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Maximizing Revenue Through Two-Dimensional Shelf-Space Allocation

August 12, 2014

Abstract

We consider the problem of optimally allocating contiguous rectangular presentation spaces in
order to maximize revenues. Such problems are encountered in the arrangement of products in retail
shelf-space and in the design of feature advertising displays or webpages. Specifically, we allow (i) the
shape of a product’s presentation to have a vertical as well as a horizontal component and (ii) displays
to extend across multiple shelves for in-store presentations. Since the vertical location of the shelf on
which a product is displayed affects its sales, each vertical location is assigned its own effectiveness
with regard to revenue generation.

The problem of maximizing the total weighted revenue of a display is strongly NP-hard. Therefore,
we decompose it into two subproblems. The first consists of allocating products to different cabinets.
In the second, within each cabinet, each product’s units are arranged in a contiguous rectangle
and assigned a location. These subproblems are solved using an innovative approach that uses a
combination of integer programming and an algorithm for the maximum-weight independent set
problem. Based on computational studies on both real-world and simulated data, we demonstrate
the efficiency and effectiveness of our approach. Specifically, the revenue generated by this scheme is
within 1% of the optimum for actual data and within 5% for simulated data.

Key words and phrases: shelf-space allocation; two-dimensional display; retail; location effects

1 Introduction

We consider the problem of optimally allocating contiguous rectangular presentation spaces in order

to maximize revenues. This problem is of great importance to retailers because the increasing number

of brands and stock keeping units (SKUs) within each product category has increased the value of

every inch of a retailer’s shelf-space. In fact, shelf-space has been referred to as “the retailer’s scarcest

resource” (Bultez and Naert 1988, Lim et al. 2004). Drèze et al. (1994) estimate that the cost of

shelf-space in a typical grocery store ranges from $20 per square foot for dry groceries to $70 per square

foot for frozen foods. The shortage of retail shelf-space and the increasing intensity of competition have

greatly magnified the importance of how merchandize is displayed.

The limited shelf life of many products intensifies this problem. A short lifetime may be due to

physical characteristics (e.g., perishability of produce or other refrigerated products) or due to market

factors (e.g., seasonality of fashion items or magazines). This enhances the need to display merchandize

in a manner that maximizes revenue over a short period of time. Furthermore, of all the options available
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to a retailer for increasing revenue (such as advertising, adding new product lines, or promotional

discounting), modifying the display of the current product portfolio may be the least expensive and the

easiest to execute.

Most retailers currently employ PC-based software systems such as Apollo and Spaceman, which

allocate space using either revenue or profit as the objective, and treat handling and inventory costs

as constraints. The simple heuristics employed in these systems may not result in effective global

optimization of shelf-space (Desmet and Renaudin 1998, Yang 2001, Lim et al. 2004). Some retailers also

use planograms (diagrams—usually software-generated—of the display of retail products) to allocate

shelf-space and to map out alternate arrangements on the screen without having to physically move the

products. In such cases, planograms help retailers save time and effort, but they do not optimize the

shelf-space usage (Drèze et al. 1994). In a recent study, Hansen et al. (2010) used store data to show

that planogram-based heuristics led to a 1.7% improvement in performance. These studies suggest that

there is a need to develop better optimization models for space allocation.

Whereas most of the models proposed in the literature (see Section 2) consider the length of shelf-

space available to be the major resource that must be judiciously allocated to each product, others allow

units of a product to be stacked upon one another, so a shelf’s vertical space is also a key constraint.

Some studies also recognize the importance of the height (i.e., vertical location) of a product’s display

(relative to eye-level), as this affects the likelihood that a customer will see it. A major contribution of

our study is that it not only considers length and height, it also is the first to consider the tallness of

a product’s display, which is the vertical measurement of the space it occupies (see Figure 1). Tallness

is significant because our model allows a product’s display to extend over multiple vertically-adjacent

shelves. To the best of our knowledge, no prior model has focused on the tallness of each product’s

display, though Murray et al. (2010) does allow a product’s display to extend over more than one shelf,

but with no coordination, e.g., horizontal alignment, of the units on those shelves.

This study is motivated by observed practice in DVD rental stores and our interactions with execu-

tives of Blockbuster, Inc. (Despite Blockbuster’s demise in the U.S. market, it is still viable in Mexico,

having generated 2.3B pesos (US$172.5M) in sales through 320 stores in 2013 (Laya 2014).) Movie

titles rented on DVD have an extremely short product life cycle; the majority of rental activity occurs

in the first two to four weeks of a title’s release (Sawhney and Eliashberg 1996, Chung 2010, Chung

et al. 2011, 2012). In contrast, a grocer’s standard offering of goods and the demand for each good

does not change substantially from week to week, which allows for learning through experimentation
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Figure 1: A schematic of an 8× 8 layout under the proposed new policy.

by changing displays under relatively controlled conditions. Since this option is not available to a DVD

store, managers need to accurately forecast the expected sales/rentals of each DVD title each week and

to use this forecast effectively to allocate space to the titles. External studies of the DVD industry

(Bhattacharya and Comerford 2006) also emphasize the importance of retail shelf-space for influencing

the new releases’ sales patterns.

Video rental stores typically arrange recently-released DVDs (for which the customer must pay

a premium) in cabinets along the walls and in approximate alphabetical order (explicitly defined in

Appendix C) so that customers can easily find a particular title. Within the cabinet the alphabetical

order is not precise because the vertical locations of displays are allocated based on the titles’ revenue

potential. This is done because Blockbuster’s internal studies show that the middle shelves are more

effective for generating sales since they have higher visibility. Another contribution of this study is

the development of a process to achieve this alphabetization without significantly reducing the total

weighted revenue of the display.

Most of Blockbuster’s cabinets holding new releases contain eight shelves that can each hold eight
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DVDs. In the current practice, those titles for which at least eight discs are displayed consume an

integer number of shelves, i.e., some integer multiple of eight slots, within one cabinet. Titles with

the greatest revenue potential (generally three-to-five titles per week) each consume an entire cabinet.

Others whose revenue potential merits at least eight discs are generally concentrated in the middle four

rows (rows 3, 4, 5, 6) of their respective cabinets, with those having larger revenue potential in rows 4

and 5. The remaining new releases occupy fewer than eight slots and generally are relegated to rows

1, 2, 7, and 8. Such a title’s discs are displayed in only one row. Those within this group having

larger revenue potential are in rows 2 and 7. This heuristic is easy to implement, but the restriction

of high-revenue titles to full shelves severely constrains a manager’s choices by limiting the possible

quantities displayed.

A DVD vendor has many display options beyond those specified by this heuristic because all DVDs

have the same shape and size, i.e., all units are interchangeable. This makes our problem a generalization

of the Unit Length Shelf-Space Allocation Problem (ULSSAP) (Lim et al. 2004) to two dimensions. We

propose a new policy to arrange the discs for each title in its own contiguous rectangle within a single

cabinet. The new policy does not mandate either dimension of any title’s rectangle, so managers have

greater flexibility in the number of units displayed for each title. This allows for displays that can

generate greater revenue, but it also makes the problem more challenging. Figure 2 demonstrates how

a display generated by our proposed methodology could differ from one generated by current practice.

Many other products can fit within our generalization of the ULSSAP, including canned goods,

potato chips, breakfast cereals, frozen foods, dairy products, and video games. The stacking of wine,

floral arrangements, and other products in kiosks (e.g., at malls or airports) and the layout of snacks

or electronics in vending machines (also at airports) further suggest that this is an important problem.

More generally, the unit length and height requirements are not especially restrictive because the units

considered could simply be square inches of display space. A third contribution of this study is the

generalization of our analysis to display ads, web pages, and differently-shaped products, and to the

incorporation of the effects of product interactions.

Empirical research in the Marketing field also supports our new scheme. Pieters et al. (2010)

show that an increase in design complexity, which is the intricacy of the shapes, arrangements, and

organization of a display, increases the viewers’ attention, comprehension, and approval of the items

being considered (this is based on research in Psychology, e.g., Berlyne (1958)). Conversely, an increase

in feature complexity, which is the variations in the basic visual content such as color, luminance, and
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Figure 2: (a) A display generated from current practice compared to (b) one from our proposed method-
ology. Some products differ in the number of units displayed because of the schemes’ different require-
ments.

edges, decreases the viewers’ interest. These concepts map nicely onto our problem. Displaying the

discs of the DVD titles in rectangles of varying aspect ratios (length:tallness) adds design complexity

to the display, but it does not impose the feature complexity that would arise from having discs of

various titles randomly scattered throughout a display or aggregated into non-rectangular shapes.

The problem’s analytic complexity leads us to develop a novel solution methodology by decomposing

the general problem (without alphabetization) into two subproblems. The first consists of allocating

products to different cabinets. In the second, within each cabinet, the units of each product are arranged

in contiguous rectangles that together cover the entire cabinet. These subproblems are solved via an

innovative approach that uses a combination of integer programming and an algorithm for the maximum-

weight independent set problem. The resulting weighted revenue is within 1% of the optimum for actual

data from Blockbuster stores and within 5% of the optimum for randomly generated data. Achieving this

revenue level with a scheme that increases both a manager’s options and the display’s design complexity

is this study’s key contribution. We also illustrate the percentage increase in revenue realized from the
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new policy.

Here is the outline of this paper. Section 2 reviews previous studies on retail shelf-space allocation.

Section 3 describes our model. Section 4 details our solution procedure. Section 5 provides the com-

putational results for studies based on observed data from a Blockbuster, Inc., retail store. Section 6

provides extensions of our model to include other practical environments. Section 7 concludes this

study and proposes directions for future research. The appendices present proofs of theoretical results,

mixed integer linear programming formulations, the algorithm to improve the alphabetical ordering of

a near-optimal solution with minimal reduction of total weighted revenue, an example of forming a

display via the maximum weight independent set problem, and results of our computational study on

randomly generated data.

