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Abstract

Modeling and Detection of Geospatial Objects Using Texture Motifs

by

Sitaram Bhagavathy

The primary goal of this dissertation is the modeling and detection of com-

pound objects, such as harbors and golf courses, in remotely sensed geospatial

images. Toward this goal, this dissertation makes two important contributions:

1) it demonstrates the potential of frequency-domain texture analysis for model-

driven detection of geospatial objects, and 2) it addresses the problem of learning

appearance models for objects from their examples. The complexity of geospatial

image content present obstacles in using purely spatial (pixel) domain methods for

describing objects. In this dissertation, the structure of objects is efficiently de-

scribed using Gabor filter-based texture analysis, which incorporates information

from both the spatial and frequency domains.

The use of texture motifs, or characteristic spatially recurrent patterns, is

proposed for modeling and detecting geospatial objects. Three approaches are

described in this dissertation for learning texture motif representations from ob-

ject examples and detecting objects based on the learned models. The first ap-

proach is a two-layered representation that first learns the constituent “texture

elements” of the motif and then the spatial distribution of the elements. In the

second approach, the texture elements of a motif are learned as the states of a

hidden Markov model (HMM), and the state transitions of the model describe the

ix



spatial arrangement of the elements. The third approach addresses the problem

of detecting objects with quasi-periodic texture motifs, by analyzing the relations

among the characteristic scales and orientations of these patterns. Experimental

results demonstrate the effectiveness of the above approaches in detecting com-

pound geospatial objects.

x
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Chapter 1

Introduction

Aerial and satellite images of the earth (or geospatial images) are critical sources of

information in diverse fields such as geography, cartography, meteorology, surveil-

lance, city planning, and so on. These images contain visual information about

various natural and man-made features on or above the surface of the earth. In

each of the aforementioned fields, analysts benefit from knowing the location and

extent of different features. For example, roads and buildings are features that

help cartographers update maps, and city planners might be interested in knowing

the extent of urban areas in order to study their growth.

Advances in sensing and storage technology have resulted in the availability

of a high volume of geospatial images covering a large surface area on the earth.

Manual annotation of geospatial images covering even a relatively small area of

the earth is a tedious task. This has necessitated research into automated anno-

tation of geospatial images. An important component of this research comprises

object detection methods. These are model-driven methods that seek to identify
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probable locations of specified features of interest (objects) in geospatial images.

For example, detection of buildings and roads is a useful step in cartography.

Detection of objects such as harbors, airports, golf courses, trailer parks, and

vineyards is useful for updating geographical databases such as the Alexandria

Digital Library (ADL) Gazetteer [32] which index the locations of several object

types.

Object detection in geospatial images is the primary focus of this dissertation.

The detection of geospatial objects with simple geometric or shape models such

as buildings, roads, vehicles, etc., has been explored adequately in the literature.

This is not the case for compound objects, such as harbors and golf courses,

characterized by several “parts” and their spatial layout. For example, harbors

contain boats and golf courses contain trees and grass, both with a distinct spatial

arrangement (Fig. 1.1). The detection of compound geospatial objects such as

harbors, golf courses, and airports from geospatial images is a largely unexplored

issue.

There are two domains in which visual structure in images can be analyzed,

namely the spatial domain (pixel intensities), and the frequency domain (fourier

spectrum). The former has been the preferred domain for describing the structure

of compound objects. Spatial analysis methods have been proposed for describing

the constituents and layout of compound geospatial objects such as airports [19]

and parking lots [63]. However, the problems of detecting such objects in a

much larger scene and learning models for these from examples, have not been

addressed. In the remainder of this chapter, we shall study the obstacles in

addressing these problems using purely spatial analysis, and outline solutions
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that combine information from the spatial and frequency domains.

1.1 The Problems

There has been a wide body of work on the spatial analysis of complex geospa-

tial images (Sec. 2.1). Given some amount of contextual knowledge about a scene

(e.g. airport, housing development), several systems [55, 19, 59, 63, 51] have been

proposed for performing a detailed interpretation of the scene. These methods

usually divide an image into spatial units (closed regions, lines, etc.) through

image segmentation or edge detection/linking. Spatial relations between units

are analyzed using relational models such as production systems [55], semantic

networks [59, 63], human-specified constraints or rules [19], and evidential rea-

soning [51]. These frameworks are essentially used for humans to specify spatial

constraints among the constituents of a scene or object.

Previously, spatial modeling methods have been applied for describing com-

pound objects such as airports [19] and parking lots [63]. Such methods have also

played a major role in exploiting contextual relations [55, 59, 51] for detecting

small objects (e.g. houses, driveways etc.) in a large scene (e.g. housing develop-

ment). However, the problems of detecting a compound object in a much larger

scene or learning appearance models for such objects from examples, has not been

addressed. The two main problems that we address in this dissertation are the

following.

Problem 1: Detection of compound objects in geospatial images. Most of

the work on object detection has focussed on objects with simple geometric
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or shape models such as buildings, roads, vehicles, agricultural crops, etc.

Problem 2: Learning appearance models for compound geospatial objects

from their examples. Appearance models embody knowledge about object

appearance which is required for detecting an object. Appearance models

for compound geospatial objects have traditionally been encoded a priori

into the system by humans.

There are three major obstacles in tackling the above problems. These are

Obstacle 1: Compound geospatial objects often contain a large number of

parts. For example, a harbor may contain hundreds of boats.

Obstacle 2: The structural relations are often loose and vary from one object

instance to another. In order to robustly recognize an object, this variation

has to be accounted for.

Obstacle 3: Geospatial images are highly detailed, usually on the order of

thousands of pixels in each dimension.

Specifically, the above complexities reduce the appeal of methods that per-

form analysis strictly in the spatial (pixel) domain, namely image segmentation,

edge detection/linking, and graph-based models for analyzing spatial layout. All

these methods have been applied frequently to the analysis of geospatial images.

Obstacle 3 makes it time-consuming to divide an image into spatial units (closed

regions, lines, etc.) through image segmentation or edge detection/linking. Most

previous methods employ this as the first step in feature extraction from geospa-

tial images. Obstacles 1 and 2 increase the complexity of rigorously describing
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(or modeling) the spatial layout of parts. It becomes infeasible to analyze spa-

tial layout using graph-based models where the nodes are the parts and the links

indicate their spatial relation. Obstacles 1 and 3 together lead to a high search

complexity, i.e. the time required to search for (or detect) the object in a given

image.

Let us now regard the second problem mentioned earlier, namely that of learn-

ing appearance models for objects. Appearance models embody knowledge about

object appearance which is required for detecting an object. For instance, a model

for a harbor could comprise a model for shapes of boats, and a graphical model

for the arrangement of boats. Besides describing its appearance, an object model

might also have contextual knowledge about its location with respect to other

objects. Appearance models for compound geospatial objects have traditionally

been encoded a priori into the system by humans. As a result of the high com-

plexity of purely spatial approaches, there is little work addressing the problem

of learning appearance models for geospatial objects from examples.

In order to learn models for and detect compound objects, efficient albeit

approximate methods are needed to surmount the above obstacles. By performing

analysis in both spatial and frequency domains, it is possible to mitigate these

obstacles and make object detection and model learning feasible.

1.2 The Proposed Solutions

The main goal of this dissertation is to provide efficient methods for describ-

ing and detecting compound objects in geospatial images. Toward this motive,
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we incorporate information from both the spatial and the frequency domains.

We utilize joint space-frequency methods developed in the framework of texture

analysis. Convolution of an image with Gabor filters, which can be efficiently im-

plemented via frequency-domain filtering, provides abundant information about

the inherent visual structure in the image. Despite this fact, there is relatively lit-

tle use of the efficient methods of frequency-domain texture analysis for detecting

geospatial objects. Using texture analysis as a foundation, we propose methods

for learning appearance models for objects from examples. These methods exploit

the ability of Gabor filter-based texture analysis to provide a compact description

of visual structure and gracefully handle variations in appearance. In a nutshell,

this dissertation focusses on filling two important gaps in the area of geospatial

object detection, namely 1) exploiting the potential of frequency-domain texture

analysis, and 2) example-based learning of appearance models for objects.

1.2.1 Texture Analysis for Object Detection

Texture analysis gives information about the statistical properties of the spa-

tial arrangements of pixels in a neighborhood. This could translate to information

about the arrangement of physical features in the neighborhood, for example the

density of trees in an orchard and the quasi-periodicity of boats in a harbor. It

is our contention that the potential of texture for the modeling and detection

of geospatial objects has not been fully exploited. The role of image texture

in geospatial image analysis (Sec. 2.2) is largely limited to the detection and

classification of certain types of land-cover such as vegetation, water, and urban

settlements. In this dissertation, we attempt to extend the use of texture anal-
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ysis to the modeling and detection of more complex geospatial objects such as

harbors, golf courses, airports, and so on.

Consider the harbor object, which can be detected by detecting boats via

their model shapes after segmentation, and finding those that occur in certain

regular arrangements which are modeled a priori. This is how most methods

discussed earlier would proceed. However, a harbor can also be modeled as a

spatially recurrent two-dimensional signal. Such recurrent arrangements of fea-

tures, quite common in geospatial images, are perfect candidates for description

and detection via frequency-domain texture analysis. Texture analysis provides a

framework for the efficient analysis of recurrent and possibly regular arrangements

of image primitives. At a lower-level, such primitives may be a set of local inten-

sity patterns including edges, bars, and smooth regions. At a higher level, they

may be cars, boats, trees, and so on, by whose repetitive spatial arrangements,

several geospatial objects are formed.

When such recurrent patterns occur, there are many advantages in using

frequency-domain texture analysis to describe them. The major ones are the

following.

1. Frequency-domain texture analysis is efficient. Texture extraction methods

can be implemented efficiently via frequency-domain filtering. These are

less computationally expensive than image segmentation and edge detec-

tion/linking, especially for large and highly detailed geospatial images.

2. Texture analysis using a Gabor filter bank provides a compact description

of visual structure present in a neighborhood. Useful information about the
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scale(s) and orientation(s) of features in a neighborhood can be encoded as

a compact feature vector.

3. Texture can gracefully handle variation in object appearance. Texture anal-

ysis can capture regularity in a pattern as well as tolerate a degree of ran-

domness. For example, the boats in a harbor are moored with approximately

the same distance to each other but with some variance.

Several geospatial objects contain recurrent spatial patterns with distinct vi-

sual appearance. For example, Fig. 1.1 shows the pattern in a harbor formed by

the arrangement of boats and water, and that formed by the arrangement of trees

and grass in a golf course. These patterns enable most humans to easily recognize

the corresponding object, provided that they have seen it before (even if only

briefly). Such spatially recurrent patterns that are characteristic of an object are

termed the texture motifs of the object. Thus, the pattern formed by boats and

water is a texture motif of a harbor, and the arrangement of trees and grass is a

texture motif of a golf course.

More importantly from a computational perspective, such recurrent patterns

have the property of being distinctive in both their spatial appearance and in

their frequency distribution. Thus the spatial appearance of such patterns can be

studied via their frequency domain characteristics. By performing texture analysis

using Gabor filters at different scales and orientations (Chapter 3), these patterns

can be efficiently 1) described in the frequency domain, and 2) localized in the

spatial domain. Fig. 1.2 shows the output obtained by convolving two Gabor

filters at chosen scales and orientations with the harbor instance in Fig. 1.1(a).
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(a) (b)

(c) (d)

Figure 1.1: Examples of geospatial objects and their texture motifs: (a) an
instance of a harbor object (delineated with a white border); (b) a golf course
instance; (c) texture motif of harbors, i.e. the arrangement of boats and water;
(d) texture motif of golf courses, i.e. the arrangement of trees and grass.
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(a) (b)

Figure 1.2: Output obtained by convolving two Gabor filters at chosen scales
and orientations with the harbor instance in Fig. 1.1(a). The output in (a) is
in response to the frequency of boats parked side by side, and that in (b) is in
response to the frequency of the rows of boats.

It can be seen that the first filter responds to the frequency of boats parked side

by side, and the second responds to the frequency of the rows of boats. It is

thus possible to localize these patterns in the spatial domain without having to

perform image segmentation or edge detection/linking. This implies a decrease

in the complexity of object description and search.

Gabor filter-based texture analysis thus has the ability to describe higher-order

structure in objects. We exploit this ability to address the problem of visually

detecting geospatial objects containing texture motifs. We do this by translating

the problem of detecting objects to that of detecting their texture motifs. Methods

involving a combination of spatial and frequency analysis are used for describing

texture motifs. We demonstrate that such an approach is effective in detecting a

variety of objects in geospatial images.
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1.2.2 Learning Models from Examples

In order to detect geospatial objects, computational models are required for

representing their texture motifs. More importantly, such models have to be

learned from object examples. Thus, object modeling is posed as the problem of

learning the texture motifs of an object given a set of examples. In this work,

multiple complementary approaches are presented for learning texture motif rep-

resentations.

In the first approach, a two-layered model is proposed for representing texture

motifs. The first layer learns the local intensity variations in the motif that

form textural elements such as flat areas, bars, edges, and so on. These can be

interpreted as the low-level building blocks of the motif. In the case of boats-and-

water motif of harbors, these may correspond to water, boats, and edges between

them. We show that these local intensity variations can be effectively captured

and described by low-level texture features based on Gabor filters at multiple

scales and orientations. Assuming that the texture features generated by different

elements populate different volumes of the texture feature space, it is possible

to statistically learn the elements of a pattern. In this work, a semi-supervised

statistical approach is adopted for this task. The second layer of the representation

is the spatial distribution of low-level texture elements in the texture motif, since

this influences its distinct visual appearance. A Gaussian mixture model (GMM)

for this is learned from examples using features derived from histograms of texture

elements in spatial neighborhoods. Confidence measures generated using this

model are then used for detecting object presence.

The above approach only describes the likelihood of two elements occurring in
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a spatial neighborhood. The second approach adopts a hidden Markov modeling

(HMM) framework for learning adjacency relations between elements. Consider

a sequence of pixel sites along a line in an object. Each pixel generates an ob-

servation, say the texture feature extracted in its neighborhood. Suppose this

sequence is modeled as a HMM wherein the state of each pixel corresponds to

the local texture element, and the state transitions from one pixel to the next

corresponds to the spatial arrangement of the elements. Then the probability of

a transition from a state Si to a state Sj can be interpreted as the probability

of adjacency of the two corresponding texture elements. In this approach, it is

possible to combine the two layers of the previous approach into a single stage of

learning.

In the third approach, we address the detection of objects with quasi-periodic

texture motifs. When a texture motif comprises nearly periodic patterns at one

or more scales and orientations, it is possible to avoid representing it in a high-

dimensional space. In this case, it is not necessary to capture the “amount” of

texture at each scale and orientation, but just the presence or absence of a strong

pattern at certain characteristic scales and orientations. Thus texture motifs are

just viewed as patterns that respond strongly to Gabor filters at characteristic

scales and orientations. For the purpose of detecting objects, it is useful to focus

attention on regions that respond at scales corresponding to its texture motifs.

Objects are then detected by identifying regions that obey certain “textural rules,”

which are in the form of relations between their characteristic scales and orienta-

tions, and certain proximity criteria. For example, to detect a harbor, we detect

the two dominant recurrent patterns as shown in Fig. 1.2, and verify whether they
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are perpendicular to each other. These rules can be fully user-specified or learned

from examples with user-specified constraints. Note that this paradigm deviates

from the probabilistic frameworks discussed earlier, while still preserving the cen-

tral notion of texture motifs. Furthermore, it has the advantage of avoiding the

issues related to clustering and density estimation in a high-dimensional spaces.

1.3 Summary of Contribution

The central goal of this dissertation is to provide methods for the detection of

specified objects in geospatial images. Toward this goal, two issues are attended

to, namely 1) the use of frequency-domain texture analysis in object detection,

and 2) learning texture-based appearance models for objects from examples. The

specific technical contributions are as follows.

1. The concept of texture motifs for detecting objects in geospatial images [4]

(Chapter 4).

2. A two-layered probabilistic modeling framework for learning a representa-

tion for texture motifs of objects from their examples (Chapter 4).

3. A hidden Markov modeling (HMM) framework for learning adjacency rela-

tions between texture elements that form a motif [58] (Chapter 5).

4. A framework for the detection of objects with quasi-periodic texture motifs

that exploits relations of individual scales, orientations, and proximity of

the texture motifs of the object. (Chapter 6).
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5. A modification [3] of the MPEG-7 homogeneous texture descriptor that

nearly halves its dimensionality, while maintaining comparable retrieval per-

formance (Chapter 3).

1.4 Organization of the Dissertation

This dissertation is organized as follows. Chapter 2 provides a detailed overview

of previous work on the application of both spatial and texture analysis to geospa-

tial image understanding. There is also a discussion of work related to the ap-

plication of texture to object detection in general. Chapter 3 introduces the

fundamentals of texture analysis using Gabor filters at different spatial scales

and orientations. It also proposes a modification of the MPEG-7 homogeneous

texture descriptor that nearly halves its dimensionality, while maintaining com-

parable retrieval performance. Chapter 4 starts by introducing the concept of

texture motifs for object detection. It then describes a two-layered model for

learning a representation for texture motifs from object examples. The model

involves learning the low-level texture elements that form a motif, and the spa-

tial distribution of the elements in a spatial neighborhood. Chapter 5 presents

a HMM-based method for learning adjacency relations between texture elements

that form a motif. Chapter 6 proposes a framework for the detection of objects

with quasi-periodic texture motifs. This framework exploits relations of individual

scales, orientations, and proximity of the texture motifs of the object. Chapter 7

concludes with a discussion of some of the outstanding issues and future directions

of this work.
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Chapter 2

The Background

There has been extensive use of spatial analysis as well as texture analysis in

geospatial image understanding. Spatial methods have proved to be successful in

interpreting a variety of complex geospatial scenes. These have also been used for

the detection of specific objects with “hand-crafted” models. A detailed discussion

of these methods is in order to avail a better understanding of the advantages of

using texture analysis for detecting compound geospatial objects.

