score is calculated by accumulating the voting scores of all features.  

First of all, the voting ratio of each category must be calculated for all features. Since elements with a high 

TF-IDF value in projections of a feature must become more useful classification criteria for the feature, only 
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elements with TF-IDF values above the average TF-IDF value are used for voting. The selected elements 

participate in proportional voting with the same importance as the TF-IDF value of each element. Thus, the 

voting ratio of each category cj in a feature fm is calculated by the following formula: 
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In formula 11, fmi denotes the projection element for a feature fm in a document di,  ),(
im

dfw


is the weight of a 

feature fm in a document di, Vm denotes a set of elements selected for the voting of a feature fm, 

and { }1,0∈),(
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fcy  is a function; if the category for an element 
mi

f  is equal to 
j

c , the output value is 1. 

Otherwise, the output value is 0.  

Next, since each feature separately votes on feature projections, contextual information is missing. Thus co-

occurrence frequency is used to apply contextual information to the proposed classification algorithm. To 

calculate a co-occurrence frequency value between any two features fi and fj, the number of documents, which 

include both features, is counted. TF-IDF values of two features fi and fj in a test document are modified by 

reflecting the co-occurrence frequency of the two features. That is, terms with a high co-occurrence frequency 

value and a low category frequency value have higher term weights as the following formula: 
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where  fw(fi,d) denotes a modified term weight assigned to term fi, cf denotes the category frequency that is the 

number of categories in which fi and fj co-occur, ),(
ji

ffco  is a co-occurrence frequency value for fi and fj, and 

),(
lk

ffmaxco is the maximum value among all co-occurrence frequency values. Note that the weight of feature fj 

is also modified by the same formula using fj instead of fi and every ),(
ji

ffco is calculated in the training phase.  
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Finally, the voting score of each category 
j

c in a feature fm of a test document d is calculated by the 

following formula: 

 

))(1log(),(),(),(
2

max mmmm
ffcrdffwfcvs

jj



                                                   (13) 

 

where fw(fm,d) denotes a modified term weight by the co-occurrence frequency and )(
2

max m
f denotes the 

maximum score of the calculated 
2 
statistics value of 

m
f  in each category. These 

2 
statistics values in feature 

selection are calculated by using a two-way contingency table of a word fm and a category ci as follows: 

 

)+(×)+(×)+(×)+(

)(×
=),(

2

2

DCBADBCA

CBADN
cfχ

im
                                              (14) 

 

where A is the number of times fm and ci co-occur, B is the number of times fm occurs without ci, C is the number 

of times ci occurs without fm, D is the number of times neither ci nor fm occurs, and N is the total number of 

documents  

 

The outline of the TCFP classifier is as follows: 

 

Input: test document: d


 =<f1,f2,…,fn> 

Main Process: 

For each feature fi 

           fw(fi,d) is calculated  
 

For each feature fi 

          For each category cj 

                vote[cj]=vote[cj]+vs(cj,fi) by Formula 13 
 

prediction = ][maxarg
j

c

cvote

j
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5. EMPIRICAL EVALUATION 

5.1 Data Sets and Experimental Settings 

To test the proposed method, we used three different kinds of data sets: UseNet newsgroups (20 Newsgroups), 

web pages (WebKB), and newswire articles (Reuters 21578). For fair evaluation in Newsgroups and WebKB, we 

employed the five-fold cross-validation method. That is, each data set is split into five subsets, and each subset is 

used once as test data in a particular run while the remaining subsets are used as training data for that run. The 

split into training and test sets for each run is the same for all classifiers. Therefore, all the results of our 

experiments are averages of five runs.  

The Newsgroups data set, collected by Ken Lang, contains about 20,000 articles evenly divided among 20 

UseNet discussion groups (McCallum and Nigam, 1998; Nigam et al., 1998). Many of the categories fall into 

confusable clusters; for example, five of them are comp.* discussion groups, and three of them discuss about 

religion. In this paper, we used only 16 categories after removing 4 categories: three miscellaneous categories 

(talk.politics.misc, talk.religion.misc, and comp.os.ms-windows.misc) and one duplicate meaning category 

(comp.sys.ibm.pc.hardware)
1
. After removing words that occur only once and on a stop word list, the resulting 

average vocabulary from five training data has 43,249 words (no stemming). 

The second data set comes from the WebKB project at CMU (Craven et al., 2000). This data set contains 

web pages gathered from university computer science departments. The pages are divided into seven categories: 

course, faculty, project, student, department, staff, and other. As the data set was used in other studies (Joachims, 

2001; McCallum and Nigam, 1998; Nigam, 2001; Lanquillon, 2000), we used the four most populous entity-

representing categories: course, faculty, project, and student. The resulting data set consists of 4,198 pages. The 

resulting average vocabulary from five training data has 18,742 words. 