2 Literature Review

We begin with the influence of shelf-space on sales and some allocation schemes that put these prin-

ciples into practice. Later studies acknowledge that a display’s vertical location affects sales. Table 1

summarizes the literature.

The common practice in retailing is to allocate display space in proportion to a product’s unit sales,

revenue, or profit (Bultez and Naert 1988). Early research shows that shelf-space allocation affects

sales by stimulating demand (e.g. Curhan 1972, Anderson and Amato 1974, Corstjens and Doyle 1981,

1983). These studies led Bultez and Naert (1988) to develop a heuristic that allocates shelf-space

based on within product-class sales-share elasticities (both direct and cross-elasticities), as opposed to

elasticities between product-classes. This is a reasonable approach because space allocation between

classes is usually a strategic problem, whereas allocation within a class is an operational decision (Bai

et al. 2012). Yang and Chen (1999) solve a more tractable problem by assuming that a product’s profit

function, although non-linear globally, is linear within a small range of its current number of facings

(the number of facings is the number of units visible to the customer). Later studies by Yang (2001)

and Bai et al. (2012) each use a two-phase heuristic that considers problems in which each product has

a lower bound and an upper bound on the number of facings, and each unit of a given product must

reside on the same shelf, i.e., at the same height. Lim et al. (2004) suggest a network flow approach

that combines local search and heuristics to arrive at better solutions. Bai and Kendall (2008) allocate

display space for products while simultaneously determining inventory and ordering policy.

Most of the research into the allocation of shelf-space assumes that it is homogeneous, i.e., the
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Shelf Space Strengths Limitations Solution Methodology
Optimization Models

Corstjens and Doyle (1981) Margins, inventory costs, shelf No marketing mix variables, Geometric programming
space elasticity, cross-elasticities allows for fractional facings

Corstjens and Doyle (1983) Different products have different No marketing mix variables, Dynamic programming
growth potential. All else same as allows for fractional facings
in 1981 paper.

Zufryden (1986) Marketing mix, space elasticity, No cross-elasticities. Does Dynamic programming,
cost of sales not optimize marketing mix simulation

Bultez and Naert (1988) Within product class elasticities, Highly complex, allows for Heuristic based on
profits are a function of fractional facings non-linear equations
shelf-space

Borin et al. (1994) Decreasing marginal sales in Non-linear objective function Simulated annealing
response to increasing a
product’s display space

Yang and Chen (1999) Profit is a linear function of shelf Approximation to a non-linear Integer programming,
space within a small range programming model hierarchical, multi-stage

Yang (2001) Objective function is a linear Two-stage process with Integer programming,
function of shelf-space. Each myopic first stage, iterative allocation
product has min and max number limited test data based on gradient
of facings. Vertical locations
have different values.

Lim et al. (2004) S-shaped profit functions, cross Non-linear profit function, Network flow, local
elasticities, groupings and 1-dimensional displays search, heuristics, tabu
affinities search, squeaky wheel

Hwang et al. (2005) Vertical location affects sales, Non-linear objective for which Gradient search
integrates inventory control with it is difficult to find closed heuristic, genetic
display decisions form optimal solution algorithm

Bai and Kendall (2008) Simultaneously decides ordering Continuous decision variables, Generalized reduced
policy and allocates shelf-space prone to local optima gradient algorithm
among different products

Bai et al. (2012) 2-dimensional displays: units may 2-dimensional displays are Integer programming,
Murray et al. (2010) be stacked. Each product has min within one shelf iterative allocation

and max number of facings. based on gradient,
Vertical positions have different simulated annealing
values.

Current paper 2-dimensional displays, considers No cross-elasticity or shelf Integer programming,
the effect of vertical position elasticity, no marketing mix heuristics, network

effects formulation

Table 1: Related literature.

amount of shelf-space consumed is the only significant factor, and the position—vertical or horizontal—

in the display is ignored. Studies that do not make this limiting assumption include Drèze et al. (1994),

who conclude that a product’s vertical location is more important than the amount of shelf-space it

occupies, noting that most products generate more revenue when displayed at eye level (see also Van

Nierop et al. 2008 and Desmet and Renaudin 1998). Recent empirical evidence also suggests that

vertical location affects sales by twice as much as horizontal shelf length (Hansen et al. 2010), which is

consistent with the magnitude of vertical location effects observed in Drèze et al. (1994).

The model of Murray et al. (2010) allows a product to be allocated to multiple shelves. This model

explicitly considers the two-dimensional area consumed by each product, but does not account for the

number of shelves occupied by each product (i.e., the product’s display’s tallness). Also, there is no
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requirement that these shelves’ displays be coordinated: the two (or more) placements of one product

need not cover the same linear width on each shelf, need not be on vertically adjacent shelves, nor

do they need to be aligned horizontally. Hence, not only does this model generate displays with high

feature complexity (defined in Section 1), it would be difficult to apply it to feature advertising or to

webpage design. Bai et al. (2012) allow a product’s units to be stacked within one shelf. However, this

model does not address displays across multiple shelves, so the tallness of a product’s display is strictly

limited and cannot significantly exceed that of any other product.

Our study follows from the above-described line of research by assigning upper bounds and lower

bounds to the number of units that can be displayed for each product and by recognizing the value of

a display’s vertical location when maximizing revenue. For each product, we use its revenue potential

(defined in Section 3) to calculate its maximum number of facings. These potentials and the relative

values of the different shelves’ heights are used to determine the allocation of display locations that

maximizes the total weighted revenue of the display. Our work is distinguished further in that we

allow each product to be displayed on multiple shelves and require that the units of each product be

displayed in a contiguous rectangle; this allows generalization to feature and webpage advertising. We

know of no previous study of shelf-space allocation that has considered such coordinated two-dimensional

displays for each product to maximize total weighted revenue. This feature—allocating and arranging

rectangular spaces with minimal restriction on either dimension—necessitates the development of new

solution methods; thus, we formulate it as a maximum weight independent set problem on a network

(MWIS).

Characteristics of the DVD rental business preclude the consideration of complementarity or cross-

price elasticity effects in our case study. First, the titles’ short lifecycles and their approximately

alphabetical ordering prevent the trials required to calculate these effects. Second, the price of a movie

rental is the same across all the newly-released titles. We describe how our model could be extended to

include complementarity effects for studying other applications in Section 6.

3 Conceptual Model

We start the description of our conceptual model with variable and parameter definitions:
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Parameters:
D the number of products to be displayed.
rd revenue potential for product d, d = 1, . . . , D.
ud upper bound on the number of facings for product d, d = 1, . . . , D.
ℓd lower bound on the number of facings for product d, d = 1, . . . , D.
K number of cabinets.
Rk number of rows in cabinet k, k = 1, . . . ,K.
Ck number of columns in cabinet k, k = 1, . . . ,K.
ai the effectiveness of row i, i = 1, . . . , Rk; k = 1, . . . ,K.

Variable:
ykdij = 1, if product d is displayed in row i and column j of cabinet k,

= 0, otherwise.

We now formally state the problem:

Display problem P : D products of the same shape and size are to be displayed in K cabinets.

Cabinet k has Rk rows and Ck columns, hence Rk × Ck slots (capacity). A unit can be placed in

each slot, i.e., unit size is equal to slot size. Each slot must contain exactly one item. Each product

must have all of its units displayed within a single cabinet, and those units must be displayed in a

contiguous rectangle. The revenue potential per unit displayed of product d is rd; d = 1, 2, . . . , D,

and ai denotes the display effectiveness of row i within cabinet k, i = 1, 2, . . . , Rk; k = 1, . . . ,K. For

product d, ud (respectively, ℓd) is the upper bound (respectively, lower bound) on the number of units

to be displayed. The objective is to maximize the total weighted revenue of the display. This objective

function can be expressed as F =
∑D

d=1 rd
∑K

k=1

∑Rk
i=1 ai

∑Ck
j=1 y

k
dij , where y

k
dij = 1 if a unit of product d

is displayed in slot (i, j) of cabinet k; otherwise ykdij = 0. Without loss of generality, rows are numbered

from top to bottom, and columns are numbered from left to right. The terms row and height are used

interchangeably.

When considering the shelf management problem, a retailer typically knows the assortment of D

products to be displayed for a given planning horizon. To model the large variations in demand among

the products displayed, each product d has its own revenue potential per unit displayed rd for the current

planning period (no time index is required because the planning periods are analyzed independently).

The revenue potential is calculated by multiplying the expected demand for the product by its price.

For our computational study, the expected demands are calculated via the model of Chung (2010) and

Chung et al. (2012), which is based on the well-known Bass (1969) model; more details may be found

in Subsection 5.1.

We use the revenue potentials to determine the upper bound ud on the number of units to be
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displayed for each product. Upper bounds enforce the differences in the amount of display space

assigned to the different products. Specifically, a product’s upper bound is based on the percentage of

the sum of all revenue potentials that the product’s revenue potential represents
(
rd/

∑D
h=1 rh

)
. Thus,

the relative ratios of the products’ revenue potentials have a major influence when allocating display

space.

Because each product must have all of its units in the same cabinet, each product’s upper bound

should not exceed the largest cabinet’s capacity (ud ≤ maxk{RkCk}). In practice, a product d′

may have a relative revenue potential large enough to warrant an upper bound ud′ that is greater

than maxk{RkCk}. Our system can model this as being two products, one of which occupies an entire

cabinet k′, with the second title having the upper bound ud′ −Rk′Ck′ .

Each product also has a lower bound ℓd on the number of its units to be displayed. This constraint

may represent a manager’s decision to maintain a certain assortment of products, or it may enforce

contractual obligations with product suppliers (Yang 2001) that require minimum display areas.