Texture analysis has also long been recognized as a very useful tool for the

analysis of remote-sensed imagery. This follows from the ability of texture to

quantify visual structure, a virtue that is used for distinguishing distinct entities

in geospatial imagery. However, a discussion of its application in the geospatial

realm reveals that it has been primarily used for the classification of major terrain

types and land use patterns. There has been relatively much less work on the

application of texture for detecting more complex geospatial objects. The main

goal of this dissertation is to show that texture has far more potential in the
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geospatial domain than has been explored in previous work.

This chapter begins by describing spatial analysis methods that have been

used for tackling general scene interpretation as well as specific object detection

problems. This is followed by previous work on applying texture analysis to

the interpretation of geospatial imagery. Finally, we describe the work of a few

researchers who have inspired the use of texture in the object detection problem,

though not in the geospatial domain.

2.1 Spatial Analysis of Geospatial Images

There has been a wide body of work on the spatial analysis of complex geospa-

tial images. We divide the work into two categories, namely 1) scene interpretation

methods, and 2) object-specific methods. Scene interpretation methods are usu-

ally complex systems that perform detailed interpretations of geospatial scenes,

given some amount of contextual knowledge about the scene (e.g. airport, housing

development). The interpretation includes the detection of smaller objects within

the scene. Object-specific methods address the detection of specific geospatial ob-

jects such as buildings, roads, vehicles, etc. These methods often use contextual

information about a particular object to robustly model and detect the object.

It should be noted here that we are focussing on the computer vision problem

of analyzing geospatial images based on their visual appearance. Therefore, the

class of input data comprises images sensed in the visual spectrum, i.e. panchro-

matic imagery, as opposed to multispectral imagery. Multispectral data is obtained

by sensing the scene in different spectral (wavelength) bands, some of which may
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lie outside the visual spectrum. This provides valuable information regarding the

material properties of objects (concrete, vegetation, etc.). However, such data is

far more expensive and less easily available than visual images. In this work, we

shall use the term geospatial images to refer exclusively to panchromatic images.

2.1.1 Scene Interpretation Methods

Given some amount of contextual knowledge about a scene (e.g. airport, hous-

ing development), several systems have been proposed for performing a detailed

interpretation of the scene. These methods usually divide an image into spatial

units (closed regions, lines, etc.) through image segmentation or edge detec-

tion/linking. Spatial relations between units are analyzed using relational mod-

els such as production systems [55], semantic networks [59, 63], human-specified

constraints or rules [19], and evidential reasoning [51]. These frameworks are es-

sentially used for humans to specify spatial constraints among the constituents of

a scene or object.

As early as 1980, Nagao and Matsuyama [55] developed an aerial image under-

standing system that was shown to be capable of locating several objects. Images

are segmented into elementary regions based on the multispectral properties of

each pixel. The elementary regions are classified into characteristic regions based

on a combination of spatial and spectral information, for example, large homoge-

neous regions, elongated regions, shadow region, vegetation, water, etc. Objects

such as buildings, roads, and crops are distinguished by identifying characteris-

tic regions that satisfy human-specified “production rules,” which are described

by IF (precondition) THEN (action). Locational constraints and spatial ar-
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rangement rules are utilized to identify context-sensitive objects such as cars on

roads and regularly arranged houses.

McKeown et al. [19, 18] proposed rule-based systems that used knowledge in

the form of user-specified construction rules in order to interpret objects such as

airports and housing developments. Examples of rules for airports are “runways

are rectangular” and “taxiways are perpendicular to runways.” It should be noted

that the goal of such a system is not to detect an object in a scene. However,

given knowledge about the type of scene (e.g. airport), the system could interpret

it in detail by starting with segmented regions and applying spatial constraints to

generate hypotheses. Although the above work focussed on specific objects, the

system architecture was created to be general. Low-level segmentation is carried

out using a number of sources, including edges, depth, multispectral information,

and texture. In the above work, texture is mainly used as a coarseness measure,

for example, grassy areas are highly textured.

Semantic networks are graphical frameworks which are often used for repre-

senting spatial models in terms of entities and relations. These are used by Nicolin

and Gabler [59] to realize a knowledge-based system for interpreting aerial images.

A system architecture is proposed for model-driven interpretation of suburban

scenes. After segmentation, structural analysis is performed to detect regular

arrangements between image segments. In doing this, certain principles from

Gestalt psychology such as similarity and proximity are utilized. Interpretations

are generated in a hierarchical “hypothesize and test” paradigm. Quint [63] devel-

oped MOSES, a system for the recognition of objects in aerial images. It utilizes

semantic networks to represent models of various objects such as buildings, park-
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ing lots, and cars. Compound structured objects such as parking lots can be

analyzed by combining image primitives (lines/regions) with a graphical parts

model.

Bottom-up (data-driven) and top-down (model-driven) analyses are combined

by Matsuyama and Hwang [51] in SIGMA, a system that combines to interpret

complex aerial scenes. Their low-level vision expert performs spatial image seg-

mentation to arrive at features such as lines and rectangles. Object recognition

is performed within a spatial reasoning framework that accumulates evidence for

generating hypotheses of object presence based on spatial relations between ob-

jects. The system is shown to be capable of locating cultural structures such as

houses, roads, and driveways.

Smyrniotis and Dutta [73] describe a knowledge-based system capable of rec-

ognizing man-made objects. The architecture enables goal-oriented image analysis

starting from a low-level segmentation of the image into regions of interest. Re-

sults are presented on target detection in infra-red imagery and airplane recogni-

tion in airport scenes. In [50], Matsuyama discusses combination of AI techniques

with geometric models for detecting simple objects such as houses and planes.

2.1.2 Object-Specific Methods

The detection of specific geospatial objects such as buildings, roads, vehicles,

etc. has been explored adequately in the literature. In object-specific methods,

human knowledge about the concerned object is often exploited to guide their

detection. In particular, the detection of buildings and roads are well-researched

topics, presumably due to their importance in cartography and city planning.
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The following is a brief overview of notable work that applies spatial analysis for

detecting geospatial objects.

Building extraction from aerial imagery is a problem several researchers have

focussed on. Most of them make use of properties and relations of lines, corners,

rectangles, and shadows. Huertas and Nevatia [35] approach building detection

through the detection of lines and corners, and analysis of shadows. Chains of

corners connected by edges are analyzed to generate building hypotheses. The

rectangularity of buildings is exploited as a simplifying constraint. Irvin and McK-

eown [36] describe computational techniques for utilizing the relationship between

shadows and man-made structures to aid in the automatic extraction of buildings

from aerial imagery. Shufelt and McKeown [72] improve building detection by

fusing hypotheses across different detection systems. They also merge hypotheses

from stereo pairs and multi-temporal images. Subsequent methods [72, 60] also

make use of multiple views for improving the robustness of building modeling and

detection. Reno and Booth [67] use a two-dimensional viewer-centered reference

model for objects to drive their segmentation from aerial images. The model

provides a continuous probability density for any deformations about a reference

shape. They demonstrated results on objects such as buildings and airplanes.

Mueller et al. [52, 53] detect small objects such as houses from high-resolution

satellite images with the help of multi-step segmentation and template matching

with stored shape models.

Road detection is another topic of interest in the geospatial domain. One com-

mon approach relies on a geometric information such as the presence of parallel

lines and curves. Some methods also exploit contextual and radiometric informa-
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tion. Another common way to extract roads is to track them in high-resolution

imagery by extrapolation and matching of profiles after a possibly manual se-

lection of starting points. For a fully automatic extraction, the tracking can be

accompanied by an approach to extract roads, which can be used to find start-

ing points. Methods that use snake-based segmentation guided by external con-

straints are also popular for road detection. A thorough survey of road extraction

techniques can be found in [26, 25, 1].

Huertas et al. [34] attack the problem of detecting runways from high-resolution

airport scenes. The detection involves the use of image analysis tools guided by

the knowledge of runway geometry and markings. Runways are hypothesized

based on the width and orientation of detected anti-parallel lines, and verified by

detecting markings.

2.2 Texture Analysis in the Geospatial Domain

Land-cover classification has been the primary application of texture analysis

in this domain. Remotely sensed images of the earth are generally covered by

distinct regions corresponding to many natural and man-made features. Exam-

ples include water, forests, agricultural fields, urban settlements, mountainous

terrain, and so on. It is of great interest particularly in the areas of geography,

cartography, and government, to identify and measure different types of land-

cover. A common approach for identifying land-cover types in geospatial imagery

is to classify pixels based on the textural properties of their neighborhood. In the

process, a variety of texture description methods have been used.
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One of the simplest texture descriptors is the variance of image intensity

computed in a pixel neighborhood, which is a measure of image heterogeneity

therein. This method has been applied as a pre-processing step in a rule-based

classification of water in Landsat Multispectral Scanner (MSS) images [79]; as a

pre-processing step in mapping land cover as natural vegetation, scattered agri-

cultural, and settlements in Landsat Thematic Mapper (TM) and Shuttle Image

Radar (SIR-C) images of East Africa [27]; and as a pre-processing step in clas-

sifying forest types in Japanese Earth Resources Satellite-1 (JERS-1) images of

Amazonia [23]. Though simple to compute, local statistical measures such as

variance have limited scope because they ignore pixel structure.

Gray level co-occurrence matrices (GLCM) are perhaps the geographer’s fa-

vorite means of computing texture features, due to their simplicity and explicit

consideration of structure. In a nutshell, a GLCM tabulates the frequencies with

which different gray levels occur in a certain spatial configuration (usually defined

by distance and direction). After Haralick [29] proposed a set of 14 texture fea-

tures based on co-occurrence matrices, such features have been extensively used

for remote-sensing applications. Examples include the classification of terrain

types in Landsat and aerial photographs [77]; land use classification in the earth

resources technology satellite (ERTS) multi-spectral scanner (MSS) imagery [30];

classification of built areas according to their density [38]; classification of for-

est species composition in high resolution imagery [24]; classification of synthetic

aperture radar (SAR) sea-ice imagery [15]; and land cover change detection in

moderate resolution imaging spectroradiometer (MODIS) imagery [12]. Exten-

sions have also been proposed, such as a generalized co-occurrence matrix for

22



The Background Chapter 2

multi-spectral analysis [31].

Variograms are being increasingly applied for texture analysis in remote-sensed

imagery [70]. The variogram is computed as the expected squared difference

between data samples separated by a spatial lag. The semivariogram, or half the

variogram, is typically used. Semivariograms are used in [7] to inventory waste-

disposal sites in Landsat TM images of Italy. Image regions are classified into the

following land cover types: mined land, quarry, dump, landfill, disturbed land,

industrial area, urban site, and agricultural area. Semivariograms are used in [2]

to classify land cover in Landsat TM images of Turkey into the following types:

citrus, two generations of corn, cotton, soil, soya beans, urban, and water. Cross

variograms have been prosed for analyzing spatial correlation between different

spectral bands. Cross and pseudo-cross variograms are used in [14] to discriminate

between rock formations in Landsat TM images of Spain. Cross variograms are

also used in [10] to classify five different land cover types in Landsat TM images

of Yellowstone National Park.

Since texture usually results from regular or periodic image patterns, its com-

putation often takes place in the frequency domain. The simplest of such texture

features are based on the Fourier power spectrum, given by |F |2 = FF ∗, where

F (u, v) is the Fourier transform of image f(x, y) (and ∗ denotes the complex

conjugate). The radial and angular distribution of values in |F |2 are related to

the coarseness and directionality of the texture in f [78]. Texture features based

on the Fourier power spectrum have been successfully applied to classify differ-

ent types of vineyards [76] in high-resolution (.25m/pixel) aerial photographs of

France. The features used in [76] also proved useful for providing information
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about crop spacing, crop orientation, and how the crop was trained.

Wavelet-based texture analysis methods have a distinct advantage over Fourier-

based ones in that they provide localization in both space and frequency. The

Fourier transform is only localized in the frequency domain, and thus only contains

global information about the image in the spatial domain. Unlike Fourier anal-

ysis which decomposes an image using a basis of sinusoids with infinite support,

wavelet analysis decomposes it using bases of wavelets with compact, sometimes

finite, support. This enables the latter to localize both in space and frequency, a

virtue that results in powerful descriptors for texture, which is a property bound

to both spatial neighborhoods and frequencies.

Wavelet-based texture analysis is used in [65] to detect vineyards in high-

resolution infrared aerial images of France by applying an adaptive threshold to

the wavelet coefficients that correspond to the spacing between the rows of grapes.

Multi-resolution analysis using members of the popular Daubechies wavelet family

[16] is used in [39] to classify regions in Landsat images as mountainous or flat by

computing the standard deviation of the wavelet coefficients in local windows. In

[9], Haar wavelets are used to detect agricultural areas with high weed concentra-

tion and Daubechies wavelets are used to detect noxious weeds in Digital Compact

Airborne Spectrographic Imager (CASI) images of Mississippi. The energies of

the different wavelet subbands are used in the classification. Daubechies wavelets

are used in [83] to classify regions in aerial images into natural land cover types

such as desert, dune, mountain, and forest. The energies of the subbands are

also used for classification via a non-standard “best-resolution” multi-resolution

decomposition which successively decomposes the middle-frequency subbands.
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Fractal geometry, which describes the self-similarity of a shape across multiple

scales, can be applied to describe the complexity of a shape. If an image is viewed

as a three-dimensional surface whose height at a pixel location is determined by

the pixel value, then the fractal dimension [70] of the surface can be used to

characterize image texture. The fractal dimension of a surface is a measurement

of its complexity, and is thus a scalar measurement of image texture. The higher it

is, the rougher the texture. By measuring the fractal dimension of image surfaces,

land cover in ATLAS images of Louisiana is classified [54] into six classes: single-

family homes with less than 50% tree canopy, single-family homes with more than

50% tree canopy, commercial, woodland, agriculture, and water. Fractal methods

are used in [61] to determine which of the 224 spectral bands of Airborne Visible

Infra-Red Imaging Spectrometer (AVIRIS) are most suited for classifying land

cover types in both urban and rural regions.

Another popular framework for texture analysis is the Markov random field

(MRF). In this framework, an image is treated as a realization of a two-dimensional

lattice of random variables, or a random field. This is accompanied by the as-

sumption of Markovianity, i.e. a pixel (random variable) is statistically dependent

only on a local neighborhood. The equivalence between MRF and Gibbs random

field (Hammersley-Clifford theorem [28]) allows a tractable way of computing

the joint probability of the pixels in an image through the Gibbs distribution, a

global property. The MRF framework only provides local properties, namely a

pixel’s conditional probability [41]. Texture analysis based on MRF is used in the

classification of synthetic aperture radar sea-ice imagery [15]; the labeling of hy-

perspectral AVIRIS image regions as urban or non-urban [66]; and classification
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and similarity retrieval in X-band synthetic aperture radar images using multiple

models [71]. MRF framework is often used to segment remote-sensed images in

an unsupervised manner. The spatial interaction at the pixel level (or the tex-

ture) is modeled using a low-level MRF, and the spatial layout of the processes

that generate the different textures is modeled using a separate high-level MRF,

sometimes referred to as the smoothing prior. This is the approach taken in [82]

and [81] to segment Landsat images into five land-cover classes: water, conifers,

deciduous, open fields, and epidemics.

Structural texture analysis refers to a class of spatial domain methods that

characterize texture as a set of primitives with a certain spatial arrangement.

Many of the spatial analysis methods described in Sec. 2.1.1 could be viewed as

some form of structural texture analysis. For example, the primitives may be

buildings, which form a “texture” with their spatial arrangement. However, most

of the methods in Sec. 2.1.1 do not explicitly view such structure as a texture.

One approach that does is that of Lumia et al. [42] in which an image is first

segmented into a set of closed regions called units. The units along with their

properties constitute the primitives. In the training phase, primitives (clusters of

units) and their contextual relationships are learned from representative images

for several texture classes. During classification, each unit is assigned to a texture

class based in its cluster type and that of its neighbors. Using this method, an

aerial image of an urban area image is classified into two texture classes, namely

large and small buildings.
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2.3 Texture in Object Detection

The importance of texture as a visual primitive has long been acknowledged

in computer vision. Of particular importance is the use of texture as a visual cue

for object detection. Several researchers have contributed their time to studying

this topic. In the following, we describe some prominent past work which address

the problem of object detection through the use of texture.

In her dissertation, Mahmood [45] addresses the importance of attentional se-

lection in reducing the combinatorial search that occurs during object detection.

She proposes both data-driven and model-driven selection mechanisms using new

representations for color, texture, and line group information in images. Texture

is stressed as an important visual cue in object detection. Texture is modeled

as a short-space stationary process, and is represented using a method called the

linear prediction (LP) spectrum. In the data-driven approach, the above method

is used for isolating texture regions and each region is ranked by a measure of tex-

ture saliency. The LP spectrum is also shown to to be effective for model-driven

selection. This representation allows the isolation of a model texture in scenes

without requiring a detailed segmentation. Furthermore, it also provides a solu-

tion of the pose of the texture region on a model object. Results are demonstrated

by using a model texture patch on a cup, and detecting the patch (and hence the

cup) in two different scenes with slight changes in illumination and pose. An issue

that is not addressed is that of learning the variation of a textural pattern across

different instances of an object.

Braithwaite and Bhanu [6] use tuned Gabor filters for detecting objects in
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infrared images with strongly oriented and periodic features. It uses a two-stage

representation called “hierarchical” Gabor filters. The first stage uses a set of

wide-bandwidth Gabor filters to extract local measures from an image, namely the

marginal magnitude, peak region of marginal magnitude, and dominant spectral

orientation. The second stage makes certain spatial groupings explicit by creating

small-bandwidth Gabor filters that are tuned to elongated contours or periodic

patterns. They demonstrate the detection a tank by using a filter tuned to the

frequency corresponding to the periodic pattern of the rows of wheels. The filters

are manually tuned to the patterns of interest.

Jain et al. [37] use a feature-based segmentation method to address the prob-

lem of segmenting objects in complex backgrounds. A given image is convolved

with a bank of even-symmetric Gabor filters at multiple spatial scales and orien-

tations. A selection of these filtered images is made and each (selected) filtered

image is subjected to a nonlinear (sigmoidal like) transformation. Then, “Gabor

features” at each transformed image pixel are computed as a measure of texture

energy in a window around the pixel. The features and their spatial locations

are clustered to obtain a segmentation of the original image. Each pixel is as-

signed a cluster label that identifies the amount of mean local energy the pixel

possesses across different spatial orientations and frequencies. The approach is

demonstrated on objects in visual and infrared images such as tanks, cars, and

fingerprints. Results show that the region corresponding to the object is usu-

ally segmented correctly. For actually identifying which region corresponds to

the object, the authors briefly suggest the use of its “unique signature” of Gabor

features. However, the issue of modeling the variation of this signature across
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different instances of the same object is not addressed. Therefore, this method is

mainly data-driven and not model-driven.