                                                                 

1 Since we used a category name as the title name of each category, we could not choose proper title words for these miscellaneous and 

duplicate categories. Thus these categories were removed for fair evaluation. 
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The Reuters 21578 Distribution 1.0 data set consists of 12,902 articles and 90 topic categories from the 

Reuters newswire. Following other studies (Joachims, 2001; Nigam, 2001), the results of ten most populous 

categories were reported. To split train/test data, we followed a standard ‘ModApte’ split. We used all the words 

in the title and body, and we used a stop word list and no stemming. The vocabulary from training data has 

12,001 words. 

About 25% of documents from training data of each data set were selected for a validation set. After all 

parameter values of our experiments were set from the validation set, we evaluated the proposed method using 

these parameter values. 

We applied a statistical feature selection method (
2
 statistics) for each classifier at its preprocessing stage 

(Yang and Pedersen, 1997).  

As performance measures, we followed the standard definition of recall, precision, and F1 measures. For 

evaluation performance average across categories, we used the micro-averaging method (Yang, 1999). Results on 

Reuters are reported as precision-recall breakeven points, which is a standard information retrieval measure for 

binary classification (Joachims, 2001; Yang, 1999). 

The title words in our experiment are selected from the category names of each data set for fair evaluation; 

because each category name of the Reuters data set has an abbreviated form, the title words are selected from the 

description of each category in the ReadMe file. 

 

5.2 Experimental Results 

We tested the proposed method the following steps. First, using the validation set of each data set, we observed 

the performance according to the number of keywords and verified our similarity measure technique for 

assignment of remaining contexts. Finally, the proposed method was compared with the sIB clustering algorithm 

(Slonim et al., 2002), a semi-supervised learning method, and a supervised learning method. 
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5.2.1 Observing the Performance According to the Number of Keywords 

First of all, the number of keywords is determined to be used in the proposed method. The number of keywords is 

limited by the top n-th words from the ordered keyword list of each category. Figure 2 displays the performance 

at the different number of keywords (from 0 to 20) in each data set. If we use zero keywords, it means that only 

the title word is used. 

 

Figure 2. The comparison of performance according to the number of keywords 
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As shown in Figure 2, we obtained the best performance at 2 keywords in the Newsgroups data set, at 5 keywords 

in the WebKB data set, and at 3 keywords in the Reuters data set. As a result, we use the number of keywords 

with the best performance in each data set. Generally, we recommend the number of keywords to be from 2 to 5. 

 

5.2.2 Verifying our Similarity Measure Algorithm for Assignment of Remaining Contexts through Comparing 

with the K-means Algorithm 

We here verify our similarity measure algorithm for assignment of remaining contexts as mentioned in section 

3.2.3. To verify the efficiency of our similarity measure algorithm, we exploit the standard K-means algorithm 

that uses the cosine metric as a similarity measure under a vector space model. But the K-means algorithm in this 
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paper has a different point from the standard K-means algorithm. In the beginning, each initial cluster center is 

set as the mean of centroid-contexts.  

Figure 3 shows the performance curve of each algorithm. As shown in Figure 3, our similarity measure 

algorithm shows better performance over all intervals. Note that mutual information was used for feature 

selection to set the number of features in Figure  3.  

 

Figure 3. The comparison of performance for context assignment algorithms 
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5.2.3 Comparing the Proposed Method Using TCFP to those Using other Classifiers 

In this section, we prove the superiority of TCFP over the other classifiers (SVM, k-NN, Naive Bayes, Rocchio) 

in training data with much noisy data such as the machine-labeled data. As shown in Table 2, the best 

performance was obtained in using TCFP at all three data sets. For definition of notations in this section, 

OurMethod(TCFP) denotes the TCFP classifier using the machine-labeled data as training data. The same 

manner is applied for the other classifiers. 
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Table 2. The best micro-average F1 scores for Newsgroup and WebKB and precision-recall breakeven 

points for Reuters of each classifier

Data Set 
OurMethod 

(NB) 

OurMethod 

(Rocchio) 

OurMethod 

(k-NN) 

OurMethod 

(SVM) 

OurMethod 

(TCFP) 

Newsgroups 83.46 83 79.95 82.49 86.19 

WebKB 73.22 75.28 68.04 73.74 75.47 

Reuters 88.23 86.26 85.65 87.41 89.09 

 

5.2.4 Comparing Our Method with a Clustering Technique 

In related work, there have been two approaches using unlabeled data in text classification; one approach 

combines unlabeled data and labeled data, and the other approach uses the clustering technique for text 

classification. Since the proposed method does not use any labeled data, it cannot be fairly compared with the 

former approaches. Therefore, the proposed method is compared to a clustering technique applied to text 

classification. Slonim et al. (2002) proposed a new clustering technique for unsupervised document classification 

and verified the superiority of his algorithm. They called his clustering technique the sequential Information 

Bottleneck (sIB) algorithm. In their experiments, the sIB algorithm was superior to other clustering algorithms. 

