

Text Classification from Unlabeled Documents with Bootstrapping and

Feature Projection Techniques

Youngjoong Ko
1
 and Jungyun Seo

2

1
Department of Computer Engineering,

Dong-A University,

840, Hadan 2-dong, Saha-gu,

Busan, 604-714, Korea

yjko@dau.ac.kr,

2
Department of Computer Science and Program of Integrated Biotechnology,

Sogang University

Sinsu-dong 1, Mapo-gu

Seoul, 121-742, Korea

seojy@sogang.ac.kr

1. Corresponding author : Jungyun Seo

2. Corresponding address : Department of Computer Science and Interdisciplinary Program of Integrated

Biotechnology, Sogang University, Sinsu-dong 1, Mapo-gu, Seoul 121-742, Republic of Korea.

3. Corresponding telephone number : 82-2-705-8488

4. Corresponding fax number : 82-2-704-8273

5. Corresponding Email address : seojy@sogang.ac.kr

 2

Text Classification from Unlabeled Documents with Bootstrapping and

Feature Projection Techniques

ABSTRACT

Many machine learning algorithms have been applied to text classification tasks. In the machine learning

paradigm, a general inductive process automatically builds a text classifier by learning, generally known as

supervised learning. However, the supervised learning approaches have some problems. The most notable

problem is that they require a large number of labeled training documents for accurate learning. While unlabeled

documents are easily collected and plentiful, labeled documents are difficultly generated because a labeling task

must be done by human developers. In this paper, we propose a new text classification method based on

unsupervised or semi-supervised learning. The proposed method launches text classification tasks with only

unlabeled documents and the title word of each category for learning, and then it automatically learns text

classifier by using bootstrapping and feature projection techniques. The results of experiments showed that the

proposed method achieved reasonably useful performance compared to a supervised method. If the proposed

method is used in a text classification task, building text classification systems will become significantly faster

and less expensive.

KEYWORDS

Text Classification, Bootstrapping, Feature Projection, Unlabeled Data, Text Classifier

 3

1. INTRODUCTION

With the rapid growth of the World Wide Web, the task of classifying natural language documents into a pre-

defined set of semantic categories has become one of the key methods for organizing online information. This

task is commonly referred to as text classification. Since there has been an explosion of electronic texts from not

only the World Wide Web but also various online sources (electronic mail, corporate databases, chat rooms,

digital libraries, and so on) recently, one way of organizing this overwhelming amount of data is to classify them

into topical categories.

Since the machine learning paradigm emerged in the 90’s, many machine learning algorithms have been

applied to text classification by supervised learning. The supervised learning algorithm finds a representation or

decision rule from an example set of labeled documents for each class. A wide range of the supervised learning

algorithms has been applied to this area using a training data set of labeled documents. For example, there are

Naive Bayes (Ko and Seo, 2000; McCallum and Nigam, 1998), Rocchio (Lewis et al., 1996), Nearest Neighbor

(k-NN) (Yang et al., 2002), and Support Vector Machine (SVM) (Joachims, 2001).

However, the major bottleneck of the supervised learning algorithms is that they require a large number of

labeled training documents for accurate learning. Since a labeling task must be done manually, it is a painfully

time-consuming process. Furthermore, since the application area of automatic text classification has diversified

from newswire articles and web pages to E-mails and newsgroup postings, it is also a difficult task to create

training data for each application area (Nigam et al., 1998). McCallum et al. (1999) found that only 100

documents could be hand-labeled in the 90 minutes and the result of a classifier learned from this small training

set achieved just 30% accuracy in their experiments. Most users of a practical system, however, do not want to do

the labeling task for a long time only to obtain this level of accuracy. They obviously prefer algorithms that have

high accuracy, but do not require a large amount of manually labeling task.

In this paper, we propose a new text classification method based on unsupervised or semi-supervised

learning. The proposed method uses only unlabeled documents and the title word of each category as initial data

for learning of text classification. While labeled data is difficultly obtained, unlabeled data is readily available

 4

and plentiful. Therefore, this paper advocates an automatic labeling task using a bootstrapping technique and a

robust text classifier using a feature projection technique. The input to the bootstrapping process is a large

amount of unlabeled documents and a small amount of seed information to tell the learner about the specific task.

Here, we consider a title word associated with a category as seed information. To automatically build up a text

classifier with unlabeled documents, we must solve two problems; how we can automatically generate labeled

training documents (machine-labeled data) from only a title word, and how we can handle incorrectly labeled

documents in the machine-labeled data. This paper provides the solutions of both the problems. For the former,

we employ the bootstrapping technique and, for the latter, we use the TCFP (Text Categorization using Feature

Projections) classifier with robustness from noisy data (Ko and Seo, 2002).

1.1 How can an Automatic Text Classifier be Built from Unlabeled Documents?

Do you think that it is possible to build a text classifier with only unlabeled documents? Maybe we cannot gain

any information from unlabeled documents for building a text classifier because the unlabeled documents do not

contain the most important information, their category. In general, the existing supervised learning algorithms

cannot construct any decision rules without the labeled data. Thus labeled training data must be obtained in order

to use the existing supervised learning algorithms. Here, we explain how labeled data can be generated from the

unlabeled data for text classification. Since text classification is a task based on the pre-defined categories,

developers can at least know the categories for classifying documents. Knowing the categories means that they

can at least choose a title word of each category. This is the starting point of the proposed method. As developers

carry out a bootstrapping task from the title word, they can finally get labeled training data.