Schmid [69] proposed a method to construct models for objects with texture-

like visual structure given positive and negative example images. A two-level

feature representation was used. Firstly, low-level descriptors are extracted us-

ing rotation-insensitive circular Gabor-like filters. These are clustered over the

training images to obtain k “generic” descriptors. Secondly, joint probabilities

(frequencies) of the k cluster labels in a neighborhood centered at each pixel are

computed. These k-dimensional frequency vectors are clustered to get “spatial-

frequency” clusters. Given a set of positive and negative examples, the signifi-

cance of each spatial-frequency cluster for the model is evaluated. Retrieval is

done by averaging a score computed for each pixel in a database image, based

on the descriptors and joint probabilities in its neighborhood. This score can

also be used for localizing the object in each image. Results were demonstrated

for objects such as zebras, cheetahs, giraffes, and faces. This work uses rotation-

insensitive features which could be a disadvantage in the case of geospatial objects.

Features obtained using orientation-selective Gabor filters enable us to capture

orientational relationships between spatial patterns which are often important for

modeling geospatial objects (see, for example, Fig. 1.2).

2.4 Summary

Judging by previous work, it is clear that the importance of image texture as

a visual primitive for scene interpretation has been recognized. Researchers have
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also pointed out the use of texture as a visual cue for object detection, in both

data-driven and model-driven approaches. However, most of the work employing

texture for model-driven object detection does not pertain to geospatial objects.

Several objects in geospatial images contain structural patterns that could be

modeled and detected using texture.

On the other hand, texture analysis in the geospatial domain has primarily

focussed on the classification of major terrain types and land use patterns. Ex-

amples include water, forests, agricultural fields, urban settlements, mountainous

terrain, and so on. There has been little work on the application of texture for

detecting more complex geospatial objects, such as harbors, golf courses, and air-

ports. The main goal of this dissertation is to show that texture has far more

potential in this domain than has been explored in the previous work.
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Structural Analysis using Gabor

Filters

Image texture has long been acknowledged as an important visual primitive in

computer vision. Texture can be applied to image analysis at three levels. At

the low-level, it can be used to study the statistical properties of the spatial

distribution of pixel intensities in a neighborhood. For a given image region, these

properties are encoded as a feature vector. Distances between feature vectors are

then used to quantify visual dissimilarity between image regions. Using low-

level features, mid-level representations are constructed. These usually involve

mappings from low-level features into classes or attributes. For example, features

can be clustered to discover classes of regions with similar visual patterns, or

mapped to attributes such as highly periodic pattern, coarse pattern, and so on.

For object detection, it is necessary to construct a high-level representation of

texture, wherein we establish the connection between objects of interest and their
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visual patterns via a texture-based model. A model-driven search then serves to

focus attention on regions that have similar patterns as the object of interest.

This approach has the potential for detecting complex geospatial objects such as

harbors and golf courses.

In this chapter, we motivate the application of low-level texture analysis using

Gabor filters to high-level object detection. First, the fundamentals of texture

analysis using Gabor filters at multiple spatial scales and orientations are laid

out. This includes a discussion of its application to low-level similarity retrieval,

and issues related to normalization and dimensionality reduction of texture de-

scriptors. We then illustrate how Gabor filter outputs reveal visual structure in

images. The ability of Gabor filter outputs to reveal structural characteristics of

complex geospatial objects is the main motivation for its use in object detection.

3.1 Gabor Filters for Texture Analysis

Wavelets filter banks based on Gabor functions have proven quite effective for

describing texture. The decision to use scale and orientation selective Gabor filters

to describe texture is based on a number of factors, including their interesting

mathematical and psycho-visual properties. As mentioned earlier, an advantage

of using wavelets is their ability to localize in both space and frequency. Gabor

functions have the attractive property of being optimal in the sense of minimizing

the joint two-dimensional uncertainty in space and frequency [17]. Thus, they

are well suited for texture analysis for which good localization is required in both

spatial and frequency domains. Gabor filters are appealing from a psycho-visual
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perspective as well. They are known to approximate the characteristics of certain

cells in the visual cortex of some mammals [49]. Gabor filters provide good models

for certain pre-attentive visual processes of humans.

3.1.1 Two-dimensional Gabor Filters

Texture analysis is performed by applying a bank of scale and orientation

selective Gabor filters to an image. These filters are constructed as follows [48].

A two-dimensional Gabor function g(x, y) and its Fourier transform G(u, v) can

be written as:

g(x, y) =

(
1

2πσxσy

)
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)
+ 2πjWx

]
(3.1)

and

G(u, v) = exp

{
−1

2

[
(u−W )2

σ2
u

+
v2

σ2
v

]}
(3.2)

where σu = 1/2πσx and σv = 1/2πσy. A class of self-similar functions referred to

as Gabor wavelets is now considered. Let g(x, y) be the mother wavelet. A Gabor

filter bank can be obtained by appropriate dilations and translations of g(x, y)

through the generating function:

gs,k (x, y) = a−sg (x′, y′) , a > 1, s ∈ 0, . . . , S − 1, k ∈ 0, . . . K − 1

x′ = a−s (x cos θ + y sin θ) and (3.3)

y′ = a−s (−x sin θ + y cos θ)

where θ = kπ/K is the orientation of the filter w.r.t. the vertical. The indices k

and s indicate the orientation and scale of the filter respectively. K is the total
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Figure 3.1: A bank of Gabor filters gs,k(x, y) tuned to combinations of three
scales (S = 3) and five orientations (K = 5).

number of orientations and S is the total number of scales in the filter bank. The

scale factor a−s in (3.3) is meant to ensure that the energy is independent of s.

The filter bank parameters {σx, σy, a,W} are computed by the method de-

scribed in [48]. Given the input specifications S, K, and the upper and lower

center frequencies, W = Uh and Ul, of the Gabor filters in the filter bank, the

parameters of the filter bank are computed as follows.

a =
(

Uh

Ul

) 1
S−1

, σu = (a−1)Uh

(a+1)
√

(2 ln 2)
, and

σv = tan
(

π
2K

) [
Uh − 2 ln

(
2σ2

u

Uh

)] [
2 ln 2− (2 ln 2)2σ2

u

U2
h

]− 1
2
.

(3.4)

We compute σx and σy as σx = 1/2πσu and σy = 1/2πσv.

Fig. 3.1 displays the real components of a bank of Gabor filters at three scales

(S = 3) and five orientations (K = 5). Fig. 3.2 shows the real parts of example

filters at two different scale-orientation pairs. Note that the smaller the scale s,

the higher the frequency of the filter and the less its support.
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(a) (b)

(c) (d)

Figure 3.2: Real parts of Gabor filters at different scales and orientations: (a)
scale s = s1 and orientation n = 0 (θ = 0◦); (b) s = s1, n = K/2 (θ = 90◦);
(c) s = s2 (s2 > s1), n = 0 (θ = 0◦); (d) s = s2, n = K/2 (θ = 90◦).
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3.1.2 Application to Similarity Retrieval

Texture descriptors derived from Gabor filter banks have been widely used

for browsing and similarity retrieval in image databases [57, 62, 43, 44]. These

are commonly obtained by applying a Gabor filter bank to the texture image and

deriving appropriate statistics of the filter outputs. For a texture image I(x, y),

the filter output at scale s and orientation k is given by

Fs,k(x, y) = |gs,k(x, y) ∗ I(x, y)|, (3.5)

where ∗ denotes convolution. The filter output at pixel (x, y) can be represented

as

c(x, y) = [F0,0(x, y) F0,1(x, y) . . . FS−1,K−2(x, y) FS−1,K−1(x, y)]T . (3.6)

A homogeneous texture descriptor based on Gabor filters was proposed in [48].

Since then, the descriptor has been known for its effectiveness and efficiency, and

a modified version of it has been adopted by the MPEG-7 Multimedia Content

Description Interface standard [47]. The texture descriptor for S scales and K

orientations is given by

fµσ = [µ0,0 σ0,0 µ0,1 σ0,1 . . . µS−1,K−1 σS−1,K−1 µI σI ]
T , (3.7)

where µs,k and σs,k are the mean and standard deviation of the filter outputs

Fs,k(x, y). µI and σI are the mean and standard deviation of the pixel intensities

of the image. Note that the dimensionality of fµσ is 2SK + 2.

Representing texture as a point in this multi-dimensional feature space is very

useful since closeness in the feature space has been demonstrated to correspond
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Figure 3.3: The results of a nearest-neighbor query in a dataset of satellite
imagery. The top-left tile is the query tile. The other tiles are the results.

well with visual similarity. Visual dissimilarity between two textures is quantified

by computing a distance (usually L1 or L2) measure between their descriptors.

This measure can then be used to perform content-based similarity retrieval within

a set of images. Fig. 3.3 shows an example of applying the descriptor to similarity

retrieval. The dataset contains 400,000 subimages obtained by dividing large

aerial images into tiles. A descriptor is computed for each subimage. The top-left

tile in Fig. 3.3 is the query tile, and others are those closest to the query in the

feature space. Note that the retrievals are of similar orientation to the query,

owing to the dependence of fµσ on image orientation.
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3.1.3 Normalization Issues

Gabor filter outputs contain implicit information about visual structure in

images. In this work, the vector of filter outputs, c(x, y) in (3.6), is frequently

used as a feature vector to describe the texture in the neighborhood of pixel (x, y).

However, the convolution of images with Gabor filters at different scales tends to

give outputs of different dynamic ranges. It is observed that the higher the scale,

the larger the dynamic range of the filter output.

To avoid this problem, the descriptors are normalized over a representative

dataset, so that each dimension has approximately the same dynamic range. The

normalization method used here forces all the dimensions of c(x, y) at a particular

scale to have unit variance. Accordingly, the normalized feature vector, c(n)(x, y),

becomes

c(n)(x, y) = [F
(n)
0,0 (x, y) F

(n)
0,1 (x, y) . . . F

(n)
S−1,K−2(x, y) F

(n)
S−1,K−1(x, y)]T , (3.8)

where

F
(n)
s,k (x, y) =

Fs,k(x, y)

σ [Fs,∗]
. (3.9)

σ [Fs,∗] is the standard deviation of the output at any pixel at scale s over all

orientations. It is computed over a set of training images, which are chosen to

have enough diversity to cover most patterns. Henceforth in this work, it shall be

tacitly assumed that the feature vectors c(x, y) are normalized this way.
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3.1.4 Dimensionality Reduction of the MPEG-7 Descrip-

tor

The high dimensionality and computational complexity of the MPEG-7 tex-

ture descriptor, fµσ in (3.7), adversely affect the performance as well as the storage,

computation, and indexing requirements of a content-based retrieval system. By

studying the statistical properties of Gabor filter outputs for texture image inputs,

it is possible to derive a modified texture descriptor [3] with comparable retrieval

performance, nearly half the dimensionality, and less computational expense.

The format of (3.7) for the texture descriptor is driven by the implicit assump-

tion that the filter outputs have Gaussian-like distributions. Therefore, each of

these distributions is taken to be described completely by its mean and standard

deviation. However, Dunn and Higgins [22] show (for the one-dimensional case)

that the Gabor filter outputs for a texture input have a Rice distribution, given

by

fR(r) =
r

σ2
exp

(
−r2 + A2

0

2σ2

)
I0

(
A0r

σ2

)
, (3.10)

where I0(x) is the zero-order modified Bessel function of the first kind. Their

proof is based on modeling the input texture as a periodic lattice of texels with

random perturbations. Texels are similar, but not necessarily identical, geometric

primitives that constitute a texture. In (3.10), the parameter A0 indicates the

amplitude of periodicity in the texture, and the parameter σ indicates the amount

of noise perturbing this periodicity.

The Rice pdf (see Fig. 3.4(a)) in (3.10) can vary from a Rayleigh pdf for

small A0 (A0 ≈ 0) to an approximate Gaussian pdf for large A0 (A0 � σ). The
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latter case occurs when the texture is well-defined and periodic, with a highly

peaked frequency component at the center frequency of the Gabor filter. The

filter outputs tend to have a Rayleigh pdf when the frequency components of the

texture are weak in the vicinity of the center frequency. Figures 3.4(b-d) show

the result of filtering a texture image with Gabor filters of two different center

frequencies. Fig. 3.4(c) is closer to a Rayleigh pdf, and Fig. 3.4(d) is closer to a

Gaussian pdf. In the latter case, the input has strong frequencies in the vicinity

of the center frequency of the filter. In the former case, it does not.

The filter bank in (3.4) used for computing the texture descriptor has prede-

fined center frequencies. Over a wide range of textures, the probability that a

given texture has a strong component at a specified center frequency, is small.

Hence, we claim that the Rayleigh pdf model for filter output distributions is

valid with a higher probability than the Gaussian pdf model that inspires the

descriptor in (3.7). The Rayleigh pdf, given by p(z) = z
γ2 exp

(
− z2

2γ2

)
, has only

one parameter γ. Therefore, instead of (3.7), we propose the following texture

descriptor with dimensionality SK + 2,

fγ = [γ0,0 γ0,1 . . . γS−1,K−2 γS−1,K−1 µI σI ]
T , (3.11)

where γs,k is the Rayleigh parameter computed over the Fs,k in (3.5). Given data

samples (or filter outputs) {z1, . . . , zN}, the maximum-likelihood estimates of the

parameter γs,k is given by

γ2
s,k =

1

2N

N∑
i=1

|zi|2. (3.12)

Besides reduced dimensionality, a merit of the above descriptor is that it is easy

to compute using the old descriptor, without having to repeat the computationally
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Figure 3.4: (a) The Rice pdf in (3.10); (b) a texture image input; (c) and
(d) Histograms (with 100 bins) of Gabor filter outputs for two different center
frequencies.
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Figure 3.5: Precision vs. Recall curves over the Brodatz dataset.

expensive filtering step. This is useful in case we have precomputed fµσ (MPEG-7)

features. Since, in (3.7),

µs,k =
1

N

N∑
i=1

|zi|, and σ2
s,k =

1

N

N∑
i=1

|zi|2−µ2
s,k, (3.13)

it can be shown that γ2
s,k = 1

2

(
µ2

s,k + σ2
s,k

)
. Also, we can see from (3.12) and (3.13)

that, for large values of N , fγ needs 50% fewer additions in its computation than

fµσ.

Fig. 3.5 shows the precision-recall performance of fµσ and fγ on the Brodatz

texture dataset [8], which is widely used for evaluating texture similarity retrieval.

The dataset consists of 1856 images (16 from each of 116 texture classes). Since

we consider 5 scales and 6 orientations, the dimensionality of fµσ is 62 and that

of fγ is 32. Retrieval is done by computing L1 distances between descriptors. It is

observed that the difference in the error-rate between the two curves is less than

3%.
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3.2 Texture, Visual Structure, and Object De-

tection

The previous section described the application of texture for low-level similar-

ity retrieval, where the similarity is with respect to a low-level texture description

with no explicit meaning of its own. Starting with low-level texture features, re-

searchers have constructed mid-level representations which enable easier and more

meaningful navigation through image databases. The texture thesaurus developed

by Ma and Manjunath [44] divide image regions into several visually similar cate-

gories by hierarchically clustering their texture features. Each cluster is displayed

to the user as the image region closest (in feature space) to its texture “code-

word.” A user is thus able to navigate the database and look for different types

of dominant patterns in the database. Another mid-level representation is the

perceptual browsing component (PBC) proposed by Wu et al. [80]. Derived using

a Gabor filter bank, the PBC provides a quantitative characterization of texture

properties such as regularity, directionality, and dominant scale. The PBC al-

lows the user to browse a database and look for textured regions with certain

properties.

Thus, at the low-level, texture analysis using Gabor filters enables the retrieval

of visually similar regions. At the mid-level, it has the ability to quantify visual

structure in images. It enables an explicit characterization of structural attributes

such as the density, periodicity, and directionality of arrangement of physical

features in images. For example, Fig. 3.6 demonstrates how texture analysis

reveals the presence of periodic and directional patterns. Fig. 3.6(a) is an image
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tile (128 × 128 pixels) from a vineyard depicting rows of vines. The image is

convolved with a Gabor filter bank at three scales and six orientations, and the

means of the filter outputs, Fs,k of (3.5), are retained. Let Ws correspond to the

period (in pixels) of sinusoidal variation in a filter at scale s (Ws = as/W , using

W from (3.1) and a from (3.4)). Then Fig. 3.6(b) plots the variation in the mean

values at each Ws (scale) with the orientation (θ in (3.4)) of the filter. A strong

peak is observed at W1 = 7.07 pixels at a 60◦ orientation. This indicates that

the average separation of the vines is 7.07 pixels and the vines are oriented at

60◦ w.r.t. the vertical. Fig. 3.6(c) shows the real part of the corresponding filter

superimposed on the image, corroborating the above conclusions.

Fig. 3.7 illustrates the use of texture for discriminating density of arrange-

ment of physical features. Fig. 3.7(a) and Fig. 3.7(b) show two 128 × 128 im-

ages depicting a higher and lower density of beads, respectively. Fig. 3.7(c) and

Fig. 3.7(d) show the corresponding plots of the filter output mean at three ori-

entations (θ = 0◦, 60◦, 120◦) versus the scale s. Note that the former plot peaks

at s = 2 for all orientations, and the latter peaks at s = 3. Smaller scales in

general correspond to higher frequencies (Fig. 3.2) and thus denser arrangement

of physical features.

The preceding examples are chosen to be simple and aid an intuitive under-

standing. In general, however, visual structure in geospatial objects are more

complex and contain patterns at several scales and orientations. For example,

take the instance of a harbor object in Fig. 3.8(a). When the image with the

object is convolved with a Gabor filter bank, strong responses are observed in-

side the harbor at certain scales and orientations, as shown in Fig. 3.8(b) and
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Fig. 3.8(c). Through these responses, we can infer the characteristic structural

patterns in the harbor. Note that these patterns also related to each other in

terms of their relative scales, orientations, and spatial layout. This information

is important for describing harbors.