Moreover, its results were comparable to those by a supervised Naive Bayes Classifier. After we set the same 

experimental settings as those in Slonim’s experiments and conduct experiments, we verify that the proposed 

method outperforms the sIB algorithm. In these experiments, the micro-averaging precision is used as 

performance measure and two revised data sets are used as the test data set: revised_NG, revised_Reuters. These 

data sets were revised in the same way according to Slonim’s paper as follows:  

In revised_NG, the categories of the Newsgroups data set were united with respect to 10 meta-categories: 

five comp categories, three politics categories, two sports categories, three religions categories, and two 

transportation categories into five big meta-categories.  

The revised_Reuters used the 10 most frequent categories in the Reuters 21578 corpus under the ModApte 

split.  
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These experiments were conducted as a close test. That is, all the documents were used as test data as well as 

training data. The experimental results are shown in Table 3 in detail. As shown in Table 3, the experimental 

results of the proposed method show relative improvement as high as 8.36% in revised NG and 3.73% in revised 

Reuters over sIB. 

 

Table 3. The comparison of the proposed method and sIB 

 
sIB 

OurMethod 

(TCFP) 
Improvement 

revised_NG 79.5 86.15 +8.36 

revised_Reuters 85.8 89.0 +3.73 

 

5.2.5 Comparing the proposed method to the Semi-Supervised Naive Bayes Classifier and the Supervised Naive 

Bayes Classifier 

Like the experimental settings of other previous studies for classification using unlabeled data (Slonim et al, 

2002; McCallum et al., 2000; Lanquillon, 2000), the Naive Bayes (NB) classifier is chosen as semi-supervised 

and supervised learning methods. For semi-supervised learning, Lanquillon (2000)’s experimental results are 

compared to our method because his experimental settings of the WebKB data set are nearly same as ours. He 

proposed the semi-supervised method based on partitional clustering for learning from labeled and unlabeled data 

in text classification; his training data set is composed of an unlabeled set of 2,500 pages and a non-overlapping 

labeled set. According to his experimental results with 20 labeled documents, the classification accuracy of the 

supervised NB classifier was 50% and that of the semi-supervised NB classifier was 61%. Finally, with 400 

labeled training documents, the semi-supervised NB classifier achieved 76%. This classification accuracy is 

almost similar to our method’s performance (75.47%) even though he used 400 labeled training documents. 

Moreover, he reported that the performance gain achieved by the semi-supervised learners decreases as the 

number of labeled training documents increases, because more accurate classifiers can be learned from the 

labeled data alone. Therefore, developers barely benefit from incorporating unlabeled documents through semi-

supervised learning if they use more than a certain amount of labeled documents. 
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For supervised learning, the training data consists of 500 different documents randomly chosen from the 

appropriate categories; this means that the labeling task conducted for less time relative to that for all the training 

data.  For this experiment, we consider not only the labeling task using a part of unlabeled documents but also the 

labeling task using the whole of them. As a result, the following table reports performances from two kinds of 

NB classifiers which are learned from 500 training documents and the whole training documents respectively. 

 

Table 4. The comparison of the proposed method and the supervised NB classifier 

Data Set 
OurMethod 

(TCFP) 

NB 

(500) 

NB 

(ALL) 

Newsgroups 86.19 72.68 91.72 

WebKB 75.47 74.1 85.29 

Reuters 89.09 82.1 91.64 

 

 

In Table 4, the results of the proposed method are shown to be higher than those of NB(500) and they are 

comparable to those of NB(All) in all data sets. Especially, the result of the proposed method in the Reuters data 

set reached 2.55% closer to that of NB(All). Note that NB(All) learned from the whole labeled training data. 

 

6. DISCUSSION 

We here discuss the weakness of the proposed method and propose the hybrid keywords extraction method to 

overcome this weakness. Then we observe how many human-labeled documents are required to obtain the 

performance of the proposed method in each data set. 