Suppose that we are going to classify documents into an ‘Autos’ category. First, the title word of this

category is selected ‘automobile,’ and then the related keywords (e.g. ‘car’, ‘gear’, ‘transmission’, ‘sedan’) of

‘Auto’ are extracted by using co-occurrence information between the title word (‘automobile’) and the other

words. In the proposed method, context is defined as a unit of meaning for the bootstrapping process from the

title word; it has a middle size of sentences and documents (a sequence of 60 words in a document). Then the

 5

bootstrapping process first extracts the most informative contexts for the category which include at least one

among the title word and the keywords. The extracted contexts are called by centroid-contexts because they are

regarded as contexts with the core meaning of each category. We can obtain many words directly co-occurred

with the title word and the keywords from the centroid-contexts (e.g. ‘driver’, ‘clutch’, ‘trunk’, and so on); these

words are in the first-order co-occurrence with the title word and the keywords. Since only the words in the first-

order co-occurrence cannot sufficiently describe the meaning of the category, we must collect more contexts by

measuring similarities between centroid-contexts and remaining contexts; the remaining contexts do not have any

title word and any keywords. The collected contexts contain the words in the second-order co-occurrence with

the title word and the keywords. As a result, the context-cluster of the category is constructed as the combination

of the centroid-contexts and the contexts collected by the similarity method. A Naive Bayes classifier can learn

from the created context-cluster. Since the Naive Bayes classifier can assign each unlabeled document its label,

the labeled training documents are obtained automatically; it is called by machine-labeled data.

When the machine-labeled data is used to build up supervised mannered text classifiers, there is an

additional problem in that the data has more incorrectly labeled documents than manually labeled data does. Thus

we develop and employ the TCFP classifier with robustness from noisy data for learning from the machine-

labeled data.

The rest of this paper is organized as follows. Section 2 presents previous related work. In section 3, we

explain the bootstrapping technique to create machine-labeled data. Section 4 describes the TCFP classifier to

learn from the machine-labeled data. Section 5 is devoted to the analysis of empirical results. In section 6, we

discuss the proposed method and results. Finally, we describe conclusions and future work.

 6

2. RELATED WORK

In this literature, there are various studies that aim to reduce efforts for labeling tasks. Some studies are based on

models that learn from labeled and unlabeled documents (Nigam, 2001; Ghani, 2002; Lanquillon, 2000), models

that perform a partially supervised classification (Jeon and Landgrebe, 1999; Liu et al., 2002), or active learning

(Roy and McCallum, 2001; Tong and Koller, 2001). An alternative strategy is to employ unsupervised clustering

for text classification (Adami et al., 2003; Slonim et al., 2002).

 The studies to support the manual labeling of documents focus on the labeling task of a restricted set of

documents. Then they fulfill to a requirement of a minimum amount of labeled data for each category using

unlabeled data. Nigam (1998) studied an Expected Maximization (EM) technique for combining labeled and

unlabeled data for text classification in his dissertation. Ghani (2002) developed a framework to incorporate

unlabeled data in the Error-Correcting Output Coding (ECOC) setup by first decomposing multiclass problems

into multiple binary problems and using Co-Training to learn the individual binary classification problems.

Lanquillon (2000) presented another approach for learning from labeled and unlabeled data. Since the most

straightforward way to make use of unlabeled data is through unsupervised learning, he exploited partitional

clustering methods. Jeon and Landgrebe (1999) proposed a new partially supervised classification method using

unsupervised clustering, and Liu et al. (2002) studied the problem of classification with only partial information,

one class of labeled (positive) documents, and a set of mixed documents. Roy and McCallum (2001) presented an

active learning method that directly optimizes expected future errors, and Tong and Koller (2001) introduced a

new algorithm for performing active learning with SVM. These previous studies always require a first sample set

of labeled data while the proposed method uses only unlabeled data.

In the other hand, there are several studies which used the clustering algorithms to text classification for

not doing any labeling tasks. Slonim et al. (2002) suggested using clustering techniques for unsupervised

document classification. When a collection of unlabeled documents was given, he attempted to find clusters

that are highly correlated with the true topics of documents by a new clustering method, the sequential

Information Bottleneck (sIB) algorithm. Adami et al. (2003) proposed a semi-automatic process whose aim is

 7

to minimize the work required to the administrators when creating, modifying, and maintaining taxonomy with

labeled documents.

Basically, the problem we are attacking can be conceived as a bootstrapping technique using keywords for

each category. Several bootstrapping techniques using keywords have studied in this literature (McCallum et al.,

2000; Urena-lopez et al., 2001). McCallum et al. (2000) presented a bootstrapping method for construction of a

domain-specific search engine. In the domain specific search engine, more specific information such as

category hierarchy, keyword, and phrases can be useful. With a category hierarchy and human-provided

keywords, a rule-list classifier can be built and it preliminarily can label unlabeled documents. The

bootstrapping iterations are EM steps that used unlabeled data and hierarchical shrinkage to estimate

parameters of a Naive Bayes classifier. However, since they require specific preliminary information such as a

category hierarchy and human-provided keywords to build a rule-list classifier, its application can be restricted.

Urena-lopez et al. (2001) proposed an approach to text classification that is based on the integration of

linguistic resources. They first presented the integration of the lexical database WordNet and the training

collection for text classification, by means of the Vector Space Model and the Rocchio training algorithm. This

integration is made with the help of word sense disambiguation (WSD). However, this method required the

whole labeled training documents and did not exploit any unlabeled document.

 8

3. THE BOOTSTRAPPING TECHNIQUE TO GENERATE MACHINE-LABELED DATA

The bootstrapping process consists of three modules as shown in Figure 1: a module to preprocess unlabeled

documents, a module to construct context-clusters for training, and a module to build up the Naive Bayes

classifier using context-clusters. Each module is described in the following sections in detail.

Figure 1. The overview of the bootstrapping process

Collected
Documents

Preprocessing

Title Word List Pool of Contexts

Constructing Context-Clusters for Training

Context-Clusters

Learning Classifier

Creating Keyword Lists of Each Category

Extracting and Verifying Centroid-Contexts

Creating Context-Clusters
(Similarity Measure)

3.1 Preprocessing

The preprocessing module has two main roles: extracting content words and reconstructing unlabeled documents

into contexts. The Brill POS tagger is used to extract content words (Brill, 1995). Words with noun or verb POS

tags are considered as content words.

Generally, the supervised learning approach with labeled data regards a document as a unit of meaning.