Thus, texture analysis using Gabor filters has the ability to describe interesting

structural patterns in geospatial objects. For detecting specified objects, it is

necessary to move to a high-level representation of texture. Here, the appearance

of an object is analyzed from examples using a Gabor filter bank and encoded as a

texture-based model, which is then used to perform a model-driven search for the

object in a scene. This model-driven approach serves to focus attention on regions

that have similar patterns as the object of interest. The subsequent chapters

describe in detail how appearance models are learned from object examples.

3.3 Summary

In this chapter, we motivate the extension of texture analysis using Gabor

filters from low-level similarity retrieval to high-level object detection. At the

low-level, Gabor filters are used to study the statistical properties of the spa-

tial distribution of pixel intensities in a neighborhood. Distances between feature

vectors derived from such analysis quantify visual dissimilarity between image re-

gions. Mid-level texture analysis usually involves mappings from low-level features

into visually similar classes or attributes. For object detection, it is necessary to

construct a high-level representation of texture, wherein we establish the con-

nection between objects of interest and their visual patterns via a texture-based
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Figure 3.6: (a) An 128×128 image tile from a vineyard depicting rows of vines;
(b) Plot of filter output mean at each scale s (or filter period Ws) versus the
orientation (w.r.t. vertical ); and (c) The real part of the filter corresponding
to the peak in (b) superimposed on the image.
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Figure 3.7: (a) An 128× 128 image depicting a high density of beads; (b) An
128 × 128 image depicting a lower density of beads; (c) Plot for (a) of filter
output mean at three orientations (θ = 0◦, 60◦, 120◦) versus the scale; and (d)
Plot for (b) of filter output mean at three orientations (θ = 0◦, 60◦, 120◦) versus
the scale.
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(a)

(b) (c)

Figure 3.8: (a) An instance of a harbor object, with the white line indicating the
extent. The ground resolution of the image is 1m/pixel. When it is convolved
with a Gabor filter bank, strong responses are observed inside the harbor at
two scales. (b) Output of a filter with a orientation (θ in (3.4)) of 0◦ and
scale corresponding to a filter period of 9.3 pixels. This corresponds to an
approximate separation of 9.3m between individual boats. (c) Output of a
filter with a orientation of 90◦ and scale corresponding to a filter period of 37.8
pixels. This corresponds to an approximate separation of 37.8m between rows
of boats.
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model. A model-driven search then serves to focus attention on regions that have

similar patterns as the object of interest.

This chapter lays down the fundamentals of texture analysis using Gabor fil-

ters at multiple spatial scales and orientations. After illustrating the application

of Gabor filter banks in similarity retrieval, some issues related to normalization

and dimensionality reduction of texture descriptors are discussed. In particular,

a modification of the MPEG-7 homogeneous texture descriptor is proposed, that

nearly halves its dimensionality, while maintaining comparable retrieval perfor-

mance. Moving on from low-level applications of texture analysis, we illustrate

how Gabor filter outputs reveal visual structure in images. It is this ability of

Gabor filters that motivates its use in object detection. Its efficiency of use fur-

ther encourages the use of Gabor filters for describing (and detecting) complex

geospatial objects such as harbors, golf courses, airports, etc. In the subsequent

chapters, we discuss different methodologies of modeling and detecting geospatial

objects, all of which make extensive use of Gabor filter banks.
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Chapter 4

Texture Motifs for Object

Detection

Distinct visual signatures result from many spatial patterns, both natural and

human-made, that form objects of interest in geospatial images. Such spatial

patterns can be observed in geospatial objects such as golf courses and harbors,

instances of which are shown in Fig. 4.1. Notice the recurrent spatial patterns

in the harbor formed by the arrangement of boats and water (Fig. 4.2). In the

golf course, the recurrent pattern formed by the arrangement of trees and grass

is quite distinctive. Such spatially recurrent patterns that are characteristic of

an object are termed the texture motifs of the object. Thus, the pattern formed

by boats and water is a texture motif of a harbor, and the arrangement of trees

and grass is a texture motif of a golf course. Of course, there exist objects with

multiple texture motifs. These include airports (parked plane pattern, hangar

pattern, runway markings) and agricultural areas (different crop patterns). An
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example of an airport and its texture motifs are shown in Fig. 4.3.

These recurrent patterns have the property of being distinctive in both their

spatial appearance and in their frequency distribution. Thus they are amenable

to description via texture analysis using Gabor filters. Of course, not all geospa-

tial objects contain texture motifs. We restrict our treatment to those that do.

Examples of objects with texture motifs are golf courses, harbors, trailer parks,

vineyards, and airports. The concept of texture motifs leads to texture-based

computational models for many objects, which can be applied to object detec-

tion. This approach offers a powerful alternative to shape-based and edge-based

models, which are prohibitively expensive to compute, due to the level of com-

plexity and detail often found in geospatial objects.

This chapter mainly deals with the problem of learning models for objects

given a set of examples.1 This is posed as a problem of learning a representation

for the texture motifs of the objects from low-level texture features extracted from

examples. Building on the work done in [4], this chapter presents a probabilistic

framework for this learning problem. The quality of the models are evaluated on

the basis of their application to object detection.

4.1 Texture Motif Representation

How do we represent the visual appearance of a texture motif, say, the ar-

rangement of boats and water in a harbor?

There are different aspects that constitute this appearance. Firstly, there are

1An object “example” here refers to an image containing an instance of the object, along
with a binary mask that isolates the object region from the background (see Fig. 4.4).
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the local intensity variations that form textural elements such as flat areas, bars,

edges, and so on. These can be interpreted as the low-level building blocks of

the motif. For example, they may correspond to water, boats, and edges between

them. It has been shown (Sec. 3.1.2) that these local intensity variations can be

effectively captured and described by low-level texture features based on Gabor

filters at multiple scales and orientations. Assuming that the texture features

generated by different elements populate different volumes of the texture feature

space, it is possible to statistically learn the elements of a pattern. In this work, a

semi-supervised statistical approach is adopted for this task. This forms the first

layer of the overall representation of the texture motif.

The second layer of the representation is the spatial distribution of low-level

texture elements in the texture motif, since this influences its distinct visual ap-

pearance. A Gaussian mixture model (GMM) for this is learned from examples

using features derived from histograms of texture elements in spatial neighbor-

hoods. Confidence measures generated using this model are then used for detect-

ing object presence.

4.2 Learning the Texture Elements of a Motif

Suppose we are given M examples of an object that contains one or more

texture motifs. Let us further assume that all the motifs are formed by a spatial

combination of Nt texture elements. Then the Nt elements are learned from low-

level texture features extracted from the examples, in order to arrive at the first
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(a) (b)

(c) (d)

Figure 4.1: Examples of geospatial objects: harbors in the top row, and golf
courses in the bottom row. The white border shows the extent of the object
in each image.

53



Texture Motifs for Object Detection Chapter 4

(a)

(b) (c)

Figure 4.2: (a) A harbor instance with a white border specifying the object
region; The texture motif of harbors includes the patterns formed by (b) boats
moored side by side, and (c) periodic rows of boats separated by water (bot-
tom).
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(a)

(b) (c) (d)

Figure 4.3: (a) A airport instance with a white border specifying the object
region; A few texture motifs of airports are (b) parked planes, (c) hangars, and
(d) runway markings.

55



Texture Motifs for Object Detection Chapter 4

layer of representation. Let us uniformly sample a number2 of texture features

from each of the M object examples. If the object consists of multiple texture

elements, the sampled vectors form several clusters in the texture feature space.

Let each cluster be considered to represent a distinct texture element.

It can be argued that as M becomes large, the Nt largest clusters formed

by the sampled vectors correspond to the texture elements in the object. The

argument is justified thus. The more examples a texture element appears in,

the more the evidence in favor of it being an important texture element of the

object. If an element occurs in very few examples, it is less likely to be critical

to the description of the object. With increasing M , clusters formed by features

occurring in a majority of examples are expected to become dominant. On the

other hand, clusters formed by features that occur in just a few examples become

relatively smaller.

In this work, Gaussian mixture models (GMM) are applied to solve the clus-

tering problem in a semi-supervised approach. Mixtures of Gaussians have been

used to model image feature distributions for a variety of research objectives. In

[46], texture-based image segmentation is performed by clustering texture feature

vectors using mixtures of Gaussians. In the Blobworld system [11], mixtures of

Gaussians are used to derive image descriptors for content-based retrieval. The

Expectation-Maximization (EM) algorithm is used to discover the feature vector

groupings that correspond to the visual blobs in an image. There are several

factors that motivated us to use a GMM to cluster texture features instead of

the simpler K-means algorithm. Firstly, a GMM accounts for the density of each

2This number is usually proportional to the size of the example.
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cluster. This is important because the feature vectors from different textures are

observed to have different densities of distribution in the feature space. Secondly,

GMM has a parametric representation that allows easy model comparison. Fi-

nally, the EM framework can be extended to elegantly handle rotations of textural

patterns (Sec. 4.3.1).

We model texture features that occur in an object as a GMM with Nt Gaussian

components. Each component in the GMM corresponds to one texture element.

In other words, the features corresponding to each texture element is assumed to

follow a Gaussian distribution. It is also possible to train the GMM with N ′
t > Nt

components and choose the Nt most probable ones as corresponding to the texture

elements. In this work, the choice of Nt is made by the user based on experimental

evidence. As will be described in Sec. 4.5.2, the modeling parameters including Nt

are chosen to obtain the “best” object detection performance in terms of precision

and recall. The best parameters are chosen from a set of candidate parameters

determined by the user based on visual inspection of the object examples.

4.2.1 The GMM Framework

The texture in the neighborhood of a pixel is represented by an SK-dimensional

feature vector obtained by convolving the image with a Gabor filter bank at S

scales and K orientations. The filter bank (see Sec. 3.1.2) is a set of Gabor-

wavelet filters denoted by {gs,k(x); s ∈ [0, S − 1], k ∈ [0, K − 1]}. Let c(x) denote

the feature vector extracted from the neighborhood of pixel3 x ∈ Ro, where Ro is

3Note that we represent a pixel vectorially as x = [x y]T .
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the object region. Following (3.6), the feature vector is given by

c(x) = [F0,0(x) F0,1(x) . . . FS−1,K−2(x) FS−1,K−1(x)]T , (4.1)

where Fs,k(x) is the filter output at pixel x, obtained by convolving the image

I(x) with the filter gs,k(x). In other words, Fs,k(x) = |gs,k(x) ∗ I(x)|.

Assuming that there are Nt texture elements in an object, the probability

density function of c(x) (or simply c) can thus be expressed as a mixture distri-

bution,

pt(c) =
Nt∑
j=1

Pt(j)pt(c|j), (4.2)

where pt(c|j) is the conditional pdf of the feature c given that it is generated

by the jth texture element and Pt(j) is the prior probability of the jth element.

The subscript t is used to clarify that we are learning the texture elements. This

subscript is applied to all parameters and probabilities in the first layer of texture

motif representation.

The conditional pdf pt(c|j) is Gaussian and is given by

pt (c|j) =
exp

[
−1

2
(c− µtj)

T Σ−1
tj (c− µtj)

]
(2π)d/2 |Σtj|1/2

, (4.3)

where d is the dimensionality of c. The number of elements Nt along with the

distribution means and covariance matrices are the parameters that specify the

object model Θt. In other words,

Θt = {(Pt (j) , µtj, Σtj) ; j = 1 . . . Nt} . (4.4)

The EM algorithm [21] is used to estimate the GMM parameters from train-

ing data, which are obtained from object examples as described in the following

section.
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Note that the texture element model Θt is learnt separately for each object

and not over all objects. A high number of texture elements (Nt) is needed to

describe texture motifs across all objects. As will be seen later, Nt determines

the dimensionality of the second layer of texture motif representation. A small

Nt is desirable with regard to the complexity and reliability of the next learning

stage. Therefore, we learn texture elements in an object-specific manner.

4.2.2 Feature Sampling for GMM Learning

The training set for an object consists of a set of examples or instances, such as

those shown in Fig. 4.4 for harbors. Each instance is provided as an image and an

associated mask delineating the object region. The texture samples for training

the GMM are drawn from pixels strictly inside the object regions, as depicted in

Fig. 4.5(a). Of course, texture is a neighborhood property, not a pixel property.

The texture features are generated by convolving the image with square Gabor

filter kernels. Let sf be the kernel size, i.e. the length of its side in pixels. We need

to make sure that the sampled texture features are not “corrupted” by intensity

variations outside the object region. This implies that if the kernel is centered at

an object pixel, no part of it should project outside the object (Fig. 4.5(b)). This

results in the exclusion of a band of pixels at the borders of the object region. The

width of this band is sf/
√

2 pixels in the worst case when the border is parallel to

a diagonal of the kernel, and sf/2 pixels in the best case when it is parallel to a

side of the kernel. The object region minus this band is termed the valid sampling

region. In practice, the valid sampling region is obtained by morphological erosion

of the binary mask image with a square structuring element of side sf pixels.
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Let the training set for an object be denoted by

O = {Rv,1, Rv,2, . . . , Rv,No} , (4.5)

where Rv,i is the valid sampling region of the ith example and No is the number

of training examples of the object. From each example i, ni = β|Rv,i| features are

sampled uniformly, where |Rv,i| is the number of pixels in Rv,i and β is chosen

according to the acceptable complexity of the GMM learning task.4 The training

data for learning the GMM is obtained from the union of the sampled features

from each example in the training set. Thus the GMM is learned from a total of∑
i ni sampled features.

Having obtained this training data, the EM algorithm [21] is used to estimate

the parameters of the GMM, which are given by (4.4). A K-means clustering

process is applied to bootstrap the EM algorithm. After the learning process,

each Gaussian component in the mixture represents one texture element in the

object. The prior probability of each component gives information about the

relative contribution of that texture element in forming the object.

4.2.3 Texture Element Labeling

After a GMM has been learned for an object, a maximum a posteriori (MAP)

classifier is used to label any pixel x to its generating texture element i∗(x), as

follows.

i∗(x) = arg max
1≤i≤Nt

Pt (i|c(x)) , (4.6)

4The acceptable complexity in turn depends on the available resources, such as CPU speed
and memory.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: A small training set for the “harbor” object. The training images
are on the left and the associated masks on the right.
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(a)

(b)

Figure 4.5: Sampling methodology: (a) Uniform random sampling of pixels
from the golf course object. The pixels around which the texture features are
sampled are marked as dots. (b) Illustration of the valid sampling region.
To prevent the square Gabor filter kernel from exceeding the object border
(dot-dash line), its center (pixel x) should stay within the short-arrows line.
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where Pt(i|c(x)) is the probability that the feature vector c(x) came from the

ith Gaussian component of the GMM. The posterior probabilities Pt(i|c(x)) are

obtained using Bayes’ rule as follows,

Pt(i|c) =
pt(c|i)Pt(i)∑
i pt(c|i)Pt(i)

. (4.7)

Fig. 4.6 shows the texture element labels assigned to one of the training images,

using GMMs learned from the training set in Fig. 4.4. Different labelings are

shown for the same image, obtained by learning GMMs with different Nt (number

of components). The function pt(c(x)) gives the density in the feature space at

the point corresponding to c(x). Fig. 4.7 displays the scaled log density images

corresponding to the same training image, for varying Nt. Brighter pixels indicate

higher values of log(pt(c(x))). Note that the high values are not restricted to

the object region. Thus pt(c(x)) does not directly convey the confidence of a

pixel belonging to the object. A reason for this, in addition to the curse of

dimensionality, might be that the texture elements of the harbor motif occur

in other regions as well. This is clear by observing the left and right columns in

Fig. 4.6. Therefore, it is the spatial arrangement of these elements that distinguish

harbors from other objects.

4.3 A Note on Rotation Invariance

A major obstacle in learning the texture elements with the above GMM

formulation is that the texture features c(x) (given by (4.1)) are derived from

orientation-selective Gabor filters and are therefore sensitive to the orientation of

the texture element (or the motif/object). Texture elements recurring in several
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: The texture element labelings for the third training image in
Fig. 4.4, with Nt = 2 (top row), Nt = 3 (middle row), and Nt = 6 (bot-
tom row). Each color corresponds to a label. The left column shows the labels
inside the object and the right column shows the overall labelings.
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(a)

(b) (c)

Figure 4.7: Scaled log density images (log(pt(c(x)))) corresponding to (a) a
training image from Fig. 4.4, with (b) Nt = 3, and (c) Nt = 6. Brighter
pixels indicate higher values of log(pt(c(x))). Note that the high values are
not restricted to the object region.
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examples can be learned consistently only when the objects in the examples have

similar orientations. This is the case with the training set in Fig. 4.4, but often

in practice the training examples have arbitrary orientations.

Suppose the texture features are derived from Gabor filters oriented at 30◦

intervals, i.e. 0◦, 30◦, 60◦, and so on. Then a 30◦ rotation of the texture is

equivalent to a circular shifting of the feature vector components at each scale.

Hence, the features sampled from a textural pattern of varying orientation form

multiple clusters in the feature space.

In order to handle objects with varying orientations, the number of Gaussian

components in the GMM has to be adjusted to take into account the additional

clusters formed by variation in orientation. Then the following question arises.

Which clusters are associated with the same texture element, i.e. caused by a

rotation of the same element? This is a difficult question to answer. Furthermore,

to model motif appearance at different orientations, it is necessary to augment

the training set by considering all orientations of the training instances. This

increases the complexity of the learning process.

Alternatively, Newsam [56] has proposed a variation to the EM algorithm

that takes the orientation of a texture into account while training a GMM. By

treating the (discretized) orientation of a pattern as a missing variable in the EM

framework, the equivalence between rotated patterns is learned automatically.

In the resulting GMM, each Gaussian component corresponds to a cluster of

“orientation-normalized” texture elements. This variation to the EM algorithm

is described below.
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4.3.1 The Orientation-Normalized GMM [56]

The conditional probability of a feature vector c, given that it is generated

from component j and its orientation index is k, is written as

pt (c|j, k) =
exp

[
−1

2
(ck − µtj)

T Σ−1
tj (ck − µtj)

]
(2π)d/2 |Σtj|1/2

. (4.8)

The term ck is the vector c circularly shifted by k orientations where k ∈ {1, .., K}.