Because the vertical location at which a product is displayed may be as important as the amount of

shelf-space it occupies (Drèze et al. 1994, Zytkowska 2003, Bai et al. 2012), we use the row effectiveness ai

to quantify the effect of display location. To incorporate Blockbuster’s findings on display height, the ai

values are large for the middle rows and decrease for rows closer to the top or bottom. The weighted

revenue from displaying one unit of product d on shelf i for one period is defined as aird (this is analogous

to the quantity that Yang and Chen (1999) label pdi and call the per facing profit of product d on

shelf i, but they do not specify how its value is found), where weighted refers to the influence of the row

effectiveness values ai.

Some previous works on shelf space allocation, e.g., Drèze et al. (1994), van Nierop et al. (2008),

Murray et al. (2010), propose diminishing marginal returns on the number of units displayed for a

given product. Our objective function uses the row effectiveness values ai to approximate this concavity

while maintaining a linear objective and, thus, tractability. As a product’s display becomes larger, it

extends over more rows, typically away from the middle rows to rows with lower effectiveness. Thus,

the product’s total weighted revenue per unit displayed decreases.

Note also that our problem considers only the display, i.e., that which the customer sees as he or she

peruses the shelves. We ignore on-shelf inventory that is stored behind the units facing the customer, in

accordance with Drèze et al. (1994) and Murray et al. (2010). Another distinguishing requirement of this

study is that the units for a particular product must be displayed contiguously within a single cabinet
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and in a rectangular configuration. One could simplify the problem by treating the entire display area

as one large cabinet, but this would reduce the generality of our solution, e.g., it would prohibit using

it to design a multi-page flyer. Furthermore, it would not represent standard retail practice.

Theorem 1 asserts that our problem is strongly NP-hard. It is proven in Appendix A.

Theorem 1 The display problem P is strongly NP-hard.

4 Solution Procedure

Our formulation of problem P as a mixed integer linear program (MILP) is in Appendix B.1. Neither

CPLEX nor Xpress-MP (commercial MILP solving software packages) could solve practical-sized (500

products) versions of this formulation before running out of memory (CPLEX) or exhausting a two-

week time limit (Xpress-MP). Therefore, to find good solutions efficiently for large-scale problems, we

break P into two subproblems:

SP1: Assign products to cabinets.

SP2: Arrange units within cabinets.

This decomposition is natural, in the sense that it allows us to break the multi-cabinet optimization

problem into several smaller optimization problems, one for each cabinet. We also solve a third sub-

problem for Blockbuster that also applies to other applications, e.g., canned soups:

SP3: Improve alphabetical ordering.

We describe our solution procedures for Subproblems SP1 and SP2 in the following subsections.

The procedure for SP3 is presented in Appendix C. Figure 3 schematically summarizes our approach.

4.1 Subproblem 1: Assign Products to Cabinets

Mixed-integer programMIP-SP1 assigns products to cabinets. Because it does not specify the particular

slot for each unit, MIP-SP1 cannot use the row effectiveness values to evaluate the total weighted

revenue. The resulting objective maximizes the number of units assigned to a cabinet for products with

larger revenue potentials and minimizes the units for products with smaller potentials, while allocating

products with similar revenue potentials evenly across the cabinets. We use the following decision

variables:
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Problem SP1: 

Assign products to cabinets

Problem SP2: 

Arrange units within cabinets

Problem SP3: 

Arrange units within cabinets

Objective: To allocate 

products to cabinets based 

on their revenue potentials, 

without regard to the internal 

assignments within each 

cabinet.

Objective: To arrange each 

product assigned to a cabinet 

in a contiguous rectangle, so 

that all slots of each cabinet 

are filled and the total 

weighted revenue is 

maximized.

Objective:  To make the display 

more user-friendly by 

improving its alphabetical 

ordering.

Technique: Mixed-Integer 

Programming (see MIP-SP1 in 

Section 4.1).
Technique: Model Cabinet as 

a node-weighted network; 

find the Maximum Weight 

Independent Set 

(Section 4.2).

Technique: Process Alpha-Cab, 

which performs inter-cabinet 

swaps of products with 

(approximately) equal numbers 

of units displayed, as 

appropriate (Appendix C).

Figure 3: A schematic representation of our solution approach.

xkd = 1, if product d is allocated to cabinet k; xkd = 0, otherwise.

zkd : the number of units of product d allocated to cabinet k.

(MIP-SP1) maximize

D∑
d=1

K∑
k=1

rdz
k
d , (1)

subject to
K∑
k=1

xkd = 1, d = 1, . . . , D, (2)

D∑
d=1

zkd ≤ RkCk, k = 1, . . . ,K, (3)

xkdℓd ≤ zkd , d = 1, . . . , D, k = 1, . . . ,K, (4)

zkd ≤ xkdud, d = 1, . . . , D, k = 1, . . . ,K, (5)

xkd ∈ {0, 1}, d = 1, . . . , D, k = 1, . . . ,K, (6)

zkd ≥ 0, zkd integer, d = 1, . . . , D, k = 1, . . . ,K. (7)

The objective (1) represents the total revenue of the display scheme without regard to row effectiveness:

each product’s revenue potential is multiplied by its number of facings. Constraints (2) ensure that all

of the units for a specific product will be stored in exactly one cabinet. Constraints (3) limit the number
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of units assigned to each cabinet to the number of slots in that cabinet. Constraints (4) and (5) enforce

lower bounds and upper bounds, respectively, on the number of slots allocated to a particular product.

Constraints (6) ensure that the x-variables are binary. Constraints (7) ensure that the z-variables are

non-negative integers.

Because SP1 is a relaxation of problem P, SP1 is infeasible only if P is infeasible. Two obvious

examples of conditions that cause infeasibility are
∑

d ℓd >
∑

k RkCk and
∑

d ud <
∑

k RkCk. Other

combinations of parameter values could also lead to infeasibilities, such as D = 4, K = 2, R1 = R2,

C1 = C2, and ℓd > R1C1/2 for d = 1, 2, 3.

Assume (without loss of generality) that r1 ≥ r2 ≥ · · · ≥ rm for the m products that MIP-SP1

assigns to cabinet k. One can easily show that there exists an integer q ∈ {1, . . . ,m} such that the

numbers of units displayed for the first q−1 products match their respective upper bounds, the numbers

of units displayed for the last m− q products match their respective lower bounds, and the qth product

is unrestricted between its lower and upper bound. Formally, for cabinet k,

• zkd = ud, for d = 1, 2, . . . , q − 1,

• zkd = ℓd, for d = q + 1, q + 2, . . . ,m,

• zkq = (RkCk −
∑q−1

i=1 ui −
∑m

i=q+1 ℓi), where ℓq ≤ zkq ≤ uq,

and q is maximal. In the following example, q = 2. This example demonstrates the allocation of units

to a cabinet by MIP-SP1.

Revenue Upper Lower
Product d potential (rd) bound (ud) bound (ℓd)

A 1 12 9 2

B 2 5 4 2

C 3 3 3 2

D 4 2 2 2

Table 2: Data for Example 1.

Example 1: Suppose MIP-SP1 assigned four products to cabinet k with Rk = 4 and Ck = 4, and

that the revenue potentials, upper bounds, and lower bounds are as given in Table 2. The resulting

assignment is zk1 = 9, zk2 = 3, zk3 = 2, and zk4 = 2. If we assume that the nominal values for effectiveness

of row i are a1 = a4 = 1, a2 = a3 = 2, then the arrangement shown in Figure 4 satisfies this assignment
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and maximizes total weighted revenue simply by putting the product with the largest revenue potential

in the rows with highest effectiveness. This solution, however, is infeasible for the full problem because

it does not satisfy the contiguous rectangles requirement.

C C D A

A A A A

A A A A

B D B B

Figure 4: A display for Example 1 assigned by MIP-SP1. The total weighted revenue is 229. A facing
of product d in row i has a weighted revenue of aird.

4.2 Subproblem 2: Arrange Units within Cabinets

After each product has been assigned to a cabinet, the units for each product must be displayed in a

contiguous rectangle within its cabinet. Figure 5 shows the cabinet of Example 1 after the display has

been arranged to obey this constraint.

B A A A

B A A A

B A A A

C C D D

Figure 5: A feasible display for Example 1. The total weighted revenue is 215. A facing of product d in
row i has a weighted revenue of aird.

For clarity and precision, we formally state subproblem SP2 and assert its intractability in Theo-

rem 2.

Subproblem SP2: m products of the same shape and size are to be displayed in cabinet k. The

cabinet has Rk rows and Ck columns, hence Rk ×Ck slots (capacity), and a unit can be placed in each

slot in the sense that unit size is equal to slot size. Each slot must contain exactly one item. Each

product’s display must be in a contiguous rectangle. The revenue potential of product d is rd, where
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d = 1, 2, . . . ,m, and ai denotes the display effectiveness of row i within the cabinet, i = 1, 2, . . . , Rk.

For product d, ud (respectively, ℓd) is the upper bound (respectively, lower bound) on the number of

units to be displayed. The objective is to maximize the total weighted revenue of the cabinet’s display.

This objective function can be expressed as F ′ =
∑m

d=1 rd
∑Rk

i=1 ai
∑Ck

j=1 ydij , where ydij = 1 if a unit of

product d is displayed in slot (i, j); otherwise ydij = 0. Without loss of generality, rows are numbered

from top to bottom, and columns are numbered from left to right.

Theorem 2 Problem SP2 is NP-hard in the ordinary sense.

Theorem 2 is proven in Appendix A.