However, since machine-labeled data is created from only a title word, context is defined as a new unit of

 9

meaning, and it is used as the meaning unit to bootstrap the meaning of each category; the linguistic definition of

context is the part of a text that surrounds a particular word or a passage and determines its meaning (Manning

and Schutze, 1999). Note that the final goal of the bootstrapping process is to build up labeled training documents

from only title words automatically. Hence, the middle size processing unit, between word and document, is

required. A sequence of 60 content words within a document is regarded as the window size for one context; we

believe that words co-occurred with any keyword in a context have important meaning for each category. In order

to choose this number of 60 words for the window size, we refer a study of bootstrapping technique applied to a

WSD problem. Yarowsky recommended the optimal window size to be between 40 words and 100 words in his

paper (Yarowsky, 1994). Thus we conducted simple experiments using various window sizes (40~100 words)

and consequently chose 60 words for the window size. To extract the contexts from a document, we use a sliding

window technique (Maarek et al., 1991). The window slides from the first content word to the last content word

of the document in the size of the window (60 words) and with the interval of each window (30 words). That is,

two successive contexts are overlapped in rear 30 words of the previous window and front 30 words of the next

window. Therefore, the final output of preprocessing is a set of context vectors that are represented as content

words of each context.

3.2 Constructing a Context-Cluster as the Training Data of Each Category

At first, keywords are automatically generated from a title word for each category using co-occurrence

information. Then centroid-contexts are extracted by using the title word and keywords. Each centroid-context

includes at least one of the title word and keywords. It is regarded as one of the most informative contexts for

each category. Furthermore, more information of each category is obtained by assigning remaining contexts to

each context-cluster by a similarity measure technique.

 10

3.2.1 Creating Keyword Lists

A title word presents the main meaning of each category, but it could be insufficient in representing any category

for text classification. Thus keywords, which are semantically related to the title word, are added for each

category. The degree of semantic similarity is estimated for extracting keywords by using co-occurrence

information between the title word and other words in the unlabeled documents.

The score of semantic similarity between a title word, T, and a word, W, is calculated by the cosine metric as

follows:














n

i
i

n

i
i

n

i
ii

wt

wt

WTsim

1

2

1

2

1
),((1)

where ti and wi represent the occurrence of words T and W in i-th document respectively; they are denoted by

binary value, 0 or 1, and n is the total number of documents in the unlabeled documents. This formula calculates

the similarity score between words based on the degree of their co-occurrence in the same document.

The most important criterion for good keywords of a category is a similarity with the title word of each topic

category, and it can be measured by formula 1. Then the ambiguity of words must be considered. That is, if any

word has a high similarity with title words of two or more categories, the word must be excluded from keywords

because it does not have the power to discriminate these categories. To apply the former criterion to the proposed

method, each word is first assigned to the keyword candidate list of a category with the maximum similarity score.

For latter criterion, the important score of each assigned word is recalculated by using the following formula:

)),(),((),(),(
maxsecmaxmaxmax

WTsimWTsimWTsimcWScore
ond

 (2)

where Tmax is a title word with the maximum similarity score of a word W, cmax is the category of the title word

Tmax, and Tsecondmax is other title word with the second high similarity score of the word W.

 11

This formula means that a word in high ranking has a high similarity score with the title word (sim(Tmax,W))

and a high similarity score difference with other title words (sim(Tmax,W)- sim(Tsecondmax,W)). Words assigned to

each category are sorted out according to the score calculated by formula 2 in a descending order. Then top m

words are chosen as keywords in the category. Table 1 shows the list of keywords (top 5) for each category in the

WebKB data set.

Table 1. The list of keywords in the WebKB data set

Category Title Word Keywords

Course course assignments, hours, instructor, class, fall

Faculty professor associate, ph.d, fax, interests, publications

Project project System, systems, research, software, information

Student student graduate, computer, science, page, university

3.2.2 Extracting and Verifying Centroid-Contexts

A context with a keyword or a title word of any category is selected as a centroid-context. From the

selected contexts, we can obtain a set of words in the first-order co-occurrence from centroid-contexts of each

category. But, among the selected centroid-contexts, some contexts could not have effective features of a

category even though they include a keyword or a title word of the category. Thus the importance score of each

centroid-context is measured and it is ranked according to the calculated importance score. First of all, the

weight of each word is calculated using Term Frequency (TF) within a category and Inverse Category

Frequency (ICF) (Cho and Kim, 1997). Using word weights (TWij), the score of a centroid-context (Sk) in j-th

category (cj) is computed as follows:

N

TWTWTW
cSScore

Njjj

jk




...
),(

21
 (3)

 12

where N is the number of content words in each centroid-context.

The centroid-contexts of each category are sorted in a descending order according to their calculated

importance scores. This order of the centroid-contexts is used in the following section.

3.2.3 Creating the Context-Cluster of each category

We here gather the second-order co-occurrence information by assigning remaining contexts to the context-

cluster of each category. For the assigning criterion, we calculate similarities between remaining contexts and the

centroid-contexts of each category. Thus we employ the similarity measure algorithm by Karov and Edelman

(1998). In the proposed method, a part of this algorithm is reformed for our purposes, and remaining contexts are

assigned to each context-cluster by this algorithm.

1) Measurement of word and context similarities

As similar words tend to appear in similar contexts, the similarity is calculated by using contextual information.

Words and contexts play complementary roles. Contexts are similar to the extent that they contain similar words,

and words are similar to the extent that they appear in similar contexts. This definition is circular. Thus it is

applied iteratively using two matrices, Word Similarity Matrix (WSM) and Context Similarity Matrix (CSM); the

rows and columns of WSM are labeled by all the content words encountered in the centroid-contexts of each

category and input remaining contexts, and the rows of CSM correspond to the centroid-contexts and the columns

to the remaining contexts. Each category has one WSM and one CSM. In each iteration n, WSMn, whose cell (i,j)

holds a value between 0 and 1, is updated, and the value of each cell indicates the extent to which the i-th word is

contextually similar to the j-th word. Also, CSMn, which holds similarities among contexts, is kept and updated.

In this paper, the number of input contexts of row and column in CSM is limited to 200 as considering execution

time and memory allocation, and the number of iterations is set as 3 as it is recommended by Karov and Edelman

(1998).

 13

To estimate the similarities, WSM is initialized to the identity matrix. That is, each word is fully similar (1)

to itself and completely dissimilar (0) to other words. The following steps are iterated until the changes in the

similarity values are small enough.