Note that the orientation k is with respect to the normalized orientation of the

mixture component. The pdf of the feature distribution in an object class is

modeled as a Nt-component GMM,

pt (c) =
1

K

K∑
k=1

Nt∑
j=1

pt (c|j, k) Pt(j), (4.9)

where we have assumed that the orientation k is independent of j and equiprobable

(in the absence of a priori information).

Each component represents a single texture element in a manner oblivious

to its orientation. This model is completely specified by the parameters Θt =

{(Pt (j) , µtj, Σtj) ; j = 1 . . . Nt}. A modified version of the EM algorithm is used

to estimate the parameters of the GMM. Rotation is taken into account by mod-

ifying the EM algorithm to include the orientation k of the feature vector as

additional missing data.

The procedure in (4.6) for labeling each pixel x to its texture element i∗(x)

has to modified as well. It becomes

i∗(x) = arg max
1≤i≤Nt

[
max

k
Pt (i|ck(x))

]
, (4.10)

and (4.7) becomes

Pt(i|ck) =
pt(c|i, k)Pt(i)∑
i pt(c|i, k)Pt(i)

, (4.11)
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assuming that the orientations k are equiprobable.

Note: From this point forward, the orientation normalized GMM shall be used

to learn the texture elements in the first layer of texture motif representation.

This modification does not apply to GMMs for features other than those directly

obtained using orientation-selective Gabor filters.

4.4 Spatial Distribution of Texture Elements in

a Motif

It can be observed from Fig. 4.6 that the spatial configuration of the labels

inside the “boats and water” texture motif of the harbor region is quite different

from that outside. Then, the task of the second layer is to describe this spatial

configuration of labels, and model its variation within the motif. A simple method

of describing the spatial distribution of labels is by the use of a spatial histogram,

as shown in Fig. 4.8. The descriptor at a pixel x, denoted as h(x), is the vector

of normalized frequencies of texture element labels in a square window centered

at x. In other words,

h(x) = [h1(x) h2(x) . . . hNt(x)]T , (4.12)

where hl(x) is the normalized frequency of label l in the window. Obviously, the

dimensionality of the above descriptor is Nt, the total number of texture element

labels.

The texture element label i∗(x) at a pixel x is given by (4.10). If we tem-

porarily write i∗(x) as i∗(x, y) (since x = [x y]T ), then i∗(x + xo, y + yo) is the
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label at an offset of (xo, yo) from x. Let Il(z) be an indicator function that is 1 if

z = l and 0 otherwise. Then hl(x) can be computed as

hl(x) = hl(x, y) =
1

s2
h

sh−1

2∑
xo=− sh−1

2

sh−1

2∑
yo=− sh−1

2

Il(i
∗(x + xo, y + yo)), (4.13)

where sh (usually an odd number) is the length of the side of the square window

around pixel x (Fig. 4.8). The scale of the description depends on the value of sh.

Note that the spatial histogram feature h(x) is isotropic, i.e. it does not depend

on the orientation of the texture motif.

4.4.1 Learning the Second Layer

Once again, the GMM is employed to model the variation of h(x) in the object

region. Let the variation in the spatial configuration be modeled by a GMM with

Ns components as follows,

ps(h) =
Ns∑
j=1

Ps(j)ps(h|j), (4.14)

where the conditional pdfs ps(h|j) are Gaussian, given by

ps (h|j) =
exp

[
−1

2
(h− µsj)

T Σ−1
sj (h− µsj)

]
(2π)Nt/2 |Σsj|1/2

. (4.15)

The model for the second layer of representation is then specified by

Θs = {(Ps (j) , µsj, Σsj) ; j = 1 . . . Ns} . (4.16)

The subscript s here is used to clarify that we are learning the spatial distribution

of the texture elements in the motif.
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Figure 4.8: (a) The spatial histogram of texture element labels is built by taking
a square window of size sh around pixel x; (b) The normalized frequencies of
the Nt = 6 labels inside the window, which form the 6-dimensional vector h(x).
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The training data is obtained by sampling spatial histograms h(x) around

several pixels x inside the object region. The procedure for sampling and cre-

ating the training data for the GMM is similar to that in Sec. 4.2.2. The valid

sampling region in this case is obtained by morphological erosion of the binary

mask image using a square structuring element with a side length of max(sf , sh)

pixels, i.e. the larger between the filter kernel size and the spatial neighborhood

size. This ensures that neither the texture features nor the histograms at the

sampled pixels are influenced by non-object pixels. The sampling parameter β

is again chosen appropriately, and need not be the same as the value chosen for

the first layer. After creating the training data, the GMM is learned via the

EM algorithm. It should be clear that, since the features are non-directional,

the conventional GMM formulation is used and not the orientation-normalized

version.

Having learned Θs, the density function ps(h(x)) can be interpreted as the

confidence of finding at a pixel x, the spatial configuration corresponding to the

learned texture motif. Fig. 4.9 shows the scaled density images corresponding to

a training image in Fig. 4.4, for different values of Ns. Note that the object region

is found to have relatively high ps values. Therefore, ps is a good measure for

the confidence of a pixel belonging to a texture motif (or the object containing

the motif). The importance of the spatial arrangement of texture elements for

describing a motif is evident from this.
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(a)

(b) (c)

Figure 4.9: Scaled density images (ps(h(x))) corresponding to (a) a training
image from Fig. 4.4, with Ns = 3, and (b) Nt = 3, and (c) Nt = 6. Note that
the object region has relatively high values.
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4.5 Experimental Results

The primary dataset chosen for our study consists of aerial images drawn

from the Digital Orthophoto Quarter-Quadrangle (DOQQ) coverage of Califor-

nia, which is available through the Alexandria Digital Library (ADL). The ADL

Gazetteer [32] is a resource that provides georeferencing information for several

objects (synonymous with feature types in [32]). Several instances of objects such

as harbors, golf courses, and airports, can be located through the Gazetteer. The

corresponding aerial images are then extracted from the ADL DOQQ coverage.

Each object instance used for training is provided in two pieces (see Fig. 4.4):

a) a rectangular image region containing the object, and b) a manually created

binary mask defining the object region.

4.5.1 Testing Methodology

Suppose, for an object of study, we have a training set and a test set of example

images, with their corresponding masks. From the training set, the GMMs Θt

and Θs are learned as described in Sections 4.2–4.4. The specifications of the

Gabor filter bank used for extracting texture features, c(x) in (4.1), are S = 5,

K = 6, Ul = 0.05 and Uh = 0.4 (see Sec. 3.1.1). In the testing stage, the learned

models are applied to each instance of the test set in three steps as follows.

1. Application of Θt to obtain the texture element labels i∗(x) as described in

Sec. 4.2.3. Note that in practice, the orientation-normalized GMM is used

and the labels are obtained using (4.10).

2. Computation of the spatial histogram features h(x) from the label field
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i∗(x), as described in Sec. 4.4.

3. Application of Θs to obtain the confidence measure ps(h(x)), as described

in Sec. 4.4.1.

The main tool used for evaluating the performance of the proposed approach

is the precision-recall graph. These are obtained by computing precision and recall

while varying the threshold to on the ps(h(x)) measure. Let Io(x) be an indicator

function, which has a value 1 if pixel x lies inside the object region (defined by

the user-provided masks) and 0 if it does not. Let us define another indicator

function Ito(x) thus,

Ito(x) =

 1, if ps(h(x)) > to

0, else.
(4.17)

Now, for a given to, precision P(to) and recall R(to), are defined as,

P(to) =

∑
i Io(xi)Ito(xi)∑

i Ito(xi)
, and (4.18)

R(to) =

∑
i Io(xi)Ito(xi)∑

i Io(xi)
, (4.19)

where xi are indexed over all the pixels in the test images, both inside and outside

the object region. Therefore, precision tells us how many pixels are correctly

identified as belonging to the object. The recall tells us how many pixels belonging

to the object are correctly identified as such. The precision-recall graph plots

P(to) against R(to) while varying to. It displays the tradeoff between precision

and recall at different thresholds.
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4.5.2 Results on Geospatial Objects

Two geospatial objects are selected for comprehensive testing of the proposed

modeling approach. These are golf courses and harbors. The dataset for golf

courses contains nine instances (Fig. 4.10), and that for harbors contains six

(Fig. 4.14). Since the datasets are small, the experimental methodology employs

cross-validation techniques. Cross-validation implies that each instance is used

in turn for testing, while being excluded from the training set. This technique

enables more comprehensive testing on all the instances, which is not possible by

rigidly partitioning the dataset into one training set and one test set.

The cross-validation strategy is applied as follows. The nine instances in the

golf course dataset are randomly partitioned into three sets of three instances.

Each set is used in turn as the test set, while the training set comprises the union

of the remaining sets. Similarly, cross-validation for harbors is done by dividing

the dataset into two sets of three instances. In the end, we shall have tested

and obtained ps(h(x)) for all instances in the dataset. The precision-recall graph

is then plotted by applying (4.18) and (4.19) to the aggregated test results, for

different to.

Fig. 4.11(a) shows the precision-recall graph for the golf course dataset, for

different modeling parameters (Nt, Ns, and sh). A plot that lies entirely above

another is better, since it implies a higher precision and recall for all thresholds.

Therefore, the aim is to attain “higher” plots by choosing modeling parameters

wisely. In practice, the plots may intersect one another. When this happens, the

model is chosen according to the relative merits of the intersecting plots, e.g. the

one that gives higher precision at the required recall rate. It can be observed
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from Fig. 4.11(a) that the best overall model (among the ones considered) has

parameters Nt = 6, Ns = 3, and sh = 161.

For object detection, a proper threshold to has to be chosen that results in a

high confidence of detecting the object (high recall) and a low false-alarm rate

(high precision). All pixels x that have ps(h(x)) > to shall then be denoted as

object pixels. Often, the choice of to is based on a trade-off between precision and

recall. This process is simplified by means of the F-measure [68] which combines

precision and recall into one measure that depends on to. The F-measure is the

harmonic mean of precision and recall, and is defined as,

Fα(to) =
1

1
1+α

(
α

P(to)
+ 1

R(to)

) =
(α + 1)P(to)R(to)

P(to) + αR(to)
, (4.20)

where α ∈ [0, +∞) is the relative weight placed on precision over recall. Fig. 4.11(b)

plots Fα(to) against to for different α values, choosing Nt = 6, Ns = 3, and

sh = 161. The threshold value t∗o corresponding to the peak of the plot (with

desired α) is chosen for object detection purposes. Figures 4.12 and 4.13 show

the detected golf course regions using t∗o, for α = 10 and α = 2 respectively. The

correctly detected regions are the ones inside the object regions specified by the

black borders. Note that with a lower α, recall is higher at the expense of pre-

cision resulting in both a higher detection rate and false-alarm rate. Note also

that the many of the falsely detected regions contain patterns quite similar to the

trees-and-grass texture motif of golf courses.

Fig. 4.15(a) shows the precision-recall graph for the harbor dataset, for differ-

ent modeling parameters (Nt, Ns, and sh). The best model parameters (among

the ones considered) in this case are Nt = 3, Ns = 1, and sh = 51. For this
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model, Fig. 4.15(b) plots Fα(to) against to for different α values. The threshold

value t∗o corresponding to the peak of the plot (with desired α) is chosen for object

detection purposes. Figures 4.16 and Fig. 4.17 show the detected harbor regions

using t∗o, for α = 10 and α = 2 respectively. The correctly detected regions are

the ones inside the object regions specified by the black borders. Note a lower α

leads to a higher detection rate at the expense of increasing the false-alarm rate.

Fig. 4.18 and Fig. 4.19 demonstrates object detection in larger geospatial

images containing several object instances. Fig. 4.18(a) shows a large image con-

taining several golf courses. The object regions are delineated with white borders.

Fig. 4.18(b) shows the detected golf course regions following the application of

the two-layered texture motif model for golf courses. Similarly, Fig. 4.19(a) shows

a large image containing several harbors. Fig. 4.19(b) shows the detected harbor

regions using the texture motif model for harbors. It can be observed in both

cases that most of the object regions are reliably isolated.

4.5.3 Results on Pruning Large Datasets

Geographic databases such as the Alexandria Digital Library (ADL) Gazetteer

[32] index the locations of several object types, including harbors, golf courses,

airports, and so on. However, instances of these objects are currently manually

located and indexed. The manual labor involved in this process could be greatly

reduced by applying model-driven approaches for automatically identifying prob-

able locations of objects. This results in the elimination of many areas that, with

high probability, do not contain the object. The resulting pruned dataset is much

smaller than the original, making it much easier for manual verification of object
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.10: The instance dataset for the golf course object. The borders of
the object regions (masks) are indicated in white.

78



Texture Motifs for Object Detection Chapter 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

N
t
 = 3, N

s
 = 1, s

h
 = 81

N
t
 = 3, N

s
 = 1, s

h
 = 161

N
t
 = 3, N

s
 = 3, s

h
 = 81

N
t
 = 3, N

s
 = 3, s

h
 = 161

N
t
 = 6, N

s
 = 1, s

h
 = 81

N
t
 = 6, N

s
 = 1, s

h
 = 161

N
t
 = 6, N

s
 = 3, s

h
 = 81

N
t
 = 6, N

s
 = 3, s

h
 = 161

(a)

0 2 4 6 8 10 12

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
−

m
ea

su
re

Threshold (t
o
)

α = 10

α =2

(b)

Figure 4.11: (a) Precision-recall curves with different modeling parameters
for the golf course dataset, and (b) F-measure Fα(to) for different α computed
using the golf dataset with modeling parameters Nt = 6, Ns = 3, and sh = 161.
For α = 10, the peak is at threshold value t∗o = 1844.6, and the corresponding
P(t∗o) = 73.44% and R(t∗o) = 28.85%. For α = 2, t∗o = 1477.4, P(t∗o) = 52.7%,
and R(t∗o) = 69.56%.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.12: The detected golf course regions using the threshold t∗o chosen
from Fig. 4.11(b) for α = 10 (with Nt = 6, Ns = 3, and sh = 161). The
borders of the desired object regions are marked in black.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.13: The detected golf course regions using the threshold t∗o chosen
from Fig. 4.11(b) for α = 2 (with Nt = 6, Ns = 3, and sh = 161). The borders
of the desired object regions are marked in black.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: The instance dataset for the harbor object. The borders of the
object regions (masks) are indicated in white.
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Figure 4.15: (a) Precision-recall curves with different modeling parameters for
the harbor dataset, and (b) F-measure Fα(to) for different α computed using
the harbor dataset with modeling parameters Nt = 3, Ns = 1, and sh = 51.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: The detected harbor regions for α = 10 (with Nt = 3, Ns = 1,
and sh = 51). The borders of the desired object regions are marked in black.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17: The detected harbor regions for α = 2 (with Nt = 3, Ns = 1, and
sh = 51). The borders of the desired object regions are marked in black.
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(a)

(b)

Figure 4.18: (a) A large geospatial image containing several golf course regions
(denoted with white borders); (b) The detected golf course regions with the
application of the two-layered texture motif model.
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(a)

(b)

Figure 4.19: (a) A large geospatial image containing several harbor regions
(denoted with white borders); (b) The detected harbor regions with the appli-
cation of the two-layered texture motif model.
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presence.

The object modeling and detection approach presented in this chapter is very

useful in this regard. In the following, we shall demonstrate that our approach

is capable of drastically pruning a dataset of images while looking for an object.

Once again, we choose the harbor and golf course objects for our experiments. The

dataset consists of large DOQQ images. The typical size of each image is close to

7500×6600 pixels. The images are divided into tiles of size 1024×1024 pixels, with

an overlap of 512 pixels between adjacent tiles. For a given object, groundtruth

information is created by labeling each of these tiles as 1 or 0 depending on

whether the object is present in the tile or not. Let Ti be the ith tile in the

dataset, with Gi ∈ {0, 1} denoting its groundtruth label. Suppose we apply an

object detection algorithm on tile Ti, and get the “decision” Di ∈ {0, 1}. In other

words, Di = 1 if an object is detected by the algorithm in tile Ti, and Di = 0 if

not.

We demonstrate the performance of the detection method by plotting the

fraction of false alarm tiles (false alarm rate) with that of missed tiles (miss rate)

from the dataset. Ti is a false alarm tile if Gi = 0 and Di = 1, i.e. an object is

detected when in fact it is not present in the tile. Ti is a missed tile if Gi = 1

and Di = 0, i.e. an object is not detected but it does exist in the tile. Both false

alarms and misses are undesirable. Pruning a dataset is often a tradeoff between

the two.

Let fmiss(to) and ffa(to) denote the fraction of missed and false alarm tiles

respectively for a threshold to on the confidence measure, ps(h(x)) in (4.14). These

are computed as
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fmiss(to) =
1

N

∑
i

(1−Di(to)) Gi, and (4.21)

ffa(to) =
1

N

∑
i

Di(to)(1−Gi),

where N is the total number of tiles in the dataset. Di(to) = 1 if an object is

detected at tile Ti given the threshold to. In our experiments, we set Di(to) = 1

if at least Dmin pixels in Ti have a confidence measure greater than to. Dmin is

set at 200 pixels for both golf courses and harbors. In practice, if a tile Ti has

Di(to) = 1, then we set the detection labels of the neighboring tiles to also be 1.

This is done in order to avoid tiles being missed on account of their overlapping a

small portion of the object. If a neighboring tile contains a larger portion of the

object, its confidence is inherited by the current one. The “false alarm vs. missed”

plot for an object is obtained by varying to and recording the corresponding values

of ffa(to) and fmiss(to).

Fig. 4.20(a) shows the false alarm vs. missed plot in the case of the golf courses.

A total of 157 DOQQs were considered, of which 20 contained one or more golf

courses. Among the 22530 resulting tiles, 350 are given a groundtruth label of 1

since they overlap a golf course. The diagonal line connecting the 1’s denotes the

expected plot for a random detection decision, i.e. the worst possible plot. A plot

that dips closest to the origin is considered good since, at certain thresholds, a

low rate is obtained for both false alarms and misses. From Fig. 4.20(a), it can be

seen that no golf course tiles are missed at a false alarm rate of 43.22%. In other

words, 56.78% of the tiles are eliminated without missing any golf course tiles.

However, if we relax the acceptable miss rate to 14.57%, then the false alarm rate
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becomes 25.51%, eliminating 74.49% of the tiles.