To solve SP2 efficiently for any cabinet k, we formulate it as a maximum-weight independent set

problem (MWIS) on a network. An independent set on a network is a collection of nodes in which no

pair shares an edge. The weight of an independent set is the sum of the weights of its nodes. Each

node of our network represents a possible rectangular display for a product, i.e., it specifies the product

and the slots covered by a specific rectangle. A node’s weight is the total weighted revenue generated

by placing that product in that rectangle. The network’s edges are drawn so that an independent set

represents a display in which (i) each product has exactly one rectangle and (ii) no two rectangles occupy

the same slot (explicit specifications of nodes and edges are provided below). Hence, a maximum-weight

independent set represents a feasible display with maximum total weighted revenue. We now summarize

the network’s creation with pseudo-code, followed by a detailed description.

Algorithm Form Network

Create Nodes:

For each product

For each possible number of units

For each feasible aspect ratio for a rectangle

Find all feasible placements and create one node for each feasible placement

Create Edges:

For each product

Form a clique of all nodes representing that product

For each slot in the display

Form a clique of all nodes representing placements that cover that slot.
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To form nodes, we use the number of units of each product that is specified by the solution to SP1,

and allow one unit of slack. Thus, because the solution to SP1 has zkd units for product d in cabinet k,

consider all feasible rectangles that cover max{ℓd, zkd − 1}, zkd , or min{ud, zkd + 1} slots. Recall that for

at most one product (labeled q above) will these be three distinct numbers: for d < q, consider ud − 1

or ud units; for d > q, consider ℓd or ℓd + 1 units. All feasible rectangles for each number of units are

candidates for placements. Table 3 provides all possible rectangles for the products in Example 1; recall

q = 2.

Product (d) zk
d All possible rectangles for each product

A 9 2× 4, 3× 3, 4× 2

B 3 1× 2, 2× 1, 1× 3, 3× 1, 1× 4, 4× 1, 2× 2

C 2 1× 2, 2× 1, 1× 3, 3× 1

D 2 1× 2, 2× 1, 1× 3, 3× 1

Table 3: All possible rectangles for products in Example 1, based on zkd , ℓd, and ud.

Given a possible rectangle for product d with length Ld and tallness Td, its top-left slot can be

in any row between 1 and Rk − Td + 1 and in any column from 1 to Ck − Ld + 1. To illustrate, if

Product A in Example 1 is displayed in a 3× 3 rectangle, then its top-left slot may be any one of (1,1),

(1,2), (2,1), or (2,2), where (ρ, c) indicates the slot in the ρth row and cth column. Table 4 provides

all possible placements for each rectangle of product A and their corresponding nodes in the MWIS

network. For example, node A1 signifies that product A occupies the first two rows. Its weight is

W (A1) = r1 × (a1 + a2)× (c2 − c1 + 1) = 12× (1 + 2)× 4 = 144, where c1 and c2 are the first and last

columns, respectively, of placement A1.

Product A Aspect Possible placements in Nodes for
Ratio cabinet (rows, columns) placements

Rectangle 1 2× 4 (1-2,1-4), (2-3,1-4), (3-4,1-4) A1, A2, A3

Rectangle 2 3× 3 (1-3,1-3), (1-3,2-4), (2-4,1-3), (2-4,2-4) A4, A5, A6, A7

Rectangle 3 4× 2 (1-4,1-2), (1-4,2-3), (1-4,3-4) A8, A9, A10

Table 4: All possible placements for Product A of Example 1 for subproblem SP2. Notation (ρ1-ρ2,c1-c2)
means that the rectangle covers the intersection of rows ρ1 through ρ2 with columns c1 through c2.

An edge connects two nodes if the corresponding rectangles cannot both be in a feasible display.

The cliques formed for each product need no further explanation. To demonstrate the edges that

connect two nodes that share a slot, consider node A1 = (1-2,1-4) and node B9 = (2-4,1-1), which

16



covers the lower three elements of the first column. They share slot (2,1), so they should be joined

by an edge. Formally, consider two nodes Xj = (ρ1-ρ2,c1-c2) and Yℓ = (ρ3-ρ4,c3-c4), for two distinct

products X and Y . Join Xj and Yℓ by an edge if their rows intersect and their columns intersect, i.e.,

if (ρ1 ≤ ρ3 ≤ ρ2 ∨ ρ3 ≤ ρ1 ≤ ρ4) ∧ (c1 ≤ c3 ≤ c2 ∨ c3 ≤ c1 ≤ c4), where ∨ indicates logical OR and ∧

indicates logical AND.

A maximum-weight independent set of size m in the above network corresponds to an optimal

solution to subproblem SP2. Such a network can easily be extended beyond four products. Appendix D.1

presents a complete example of using an MWIS problem to find an optimal display.

After the network is created, the MWIS problem for solving SP2 can be formulated as a binary

integer program as follows. Suppose the network has Q nodes, and each node q has weight wq. Let E

be the set of edges in the network. Define binary variables xq such that xq = 1 if node q is in the

independent set, xq = 0 otherwise. Thus, the MWIS can be found by solving

(BIP-MWIS) Maximize

Q∑
q=1

wqxq

subject to

xp + xq ≤ 1, ∀(p, q) ∈ E , (8)

xq ∈ {0, 1}, q = 1, 2, . . . , Q.

Each node q applies to a particular product d and a specific rectangular presentation of that product.

That xq = 1 for only one of the nodes representing product d is enforced by Constraint (8) and the

structure of the network.

Efficient heuristics to find a maximum-weight independent set in a network are available in the

literature (examples include Hifi 1997, Sakai et al. 2003, Balaji et al. 2009, Gamarnik et al. 2009,

Pelillo 2009). Our calculations were performed with a recently published exact algorithm (Trukhanov

et al. 2013). Even though we use an exact algorithm for MWIS, our solution for Problem P could have

total weighted revenue less than the optimum. This is because our decomposition into two subproblems

separates the assignment of products to cabinets (SP1) from the arrangement of those products within

cabinets (SP2), so not all possible displays are considered. However, our numerical results (see Table 10

in Appendix E.1) show that this loss is less than 5%.

Another concern is that the assignment of products to cabinets by the solution to subproblem SP1

could make subproblem SP2 infeasible. That is, it may not be possible to arrange each of the product’s

units so that (i) they form contiguous rectangles, (ii) the upper and lower bounds are respected, and
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(iii) all slots of the cabinet are filled. No such infeasibilities occurred in any of our computational

experiments, but consider the following example:

Example 2: Suppose MIP-SP1 assigned three products to cabinet k with Rk = 5 and Ck = 3, the

vector of upper bounds is u⃗ = (7, 7, 2), and the vector of lower bounds is ℓ⃗ = (2, 2, 2). Even though∑3
d=1 ℓd ≤ RkCk ≤

∑3
d=1 ud, these three products cannot be arranged in contiguous rectangles so that

the bounds are respected and all slots of the cabinet are filled (see Figure 6(a)).

z
1

= 6

z
2

= 6

z
3

= 2

(a) (b)

z
1

= 6

z
2

= 6

z
3

= 3

Figure 6: Two displays for Example 3: display (a) demonstrates the assignment’s infeasibility. Dis-
play (b) is created after applying Algorithm Fill Slots.

Because shelf-space is “the retailers scarcest resource” (Bultez and Naert 1988, Lim et al. 2004),

when SP2 is infeasible, we choose to enforce the requirements to fill each slot and to display each product

in a contiguous rectangle, but to violate the bounds. For some g ∈ {0, . . . ,m}, we can generate a display

in which the first g titles occupy an integer number of rows, and the remaining m− g titles each occupy

at most Ck slots within a single row. See Figure 6(b). Algorithm Fill Slots in Appendix D.2 presents

the details of a process that generates such a display.
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5 Computational Results

We evaluate the performance of the proposed model by using data from a Blockbuster store to compute

revenue potentials rd used to create displays. We then calculate the percentage gain in total weighted

revenue from using our method by comparing it to current practice. We begin by describing parameter

estimation, which includes Blockbuster’s current process for forecasting demands (hence, revenue po-

tentials) for individual titles. Results from performance testing for generated data (1800 instances) can

be found in Appendix E.

5.1 Parameter Estimation

Given the titles’ compressed life cycles, Blockbuster could calculate their revenue potentials each week

and use them to generate a new display. Since all new releases have the same price, forecasting the

titles’ demands is sufficient. This calculation could be based on environmental data (theatrical sales,

performance of similar titles, studio, genre, MPAA ratings, age, etc.) and first period sales (which

provide information on the store’s local market), according to the model of Chung (2010) and Chung et

al. (2012). This model to forecast DVD rentals is based on the Bass (1969) model and its extensions to

stochastic settings by Niu (2002, 2006). The model decomposes the total demand into three categories.

The purchases of the first group, called committed buyers, follow an exponential decay. These customers

have already made up their minds to rent the DVD, so this group’s sales are highest in the first week and

decay exponentially over time. The second group, potential buyers, are later adopters; their consumption

pattern is assumed to follow the Bass diffusion model (1969). The third segment is attributed to social

networking, i.e., word-of-mouth recommendations (for DVDs), or to re-rents (for video games). This

group exhibits a pattern in which there are no rentals in the first period, a spike in the second period,

and then a slow decline from a combination of exponential decay and diffusion. Chung (2010) and Chung

et al. (2012) tested this model against the actual demand for 352 titles and found it to be remarkably

accurate (the average R2 is 0.96). Hence, we assume that each title’s revenue potential is known and is

an input to the current study. We test our model’s sensitivity to changes in the revenue potentials at

the end of this section and in Appendix E.2.

We base our displays on the titles’ revenue potentials by using them to form upper bounds on the

number of discs displayed for each title. We have previously seen that title d’s proportion of the display’s

total slots is determined by rd’s proportion of the total of all potentials. To scale this to the total size

of the display, the proportion is multiplied by the number of slots (
∑K

k=1RkCk) in the entire display,
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and the result is rounded up:

ud =

⌈
rd∑D
h=1 rh

K∑
k=1

RkCk

⌉
, d = 1, . . . , D.