1. Update the context similarity matrix CSMn, using the word similarity matrix WSMn.

2. Update the word similarity matrix WSMn, using the context similarity matrix CSMn.

2) Affinity formula

To simplify the symmetric iterative treatment of similarities between words and contexts, an auxiliary relation

between words and contexts is expressed as affinity and is represented by affn(X,W). A word W is assumed to

have a certain affinity to every context X, which is a real number between 0 and 1. It reflects the contextual

relationships between W and the words of the context. If W belongs to a context X, its affinity to X is 1. If W is

totally unrelated to X, the affinity is close to 0. If W is contextually similar to the words of X, its affinity to X is

between 0 and 1. In a similar manner, a context X has some affinity to every word, reflecting the similarity of X to

the contexts involving that word.

Affinity formulae are defined as follows (Karov and Edelman, 1998). In these formulae, W  X means that a

word W belongs to a context X:

),(max),(
inXWn

WWsimXWaff
i


 (4)

),(max),(
jnXWn

XXsimWXaff
j


 (5)

In the above formulae, n denotes the iteration number, and the similarity values are defined by WSMn and CSMn.

Every word has some affinity to a context, and the context can be represented by a vector indicating the affinity

of each word to it.

 14

3) Similarity formulae

The similarity of W1 to W2 is the average affinity of the contexts that include W1 to W2, and the similarity of a

context X1 to X2 is a weighted average of the affinity of the words in X1 to X2. Similarity formulae are defined as

follows:

),(),(),(
21211

1

XWaffXWweightXXsim
n

XW

n
 




 (6)

),(),(),(

1),(

21211

211

21

1

WXaffWXweightWWsim

else

WWsim

WWif

n

XW

n

n














 (7)

The weights in formula 6 are calculated by a methodology described in Appendix. Since each weight in formula

7 is a reciprocal of the number of contexts that contain W1, the sum of the weights is 1. These values are used to

update the corresponding entries of WSMn and CSMn.

4) Assignment of remaining contexts to a category

The similarity value of each remaining context for each category is decided by using the following formula:

),(),(
















j

CCS
i

Cc

SXsimavercXsim

icji

 (8)

In formula 8, X is a remaining context,  
m

cccC ,...,,
21

 is a category set, and  
nc

SSCC
i

,...,
1

 is a controid-contexts

set of category ci.

 15

Each remaining context is assigned to a category with the maximum similarity value. However, there may

exist remaining contexts which do not belong to any category. To remove these remaining contexts, we set up a

dropping threshold using normal distribution of similarity values as follows (Ko and Seo, 2000):

 }),(sim max{
Cc i

 


i
cX (9)

where X is a remaining context,  is an average of similarity values,),(
i

Cc

cXsim
i


,  is a standard deviation of

similarity values, and  is a numerical value corresponding to the threshold (%) in normal distribution table.

Finally, a remaining context is assigned to the context-cluster of any category, when the category has a

maximum similarity above the dropping threshold value. In this paper, we empirically set a 15% threshold value

from an experiment using a validation set.

3.3 Learning a Naive Bayes Classifier Using Context-Clusters

In above section, we obtained labeled contexts training data: context-clusters. Since the training documents are

labeled as the context unit, a Naive Bayes classifier is selected to learn from context-clusters because it can be

built by only estimating words probabilities in each category. That is, the Naive Bayes classifier can learn not

from word distribution within each document but from words distribution within each category. Therefore, the

Naive Bayes classifier is constructed by estimating words distribution in the context-cluster of each category, and

it finally classify unlabeled documents into each category.

The Naive Bayes classifier is built up with minor modifications based on Kullback-Leibler Divergence

(Craven et al., 2000). This method makes exactly the same classifications as Naive Bayes, but produce

classification scores that are less extreme. Thus better reflect uncertainty than those produced by Naive Bayes. A

document di is classified by to the following formula:

 16





























||

1

||

1

),(

)ˆ;|(

)ˆ;|(
log)ˆ;|(

)ˆ;(log

)ˆ;|()ˆ|(

)ˆ|(

)ˆ;|()ˆ|(
)ˆ;|(

V

t it

jt

it

j

V

t

dwN

jtj

i

jij

ij

dwP

cwP
dwP

n

cP

cwPcP

dP

cdPcP
dcP i














 (10)

where n is the number of words in document di, wt is the t-th word in the vocabulary, N(wt,di) is the frequency of

word wt in document di.

4. USING A FEATURE PROJECTION TECHNIQUE FOR HANDLING THE NOISY DATA

OF THE MACHINE-LABELED DATA

The labeled data of a documents unit is finally obtained through the bootstrapping process, machine-labeled data.

Now text classifiers can learn from the machine labeled data. But since the machine-labeled data is created by the

proposed bootstrapping method, it generally includes more incorrectly labeled documents than the human-labeled

data. In order to effectively handle them, a feature projection technique is applied to our text classifier (TCFP)

(Ko and Seo, 2002). By the property of the feature projection technique, the TCFP classifier can have robustness

from noisy data. In the experiment results, TCFP showed better performance than other conventional classifiers

in using machine-labeled data.

4.1 The TCFP Classifier with Robustness from Noisy Data

We here explain our TCFP classifier using the feature projection technique. In this classifier, the classification

knowledge is represented as a set of projections of training data on each feature dimension. The classification of

a test document is based on the voting of each feature (word) of the test document. That is, the final prediction

score is calculated by accumulating the voting scores of all features.

First of all, the voting ratio of each category must be calculated for all features. Since elements with a high

TF-IDF value in projections of a feature must become more useful classification criteria for the feature, only

 17

elements with TF-IDF values above the average TF-IDF value are used for voting. The selected elements

participate in proportional voting with the same importance as the TF-IDF value of each element. Thus, the

voting ratio of each category cj in a feature fm is calculated by the following formula:

∑∑
∈∈

),(),(•),(=),(

mmimmi

jj

Vf

im

Vf

miimm
dfwfcydfwfcr


 (11)

In formula 11, fmi denotes the projection element for a feature fm in a document di,),(
im

dfw


is the weight of a

feature fm in a document di, Vm denotes a set of elements selected for the voting of a feature fm,

and { }1,0∈),(
mij

fcy is a function; if the category for an element
mi

f is equal to
j

c , the output value is 1.

Otherwise, the output value is 0.