 

6.1 Enhancing the Proposed Method from Choosing Keywords by Human Developers 

The main problem of the proposed method is that its performance depends on the quality of the keywords and 

title words. As shown in Table 2, we obtained the worst performance in the WebKB data set. In fact, title words 

and keywords of each category in the WebKB data set also have high frequency in other categories. We think 
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these factors contribute to a comparatively poor performance of the proposed method. If keywords as well as title 

words are supplied by humans, the proposed method may be able to achieve better performance. However, 

choosing the proper keywords for each category is a much difficult task. Moreover, keywords from developers, 

who have insufficient knowledge about an application domain, do not guarantee a high degree of performance. In 

order to overcome this problem, we propose a hybrid method for choosing keywords. That is, a developer obtains 

10 candidate keywords from the keyword extraction method and then he/she can choose proper keywords from 

them. Table 5 shows the results from the hybrid method in three data sets. 

 

Table 5. The comparison of the original proposed method and the hybrid method 

Data Set 
OurMethod 

(TCFP) 

Hybrid 

(TCFP) 
Improvement 

Newsgroups 86.19 86.23 +0.046 

WebKB 75.47 77.59 +2.81 

Reuters 89.09 89.52 +0.48 

 

Especially, we could achieve significant improvement in the WebKb data set. Thus we find that the hybrid 

method for choosing keywords is more useful in a domain with confused keywords between categories such as 

the WebKB data set. 

 

6.2 The Effect of Learning from Small Labeled Training Data to Whole Labeled Training Data 

We here observe how many human-labeled documents are required to obtain the performance of the proposed 

method in each data set. Figure 4 shows the classification performance of the supervised Naive Bayes classifier 

on the three data sets selected when the number of human-labeled training documents is varied. The horizontal 

axes indicate the number of human-labeled training documents. Note that, for example, a total of 16 training 

documents for the Newsgroups data set correspond to one document per category and 12,800 training documents 

means that we made use of all labeled training documents. The vertical axes indicate the classification 

performance on the test sets. 
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Notice that the achieved performances vary across the different data sets and different amounts of labeled 

data. A reason for this lies not only in the separateness of categories but also in the number of categories. 

Generally, the more labeled data there is, the better performance is. For each data set examined, the learning 

curves begin to converge to a certain dataset-specific level when the training sets contain some hundred examples 

per category. 

As shown in Figure 4, for the Newsgroups data set, the similar performance to that of the proposed method is 

achieved when using about 3,500 labeled training documents: about 600 labeled documents for the WebKB data 

set and about 5,000 labeled documents for the Reuters data set. Although these training set sizes are smaller than 

the whole training set size, labeling some thousand documents for training is still a tedious and time-consuming 

task. Moreover, the performances from the supervised classifiers with whole labeled training data do not show 

much difference in comparison with those of the proposed method.  

 

Figure 4. The effect of the training set size on the classification performance of a supervised Naive Bayes 

classifier in each data set and the comparison with the performance of the proposed method. The 

horizontal axes indicate the number of labeled training documents 
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(a) The Newsgroups data set 
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(b) The WebKB data set 
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(C) The Reuters data set 

 

7. CONCLUSIONS AND FUTURE WORK 

This paper has addressed a new unsupervised or semi-supervised text classification method. Though the proposed 

method uses only title words and unlabeled data, it shows reasonably comparable performance to the supervised 

Naive Bayes classifier. Moreover, it outperforms a clustering method, sIB. Labeled data is expensive while 

unlabeled data is inexpensive and plentiful. Therefore, the proposed method is useful for low-cost text 

classification. Furthermore, if some text classification tasks require high accuracy, the proposed method can be 

used as an assistant tool for easily creating training data. 

Since the proposed method depends on title words and the number of keywords, we need additional studies 

for the characteristics of candidate words for title words and the number of input keywords according to different 

kinds of data set. 
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Appendix 

We here explain how to calculate the word weight of formula 6 in section 3.2.3. The weight of a word in formula 

6 is a product of three factors. It excludes the words that are expected to be given unreliable similarity values. 

The weights are not changed in their process of iterations.  

 

Global frequency: Frequent words in total contexts are less informative of context similarity as follows: 
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where maxfreq is the value of the highest frequency in total contexts. 

 

Log-likelihood factor: Generally, the words that are indicative of the category appear in centroid-contexts more 

frequently than in total contexts. The log-likelihood factor captures this tendency as follows: 
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where Pr(wi) is estimated from the frequency of wi in the total contexts, and Pr(wi|CC) from the frequency of wi 

in centroid-contexts. 1 is assigned to the words which do not appear in centroid-contexts.  

 

Part of speech: Each part of speech is considered as a weight. The weight (1.0) is assigned to proper noun, 

common noun, and foreign word, and the weight (0.6) is assigned to verb. 
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The weight of a word, F(wi, X), is the product of the above factors and each weight are normalized by the sum 

of weights of words in a context as follows: 
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