The rounding provides some slack that is needed to ensure feasibility.

For a lower bound, we follow van Nierop et al. (2008) by using ℓd = 2, d = 1, . . . , D, in our

computations. Other values may be chosen, provided that
∑

d ℓd ≤
∑K

k=1RkCk.

We have previously seen that Blockbuster assigns titles with higher revenue potentials to the fourth

and fifth rows, and the potentials decrease for those titles put in shelves farther from these middle ones.

In our calculations, the values for effectiveness of the rows, based on the judgement of managers, are

a1 = a8 = 5, a2 = a7 = 6, a3 = a6 = 8, and a4 = a5 = 10. Sensitivity analysis performed on these

values shows that the actual ai values matter little, as long as they are in this order (see Appendix E.2).

5.2 Results from Observed Data

We gathered data at two-week intervals over an eight-week period at a Blockbuster store in Texas. This

store used Chung et al. (2012)’s method for forecasting demands when determining its displays. Thus,

the number of discs displayed for each title directly reflects that title’s demand and, hence, its revenue

potential. The number of titles considered varied from visit to visit: 179, 163, 580, 541, 498. This

large variation occurred because in the early weeks, the store had many more titles that occupied at

least one-half of a cabinet (15, compared to 5 in later weeks), thereby reducing the space available for

other titles. Since 75-85% of these remaining titles have only one or two facings in an average display,

far fewer titles could be displayed in the early weeks. These were managerial decisions based on week-

to-week changes in the titles available to the market. To moderate these fluctuations, we limited our

computational study to only those titles that had at least two discs in a particular week’s display.

Table 5 presents the relative improvement in weighted revenue realized from using our new method.

Our proposed model showed an improvement in performance ranging from 2.82% to 4.77%, with an

average improvement of 3.72%.

14-May 28-May 11-Jun 25-Jun 9-Jul average

titles 179 163 579 541 498
improvements 4.77% 2.82% 4.73% 3.27% 3.00% 3.72%

Table 5: Relative improvement of our solution procedure over current practice for observed data.

As a further measure of the quality of our procedure, we compare its performance to upper bounds
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derived from (IP-UB), a binary integer program that solves a relaxed version of problem P (see Ap-

pendix B.2). This integer program assigns each disc to a specific location, but does not impose the

contiguous rectangle constraint. Because (IP-UB) requires excessive computational time, we use its

linear programming relaxation to find an upper bound on the optimum weighted revenue for the two

smaller datasets (i.e., we use a linear relaxation of a solution procedure for the relaxed problem). The

total weighted revenues generated by our algorithm were within 1% of optimum, even though the upper

bounds are not necessarily tight.

Results from experiments run on randomly generated data are presented in Appendix E.1. They

show an average improvement of 13.66%, with weighted revenues averaging within 5% of optimum.

We use sensitivity analysis to examine the potential loss from incorrect estimates of the revenue

potentials. The details of our methodology are given in Appendix E.2. Over the 130 cabinets with more

than one title, the average loss for 10%, 15%, and 20% estimation errors were 0.17%, 0.49%, and 0.34%

of revenue, respectively. Hence, our method is robust with respect to revenue potentials.

6 Model Extensions

First, we explain how our model applies to display advertising, webpages, and mobile devices. Next,

we demonstrate how it can be augmented to allow for interactions between products, i.e., cross-product

elasticities for displaying a pair of products in the same cabinet and for displaying a pair in the same

row. We then show how the model can be applied to displays of products with different shapes and

sizes.

6.1 Other Environments

Other venues in which businesses frequently need to allocate contiguous rectangular spaces to different

items include designing retail flyers, advertising on a webpage, and managing content on mobile devices.

Retailers send flyers in various formats (free-standing inserts, door-to-door, and direct mail) to millions

of households each week, in addition to run-of-press ads, to advertise their current specials, so they must

allocate space to different products (see Figure 7) to maximize a flyer’s weighted revenue and to satisfy

their suppliers’ requirements. By the same token, firms allocate rectangular areas when presenting

different types of content on webpages (see Figure 8) or on mobile devices such as iPads and iPhones,

as seen in FlipBoard, an application for iPad.

Just like in the retail shelf-space problem, the square inches allocated to a particular product’s ad

can be arranged into various aspect ratios. Similarly, the limited advertising space on websites is an
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Figure 7: An example layout of a flyer for a national grocery chain.

important source of revenue. These ads are typically placed in rectangular shapes with width and

tallness measured in pixels. The Internet Advertising Bureau (2014) publishes standard layouts for

online ads. Examples include (i) Leaderboard, 728 pixels wide by 90 pixels high, (ii) Button 2, 120 pixels

wide by 60 pixels high, (iii) Billboard, 970 pixels wide by 250 pixels high, (iv) Filmstrip, 300 pixels wide

by 600 pixels high, etc. Website owners are paid by the number of clicks on the ad, so the quality of

the layout has a direct effect on revenues.

Our conceptual model can easily be applied to flyer displays and webpage designs for the following

reasons. Choosing on which page of a flyer each product’s ad appears is equivalent to allocating products

to different cabinets. Arranging rectangular ads within a page is equivalent to arranging products into

contiguous rectangles that together cover the entire cabinet. Hence, zkd here represents the number of

square inches of display allocated to product d’s ad on page k of the flyer or insert. Alphabetization of

items (SP3) is generally not an issue in these types of applications.

We know of no prior research on allocating spaces in the context of retail flyer design, but Pieters

et al. (2007) provide an interesting complement to our work. They investigate how design elements and

competitive clutter affect consumers’ attention to feature ads. Hence, their work measures the individual

feature ads’ effectiveness that arises from characteristics of their contents, whereas ours maximizes the

effectiveness of the total display based on where within the display each ad is placed and the total

size of each ad. Adler et al.’s (2002) study of webpage ads briefly considers space allocation for two-

dimensional ads. These ads’ sizes are restricted to be divisible in each dimension: product d’s ad has
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Figure 8: An example layout of a webpage for a national retailer.

dimensions Hd × Vd such that Hd is an integer multiple of Hd+1, and Vd is an integer multiple of Vd+1,

for d = 1, . . . , D. Early work on two-dimensional bin-packing was done by Baker et al. (1980), Coffman

et al. (1980), and Baker and Schwarz (1983).

6.2 Product Interactions

We now demonstrate how the effect of product interactions can be incorporated into our two subprob-

lems.

Subproblem SP1

Let πde be a cabinet affinity factor that quantifies the benefit of having products d and e in the

same cabinet. Its value is assigned by the manager and is predetermined as in Lim et al. (2004). The

additional profit realized by putting zkd units of product d and zke units of product e both in cabinet k

is πde ×min{zkd , zke }. We implement this scheme by updating the objective of MIP-SP1 to

maximize

D∑
d=1

K∑
k=1

rdz
k
d +

K∑
k=1

D−1∑
d=1

D∑
e=d+1

πdey
k
de,

where the value of ykde = min{zkd , zke } is set by adding the following three constraints to MIP-SP1:

ykde ≤ zkd , d = 1, . . . , D − 1; e = d+ 1, . . . , D; k = 1, . . . ,K,

ykde ≤ zke , d = 1, . . . , D − 1; e = d+ 1, . . . , D; k = 1, . . . ,K,

ykde, z
k
e ≥ 0, zke integer, d = 1, . . . , D, e = 1, . . . , D, k = 1, . . . ,K.

The previous constraint set for MIP-SP1 (2) - (7) remains the same.
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Subproblem SP2

In the binary integer program (BIP-MWIS) that finds a maximum weight independent set, each

node q implies a value for the number of units of product d that are displayed in row i. Denote this

constant by θqid. Thus, the number of units of product d displayed in row i is
∑Q

q=1 θ
q
idxq.

We can now update (BIP-MWIS) to allow for product interactions on rows in much the same way as

was done for cabinets. Let ψde be a row affinity factor that quantifies the benefit of having products d

and e in the same row of the same cabinet. Thus, for cabinet k, the following mixed integer program

solves the MWIS that arranges its products (recall that MIP-SP1 assigns m products to cabinet k):

Maximize

Q∑
q=1

wqxq +

Rk∑
i=1

m−1∑
d=1

m∑
e=d+1

ψdev
i
de,

subject to
xp + xq ≤ 1, ∀(p, q) ∈ E ,

vide ≤
Q∑

q=1

θqidxq, d = 1, . . . ,m− 1; e = d+ 1, . . . ,m; i = 1, . . . , Rk,

vide ≤
Q∑

q=1

θqiexq, d = 1, . . . ,m− 1; e = d+ 1, . . . ,m; i = 1, . . . , Rk,

xq ∈ {0, 1}, q = 1, 2, . . . , Q,

vide ≥ 0, d = 1, . . . ,m− 1; e = d+ 1, . . . ,m; i = 1, . . . , Rk.

6.3 Products with Different Dimensions

We now consider a generalization of our model in which each product has its own dimensions. The units

in which these dimensions are measured are kept unspecified for generality. We start with Subprob-

lem SP1. The upper bounds (ud) and lower bounds (ℓd) refer to the number of units, not the amount

of area covered, so constraints relating to them do not require changes. Similar reasoning applies to the

objective in MIP-SP1. The only change to the constraints is that (3) is replaced by (9). Two parameters

are added:

Parameters:

Vd,Hd: vertical and horizontal dimensions of product d, d = 1, . . . , D.

n∑
d=1

VdHdz
k
d ≤ RkCk, k = 1, . . . ,K. (9)
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Constraints (9) ensure that the amount of space allocated to each cabinet does not exceed the cabinet’s

capacity. They do not require that the length and width combinations allow for rectangles that can be

formed into a feasible display. That requirement is considered next in the update to Subproblem SP2.