Next, since each feature separately votes on feature projections, contextual information is missing. Thus co-

occurrence frequency is used to apply contextual information to the proposed classification algorithm. To

calculate a co-occurrence frequency value between any two features fi and fj, the number of documents, which

include both features, is counted. TF-IDF values of two features fi and fj in a test document are modified by

reflecting the co-occurrence frequency of the two features. That is, terms with a high co-occurrence frequency

value and a low category frequency value have higher term weights as the following formula:

)1),(log(

)1),(log(

)1log(

1
1),(),(



















































lk

ji

ii
ffmaxco

ffco

cf
dfwdffw


 (12)

where fw(fi,d) denotes a modified term weight assigned to term fi, cf denotes the category frequency that is the

number of categories in which fi and fj co-occur,),(
ji

ffco is a co-occurrence frequency value for fi and fj, and

),(
lk

ffmaxco is the maximum value among all co-occurrence frequency values. Note that the weight of feature fj

is also modified by the same formula using fj instead of fi and every),(
ji

ffco is calculated in the training phase.

 18

Finally, the voting score of each category
j

c in a feature fm of a test document d is calculated by the

following formula:

))(1log(),(),(),(
2

max mmmm
ffcrdffwfcvs

jj



 (13)

where fw(fm,d) denotes a modified term weight by the co-occurrence frequency and)(
2

max m
f denotes the

maximum score of the calculated 
2
statistics value of

m
f in each category. These 

2
statistics values in feature

selection are calculated by using a two-way contingency table of a word fm and a category ci as follows:

)+(×)+(×)+(×)+(

)(×
=),(

2

2

DCBADBCA

CBADN
cfχ

im
 (14)

where A is the number of times fm and ci co-occur, B is the number of times fm occurs without ci, C is the number

of times ci occurs without fm, D is the number of times neither ci nor fm occurs, and N is the total number of

documents

The outline of the TCFP classifier is as follows:

Input: test document: d


 =<f1,f2,…,fn>

Main Process:

For each feature fi

 fw(fi,d) is calculated

For each feature fi

 For each category cj

 vote[cj]=vote[cj]+vs(cj,fi) by Formula 13

prediction =][maxarg
j

c

cvote

j

 19

5. EMPIRICAL EVALUATION

5.1 Data Sets and Experimental Settings

To test the proposed method, we used three different kinds of data sets: UseNet newsgroups (20 Newsgroups),

web pages (WebKB), and newswire articles (Reuters 21578). For fair evaluation in Newsgroups and WebKB, we

employed the five-fold cross-validation method. That is, each data set is split into five subsets, and each subset is

used once as test data in a particular run while the remaining subsets are used as training data for that run. The

split into training and test sets for each run is the same for all classifiers. Therefore, all the results of our

experiments are averages of five runs.

The Newsgroups data set, collected by Ken Lang, contains about 20,000 articles evenly divided among 20

UseNet discussion groups (McCallum and Nigam, 1998; Nigam et al., 1998). Many of the categories fall into

confusable clusters; for example, five of them are comp.* discussion groups, and three of them discuss about

religion. In this paper, we used only 16 categories after removing 4 categories: three miscellaneous categories

(talk.politics.misc, talk.religion.misc, and comp.os.ms-windows.misc) and one duplicate meaning category

(comp.sys.ibm.pc.hardware)
1
. After removing words that occur only once and on a stop word list, the resulting

average vocabulary from five training data has 43,249 words (no stemming).

The second data set comes from the WebKB project at CMU (Craven et al., 2000). This data set contains

web pages gathered from university computer science departments. The pages are divided into seven categories:

course, faculty, project, student, department, staff, and other. As the data set was used in other studies (Joachims,

2001; McCallum and Nigam, 1998; Nigam, 2001; Lanquillon, 2000), we used the four most populous entity-

representing categories: course, faculty, project, and student. The resulting data set consists of 4,198 pages. The

resulting average vocabulary from five training data has 18,742 words.

1 Since we used a category name as the title name of each category, we could not choose proper title words for these miscellaneous and

duplicate categories. Thus these categories were removed for fair evaluation.

 20

The Reuters 21578 Distribution 1.0 data set consists of 12,902 articles and 90 topic categories from the

Reuters newswire. Following other studies (Joachims, 2001; Nigam, 2001), the results of ten most populous

categories were reported. To split train/test data, we followed a standard ‘ModApte’ split. We used all the words

in the title and body, and we used a stop word list and no stemming. The vocabulary from training data has

12,001 words.

About 25% of documents from training data of each data set were selected for a validation set. After all

parameter values of our experiments were set from the validation set, we evaluated the proposed method using

these parameter values.

We applied a statistical feature selection method (
2
 statistics) for each classifier at its preprocessing stage

(Yang and Pedersen, 1997).

As performance measures, we followed the standard definition of recall, precision, and F1 measures. For

evaluation performance average across categories, we used the micro-averaging method (Yang, 1999). Results on

Reuters are reported as precision-recall breakeven points, which is a standard information retrieval measure for

binary classification (Joachims, 2001; Yang, 1999).

The title words in our experiment are selected from the category names of each data set for fair evaluation;

because each category name of the Reuters data set has an abbreviated form, the title words are selected from the

description of each category in the ReadMe file.

5.2 Experimental Results

We tested the proposed method the following steps. First, using the validation set of each data set, we observed

the performance according to the number of keywords and verified our similarity measure technique for

assignment of remaining contexts. Finally, the proposed method was compared with the sIB clustering algorithm

(Slonim et al., 2002), a semi-supervised learning method, and a supervised learning method.

 21

5.2.1 Observing the Performance According to the Number of Keywords

First of all, the number of keywords is determined to be used in the proposed method. The number of keywords is

limited by the top n-th words from the ordered keyword list of each category. Figure 2 displays the performance

at the different number of keywords (from 0 to 20) in each data set. If we use zero keywords, it means that only

the title word is used.

Figure 2. The comparison of performance according to the number of keywords

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

0 1 2 3 4 5 8 1 0 1 3 1 5 1 8 2 0

T h e n u m b e r o f k e yw o rd s

M
ic

ro
-

a
v
g

.
 F

1

N e w s g ro u p s W e b K B R e u te rs

As shown in Figure 2, we obtained the best performance at 2 keywords in the Newsgroups data set, at 5 keywords

in the WebKB data set, and at 3 keywords in the Reuters data set. As a result, we use the number of keywords

with the best performance in each data set. Generally, we recommend the number of keywords to be from 2 to 5.