Fig. 4.20(b) shows the false alarm vs. missed plot in the case of the harbors. A

total of 214 DOQQs were considered, of which 24 contained one or more harbors.

Among the 30765 resulting tiles, 313 are given a groundtruth label of 1 since they

overlap a harbor. From Fig. 4.20(b), it can be seen that no harbor tiles are missed

at a false alarm rate of 56.17%. In other words, 43.83% of the tiles are eliminated

without missing any harbor tiles. However, if we relax the acceptable miss rate

to 9.46%, then the false alarm rate becomes 16.29%, eliminating 83.71% of the

tiles. Thus an effective pruning of large datasets is achieved, reducing the manual

labor involved in ascertaining the presence and location of objects.

4.6 Summary of Contribution

The main contributions of this chapter are as follows. Firstly, it introduces the

concept of texture motifs enabling model-driven detection of geospatial objects.

Texture motifs of an object are spatially recurrent patterns that are characteristic

to the object. Such spatial patterns can be observed in geospatial objects such

as golf courses, harbors, and airports. Detection of an object then reduces to de-

tecting one or more of its texture motifs. This is done by learning an appearance

model for texture motifs from object examples. Object models based on tex-

ture motifs provide a powerful alternative to shape-based and edge-based models,

which are prohibitively expensive to compute, due to the level of complexity and

detail often found in geospatial objects.

The second contribution of this chapter is a semi-supervised framework for
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Figure 4.20: (a) The false alarm vs. missed plots for detecting (a) golf courses
and (b) harbors, in large DOQQ datasets.
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learning a two-layered model for texture motifs of an object from examples. The

first layer learns the local intensity variations in the motif that form textural

elements such as flat areas, bars, edges, and so on. These can be interpreted

as the low-level building blocks of the motif. This layer is learned by clustering

Gabor filter outputs sampled from the object examples in a rotation-invariant

manner. The second layer of the representation learns the spatial distribution of

low-level texture elements in the texture motif, since this influences its distinct

visual appearance. A Gaussian mixture model (GMM) for this is learned from

examples using features derived from histograms of texture elements in spatial

neighborhoods. Confidence measures generated using this model are then used

for detecting object presence.

The quality of the models are evaluated on the basis of their application to ob-

ject detection. Experimental results demonstrate that such a modeling approach

is quite effective in detecting complex geospatial objects. We also illustrate the

usefulness of our approach in reducing the manual labor involved in identifying

object locations in large DOQQ datasets.
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Chapter 5

Modeling Adjacency Using HMM

The approach described in the previous chapter represents a texture motif by

learning its constituent texture elements and its spatial distribution in a neigh-

borhood. This only gives information about the likelihood of two elements oc-

curring with a certain proximity. In this chapter, we describe another approach

that learns the likelihood of adjacency between the constituent elements of a mo-

tif. Originally proposed in [58], this approach adopts a hidden Markov modeling

(HMM) framework for learning adjacency relations between elements. In this ap-

proach, it is possible to combine the two layers of the previous approach into a

single stage of learning.

Consider a sequence of pixel sites along a line in an object. Each pixel gener-

ates an observation, say the texture feature extracted in its neighborhood. Sup-

pose this sequence is modeled as a HMM wherein the state of each pixel cor-

responds to the local texture element, and the state transitions from one pixel

to the next corresponds to the spatial arrangement of the elements. Then the
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q1 q2 q3hidden state …

O1 O2 O3observation …

Figure 5.1: A system that is described by a hidden Markov model (HMM).
The hidden state of the system at time t is denoted as qt, and the observation
outputted by the system at time t is denoted as Ot.

probability of a transition from one state to another can be interpreted as the

probability of adjacency of the two corresponding texture elements. We now pro-

ceed to describe this method in detail and demonstrate its application in object

detection.

5.1 The Hidden Markov Model

The hidden Markov model (HMM) was introduced in the late 1960s, and it has

since then been extensively applied to a variety of pattern recognition problems.

In particular, the HMM is a popular tool for solving speech recognition problems

[64].

Consider a system (Fig. 5.1) that could be described at any time as being in

one of M states, {S1, S2, . . . , SM}. At regularly spaced discrete times t = 1, 2, . . .,

the system undergoes a probabilistic transition of state (possibly back to the

same state). The state of the system qt at a time t is an unobservable or hidden

stochastic process. What is observable at each time instant is another stochastic

process, namely an observation Ot outputted by the system.

The HMM is an effective means of modeling a system such as the above. For
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doing this, the HMM makes a simplifying assumption. The sequence of states

{qt} is assumed to obey the Markov property, which means that the conditional

probability of a state at a time instant only depends on the state at the previous

time instant. In mathematical notation, this is written as

P (qt = Sn|qt−1 = Sm, qt−2 = Sl, . . .) = P (qt = Sn|qt−1 = Sm)

= amn, (5.1)

where amn is the probability of transition from state Sm at time t − 1 to state

Sn at time t (as shown in Fig. 5.2). The HMM is completely specified by the

following parameters:

1. The set of possible states S = {Sm; m = 1, 2, ...,M},

2. The prior probabilities πm of each state Sm, i.e. πm = P (q1 = Sm),

3. The transition probabilities, amn = P (qt = Sn|qt−1 = Sm), and

4. The conditional observation densities, bm(y) = p(Ot = y|qt = Sm), assuming

that the observations are continuous.

Let λ = {πm, amn, bm(y);∀(Sm, Sn)} denote a HMM. For practical application

of this model, there are three basic problems that need to be solved. These are

posed as the following questions.

Question 1: Given the observation sequence O = O1O2 . . . OT , how do we

efficiently compute P (O|λ), i.e. the probability of an observation sequence

given the model?
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S2S1 S3

a13

a31

a21 a32

a12 a23

a11 a33

a22

Figure 5.2: Symbolic notation of a hidden Markov model (HMM) with three
states (M = 3). amn is the probability of transition from state Sm at time t−1
to state Sn at time t.

Question 2: Given the observation sequence O = O1O2 . . . OT , what is the

state sequence Q = Q1Q2 . . . QT that best “explains” the observations?

Question 3: How do we estimate the model parameters to maximize P (O|λ)?

In his tutorial, Rabiner [64] describes the forward algorithm for solving the

first problem, the Viterbi algorithm for solving the second, and the Baum-Welch

(EM) algorithm for solving the parameter estimation problem. Having outlined

the theoretical foundations of the HMM, we now proceed to demonstrate its

application in the modeling and detection of texture motifs.

5.2 A Model for Texture Motifs

Consider a sequence of pixel sites obtained by drawing a line through the

object at an angle θ with respect to the vertical, and uniformly sampling the
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Figure 5.3: Observations (texture features) are sampled along a line (arrow) in
an instance of the harbor object. Neighboring samples (circles) are separated
by a distance r.

pixels intersecting it. Let the pixels on the line be sampled at a distance of r

from each other (Fig. 5.3). Such a sequence from an object is then modeled as

a one-dimensional HMM, λ(θ, r). The framework of the one-dimensional HMM

is adopted for the sake of computational simplicity. Although two-dimensional

HMM frameworks [40, 20] exist and are possibly better suited for image analysis,

the available computational solutions are far less efficient than in the case of one-

dimensional HMMs. However, the downside of using a one-dimensional HMM is

that it becomes necessary to learn models λ(θ, r) for different orientations of the

texture motif. This is to enable the detection of the motif in a new image, where

its orientation is unknown.

We pose the problem of modeling texture motifs within the HMM paradigm

by making the following assumptions.

1. The time instants t = 1, 2, . . ., index the pixel positions along the observa-

tion sequence.
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2. The states {S1, . . . , SM} refer to the texture elements constituting the motif.

The terms state and texture element shall be used interchangeably in this

discussion.

3. The transition probabilities amn denote the probability that two texture

elements will be sampled adjacently in the sequence, i.e. Sn will be sampled

immediately after Sm.

4. The observation Ot at pixel t is the texture feature vector at that pixel,

denoted by c(x), where x = [x y]T denotes the spatial coordinates of the

pixel indexed by t.

To refresh our memory, the texture in the neighborhood of a pixel x is rep-

resented by an SK-dimensional feature vector c(x) obtained by convolving the

image with a Gabor filter bank at S scales and K orientations. The filter bank

(see Sec. 3.1.2) is a set of Gabor-wavelet filters denoted by

{gs,k(x); s ∈ [0, S − 1], k ∈ [0, K − 1]} .

Following (3.6), the feature vector is given by

c(x) = [F0,0(x) F0,1(x) . . . FS−1,K−2(x) FS−1,K−1(x)]T , (5.2)

where Fs,k(x) is the filter output at pixel x, obtained by convolving the image

I(x) with the filter gs,k(x). In other words, Fs,k(x) = |gs,k(x) ∗ I(x)|.

For computational purposes, we make the additional assumption that the

observations c from a texture element (state) Sm follow a Gaussian distribution,

bm(c) =
1√

(2π)d |Σm|
e−

1
2
(c−µm)T Σ−1

m (c−µm) (5.3)

98



Modeling Adjacency Using HMM Chapter 5

where d is the dimensionality of the data, Σm is the covariance matrix, and µm is

the mean vector. The HMM is then fully specified by its parameters as follows,

λ(θ, r) = {πm, amn, Σm, µm;∀(Sm, Sn)}, (5.4)

where πm is the prior probability of state Sm. Thus, using this framework, it is

possible to learn in a single stage both the texture elements and certain spatial

relations among them.

5.2.1 Training the Model

Given a training set of object instances, the process of constructing λ(θ, r) is

as follows:

1. Construct sequences of pixels from each object instance by sampling along

lines at angle θ, w.r.t. the vertical. The pixels are sampled at a distance of r

from each other. Obtain the corresponding observation sequences, i.e. tex-

ture feature vectors at the pixels.

2. Estimate the model parameters in (5.4) from the above observation se-

quences, using the Baum-Welch (EM) algorithm described in [64]. The

number of states for the model M is manually chosen depending on the

visual complexity of the object. Initialization is random.

The first step, i.e. sampling the observation sequences, is illustrated in Fig. 5.4.

The arrows indicate different observation sequences sampled (with step r) from

an instance of a golf course at an angle 90◦ w.r.t. the vertical. The training data

is formed by the union of the sequences collected from each object instance in the
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Figure 5.4: The arrows indicate different observation sequences sampled from
an instance of a golf course at an angle 90◦ w.r.t. the vertical. Sequences
collected from several instances are used for estimating the parameters of the
model λ(90◦, r) where r is the sampling step.

training set. This data is then used for estimating the parameters of the model

λ(90◦, r).

Having chosen a sampling step r, the complete model for the object is defined

as a collection of HMMs at different θ. In other words,

Λr = {λ(θ, r); θ = θ1, . . . , θR}, (5.5)

where the angles θi are obtained at appropriate steps in the interval [0, 180◦].

5.2.2 Aligning the Training Set

As mentioned before, the issue of detecting a texture motif with unknown

orientation is handled by training models for the appearance of the motif at a

number of orientations. However, an issue that arises during the training phase
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itself is that of aligning the different examples from the training set. This is

necessary because each training example may contain the same texture motif at

different orientations. This is illustrated in Fig. 5.5. Clearly, without alignment,

the observation sequences from the two training examples convey different ap-

pearances of the motif. Thus, learning a model from the union of these sequences

defeats the purpose. After alignment (Fig. 5.5(c)), the sequences result in a con-

sistent model. The alignment of the examples in the training set is currently done

manually.

5.3 Object Detection

Suppose a HMM-based object model Λr has been learned for an object from

examples. We now describe a strategy for detecting instances of the object in a

given image. Let O = {Oi} denote a set of observation sequences from a region

in the image. The likelihood that O is generated by the model Λr is interpreted

as the likelihood that the region belongs to the object. Since the orientation of

the object in the image is unknown, this likelihood LO is computed as,

LO = max
θ

[log P (O|λ(θ, r))] . (5.6)

Furthermore, we have

P (O|λ(θ, r)) =
1

No

∑
i

P (Oi|λ(θ, r)) , (5.7)

where No is the number of sequences in O. The forward algorithm described in

[64] is used for computing P (Oi|λ(θ, r)). It is possible to scale the likelihood such

that LO ∈ (−∞, 0) with 0 denoting the highest likelihood.

101



Modeling Adjacency Using HMM Chapter 5

(a) (b)

(c)

Figure 5.5: The top row shows two training examples of the harbor object.
The arrows in each indicate an observation sequence sampled along the ver-
tical. Clearly, the two observation sequences convey different texture motif
appearances. After aligning the second example to the first, as in (c), the
sequences convey a consistent motif appearance.
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In practice, the method used for object detection is illustrated in Fig. 5.6. The

image contains an instance of the golf course object that we desire to detect using

a model for the corresponding texture motif learnt from golf course examples. The

test image is divided into square tiles. From each tile, a number of observation

sequences O = {Oi} are sampled. Using (5.6) and (5.7), a likelihood of object

presence is assigned to each tile. Those tiles that have likelihoods above an

appropriately chosen threshold could be detected as belonging to the object. Note

that the precision with which the object is detected depends on the size of the

tile and the overlap between tiles. However, the tiles should be large enough to

capture the properties of the texture motif.

5.3.1 A Confidence Measure for Object Detection

The likelihood in (5.6) provides a confidence measure of finding an object in a

region. It is possible to further strengthen this measure as follows. Given a HMM

λ for a texture motif, we construct a vector termed the expected state duration

vector, denoted as

D̄λ =
[
d̄1 d̄2 . . . d̄M

]T
, (5.8)

where d̄i is the expected duration of state Si. The expected duration d̄i is defined

as the expected number of continuous observations in state Si, given that the
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sequence starts in this state. d̄i is computed as (see [64])

d̄i =
∞∑

d=1

dpi(d)

=
∞∑

d=1

d(aii)
d−1(1− aii) (5.9)

=
1

(1− aii)

where pi(d) is the probability of d continuous observations in state Si, and aii is

the self-transition probability of Si.

For any region in a test image, a measure of its observed deviation from the

complete texture motif model Λr (given by (5.5)) is defined as

EO = min
θ
‖ D̄λ(θ,r) − D̂O ‖1 . (5.10)

‖ . ‖1 denotes the L1 norm. We shall call EO the state duration distance. D̂O is

a vector of empirical state durations observed from O = {Oi} which is the set of

observation sequences from the test region. It is given by

D̂O =
[
d̂1 d̂2 . . . d̂M

]T

(5.11)

where d̂i is the average duration of a continuous run in state Si and is computed

as,

d̂i =

∑
i duration of the ith continuous run in state Si

number of continuous runs in state Si

. (5.12)

Of course, for computing d̂i, the optimal state sequences Qj corresponding to

each Oj ∈ O has to be found. This is done by using the Viterbi algorithm [64]

(see Question 2 in Sec. 5.1).

We combine the likelihood LO in (5.6) with the deviation EO in (5.10) to get

a new confidence measure CO for a region with observations O. This is done as
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Figure 5.6: Region-based sampling of observation sequences for object detec-
tion. The test image is divided into tiles and a number of sequences (arrows)
are sampled from each one.

follows.

CO = LOEO (5.13)

This has the effect of moderating the likelihood LO with the deviation EO. It is

possible to scale the likelihood LO such that LO ∈ (−∞, 0) with −∞ denoting the

least likelihood. We know that EO ∈ (0,∞) with ∞ being the highest deviation.

Overall, CO ∈ (−∞, 0) with −∞ denoting the least confidence. Therefore, a high

deviation takes the product in (5.13) closer to −∞ diminishing the confidence.

Similarly, a high likelihood takes the product closer to 0 increasing the confidence.

The highest confidence (closest to 0) is obtained in the case of a high likelihood

and low deviation.
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5.4 Experimental Results

We now demonstrate the application of the HMM-based texture motif model

for object detection in geospatial images. The objects of interest are golf courses

and harbors. The dataset of golf course instances in shown in Fig. 5.7 with the

white borders indicating the extent of the golf course regions. Similarly, the

harbor dataset is shown in Fig. 5.13. Note that harbors are strongly directional

and therefore need to be aligned prior to training, as discussed in Sec. 5.2.2.

The aligned version of the harbor dataset used for training purposes is shown in

Fig. 5.14. We do not realign the golf courses prior to training since their texture

motifs are not strongly directional.

The specifications of the Gabor filter bank used for extracting texture features,

c(x) in (5.2), are S = 5, K = 6, Ul = 0.05 and Uh = 0.4 (see Sec. 3.1.1). We fix

the spatial direction of the observation sequences to be horizontal (left to right),

i.e. R = 1 and θ1 = 90◦ in (5.5). The modeling parameters that are allowed to

vary are the number of states (M) and sampling step in pixels (r in (5.5)). For

experimental evaluation, the dataset is divided into a training set and a test set.

For given M and r, a HMM-model for the texture motif is trained as described in

Sec. 5.2.1. The training data comprises observation sequences sampled from left

to right inside the object (golf course or harbor) regions in the training set.

Object detection is done by dividing the test images into tiles as described in

Sec. 5.3. We choose the tiles to be square with a side of length 400 pixels for golf

courses and 120 for harbors. The overlap between adjacent tiles are chosen to be

half the tile size in both directions. A confidence measure of object presence is
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computed for each tile based on the model learned from the training set. Since

the tiles overlap, we take the confidence at each pixel xi to be the maximum of

the confidences of all tiles that overlap it. Note that a higher overlap between

adjacent tiles gives a higher spatial precision in detecting the object.

Objects are detected by applying a threshold to on the confidence measure of

detection. In other words, all regions with confidence greater than to are detected

as object regions. Given M , r, and the confidence measure, the detection perfor-

mance is evaluated for a range of thresholds by means of a precision-recall graph

(Sec. 4.5.1). The precision tells us how many pixels are correctly identified as

belonging to the object. The recall tells us how many pixels belonging to the ob-

ject are correctly identified as such. The precision-recall graph plots the precision

P(to), given by (4.18), against the recall R(to), given by (4.19), while varying to.

It displays the tradeoff between precision and recall at different thresholds. Note

that precision and recall are computed by considering all the pixels xi from all

the object instances in the test set.