As before, we use the number of units of each product that is specified by the solution to SP1, plus

some slack that may be required to meet the contiguous rectangle requirement while filling each slot.

Thus, consider all feasible rectangles that use max{ℓd, zkd −1}, zkd , or min{ud, zkd +1} units of product d.

For example, a product for which ℓd = 2, zd = 9, and ud = 9 would have three possible rectangles of

units: 2× 4, 3× 3, 4× 2, and the amount of space Ld × Td covered by these is 2Vd × 4Hd, 3Vd × 3Hd,

4Vd × 2Hd, respectively.

Given product d’s possible rectangle with length Ld and tallness Td, its top-left slot can be in any

row between 1 and Rk − Td + 1 and in any column from 1 to Ck − Ld + 1. To illustrate, if eight units

of product d are displayed in a 2 × 4 rectangle, then Ld × Td = 2Vd × 4Hd. If this rectangle is within

cabinet k and its top-left slot is (a, b), then its bottom right slot is (a+2Vd − 1, b+4Hd − 1), assuming

a+ 2Vd − 1 ≤ Rk and b+ 4Hd − 1 ≤ Ck. With these limitations, the network for the maximum weight

independent set problem can be constructed as before.

7 Conclusion and Suggestions for Future Research

This study represents the first analysis of retail shelf-space allocation for a two-dimensional display that

coordinates the multiple shelves of a product’s presentation. Our novel formulation creates displays

in which each product is arrayed in a contiguous rectangle. This provides the display designer with

more flexibility than does our client’s current process by allowing a greater variety in the aspect ratios

and in the number of units displayed for each product. Additionally, the proposed solution can also

be applied to retail flyer design and to webpage advertising layout. All previous studies, even those

that recognized the value of a display’s vertical location, do not consider that the tallness (number of

shelves) of a product’s display may be as important as its length (linear feet of shelf-space).

We have shown that our proposed methods for implementing a new display policy at a world-wide

retailer of DVDs can increase revenue significantly. Furthermore, we also show in small-scale problems

that the total weighted revenues of the generated displays are very close to optimal. Our network

formulation enables the solution procedure to scale efficiently to larger implementations.

Since ours is the first analysis of such two-dimensional displays, there are several interesting practically-

relevant questions and directions available for future investigation. We propose the following:
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• Previous studies allocate shelf-space based on space elasticities, product complementarities, and

substitutes. None of these issues has been studied in the DVD market since they cannot be reliably

tested in this fast-changing market that varies from store to store. It would be an interesting

exercise to see how these aspects can be included with our proposed solution so that the method

can be applied to a grocery store shelf allocation problem. Section 6 provides guidelines for

extending our model to include product interactions.

• Should there be additional restrictions on the allowable aspect ratios of the rectangular displays

of particular products? We suspect that tall, skinny displays are not as effective as short, wide

ones, and that neither is as effective as square displays. Data from webpage advertisements may

be useful for such a study.

• Displays for products with different dimensions could be studied more thoroughly, based on the

structure outlined in Section 6.

• The depth of facings is not considered in our study. This topic is not relevant to the applications

that we focused on, such as DVD rentals or web-page design. In fact, it is considered in very few

published papers on shelf-space. Models may be developed to incorporate this element in future

studies.
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A Proofs of Theoretical Results

Theorem 1 The display problem P is strongly NP-hard.

Proof of Theorem: Consider an arbitrary instance of 3-Partition (Garey and Johnson 1979):

3-Partition: Given B ∈ Z+, a set A = {z1, z2, . . . , z3t}, zi ∈ Z+ and B/4 < zi < B/2 for i = 1, . . . , 3t,

and
∑3t

i=1 zi = tB, does there exist a partition of A into disjoint subsets A1, A2, . . . , At such that |Ak| = 3

and
∑

zi∈Ak
zi = B for k = 1, . . . , t?

Given an instance of 3-Partition, we construct a specific instance of the decision problem version

of problem P as follows: K = t, Rk = 1, Ck = B, for k = 1, . . . ,K, a1 = 1. Consider a set of D = 3t

products P = {Pd : d = 1, . . . , 3t}, in which the upper bound, lower bound, and revenue potential of

product Pd are ud = zd, ℓd = 1, and rd = B, respectively, d = 1, . . . , 3t.

Decision Problem: Does there exist a display σ such that the total weighted revenue of the display

satisfies Fσ ≥ tB2?

The decision problem belongs to class NP. Also, it is easy to verify that the construction of the

decision problem can be done in polynomial time O(tB). We now show that there is a display σ of D

products in K cabinets such that Fσ ≥ tB2 if and only if there exists a solution to the 3-Partition

problem.

If Part: Suppose there exists a 3-Partition. Without loss of generality, we may assume z3k−2 + z3k−1 +

z3k = B, k = 1, . . . , t. Let P3k−2, P3k−1, P3k, k = 1, . . . , t, denote products corresponding to partition

elements. We can create a display σ that has Fσ = tB2 by assigning products P3k−2, P3k−1, P3k to

cabinet k, for k = 1, . . . , t.

Only If Part: Suppose there exists a feasible display σo of the products in P across t cabinets such that

Fσo ≥ tB2. This implies that all slots of the display be filled with one item from P. The restriction

B/4 < ud = zd < B/2 implies that each cabinet holds exactly three items.

Theorem 2 Problem SP2 is NP-hard in the ordinary sense.

Proof of Theorem 2: Consider an arbitrary instance of Partition (Garey and Johnson 1979):

Partition: Given B ∈ Z+, a set A = {z1, z2, . . . , zt}, zi ∈ Z+, and
∑t

i=1 zi = 2B, does there exist a

partition of A into two disjoint subsets A1, A2 such that
∑

zi∈A1
zi = B?

Given an instance of Partition, we construct a specific instance of the decision problem version of

SP2 as follows: Rk = 2, Ck = B, a1 = a2 = 1. Consider a set of m = t products P = {Pd : d = 1, . . . , t},
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and the upper bound, lower bound, and revenue potential of product Pd are ud = zd, ℓd = 1, and rd = 1,

respectively, d = 1, 2, . . . , t;

Decision Problem: Does there exist a display σ such that the total weighted revenue of the display

satisfies F ′
σ ≥ 2B?

The decision problem belongs to class NP. Also, it is easy to verify that the construction of the

decision problem can be done in polynomial time O(t). We now show that there is a display σ of m

products in a cabinet such that F ′
σ ≥ 2B if and only if there exists a solution to the Partition problem.

If Part: Suppose there exists a Partition. Without loss of generality, we may assume z1+z2+· · ·+zq = B.

Let P1, P2, . . ., Pt, denote products corresponding to partition elements. Placing items P1, . . . , Pq into

row 1 and items Pq+1, . . . , Pt into row 2 generates a feasible display σ with F ′
σ = 2B.

Only If Part: This is similar to the corresponding part of the proof for Theorem 1. If there exists a

feasible display σo of m = t products in a cabinet such that F ′
σo

≥ 2B, then all B slots in each row must

be filled. Hence, there exists a solution to the Partition problem.

B Mixed Integer Linear Program Formulations

B.1 Formulation of Problem P (Section 3)

The following mixed integer linear program solves problem P . We begin by defining variables. The

parameters are as defined in Section 3.

xkd = 1, if product d is allocated to cabinet k; xkd = 0, otherwise.

ykid = 1, if any units of product d are assigned to row i of cabinet k; ykid = 0, otherwise.

zkd : the number of units of product d allocated to cabinet k.

Γk
id: the number of elements of product d in row i of cabinet k.

maximize

K∑
k=1

D∑
d=1

Rk∑
i=1

airdΓ
k
id (10)

subject to
K∑
k=1

xkd = 1, d = 1, . . . , D (11)

Rk∑
i=1

Γk
id = zkd , d = 1, . . . , D; k = 1, . . . ,K (12)

xkdℓd ≤ zkd , d = 1, . . . , D, k = 1, . . . ,K (13)

zkd ≤ xkdud, d = 1, . . . , D, k = 1, . . . ,K (14)
D∑

d=1

Γk
id = Ck, i = 1, . . . , Rk; k = 1, . . . ,K (15)
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Γk
id ≤ wd, i = 1, . . . , Rk; d = 1, . . . , D; k = 1, . . . ,K (16)

wd − Γk
id ≤ Ck(1− ykid), i = 1, . . . , Rk; d = 1, . . . , D; k = 1, . . . ,K (17)

Γk
id ≤ Cky

k
id, i = 1, . . . , Rk; d = 1, . . . , D; k = 1, . . . ,K (18)

Γk
i+1,d + wd ≥ Γk

id + Γk
i+2,d, i = 1, . . . , Rk − 2; d = 1, . . . , D; k = 1, . . . ,K (19)

Γk
i+1,d + wd ≥ Γk

id + Γk
i+3,d, i = 1, . . . , Rk − 3; d = 1, . . . , D; k = 1, . . . ,K (20)

...

Γk
i+1,d + wd ≥ Γk

id + Γk
i+h,d, i = 1, . . . , Rk − h; d = 1, . . . , D; k = 1, . . . ,K (21)

...