5.2.2 Verifying our Similarity Measure Algorithm for Assignment of Remaining Contexts through Comparing

with the K-means Algorithm

We here verify our similarity measure algorithm for assignment of remaining contexts as mentioned in section

3.2.3. To verify the efficiency of our similarity measure algorithm, we exploit the standard K-means algorithm

that uses the cosine metric as a similarity measure under a vector space model. But the K-means algorithm in this

 22

paper has a different point from the standard K-means algorithm. In the beginning, each initial cluster center is

set as the mean of centroid-contexts.

Figure 3 shows the performance curve of each algorithm. As shown in Figure 3, our similarity measure

algorithm shows better performance over all intervals. Note that mutual information was used for feature

selection to set the number of features in Figure 3.

Figure 3. The comparison of performance for context assignment algorithms

50

55

60

65

70

75

80

85

1
00

0

2
00

0

3
00

0

4
00

0

5
00

0

6
00

0

7
00

0

8
00

0

9
00

0

1
00

0
0

1
30

0
0

1
50

0
0

1
80

0
0

2
00

0
0

Th e n u m be r o f Fe a tu re s

M
ic

ro
-

a
v

g
 F

1

K -m e a n s s im i l a ri ty m e a s u re m e th od

5.2.3 Comparing the Proposed Method Using TCFP to those Using other Classifiers

In this section, we prove the superiority of TCFP over the other classifiers (SVM, k-NN, Naive Bayes, Rocchio)

in training data with much noisy data such as the machine-labeled data. As shown in Table 2, the best

performance was obtained in using TCFP at all three data sets. For definition of notations in this section,

OurMethod(TCFP) denotes the TCFP classifier using the machine-labeled data as training data. The same

manner is applied for the other classifiers.

 23

Table 2. The best micro-average F1 scores for Newsgroup and WebKB and precision-recall breakeven

points for Reuters of each classifier

Data Set
OurMethod

(NB)

OurMethod

(Rocchio)

OurMethod

(k-NN)

OurMethod

(SVM)

OurMethod

(TCFP)

Newsgroups 83.46 83 79.95 82.49 86.19

WebKB 73.22 75.28 68.04 73.74 75.47

Reuters 88.23 86.26 85.65 87.41 89.09

5.2.4 Comparing Our Method with a Clustering Technique

In related work, there have been two approaches using unlabeled data in text classification; one approach

combines unlabeled data and labeled data, and the other approach uses the clustering technique for text

classification. Since the proposed method does not use any labeled data, it cannot be fairly compared with the

former approaches. Therefore, the proposed method is compared to a clustering technique applied to text

classification. Slonim et al. (2002) proposed a new clustering technique for unsupervised document classification

and verified the superiority of his algorithm. They called his clustering technique the sequential Information

Bottleneck (sIB) algorithm. In their experiments, the sIB algorithm was superior to other clustering algorithms.

Moreover, its results were comparable to those by a supervised Naive Bayes Classifier. After we set the same

experimental settings as those in Slonim’s experiments and conduct experiments, we verify that the proposed

method outperforms the sIB algorithm. In these experiments, the micro-averaging precision is used as

performance measure and two revised data sets are used as the test data set: revised_NG, revised_Reuters. These

data sets were revised in the same way according to Slonim’s paper as follows:

In revised_NG, the categories of the Newsgroups data set were united with respect to 10 meta-categories:

five comp categories, three politics categories, two sports categories, three religions categories, and two

transportation categories into five big meta-categories.

The revised_Reuters used the 10 most frequent categories in the Reuters 21578 corpus under the ModApte

split.

 24

These experiments were conducted as a close test. That is, all the documents were used as test data as well as

training data. The experimental results are shown in Table 3 in detail. As shown in Table 3, the experimental

results of the proposed method show relative improvement as high as 8.36% in revised NG and 3.73% in revised

Reuters over sIB.

Table 3. The comparison of the proposed method and sIB

sIB

OurMethod

(TCFP)
Improvement

revised_NG 79.5 86.15 +8.36

revised_Reuters 85.8 89.0 +3.73

5.2.5 Comparing the proposed method to the Semi-Supervised Naive Bayes Classifier and the Supervised Naive

Bayes Classifier

Like the experimental settings of other previous studies for classification using unlabeled data (Slonim et al,

2002; McCallum et al., 2000; Lanquillon, 2000), the Naive Bayes (NB) classifier is chosen as semi-supervised

and supervised learning methods. For semi-supervised learning, Lanquillon (2000)’s experimental results are

compared to our method because his experimental settings of the WebKB data set are nearly same as ours. He

proposed the semi-supervised method based on partitional clustering for learning from labeled and unlabeled data

in text classification; his training data set is composed of an unlabeled set of 2,500 pages and a non-overlapping

labeled set. According to his experimental results with 20 labeled documents, the classification accuracy of the

supervised NB classifier was 50% and that of the semi-supervised NB classifier was 61%. Finally, with 400

labeled training documents, the semi-supervised NB classifier achieved 76%. This classification accuracy is

almost similar to our method’s performance (75.47%) even though he used 400 labeled training documents.

Moreover, he reported that the performance gain achieved by the semi-supervised learners decreases as the

number of labeled training documents increases, because more accurate classifiers can be learned from the

labeled data alone. Therefore, developers barely benefit from incorporating unlabeled documents through semi-

supervised learning if they use more than a certain amount of labeled documents.

 25

For supervised learning, the training data consists of 500 different documents randomly chosen from the

appropriate categories; this means that the labeling task conducted for less time relative to that for all the training

data. For this experiment, we consider not only the labeling task using a part of unlabeled documents but also the

labeling task using the whole of them. As a result, the following table reports performances from two kinds of

NB classifiers which are learned from 500 training documents and the whole training documents respectively.