Since the dataset is limited, we employ a cross-validation methodology as

explained in Sec. 4.5.2. The nine instances in the golf course dataset are randomly

partitioned into three sets of three instances. Each set is used in turn as the

test set, while the training set comprises the union of the remaining sets. For

each object instance, we compute the tile-based confidence measure based on a

model trained from the corresponding training set. The precision-recall graph is

obtained by aggregating the test results from all pixels xi from all objects in the

dataset. The same procedure applies to the harbor dataset, except that we divide

this dataset into two sets of three instances. In the case of harbors, the aligned
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versions of the instances (Fig. 5.14) are used for training and the original versions

(Fig. 5.13) for testing.

Using the golf course dataset, we first evaluate the performance of two con-

fidence measures, namely the likelihood LO in (5.6) and CO in (5.13). Fig. 5.8

shows two sets of precision-recall plots for the golf course dataset with different

modeling (M , r) and detection (LO, CO) parameters. Fig. 5.8(a) shows plots for

different M and r using the likelihood LO as the confidence measure for object

detection. Fig. 5.8(b) shows the corresponding plots when the confidence measure

CO is used. Clearly, for each M and r, the plot in Fig. 5.8(b) has a higher precision

over a wide range of recall than the plot in Fig. 5.8(a). This indicates that using

CO as a confidence measure leads to a superior object detection performance. For

the rest of our experiments, we choose CO to be the confidence measure for object

detection.

The two best models by a visual inspection of Fig. 5.8(b) are {M = 5, r = 8}

and {M = 5, r = 16}. For illustrating results on object detection, let us choose

the model {M = 5, r = 16}. In order to choose the “best” threshold, we plot

the F-measure Fα(to) (given by (4.20)) against a range of thresholds to, where

α ∈ [0, +∞) is the relative weight placed on precision over recall. Thus a higher

value of α leads to fewer false alarms and more missed object regions. A lower

value results in more false alarms but fewer missed regions. Fig. 5.9 shows the F-

measure plots for two different α with model parameters set at {M = 5, r = 16}.

For each α, the peak thresholds t∗o are chosen as the object detection thresholds.

In other words, all regions with CO > t∗o are detected as object regions.

Figures 5.10 and 5.11 show the detected golf course regions using t∗o, for α = 10
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and α = 2 respectively. The correctly detected regions are the ones inside the

object regions specified by the black borders. Note that with a lower α, recall is

higher at the expense of precision resulting in both a higher detection rate and

false-alarm rate. Note also that the many of the falsely detected regions con-

tain patterns quite similar to the trees-and-grass texture motif of golf courses.

Fig. 5.12(a) demonstrates object detection in a large geospatial image containing

several golf course instances. The object regions are delineated with white bor-

ders. Fig. 5.12(b) shows the detected golf course regions following the application

of the HMM-based texture motif model for golf courses. The detection threshold

t∗0 corresponds to the peak of the F-measure F1(to) (i.e. α = 1). It can be observed

that most of the golf course regions are reliably isolated.

Similar experiments are performed on the harbor object. In the case of har-

bors, the use of selected scales in the formation of the feature vector c(x) (given

by (5.2)) is shown to improve the performance significantly. We choose five scales

and six orientations in forming the feature vector, i.e. S = 5 and K = 6 in (5.2).

Fig. 5.15(a) shows precision-recall plots for the harbor dataset with different mod-

eling parameters (M , r) using all five scales in forming c(x). Fig. 5.15(b) shows

the corresponding plots using a truncated 12-dimensional feature vector formed

from the first two scales only (s = 0, 1 in (5.2)). In this case, scale selection clearly

leads to superior detection performance. We shall continue to use the truncated

feature vector for our experiments on the harbor object.

We choose the best model from Fig. 5.15(b), i.e. M = 2 and r = 2. Fig. 5.16

shows the corresponding F-measure plots for two different α. For each α, the

peak thresholds t∗o are chosen as the object detection thresholds. In other words,
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all regions with CO > t∗o are detected as object regions. Figures 5.17 and 5.18

show the detected harbor regions using t∗o, for α = 10 and α = 2 respectively.

The correctly detected regions are the ones inside the object regions specified by

the black borders. Note that with a lower α, recall is higher at the expense of

precision resulting in both a higher detection rate and false-alarm rate.

5.5 Summary of Contribution

In this chapter, we presented a framework for modeling texture motifs based

on hidden Markov models (HMM). One-dimensional HMMs are used to model

the motif appearance along a line in a certain direction by observing the texture

features along the line. The state of each pixel is taken to correspond to the local

texture element, and the state transitions from one pixel to the next corresponds

to the spatial arrangement of the elements. Using such a modeling scheme enables

us to learn higher-order spatial relations among texture elements in a motif. This

includes adjacency between states (elements) and expected number of continuous

samples from a state (expected state duration). Furthermore, this approach en-

ables us to combine the two layers of the previous approach into a single stage of

learning.

We have also demonstrated the application of the HMM-based model for

object detection. Using the texture motif model, confidence measure of object

presence is computed for any image region. This confidence measure is used in

combination with a tile-based search scheme for detecting object regions in a test

image. Experimental results demonstrate the effectiveness of the above approach
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7: The instance dataset for the golf course object. The borders of the
object regions (masks) are indicated in white.
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Figure 5.8: Precision-recall curves with different modeling and detection pa-
rameters for the golf course dataset. The modeling parameters are the number
of states (M) and the sampling step in pixels (r). (a) Precision-recall curves
with the likelihood LO in (5.6) as the confidence measure. (b) Precision-recall
curves using the confidence measure CO in (5.13).
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Figure 5.9: F-measure Fα(to), given by (4.20), for different α computed using
the golf dataset with modeling parameters M = 5 and r = 16 and using CO as
the confidence measure. For each α, the peak thresholds t∗o are chosen as the
object detection thresholds.

in detecting complex geospatial objects.

113



Modeling Adjacency Using HMM Chapter 5

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.10: The detected golf course regions using the threshold t∗o chosen
from Fig. 5.9 for α = 10 (with M = 5, r = 16, and confidence measure CO).
The borders of the true object regions are marked in black.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.11: The detected golf course regions using the threshold t∗o chosen
from Fig. 5.9 for α = 2 (with M = 5, r = 16, and confidence measure CO).
The borders of the true object regions are marked in black.
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(a)

(b)

Figure 5.12: (a) A large geospatial image containing several golf course regions
(denoted with white borders); (b) The detected golf course regions with the
application of the HMM-based texture motif model.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: The instance dataset for the harbor object. The borders of the
object regions (masks) are indicated in white.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: The manually aligned version of the harbor dataset. Only the
harbor regions are shown here and not the background. The observation se-
quences forming the training data are horizontal, i.e. R = 1 and θ1 = 90◦ in
(5.5).
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Figure 5.15: Precision-recall curves with different modeling and detection pa-
rameters for the harbor dataset. The modeling parameters are the number of
states (M) and the sampling step in pixels (r). The confidence measure CO in
(5.13) is used for detection. (a) Precision-recall curves using a feature vector
c(x) computed with a filter bank of five scales and six orientations (S = 5 and
K = 6 in (5.2)). (b) Precision-recall curves using a truncated feature vector
(first two scales s = 0, 1 only in (5.2)).
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Figure 5.16: F-measure Fα(to), given by (4.20), for different α computed using
the harbor dataset with modeling parameters M = 2 and r = 2, and using CO
as the confidence measure. For each α, the peak thresholds t∗o are chosen as
the object detection thresholds.

120



Modeling Adjacency Using HMM Chapter 5

(a) (b)

(c) (d)

(e) (f)

Figure 5.17: The detected harbor regions using the threshold t∗o chosen from
Fig. 5.16 for α = 10 (with M = 2, r = 2, and confidence measure CO). The
borders of the true object regions are marked in black.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.18: The detected harbor regions using the threshold t∗o chosen from
Fig. 5.16 for α = 2 (with M = 2, r = 2, and confidence measure CO). The
borders of the true object regions are marked in black.
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Chapter 6

Detection of Quasi-Periodic

Texture Motifs

The object detection methods discussed in the preceding chapters describe the

texture in a neighborhood using a high-dimensional feature vector. Each dimen-

sion of the vector gives the “amount” of texture at a particular scale and orien-

tation in the neighborhood. The dimensions of the vector are allowed to have

values from a continuous interval. While this approach enables the description

of a wide range of texture motifs, there are difficulties in working with features

in high-dimensional spaces. Particularly, the clustering and density estimation

techniques used previously in learning texture motif models prove to be quite

unreliable in high-dimensional spaces.

When a texture motif comprises nearly periodic patterns at one or more

scales and orientations (Fig. 6.1), it is possible to avoid representing it in a

high-dimensional space. We term such patterns quasi-periodic texture motifs.
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In this case, it is not necessary to capture the “amount” of texture at each scale

and orientation, but just the presence or absence of a strong pattern at certain

characteristic scales and orientations. Near-periodic patterns strongly respond to

Gabor filters with frequencies close to their own. Thus, when such patterns are

analyzed using a filter bank (such as (3.4)), they give rise to strong peaks in the

filter output magnitudes at their characteristic scales and orientations.

In this chapter, we discuss the detection of objects with quasi-periodic tex-

ture motifs. In the process, we deviate from the high-dimensional frameworks

presented in the previous chapters, while still preserving the central notion of

texture motifs. Methods are presented for learning relations between the char-

acteristic scales and orientations of a texture motif from object examples. This

constitutes the modeling phase, whose output is a set of textural rules or hypothe-

ses characterizing the motif. The framework also makes it possible for humans

to specify rules. Object detection involves searching for regions that obey these

textural rules.

6.1 Issues with Density Estimation and Cluster-

ing

The learning methods introduced in the previous chapter, although intuitively

appealing, depend on clustering and density estimation in high-dimensional Lp

spaces. Clustering and density estimation are affected by the so-called curse of

dimensionality. The cause of the “curse” is the following [5]. The classical Lp
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metrics are defined by the equation d(a,b) = {
∑
i

|ai − bi|p}1/p. In particular,

these metrics are based on sums of terms drawn from independent distributions.

As dimensionality increases, the Central Limit Theorem asserts that such sums

tend towards a normal distribution. Moreover, the mean of the distances between

points increases, while the standard deviation remains roughly unchanged. Hence,

as dimensionality increases, all points begin to appear almost equidistant from one

another.

The curse of dimensionality severely impacts the clustering process in high-

dimensional spaces. With increasing dimensionality, clusters have to be increas-

ingly tight in order to be distinct and learned reliably. In practice, there is a

significant measurement noise in each dimension and this might prevent reliable

clustering.

Density estimation is a type of learning problem wherein the goal is to estimate

a function using a finite number of training samples. The finite number of training

samples implies that any estimate of an unknown function is inaccurate (biased).

Meaningful estimation is possible only for sufficiently smooth functions where the

function smoothness is measured with respect to sampling density of the training

data. A consequence of the curse of dimensionality is that, for high-dimensional

spaces, it becomes difficult to obtain enough samples to attain this high density.

This can be better understood from the following properties of high-dimensional

spaces (pages 60-65 in [13]).

1. Sample sizes yielding the same density increase exponentially with dimen-

sion. If a sample containing n points is considered dense in R1, nd points

are required in Rd to achieve the same density.
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2. A large radius is needed to enclose a fraction of the data points in a high-

dimensional space. Consider points taken from a uniform distribution on

a d−dimensional unit hypercube. The edge length of another hypercube

(inside the first) that encloses a fraction p of samples is given by ed(p) = p1/d.

For capturing 10% of samples in a 10-dimensional space, the edge length

is e10(0.1) = 0.80. This shows that large neighborhoods are required to

capture even small portions of the data.

3. Almost every point is close to an edge of a distribution than to another point.

4. Almost every point is an outlier in its own projection. To someone standing

at a sample from a high-dimensional distribution, all other samples appear

distant and clumped near the center of the distribution.

Detailed illustrations of the above properties can be found in [13]. Properties 1

and 2 show the difficulty in making local estimates for high-dimensional samples.

Properties 3 and 4 indicate the difficulty in predicting a response at a given point,

since any point will on average be closer to an edge than to a training data point

and thus require extrapolation by the learning machine.

Apart from the above issues, using high-dimensional features implies a higher

computational expense than is necessary in many cases. Often the goal is to match

a subset of feature dimensions, for example, to compute texture similarity, or the

presence of a pattern, at a particular scale. In this case, the other dimensions

need not be computed. Moreover, if the entire analysis process takes place in

a high-dimensional space, dissimilarities in some dimensions might overshadow

similarities in others. If similarity between two textures is always computed as a
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distance between high-dimensional points, it is not possible to infer similarities

at individual scales. This is important because several textures respond to filters

at characteristic scales and give arbitrary responses at other scales.

6.2 Quasi-periodic Texture Motifs

In Chapter 4, we defined the term texture motifs of an object as spatially

recurrent patterns that are characteristic of the object. If the spatial recurrence

of these patterns is nearly periodic, we term these quasi-periodic texture motifs.

For example, consider a harbor instance in Fig. 6.1. As shown in the figure, the

harbor contains two quasi-periodic texture motifs, one corresponding to boats

moored side by side and the other corresponding to periodic rows of moored

boats separated by water.

A quasi-periodic texture motif has a set of characteristic frequencies and di-

rectionalities. These can be detected by using Gabor filters with appropriate

frequencies and orientations. Near-periodic patterns strongly respond to Gabor

filters with frequencies and orientations close to their own. Thus, when such pat-

terns are analyzed using a filter bank (such as (3.4)), they give rise to strong

peaks in the filter output magnitudes at their characteristic scales and orienta-

tions. Therefore, information from a few scales and orientations is all that is

needed for describing and detecting quasi-periodic texture motifs. It is not neces-

sary to use high-dimensional features such as (3.6), which capture the “amount”

of texture at all scales and orientations in the filter bank.

The detection of quasi-periodic texture motifs involves the detection of regions
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that strongly respond to Gabor filters at appropriate scales and orientations.

In other words, we need to focus attention on regions that contain patterns at

characteristic scales and orientations. For a given scale and orientation, the focus-

of-attention mechanism is implemented as system with a binary response at each

pixel. The response of the system at a pixel is 1 (true) if a “high” filter output

is obtained at that pixel. Otherwise, the response is 0 (false). This mechanism

ascertains the presence or absence of a motif at each pixel. The following section

describes the implementation of this system.

6.3 Focus-of-Attention Mechanism

The focus-of-attention mechanism is implemented as a system, Bs,k(x, y), with

a binary textural response at pixel (x, y). Bs,k(x, y) = 1 if the neighborhood of

the pixel contains a strong periodic pattern at scale s and orientation k. The

input to the system is Fs,k(x, y) in (3.5), i.e. the convolution of image I with a

Gabor filter (from a filter bank) at a particular scale and orientation. Since the

input values are usually continuous, a thresholding operation has to be performed

for converting them to binary responses.

The general idea behind the thresholding is that Bs,k(x, y) = 1, if and only

if Fs,k(x, y) is significantly higher than “normal.” Thus, if Fs,k(x, y) exceeds a

threshold value, it indicates the presence of a strong pattern at pixel (x, y). In

other words,

Bs,k(x, y) =

 1, if Fs,k(x, y) > t

0, else.
(6.1)
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(a)

(b) (c)

Figure 6.1: (a) A harbor instance with a white border specifying the object
region; The quasi-periodic texture motifs of harbors are (b) boats moored side
by side, and (c) periodic rows of boats separated by water (bottom).
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While there may be several ways of arriving at a threshold t, we propose the

following two methods.

Thresholding Method 1:

In this method, Bs,k(x, y) = 1 iff Fs,k(x, y)� E [Fs,∗(x, y)], where E [Fs,∗(x, y)] is

the expected output at any pixel at scale s considering all orientations. In other

words,

Bs,k(x, y; β) =

 1, if Fs,k(x, y) > βE [Fs,∗(x, y)]

0, else.
(6.2)

The expected values are computed in practice as means over a set of training

images, which are chosen to have enough diversity to cover most patterns. If

we assume that the image under analysis is diverse enough, the means can be

computed over the image instead of a training set. The β’s need not be the same

for all scales and can be tuned toward a given task.

Thresholding Method 2:

In this method, Bs,k(x, y; tp) = 1 iff cdf (Fs,k(x, y)) > tp, where cdf stands for the

cumulative distribution function, and tp is a user-specified percentile cut-off. For

example, tp = 0.95 if we want to retain only pixels with Fs,k(x, y) greater than

that of 95% of all pixels. As in the previous case, the cdf can be approximated

over a training set or over the image under analysis.

In our experiments, we choose to use the first method because of its relative

computational simplicity. The effect of thresholding on attentional focus is illus-

trated in Fig. 6.3. As shown in Fig. 6.2, two Gabor filters are chosen at frequencies

and orientations close to that of the two patterns in Fig. 6.1(b) and Fig. 6.1(c).

The outputs obtained by convolving these filters with the image in Fig. 6.1(a)
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Figure 6.2: Two Gabor filters are shown, one at the top left corner and the
other on the right half. These are chosen at frequencies and orientations close
to that of the two near-periodic patterns, namely boats parked side by side
and rows of boats (Fig. 6.1(b,c)).

are shown in Fig. 6.3(a) and Fig. 6.3(b). Figures 6.3(c-f) show the effect of β in

(6.2) on the focussing mechanism. As β increases, higher outputs and therefore

patterns with stronger periodicity are isolated.

6.4 The Model Framework

As mentioned earlier, a quasi-periodic texture motif of an object is parametrized

by one or more characteristic scales and orientations. Suppose we perform the

analysis using a filter bank with S scales and K filter orientations as given by

(3.4). Let a row of parked cars in a parking lot form a near-periodic pattern

at a certain scale s and orientation1 k. Then T (s, k) denotes the “row of cars”

texture motif of the “parking lot” object. For detecting parking lots, it helps

to focus attention on regions where Bs,k(x, y) = 1, since these are likely to con-

tain T (s, k). In general, a texture motif may be parametrized by more than one

scale and orientation, and is denoted as T ({(si, ki)}), where {(si, ki)} are the

1k is actually the orientation index of the filter. The actual orientation (in radians) is given
by θ = kπ/K. Also note that lower scales s correspond to higher filter frequencies.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: The top row shows the outputs obtained by convolving the two
filters in Fig. 6.2 with the image in Fig. 6.1(a). The middle row shows the
result of thresholding the outputs by the application of (6.2) with β = 3. The
bottom row shows the thresholding result with β = 6. Note that as β increases,
higher outputs and therefore patterns with stronger periodicity are isolated.
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set of corresponding scales and orientations. We denote the set of texture motifs

corresponding to an object as

T = {Ti ({(sij, kij)}) ; i = 1, . . . , NT }, (6.3)

where NT is the number of texture motifs. Each texture motif Ti has a cor-

responding set {(sij, kij)} of characteristic scales and orientations. To achieve

rotation invariance2, kij are not specified in an absolute manner. Rather relations

between them are specified.