Γk
i+1,d + wd ≥ Γk

id + Γk
i+Rk−2,d, i = 1, 2; d = 1, . . . , D; k = 1, . . . ,K (22)

Γk
2,d + wd ≥ Γk

1,d + Γk
Rk,d

, d = 1, . . . , D; k = 1, . . . ,K (23)

xkd, y
k
id ∈ {0, 1}, i = 1, . . . , Rk; d = 1, . . . , D; k = 1, . . . ,K (24)

zkd , Γ
k
id, wd ∈ Z+, i = 1, . . . , Rk; d = 1, . . . , D; k = 1, . . . ,K (25)

The objective (10) maximizes total weighted revenue of the display. Constraints (11) ensure that

each product is displayed in exactly one cabinet. Constraints (12) link the two ways of tracking the

number of units displayed for product d: the total when calculated per row (Γk
id) within a cabinet must

equal the total when specified by cabinet (zkd). Constraints (13) and (14) enforce lower bounds and

upper bounds, respectively, on the number of units allocated to a particular product. Constraints (15)

ensure that exactly Ck units are displayed in each row of each cabinet. Constraints (16) and (17)

set the width of product d’s display and ensure that it is uniform (Γk
id = 0 or Γk

id = wd, ∀i, ∀d,∀k).
Constraints (17) and (18) set the value of ykid. Constraints (19)-(23) ensure that each product’s display

occupies contiguous rows: if product d has units in row i and row j of cabinet k, i + 2 ≤ j, then

product d has units in rows i + 1, . . . , j − 1 of cabinet k. It follows that each product is displayed in

contiguous rows and has the same number of units in each of those rows; hence, it can be displayed as

a rectangle. Note that Constraints (19)-(23) can be condensed into the following:

Γk
i+1,d + wd ≥ Γk

id + Γk
i+h,d, h = 2, . . . , Rk − 1; i = 1, . . . , Rk − h; d = 1, . . . , D.

Constraints (24) require that xkd and ykid are binary variables. Constraints (25) ensure that the zkd , Γ
k
id,

and wd variables are non-negative integers.
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B.2 An Upper Bound on Optimal Revenue

We develop binary integer program (IP-UB) to generate an upper bound on the optimal value of

Problem P by relaxing the requirement that each product must be displayed in a contiguous rectangle.

Recall that xkd = 1 if product d is allocated to cabinet k; xkd = 0, otherwise. Let ykdij = 1 if a unit of

product d is allocated to slot (i, j) of cabinet k; ykdij = 0 otherwise.

(IP-UB) maximize

D∑
d=1

rd

K∑
k=1

Rk∑
i=1

ai

Ck∑
j=1

ykdij , (26)

subject to
K∑
k=1

xkd = 1, d = 1, . . . , D, (27)

D∑
d=1

ykdij = 1, i = 1, . . . , Rk, j = 1, . . . , Ck, k = 1, . . . ,K, (28)

xkdℓd ≤
Rk∑
i=1

Ck∑
j=1

ykdij , d = 1, . . . , D, k = 1, . . . ,K, (29)

Rk∑
i=1

Ck∑
j=1

ykdij ≤ xkdud, d = 1, . . . , D, k = 1, . . . ,K, (30)

xkd ∈ {0, 1}, ykdij ∈ {0, 1}, i = 1, . . . , Rk, j = 1, . . . , Ck, k = 1, . . . ,K, (31)

d = 1, . . . , D.

The objective (26) represents the total weighted revenue of the display. Constraints (27) ensure that

all of the units for a specific product will be stored in exactly one cabinet. Constraints (28) ensure that

each slot will carry exactly one unit. Constraints (29) and (30) enforce lower bounds and upper bounds,

respectively, on the number of slots allocated to the units of a particular product. Constraints (31)

ensure that the variables are binary.

C Subproblem SP3: Improve Alphabetical Ordering

Blockbuster displays new releases in alphabetical order, where possible. Soups and spices are also

products of uniform shape that are displayed in alphabetical order. We now present a method for

creating such arrangements with a minimal reduction in the total weighted revenue generated by solving

Subproblems 1 and 2.

The two-dimensional nature of our model precludes true alphabetization because the products’ units

are displayed in rectangles of differing quantities, differing aspect ratios, and differing vertical locations
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based on revenue potentials. Thus, alphabetic ordering cannot be applied within a cabinet. Instead, we

attempt to arrange the products into approximately alphabetical order, which we define to mean that

the products in a given cabinet are each alphabetically later than all those in the preceding cabinet and

alphabetically earlier than those in the succeeding cabinet.

Process Alpha-Cab modifies the assignment of products to cabinets without changing the number of

units displayed for each product or the number of products in each cabinet. The process exchanges the

locations of two products in different cabinets only if they have the same number of units displayed and

if the exchange improves the overall display’s alphabetical order. Because there is a strong correlation

between a product’s revenue potential and the number of its units that are displayed, there is little

change to the total weighted revenue from this process.

Here are the operational details of Alpha-Cab. It first renumbers the cabinets so that they are in

alphabetical order based on the product in each cabinet with the highest revenue potential. Next,

the remaining D −K products are divided into groups so that each product in a given group has the

same number of units displayed. Within each such group the products are pulled from their cabinets,

alphabetized, and reinserted into those cabinets in the new order (see Figure 9).
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Figure 9: Demonstration of process Alpha-Cab.

Computational experiments verified that this process has minimal effect on the weighted revenue

of the resulting display: the average difference in total weighted revenue between displays before using

Alpha-Cab and those afterward was 0.027%. A more significant question is by how much does Alpha-

Cab improve the display by making it more user-friendly via alphabetization. We quantified this by

measuring the total deviation of a display from our definition of approximately alphabetic order. A

product’s alpha value, denoted α(d), is simply its numerical rank if all D products were arranged

alphabetically. A product’s deviation is measured by the minimum distance from its alpha value that

5



its cabinet assignment implies (order within its cabinet is not considered because of the two-dimensional

display and the differing effectiveness values of the rows). Letmj be the number of products in cabinet j.

In a perfect display, for title d in cabinet k, the title’s alpha value should be less than or equal to the

total number of titles in cabinets 1 through k and greater than the number of titles in cabinets 1

through k−1:
∑k−1

j=1 mj < α(d) ≤
∑k

j=1mj . Such a title’s deviation equals zero. Formally, if product d

resides in cabinet k, then product d’s deviation from alphabetic order is defined as

δ(d) = max

0,
k−1∑
j=1

mj + 1− α(d), α(d)−
k∑

j=1

mj

 .

A display’s total deviation is ∆ =
∑D

d=1 δ(d). On average, the total deviation when using Alpha-Cab is

less than one-fifth (18.7%) of the deviation obtained when using MIP-SP1 without it. Thus, we judge

this process to be highly effective.

Alpha-Cab cannot generate infeasible solutions, but it may have no feasible actions available to it.

If the display’s total deviation is above an acceptable level, then Alpha-Cab can be repeated, but with

fewer (but larger) groups. Assume that the largest number of units displayed among these groups is 2G.

Form G new groups (some may be empty), where each group g is composed of products that have either

2g− 1 or 2g units displayed, g = 1, . . . , G. Hence, a product with 2g− 1 units can be switched with one

having 2g units, if the amount displayed for each is adjusted so that each fits in its new space. This

allows for more robust alphabetization with minimal change in the total weighted revenue and can be

repeated with groups that increase in size but decrease in number until the desired total deviation is

achieved.

For the generalized problem with products having different dimensions (Section 6.3), we arrange the

products into approximate alphabetic order by using Alpha-Cab with an additional restriction. Products

in different cabinets are exchanged only if they cover the same amount of area and if their dimensions

(Vd×Hd) allow them to fit into each other’s current location. Consider three products in three separate

cabinets; see Figure 10(a). Each product’s display covers 24 square units:

• Product C has dimensions 2 × 2, is displayed in a 3 × 2 configuration, and resides in Cabinet 1.

Product C covers a 6× 4 space.

• Product A has dimensions 1 × 4, is displayed in a 2 × 3 configuration, and resides in Cabinet 2.

Product A covers a 2× 12 space.

• Product B has dimensions 3 × 2, is displayed in a 1 × 4 configuration, and resides in Cabinet 3.

Product B covers a 3× 8 space.

Product A can be switched with Product C. See Figure 10(b). Product A’s new configuration in

Cabinet 1 is 6× 1; Product C’s new configuration in Cabinet 2 is 1× 6. However, Product C cannot be

6
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Figure 10: Products with different shapes. Products A and C can be switched, but B cannot switch
with either.

switched from Cabinet 2 to Product B’s location in Cabinet 3: six units of Product C cannot fit into a

3× 8 space, and four units of Product B cannot fit into a 2× 12 space.

D Subproblem SP2

This appendix presents an example of finding an optimal display by finding a maximum weight inde-

pendent set. It also describes Algorithm Fill Slots.

D.1 Maximum Weight Independent Set Example

We now illustrate the formulation of the independent set problem using the following example that

displays two products in a cabinet. We then present the display corresponding to the optimal solution

to the independent set problem.

Suppose MIP-SP1 assigned two products to cabinet k with Rk = 3 and Ck = 3, and that the revenue

potentials, upper bounds, and lower bounds are given in Table 6. Assume that the nominal values for

effectiveness of row i are a1 = a3 = 1, a2 = 2. The resulting assignment is zk1 = 6 and zk2 = 3.
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Revenue Upper Lower
Product d potential (rd) bound (ud) bound (ℓd)

E 1 12 6 2

F 2 4 3 2

Table 6: Data for Example 2.

We formulate and solve an MWIS to find the aspect ratio and the location of each product’s rect-

angular display. Table 7 provides all possible rectangles for the products in Example 2.

Product d zk
d All possible rectangles for each product

E 1 6 2× 3, 3× 2

F 2 3 1× 3, 3× 1, 1× 2, 2× 1

Table 7: All possible rectangles for products in Example 2, based on zkd , ℓd, and ud. A rectangle with
zk1 − 1 = 5 units is not feasible for this 3× 3 cabinet.