Table 4. The comparison of the proposed method and the supervised NB classifier

Data Set
OurMethod

(TCFP)

NB

(500)

NB

(ALL)

Newsgroups 86.19 72.68 91.72

WebKB 75.47 74.1 85.29

Reuters 89.09 82.1 91.64

In Table 4, the results of the proposed method are shown to be higher than those of NB(500) and they are

comparable to those of NB(All) in all data sets. Especially, the result of the proposed method in the Reuters data

set reached 2.55% closer to that of NB(All). Note that NB(All) learned from the whole labeled training data.

6. DISCUSSION

We here discuss the weakness of the proposed method and propose the hybrid keywords extraction method to

overcome this weakness. Then we observe how many human-labeled documents are required to obtain the

performance of the proposed method in each data set.

6.1 Enhancing the Proposed Method from Choosing Keywords by Human Developers

The main problem of the proposed method is that its performance depends on the quality of the keywords and

title words. As shown in Table 2, we obtained the worst performance in the WebKB data set. In fact, title words

and keywords of each category in the WebKB data set also have high frequency in other categories. We think

 26

these factors contribute to a comparatively poor performance of the proposed method. If keywords as well as title

words are supplied by humans, the proposed method may be able to achieve better performance. However,

choosing the proper keywords for each category is a much difficult task. Moreover, keywords from developers,

who have insufficient knowledge about an application domain, do not guarantee a high degree of performance. In

order to overcome this problem, we propose a hybrid method for choosing keywords. That is, a developer obtains

10 candidate keywords from the keyword extraction method and then he/she can choose proper keywords from

them. Table 5 shows the results from the hybrid method in three data sets.

Table 5. The comparison of the original proposed method and the hybrid method

Data Set
OurMethod

(TCFP)

Hybrid

(TCFP)
Improvement

Newsgroups 86.19 86.23 +0.046

WebKB 75.47 77.59 +2.81

Reuters 89.09 89.52 +0.48

Especially, we could achieve significant improvement in the WebKb data set. Thus we find that the hybrid

method for choosing keywords is more useful in a domain with confused keywords between categories such as

the WebKB data set.

6.2 The Effect of Learning from Small Labeled Training Data to Whole Labeled Training Data

We here observe how many human-labeled documents are required to obtain the performance of the proposed

method in each data set. Figure 4 shows the classification performance of the supervised Naive Bayes classifier

on the three data sets selected when the number of human-labeled training documents is varied. The horizontal

axes indicate the number of human-labeled training documents. Note that, for example, a total of 16 training

documents for the Newsgroups data set correspond to one document per category and 12,800 training documents

means that we made use of all labeled training documents. The vertical axes indicate the classification

performance on the test sets.

 27

Notice that the achieved performances vary across the different data sets and different amounts of labeled

data. A reason for this lies not only in the separateness of categories but also in the number of categories.

Generally, the more labeled data there is, the better performance is. For each data set examined, the learning

curves begin to converge to a certain dataset-specific level when the training sets contain some hundred examples

per category.

As shown in Figure 4, for the Newsgroups data set, the similar performance to that of the proposed method is

achieved when using about 3,500 labeled training documents: about 600 labeled documents for the WebKB data

set and about 5,000 labeled documents for the Reuters data set. Although these training set sizes are smaller than

the whole training set size, labeling some thousand documents for training is still a tedious and time-consuming

task. Moreover, the performances from the supervised classifiers with whole labeled training data do not show

much difference in comparison with those of the proposed method.

Figure 4. The effect of the training set size on the classification performance of a supervised Naive Bayes

classifier in each data set and the comparison with the performance of the proposed method. The

horizontal axes indicate the number of labeled training documents

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

1 6 3 2 9 6 1 9 2 4 9 6 9 9 2 2 0 0 0 2 9 9 2 3 4 8 8 4 0 0 0 1 2 8 0 0

T h e n u m b e r o f la b e le d tra in in g d o c u m e n ts

M
ic

ro
-

a
v
g

.F
1

S u p e rv is e d N B O u rM e th o d

(a) The Newsgroups data set

 28

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

4 8 4 8 1 0 0 2 0 0 5 0 0 6 0 0 1 0 0 0 3 3 5 8

T h e n u m b e r o f la b e le d tra in in g d o c u m e n ts

M
ic

o
r-

a
v
g

.F
1

S u p e rv is e d N B O u rM e th o d

(b) The WebKB data set

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

1 0 2 0 1 0 0 2 0 0 5 0 0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 7 1 9 3

T h e n u m b e r o f la b e le d tra in in g d o c u m e n ts

B
re

a
k
E

v
e

n
 P

o
in

t

S u p e rv is e d N B O u rM e th o d

(C) The Reuters data set

7. CONCLUSIONS AND FUTURE WORK

This paper has addressed a new unsupervised or semi-supervised text classification method. Though the proposed

method uses only title words and unlabeled data, it shows reasonably comparable performance to the supervised

Naive Bayes classifier. Moreover, it outperforms a clustering method, sIB. Labeled data is expensive while

unlabeled data is inexpensive and plentiful. Therefore, the proposed method is useful for low-cost text

classification. Furthermore, if some text classification tasks require high accuracy, the proposed method can be

used as an assistant tool for easily creating training data.

Since the proposed method depends on title words and the number of keywords, we need additional studies

for the characteristics of candidate words for title words and the number of input keywords according to different

kinds of data set.

 29

Acknowledgement

This paper was supported by Dong-A University Research Fund in 2008.

REFERENCES

Adami, G., Avesani, P., and Sona, D. (2003). Bootstrapping for Hierarchical Document Classification. In

Proceedings of the International Conference on Information Knowledge Management.

Brill, E. (1995). Transformation-Based Error-driven Learning and Natural Language Processing: A Case Study in

Part of Speech Tagging. Computational Linguistics, Vol. 21, No. 4.

Cho, K. and Kim, J. (1997). Automatic Text Categorization on Hierarchical Category Structure by using ICF

(Inverse Category Frequency) Weighting. In Proceedings of KISS conference, pp. 507-510.

Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., and Slattery, S. (2000). Learning

to Construct Knowledge Bases from the World Wide Web. Artificial Intelligence, Vol. 118 No. 1-2, pp. 69-

113.

Ghani, R., (2002). Combining Labeled and Unlabeled Data for MultiClass Text Categorization, In Proceedings of

International Conference on Machine Learning (ICML 2002), pp. 8-12.