It is best to illustrate the modeling framework with an example object. Con-

sider the harbor example in Fig. 6.1(a). Figures 6.1(b) and 6.1(c) show two quasi-

periodic texture motifs of the harbor. The first corresponds to boats moored side

by side and the second to periodic rows of boats separated by water. Further-

more, the boats are moored in a direction perpendicular to the rows of boats. In

notation, the two motifs are represented as T1 (s1, k1) and T2 (s2, k2). Since T1

and T2 are perpendicular, we have∣∣∣∣k1π

K
− k2π

K

∣∣∣∣ =
π

2
⇒ |k1 − k2| =

K

2
. (6.4)

Furthermore, since the separation between rows of boats is much larger than that

between individual boats, we have s1 < s2.

Given the constraints of the problem |k1 − k2| = K/2 and s1 < s2, the model

learning process comprises the generation of plausible hypotheses for (s1, k1) and

(s2, k2). By allowing humans to specify such constraints, it is possible to greatly

reduce the combinatorial learning complexity and obtain more intuitive and ac-

curate results.
2The aerial images are assumed to be scale-normalized. This is feasible since the ground

resolution of the images is usually known.
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6.4.1 Detection Algorithm

We shall first discuss the detection algorithm, since it is made use of in the

learning phase as well. Different objects have different constraints and numbers

of motifs. Instead of devising a complicated general detection algorithm, we shall

describe a simple one applied to harbors alone. Following a similar approach,

detection algorithms can devised for objects with different constraints. In the

case of harbors, we have two texture motifs T1 (s1, k1) and T2 (s2, k2), with the

constraints |k1 − k2| = K/2 and s1 < s2.

The idea behind the detection scheme is thus. Let us assume a value for

β in (6.2). The harbor object contains regions3 with Bs1,k1(x, y; β) = 1 and

Bs2,k2(x, y; β) = 1 at some proximity (p) with each other (perhaps overlapping).

Therefore, if we find a pair of regions in an image with proximity p, one with

Bs1,k1(x, y; β) = 1 and the other with Bs2,k2(x, y; β) = 1, such that s1 < s2 and

|k1− k2| = K/2, then the pair is likely to lie inside a harbor object. Note that as

β is decreased and p is increased, more regions are likely to be hypothesized as

harbors.

Let R1 and R2 be two regions in an image. Let us define their proximity

P (R1, R2) as the distance between their closest pixels. In order to determine if

P (R1, R2) < p, we employ the following method. Let Dm(R) denote a morpho-

logical m-pixel dilation of region R. If the dilated regions Dp/2(R1) and Dp/2(R2)

overlap (share pixels), it means that the distance between R1 and R2 is less than p,

i.e. P (R1, R2) < p. The morphological m-pixel dilation is a quick way of verifying

3In the detection framework, a region shall refer to a connected group of pixels. When we
refer to “a region R with Bs,k(x, y;β) = 1,” we mean that Bs,k(x, y;β) = 1 ∀(x, y) ∈ R
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closeness between regions as well as patching gaps between them.

Algorithm 6.1 describes a method for detecting harbors. The input is an

image O(x, y) and the output is an indicator function I(x, y; β) that is 1 if (x, y)

is detected as being inside the object, and 0 if it is not (for a given β). We denote

by I(R; β) = 1, the operation I(x, y; β) = 1 ∀(x, y) ∈ R. Note that our aim here

is not to provide a precise segmentation but to detect regions where there is a

high confidence of a harbor being present. The extracted regions may be further

processed for verification or precise segmentation.

6.4.2 Generating Model Hypotheses

We start with a training set of No example images containing the object, given

by

O = {O1, O2 . . . , ONo}. (6.5)

For each training image, the region corresponding to the object is manually spec-

ified in the form of a mask (the interior of the white border in Fig. 6.1(a)). For a

training image Oi, the mask Mi is a binary image given by

Mi(x, y) =

 1, if (x, y) lies inside the object

0, else.
(6.6)

The set of corresponding object masks is given by

M = {M1, M2 . . . , MNo}. (6.7)

Suppose we apply a detection algorithm such as Algorithm 6.1 on a training

image Oi. Let Ii(x, y; β) be the resulting indicator function after detection. Then
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Algorithm 6.1 Harbor Detection

1: Input image O(x, y)

2: Output indicator function I(x, y; β)

3: Given parameters s1, s2, β (in (6.2)) and proximity p

4: Dm(R): Morphological m-pixel dilation of a connected region R

5: P (R1, R2): Proximity between regions R1 and R2

6: for k1 = 1 to K do

7: k2 = (k1 + K
2
) mod K

8: R1i: all connected regions with Bs1,k1(x, y) = 1

9: R2j: all connected regions with Bs2,k2(x, y) = 1

10: for all i do

11: for all j do

12: if P (R1i, R2j) < p then

13: I(Dp/2(R1i); β) = 1

14: I(Dp/2(R2j); β) = 1

15: end if

16: end for

17: end for

18: end for
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the precision Pi(β) and recall Ri(β) of detection is given by

Pi(β) =

∑
j Mi(xj, yj)Ii(xj, yj; β)∑

j Ii(xj, yj; β)
, and (6.8)

Ri(β) =

∑
j Mi(xj, yj)Ii(xj, yj; β)∑

j Mi(xj, yj)
, (6.9)

where (xj, yj) are indexed over all the pixels in training image Oi. The precision

and recall over the whole training set are given by

P(β) =

∑
iPi(β)

No

, and (6.10)

R(β) =

∑
iRi(β)

No

. (6.11)

Given P(β) and R(β), the F-measure Fα(β) over the training set is given by

(4.20), where α is the relative weight placed on precision over recall.

The idea behind the model learning process is to learn the hypotheses that

maximize Fα(β) for given α. In the case of harbors, a hypothesis includes scale

s1 for the first motif, s2 for the second motif, and β. Given a training set O

and the set of masks M, Algorithm 6.2 is used to compute the best hypothesis

Hα = (s1, s2, β). Note that the constraint s1 < s2 is tightened to s1 ≤ s2 + sdiff ,

since it is observed that the frequencies of the two motifs have quite a large

difference.

6.5 Experiments

Harbors are a suitable object for demonstration of object detection by means of

quasi-periodic texture motifs. We use a dataset of ten harbor instances (No = 10).

Fig. 6.4 shows the training set from which we learn the model hypothesis Hα using

Algorithm 6.2.
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Algorithm 6.2 Harbor hypotheses generation

1: Given parameter α of the F-measure Fα(β)

2: Given training set O and the set of masksM

3: Hα ← φ

4: Fmax ← 0

5: for β = βmin : βstep : βmax do

6: for s1 = 0 to S − sdiff − 1 do

7: for s2 = s1 + sdiff to S − 1 do

8: if Fα(β) > Fmax then

9: Fmax ← Fα(β)

10: Hα ← (s1, s2, β)

11: end if

12: end for

13: end for

14: end for
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The Gabor filter bank (in (3.4)) used for analysis has S = 10 scales and K = 12

orientations. The frequency range of the filters is 0.02 cycles/pixel at the highest

scale (s = 9) to 0.25 cycles/pixel at the lowest (s = 0). In our experiments,

the learning parameters of Algorithm 6.2 are as follows: βmin = 4, βstep = 1,

βmax = 10, and sdiff = 4. The proximity parameter p is Algorithm 6.1 is set to

80 pixels. Since the Gabor filter kernel is a square with a side of 365 pixels, our

analysis excludes a border of half that size (182 pixels) around each test image.

This is to ensure that the kernel always lies entirely inside the image.

The model learning process using Algorithm 6.2 with α = 2 gives the hypoth-

esis H2 = (1, 8, 5). This means that the texture motifs of the harbor are learned

to be T1 (1, k1) and T2 (8, k2), such that |k1 − k2| = K/2. With α = 10, we get

the hypothesis H10 = (0, 9, 7). Fig. 6.5 and Fig. 6.6 show the harbor detection

results for different α. The test images are shown in the left column with a white

border around the desired object. The middle column shows the detection results

for α = 2 and the right column for α = 10. Note that with higher α, there are

fewer false alarms but more missed regions.

Fig. 6.7 and Fig. 6.8 show detection results from running Algorithm 6.1 on

larger geospatial images containing several harbors. Observe that most of the

significant harbor regions are correctly extracted. With α = 2, a few spurious

regions are detected as harbors. The morphological dilation and texture neigh-

borhood effects may account for some of the spurious regions just around the

harbors. These could be removed by post-processing. Fig. 6.9 is a geospatial

image intended to test whether the algorithm is fooled by an image with no har-

bor regions. The algorithm performs favorably at α = 10 and detects almost no
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harbor regions. A small false-alarm region is detected, which may be removed on

account of its size.

6.6 Summary of Contribution

In this chapter, we discuss the detection of objects with quasi-periodic texture

motifs. These are texture motifs that contain nearly periodic patterns at one or

more scales and orientations. To detect such objects, it is sufficient to perform

analysis using Gabor filters at characteristic scales and orientations. Therefore,

it is possible to avoid high-dimensional features that capture the “amount” of

texture using a filter bank of several scales and orientations.

The modeling and detection framework proposed in this chapter deviates from

the high-dimensional frameworks presented in the previous chapters, while still

preserving the central notion of texture motifs. Methods are presented for learn-

ing relations between the characteristic scales and orientations of a texture motif

from object examples. This constitutes the modeling phase, whose output is a

set of textural rules or hypotheses characterizing the motif. The learning frame-

work also makes it possible for humans to specify constraints that reduce the

combinatorial learning complexity. The object detection phase involves searching

for regions that obey these textural rules. Experimental results on the harbor

object demonstrate the effectiveness of this approach in detecting objects with

quasi-periodic texture motifs.
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(a) (b)

(c) (d)

(e)

Figure 6.4: The instance dataset for the harbor object. The borders of the
object regions (masks) are indicated in white.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.5: Harbor detection using Algorithm 6.1 using the best hypothesis
learned from Algorithm 6.2. The left column shows the test image with a
white border around the desired object. The middle column shows the detected
regions with α = 2 (H2 = (1, 8, 5)). The right column shows the detected
regions with α = 10 (H10 = (0, 9, 7)). Note that with higher α, there are fewer
false alarms but more missed regions.
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(a) (b) (c)

(d) (e) (f)

Figure 6.6: Continuation of Fig. 6.5.
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(a)

(b) (c)

Figure 6.7: (a) A large geospatial image from which we desire to extract har-
bors; (b) The harbor regions extracted from (a) with the application of Algo-
rithm 6.1 with α = 2 (H2 = (1, 8, 5)); and (c) The harbor regions extracted
with α = 10 (H10 = (0, 9, 7)).
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(a)

(b) (c)

Figure 6.8: (a) A large geospatial image from which we desire to extract har-
bors; (b) The harbor regions extracted from (a) with the application of Algo-
rithm 6.1 with α = 2 (H2 = (1, 8, 5)); and (c) The harbor regions extracted
with α = 10 (H10 = (0, 9, 7)).
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(a)

(b)

Figure 6.9: The detection algorithm does not get fooled by this geospatial
image that contains no harbor regions. The algorithm performs favorably at
α = 10 and detects almost no harbor regions. A small false-alarm region is
detected, which may be removed on account of its size.
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Conclusion

This dissertation focusses on filling two important gaps in enabling the detection

of compound objects in geospatial images. These are 1) the exploitation of the

potential of frequency-domain texture analysis, and 2) example-based learning of

appearance models for objects. The detection of geospatial objects with simple

geometric or shape models such as buildings, roads, vehicles, etc., has been ex-

plored adequately in the literature. This is not the case for compound objects,

such as harbors and golf courses, characterized by several “parts” and their spatial

layout. Furthermore, appearance models (prior knowledge about object appear-

ance) for compound geospatial objects have traditionally been encoded a priori

into the system by humans and not learned from object examples.

In previous work, compound objects are described using mainly spatial (pixel

intensity) domain methods, such as image segmentation, edge detection/linking,

and graphical modeling. However, purely spatial methods are crippled by several

obstacles, including 1) the large number of parts in compound geospatial objects,
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2) the variation in structural relations among parts from one object instance

to another, and 3) the large dimensions (in pixels) of geospatial images. By

incorporating information from the frequency domain (fourier spectrum), it is

possible to mitigate these obstacles and make object detection and model learning

feasible.

In this dissertation, methods that perform analysis in both spatial and fre-

quency domains are proposed for modeling and detecting objects in geospatial

images. These methods exploit joint space-frequency localization techniques de-

veloped in the framework of texture analysis. In particular, Gabor filter-based

texture analysis is shown to provide a compact description of the visual structure

in objects and gracefully handle variations in their appearance. Despite this fact,

there is relatively little use of the efficient methods of frequency-domain texture

analysis for detecting geospatial objects.

We propose the use of texture motifs for modeling and detecting geospatial

objects. A texture motif of an object is a spatially recurrent pattern characteristic

of the object. Thus, the pattern formed by boats and water is a texture motif of a

harbor, and the arrangement of trees and grass is a texture motif of a golf course.

Three approaches are proposed in this dissertation for learning texture motif

representations from object examples and detecting objects based on the learned

models. Experimental results demonstrate the effectiveness of these approaches

in detecting compound geospatial objects.

In the first approach, a two-layered model is proposed for representing texture

motifs. Using low-level texture features based on Gabor filters, the first layer

learns the local intensity variations in the motif that form “textural elements”
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such as flat areas, bars, edges, and so on. This is done using a semi-supervised

statistical approach that accounts for the different possible orientations of the

texture elements. The second layer of the representation is the spatial distribu-

tion of low-level texture elements in the motif, since this influences its distinct

visual appearance. A Gaussian mixture model (GMM) for this is learned from

examples using features derived from histograms of texture elements in spatial

neighborhoods. Confidence measures generated using this model are then used

for detecting object presence.

The second approach adopts a hidden Markov modeling (HMM) framework

for learning adjacency relations between elements. One-dimensional HMMs are

used for modeling sequences of texture features sampled along a line (in a certain

direction) in the object. The texture elements of the motif are learned as the

states of the HMM, and the state transitions from one pixel to the next describe

the spatial arrangement of the elements. In this approach, it is possible to combine

the two layers of the previous approach into a single stage of learning.

In the third approach, we address the detection of objects with quasi-periodic

texture motifs, e.g. harbors. When a texture motif comprises nearly periodic

patterns at one or more scales and orientations, it is possible to avoid representing

it in a high-dimensional space. Texture motifs are viewed as patterns that respond

strongly to Gabor filters at certain scales and orientations. Objects are detected

by identifying regions that obey certain “textural rules,” which are in the form

of relations involving characteristic scales, orientations, and proximity of texture

motifs. These rules can be fully user-specified or learned from examples with

user-specified constraints. This paradigm has the advantage of avoiding the issues
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related to clustering and density estimation in high-dimensional spaces.

7.1 Future Directions

For robust object detection, it is necessary to account for variations in the

scale and orientation of the object. The object should be detected irrespective

of its orientation and size in the parent image. While the methods proposed in

this dissertation do handle variations in orientation, scale invariance is still an

outstanding issue. The scale of a geospatial object is determined by the ground

resolution1 of the parent image, which is usually specified. Therefore, the scale

invariance problem can be handled by extracting features using Gabor filters

whose scale parameters are tied to the ground resolution of the image. Suppose

a feature is extracted with a Gabor filter of frequency 0.1 cycles/pixel (period

10 pixels) from an image with ground resolution 1 m/pixel. In order to extract

the same feature from an image with ground resolution 2 m/pixel, a Gabor filter

of frequency 0.2 cycles/pixel (period 5 pixels) needs to be used. By computing

feature vectors with a range of scales proportional to the ground resolution, scale

invariant object detection can be achieved.

In Chapter 4, the constituent elements in a texture motif are learned as the

first layer of its representation. Ideally, a global set of texture elements should be

learned across all objects since elements are often shared among texture motifs.

However, in this work the elements are learned separately for each object. This

is to ensure that the dimensionality of the spatial histogram feature in (4.12) is

1The ground resolution of a geospatial image is the number of meters on the ground covered
by one image pixel, e.g. one meter/pixel.
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low. A useful project is to build a base of texture elements across all objects.

Given a texture motif, a subset of the “most relevant” elements could be chosen

for building the second layer of its representation.

The issue of utilizing selected scales of the texture feature vector of (3.6) was

brought up in Chapter 5. However, the problem of automatically selecting the

optimal set of scales for detecting an object has not been addressed in this work.

Various goal-driven feature selection methods such as projection pursuit [33] have

been studied in the literature. It is worthwhile to apply some of these results

toward boosting the accuracy of object detection.

In Chapter 5, one-dimensional hidden Markov models (HMMs) were used for

learning texture motif representations. The framework of the one-dimensional

HMM was adopted for the sake of computational simplicity. However, such a

model overlooks the two-dimensional nature of texture motifs. With the appro-

priate computational resources, it should be possible to explore the application of

more complex two-dimensional HMM frameworks [40, 20] to the object detection

problem.

Finally, it should be observed that though texture is an important feature in

object detection, it is by no means the only one. The combination of texture with

other features, such as color and shape, could increase the robustness of object

detection. Knowledge-guided segmentation schemes [75, 74] could be explored as

a means of combining different features and models, with the goal of improving

both the reliability and precision of object detection.

151



Bibliography

[1] E. P. Baltsavias, A. Gruen, and L. V. Gool, editors. Automatic extraction of
man-made objects from aerial and space images (III). A. A. Balkema, 2001.

[2] S. Berberoglu, C. Lloyd, P. Atkinson, and P. Curran. The integration of spec-
tral and textural information using neural networks for land cover mapping
in the Mediterranean. Computers & Geosciences, 26:385–396, 2000.
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