Product Aspect Possible placements in Nodes for
Ratio cabinet (rows, columns) placements

Product E: Rectangle 1 2× 3 (1-2,1-3), (2-3,1-3) E1, E2

Product E: Rectangle 2 3× 2 (1-3,1-2), (1-3,2-3) E3, E4

Product F: Rectangle 3 1× 3 (1-1,1-3), (2-2,1-3), (3-3,1-3) F1, F2, F3

Product F: Rectangle 4 3× 1 (1-3,1-1), (1-3,2-2), (1-3,3-3) F4, F5, F6

Table 8: All possible placements for Products E and F for Example 2 of subproblem SP2. Notation
(ρ1-ρ2,c1-c2) means that the rectangle covers the intersection of rows ρ1 through ρ2 with columns c1
through c2.

Table 8 provides all possible placements for each rectangle of products E and F. We ignore rectangles

in which only two units of Product F are displayed because these lead to infeasible displays, i.e., displays

with an empty slot. Each feasible placement corresponds to a node in the network shown in Figure 11.

There are four possible independent sets, {E1, F3}, {E2, F1}, {E3, F6}, {E4, F4}, with total weighted

revenues of 120, 120, 112 and 112, respectively. Thus, the optimal solution to the independent set

problem will be the solution corresponding to either {E1, F3} or {E2, F1}. Figure 12 shows the optimal

display corresponding to the independent set {E1, F3}.

D.2 Algorithm Fill Slots

If Subproblem SP2 is infeasible, then the following procedure (Algorithm Fill Slots) generates a default

display that arranges each of the product’s units so that they form contiguous rectangles and all slots

8
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Figure 11: Graph for maximum-weight independent set problem of Example 2.

of the cabinet are filled. Suppose that MIP-SP1 assigns m products to cabinet k. Note that
∑m

d=1 zd =

RkCk. Without loss of generality, assume that z1 ≥ · · · ≥ zm and Ck ≤ Rk. We first provide an informal

description of the procedure and then define it precisely.

Algorithm Fill Slots generates the promised display by allowing no product’s display to extend

beyond one row, except for the product with the highest revenue potential. The algorithm places

products in the cabinet by non-decreasing order of units: m,m− 1, . . . , 1. For each row, the algorithm

first determines which products are displayed in that row by summing the products’ number of units

until this sum is at least Ck. If necessary, the product in that row with the most units has its number

of units reduced so that the row is filled precisely (
∑last

i=d zi = Ck). This process is repeated for the

remaining products and successive rows until Product 2 is placed. Product 2 may have units added
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Figure 12: The solution corresponding to set {E1, F3}, the total weighted revenue is 120.

or removed so that it completes its row exactly. Product 1 then fills the remaining integer number of

rows within the cabinet. The order given for the values of current row indicates that we fill the least

valuable rows first. For ease of exposition, we have assumed Rk even and z1 > Ck.

Algorithm Fill Slots

last = m

For current row = (1, Rk, 2, Rk − 1, 3, Rk − 2, . . . , Rk/2, Rk/2 + 1)

/* determine which products are displayed in this row */

d = last

While
∑last

i=d zi < Ck Do

If d = 2 Then Exit Loop

d = d− 1

Loop

zd = Ck −
∑last

i=d+1 zi /* ensure products d, . . . , last fill the row exactly*/

Fill current row with products d, d+ 1, . . . , last

If d > 2 Then

last = d− 1 /* set value of last for next row */

Else

Exit For /* products 2, . . . ,m have been assigned */

End If

Next current row

Fill the remaining rows with Product 1

E Results for Generated Data

To supplement the testing of our solution procedures, we generated 1800 instances of the problem for

data from various distributions. Values for revenue potential (rd) were generated from log normal,

negative binomial, normal, and uniform populations. Multiple sets of parameters were chosen for each

distribution, and for each such set we generated 100 instances with 200 products and 100 instances
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with 500 products. The first distribution used was log normal, first with mean µ = 3 and standard

deviation σ = 2, and then with µ = 8, σ = 10, as these were similar to two of the datasets observed at

a Blockbuster store (details can be found in the next subsection), according to Oracle Crystal Ball, a

forecasting and simulation application suite. For the negative binomial, the parameters were r = 20,

p = 0.8, and r = 10, p = 0.4. (For the negative binomial distribution, r represents the number of failures

until the series of trials is stopped, and p is the probability of success on each trial. Agrawal and Smith

(1996) demonstrated that the negative binomial can effectively simulate retail demand data.) For the

normal distribution, the parameters were µ = 12, σ = 4; µ = 12, σ = 8; and µ = 3, σ = 8. The uniform

distributions covered the discrete intervals [2, 20] and [2, 36].

E.1 Computational Results

Cabinets using our proposed scheme were compared to those using Blockbuster’s current practice, which

is described in Section 1. Results for instances with 200 products (using 26 cabinets) and for instances

with 500 products (using 70 cabinets) are in Table 9.

ln nrm ln nrm neg bin neg bin normal normal normal unifm unifm average
Parameters (3,2) (8,10) (20,0.8) (10,0.4) (12,4) (12,8) (3,8) [2,20] [2,36]
200 Products 10.29% 13.29% 9.51% 7.97% 12.08% 17.07% 20.90% 15.01% 10.64% 12.97%
500 Products 10.48% 17.79% 8.45% 8.57% 13.33% 19.01% 26.59% 16.05% 8.91% 14.35%

Table 9: Relative advantage of our solution procedure over current practice for generated data.

We find that our procedure is significantly better than the current practice, based on the metric

derived from Blockbuster’s criteria. The data generated using the normal distribution provided the

most improvement (12-26%). The improvements in performance were observed for both small (200

products) and large (500 products) datasets, with the large datasets having greater effects on average.

As a further measure of the quality of our procedure, we compare its performance to upper bounds

derived from (IP-UB), a binary integer program that solves a relaxed version of problem P (see Ap-

pendix B.2). This integer program assigns each disc to a specific location, but does not impose the

contiguous rectangle constraint. Because it requires excessive computational time, we use its linear

programming relaxation to find an upper bound on the optimum weighted revenue for displays with 200

products. The results are presented in Table 10; each entry represents the average percentage of the

upper bound that is achieved by our solution procedure over 100 instances for the listed distribution.

The results are quite good: the average across all instances is within 5% of optimum, even though the

upper bounds are not necessarily tight.
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ln nrm ln nrm neg bin neg bin normal normal normal unifm unifm average
(3,2) (8,10) (20,0.8) (10,0.4) (12,4) (12,8) (3,8) [2,20] [2,36]

92.11% 91.78% 97.45% 93.99% 98.52% 97.06% 95.28% 94.42% 96.50% 95.23%

Table 10: Average percentage of upper bound achieved by our procedure for generated data (200
products).

E.2 Sensitivity Analysis

We used this generated data to perform sensitivity analysis on the row effectiveness values. For each

distribution of generated demand data, we solved the 100 instances with 200 products using four different

vectors a⃗ = (a1, a2, a3, a4) = (a8, a7, a6, a5) of effectiveness coefficients: (5,6,8,10), (1,6,8,14), (7,7,7,8),

(1,2,12,14). The results are in Table 11. Each row shows the weighted revenue for all distributions for

a given vector of coefficients. Given the different parameters and characteristics of the distributions,

we cannot expect any pair of values within any row to be the same. The same can be said for the

effectiveness vectors and the values within any column. However, these values are tightly coupled in

that for each pair of rows (and, consequently, for each pair of columns), the correlation coefficient of

the respective weighted revenues is r = 0.999; therefore, there is no preference for using certain vectors

of effectiveness values with specific distributions. Furthermore, this strongly suggests that the optimal

displays for each distribution are the same for each vector of effectiveness values. Our observations of

the solutions indeed support this assertion. It follows that the optimal display is largely unaffected by

the choice of effectiveness values, provided a1 = a8 ≤ a2 = a7 ≤ a3 = a6 ≤ a4 = a5.

ln nrm ln nrm neg bin neg bin normal normal normal unifm unifm
a⃗ (3,2) (8,10) (20,0.8) (10,0.4) (12,4) (12,8) (3,8) [2,20] [2,36]
(5,6,8,10) 19107.1 198756.5 384946.9 49684.9 218049.5 289913.0 84382.1 228433.4 578531.9
(1,6,8,14) 22369.5 223942.2 410691.3 55351.3 230550.8 313933.9 96624.2 243823.7 613854.9
(7,7,7,8) 17245.5 184896.5 371090.6 46711.9 211362.1 277148.4 77398.9 220780.1 564541.7
(1,2,12,14) 23435.8 235969.7 428805.9 56570.5 236707.6 328688.1 101918.7 250102.6 634156.4

Table 11: Weighted revenue for different row-effectiveness vectors (200 products).

We test our method’s sensitivity to changes in the revenue potentials by comparing the solution

generated from using one set of potentials (rd, d = 1, . . . , D) to the solution generated using a set

of potentials r̄d that are formed by randomly-perturbing the first set of potentials: r̄d = (1 + αd)rd,

d = 1, . . . , D, where α is uniformly distributed over [−Ω,Ω], for Ω = 0.1, 0.15, 0.2. The results suggest

that our method is stable: over 100 instances for each value of Ω, the averages for the absolute differences

between the total weighted revenues are 2.56%, 4.00%, and 5.21%, respectively.

We test the robustness of our method by using these same three sets of r̄d values to examine the

potential loss from incorrect estimates of the revenue potentials. In each instance, a display is generated

using one set of potentials rd. We then calculate the total weighted revenue of this display if potentials
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r̄d were the actual values, i.e., the test assumes that the r̄d are the true potentials, but the display

was generated using the rd values. This total weighted revenue is then compared to the optimum total

weighted revenue for a display generated using the r̄d values. This comparison measures how much is

lost if we were to use incorrect potentials rd. The average losses from using the wrong potentials are

negligible: 0.69%, 1.13%, and 1.87%, respectively. Furthermore, these losses are significantly less than

the marginal improvement realized by using our scheme rather than Blockbuster’s current methodology.

In sum, our methodology is robust with respect to both effectiveness coefficients and revenue potentials.
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