Jeon, B. and Landgrebe, D. (1999). Partially Supervised Classification Using Weighted Unsupervised Clustering.

IEEE Transaction On Geoscience and Remote Sensing, Vol. 37, No. 2, pp.1073-1079.

Joachims, T. (2001). Learning to Classify Text Using Support Vector Machines. The dissertation for the degree

of Doctor of Philosophy, Kluwer Academic Publishers.

Karov, Y. and Edelman, S. (1998). Similarity-based Word Sense Disambiguation. Computational Linguistics,

Vol. 24, No. 1, pp. 41-60.

Ko, Y. and Seo, J. (2000). Automatic Text Categorization by Unsupervised Learning. In Proceedings of the 18
th

International Conference on Computational Linguistics (COLING’2000), pp. 453-459.

 30

Ko, Y. and Seo, J. (2002). Text Categorization using Feature Projections. In Proceedings of the 19
th
 International

Conference on Computational Linguistics (COLING’2002), pp. 467-473.

Lanquillon, C. (2000). Partially Supervised Text Categorization: Combining Labeled and Unlabeled Documents

Using an EM-like Scheme, In Proceedings of the 11
th
 Conference on Machine Learning (ECML 2000), Vol.

1810 LNCS, Springer Verlag, pp. 229-237.

Lewis, D.D., Schapire, R.E., Callan, J.P., and Papka, R. (1996). Training Algorithms for Linear Text Classifiers.

In Proceedings of the 19
th
 International Conference on Research and Development in Information Retrieval

(SIGIR’96), pp.289-297.

Liu, B., Lee, W., Yu, P., and Li, X. (2002). Partially Supervised Classification of Text Documents. In

Proceedings of 19
th
 International Conference on Machine Learning, pp. 387-394.

Maarek, Y., Berry, D., and Kaiser, G. (1991). An Information Retrieval Approach for Automatically Construction

Software Libraries. IEEE Transaction on Software Engineering, Vol. 17, No. 8, pp. 800-813.

Manning, C.D. and Schutze, H. (1999). Foundations of Statistical Natural Language Processing. The MIT press,

Second Edition.

McCallum, A. and Nigam, K. (1998). A Comparison of Event Models for Naive Bayes Text Classification.

AAAI ’98 workshop on Learning for Text Categorization, pp. 41-48.

McCallum, A., Nigam, K., Rennie, J., and Seymore, K. (1999). A Machine Learning Approach to Building

Domain-Specific Search Engines. In Proceedings of The Sixteenth International Joint Conference on Artificial

Intelligence (IJCAI-99).

McCallum, A., Nigam, K., Rennie, J., and Seymore, K. (2000). Automating the Construction of Internet Portals

with Machine Learning. Information Retrieval, Vol. 3, No. 2, pp. 127-163.

Nigam, K., McCallum, A., Thrun, S., and Mitchell, T. (1998). Learning to Classify Text from Labeled and

Unlabeled Documents. In Proceedings of 15
th
 National Conference on Artificial Intelligence (AAAI-98).

 31

Nigam, K.P. (2001) Using Unlabeled Data to Improve Text Classification. The dissertation for the degree of

Doctor of Philosophy.

Roy, N. and McCallum, A. (2001). Toward Optimal Active Learning through Sampling Estimation of Error

Reduction. In Proceedings of 18
th
 International Conference on Machine Learning, pp.441-448.

Salton, G. and Buckley, C. (1988). Term Weighting Approaches in Automatic Text Retrieval. Information

Processing and Management, Vol. 24, pp.513-523.

Slonim, N., Friedman, N., and Tishby, N. (2002). Unsupervised Document Classification using Sequential

Information Maximization. In Proceedings of the 25
th
 Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, pp. 129-136.

Tong, S., and Koller, D. (2001). Support Vector Machine Active Learning with Application to Text

Classification. Journal of Machine Learning Research, Vol. 2, pp. 45-66.

Urena-lopez, L.A., Buenaga, M., and Gomez, J.M. (2001). Integrating Linguistic Resources in TC through WSD.

Computers and the Humanities, Vol. 35, pp. 215-230.

Yang, Y. and Pedersen, J.P. (1997). A Comparative Feature Selection in Statistical Learning of Text

Categorization. In Proceedings of the Fourteenth International Conference on Machine Learning, pp. 412-420.

Yang, Y. (1999). An evaluation of statistical approaches to text categorization. Journal of Information Retrieval,

Vol. 1, No. 1/2, pp. 67-88.

Yang, Y., Slattery, S., and Ghani, R. (2002). A study of approaches to hypertext categorization. Journal of

Intelligent Information Systems, Vol. 18, No. 2.

Yarowsky, D. (1994). Decision Lists for Lexical Ambiguity Resolution: Application to Accent Restoration in

Spanish and French. In Proceedings of the 32
nd

 Annual Meeting of the Association for Computational

Linguistics, Las Cruces, NM, pp. 88-95.

 32

Appendix

We here explain how to calculate the word weight of formula 6 in section 3.2.3. The weight of a word in formula

6 is a product of three factors. It excludes the words that are expected to be given unreliable similarity values.

The weights are not changed in their process of iterations.

Global frequency: Frequent words in total contexts are less informative of context similarity as follows:

freq

wfreq
i

max

)(
1  (A.1)

where maxfreq is the value of the highest frequency in total contexts.

Log-likelihood factor: Generally, the words that are indicative of the category appear in centroid-contexts more

frequently than in total contexts. The log-likelihood factor captures this tendency as follows:

11
)Pr(

)|Pr(
log 














i

i

w

CCw
 (A.2)

where Pr(wi) is estimated from the frequency of wi in the total contexts, and Pr(wi|CC) from the frequency of wi

in centroid-contexts. 1 is assigned to the words which do not appear in centroid-contexts.

Part of speech: Each part of speech is considered as a weight. The weight (1.0) is assigned to proper noun,

common noun, and foreign word, and the weight (0.6) is assigned to verb.

 33

The weight of a word, F(wi, X), is the product of the above factors and each weight are normalized by the sum

of weights of words in a context as follows:






Xw

j

i

i

j

XwF

XwF
Xwweight

),(

),(
),((A.3)

