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Abstract
We propose a framework for extracting structure from

stereo which represents the scene as a collection of approx-
imately planar layers. Each layer consists of an explicit
3D plane equation, a colored image with per-pixel opac-
ity (a sprite), and a per-pixel depth offset relative to the
plane. Initial estimates of the layers are recovered using
techniques taken from parametric motion estimation. These
initial estimates are then refined using a re-synthesis algo-
rithm which takes into account both occlusions and mixed
pixels. Reasoning about such effects allows the recovery
of depth and color information with high accuracy, even
in partially occluded regions. Another important benefit of
our framework is that the output consists of a collection of
approximately planar regions, a representation which is far
more appropriate than a dense depth map for many appli-
cations such as rendering and video parsing.

1 Introduction
Although extracting scene structure using stereo has

long been an active area of research, the recovery of ac-
curate depth information still remains largely unsolved.
Most existing algorithms work well when matching fea-
ture points or highly textured regions, but perform poorly
around occlusion boundaries and in untextured regions.

A common element of many recent attempts to solve
these problems is explicit modeling of the 3D volume of
the scene [37, 13, 8, 25, 26, 30]. The scene volume is
discretized, often in terms of equal increments of disparity,
rather than into equally sized voxels. The goal is then to
find the voxels which lie on the surfaces of the objects in
the scene. The major benefits of such approaches include,
the equal and efficient treatment of a large number of im-
ages [8], the possibility of modeling occlusions [13], and
the detection of mixed pixels at occlusion boundaries to
obtain sub-pixel accuracy [30]. Unfortunately, discretizing
space volumetrically introduces a huge number of degrees
of freedom, and leads to sampling and aliasing artifacts.

Another active area of research is the detection of para-
metric motions within image sequences [1, 34, 12, 9, 15,
14, 24, 5, 36, 35]. Here, the goal is the decomposition of

∗The research described in this paper was conducted while the first
author was a summer intern at Microsoft Research.

the images into sub-images, commonly referred to aslay-
ers,such that the pixels within each layer move in a manner
consistent with a parametric transformation. The motion of
each layer is determined by the values of the parameters.
An important transformation is the 8–parameter homog-
raphy (collineation), because it describes the motion of a
rigid planar patch as either it or the camera moves [11].

While existing techniques have been successful in de-
tecting multiple independent motions, layer extraction for
scene modeling has not been fully developed. One fact
which has not been exploited is that, when simultaneously
imaged by several cameras, each of the layers implicitly
lies on a fixed plane in the 3D world. Another omission
is the proper treatment of transparency. With a few excep-
tions (e.g. [27, 3, 18]), the decomposition of an image into
layers that are partially transparent has not been attempted.
In contrast, scene modeling using multiple partially trans-
parent layers is common in the graphics community [22, 6].

In this paper, we present a framework for reconstructing
a scene as a collection of approximately planar layers. Each
of the layers has an explicit 3D plane equation and is recov-
ered as asprite, i.e. a colored image with per-pixel opacity
(transparency) [22, 6, 32, 20]. To model a wider range of
scenes, a per-pixel depth offset relative to the plane is also
added. Recovery of the layers begins with the iteration of
several steps based on techniques developed for paramet-
ric motion estimation, image registration, and mosaicing.
The resulting layer estimates are then refined using a re-
synthesis step which takes into account both occlusions and
mixed pixels in a similar manner to [30].

Our layered approach to stereo shares many of the ad-
vantages of the aforementioned volumetric techniques. In
addition, it offers a number of other advantages:
• The combination of the global model (the plane) with

the local correction to it (the per-pixel depth offset)
results in very robust performance. In this respect, the
framework is similar to theplane + parallaxwork of
[19, 23, 29], themodel-based stereowork of [10], and
theparametric motion + residual optical flowof [12].
• The output (a collection of approximately planar re-

gions) is more suitable than a discrete collection of
voxels for many applications, including, rendering
[10] and video parsing [15, 24].
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Figure 1:SupposeK imagesIk are captured byK camerasPk.
We assume that the scene can be represented byL sprite images
Ll on planesnTl x = 0 with depth offsetsZl. The boolean masks
Bkl denote the pixels in imageIk from layerLl and the masked
images are given byMkl = Bkl · Ik.

1.1 Basic Concepts and Notation
We use homogeneous coordinates for both 3D world co-

ordinatesx = (x, y, z, 1)T and for 2D image coordinates
u = (u, v, 1)T . The basic concepts of our framework are
illustrated in Figure 1. We assume that the input consists
of K imagesI1(u1), I2(u2), . . . , IK(uK) captured byK
cameras with known projection matricesP1,P2, . . . ,PK .
(In what follows, we drop the image coordinatesuk unless
they are needed to explain a warping operation explicitly.)
We wish to reconstruct the world as a collection ofL ap-
proximately planar layers. Following [6], we denote a layer
sprite withpre-multiplied opacitiesby:

Ll(ul) = (αl · rl, αl · gl, αl · bl, αl) (1)

whererl = rl(ul) is the red band,gl = gl(ul) is the green
band,bl = bl(ul) is the blue band, andαl = αl(ul) is the
opacity. We also associate a homogeneous vectornl with
each layer (which defines the plane equation of the layer
via nTl x = 0) and a per-pixel residual depth offsetZl(ul).

Our goal is to estimate the layer spritesLl, the plane
vectorsnl, and the residual depthsZl. To do so, we wish
to use techniques for parametric motion estimation. Un-
fortunately, most such techniques assume boolean-valued
opacitiesαl (i.e., unique layer assignments). We therefore
split our framework into two parts. In the first part, de-

Initialize Layers

Iteration

Estimate Plane Equations n l

Assign Pixels to Layers Bkl

Estimate Residual Depth Z l

Input: Images I  and cameras Pk k

Output: n  , L  , and Zll l

Estimate Layer Sprites L  l

Refine Layer Sprites L  l

 Boolean 
Opacities

Real Valued 
  Opacities

(Section 2.4)

(Section 2.5)

(Section 2.3)

(Section 2.2)

(Section 2.1)

(Section 3)

Figure 2: We wish to compute the layer spritesLl, the layer
plane vectorsnl, the residual parallaxZl, and the boolean mask
imagesBkl. After initializing, we iteratively compute each quan-
tity in turn fixing the others. Finally, we refine the layer sprite
estimates using a re-synthesis algorithm.

scribed in Section 2, we assume boolean opacities to get
a first approximation to the structure of the scene. If the
opacities are boolean, each point in each imageIk is only
the image of a point on one of the layersLl. We therefore
introduce boolean masksBkl which denote the pixels in
imageIk that are images of points on layerLl. So, in addi-
tion toLl, nl, andZl, we also need to estimate the masks
Bkl. Once we have estimates of the masks, we immedi-
ately compute masked input imagesMkl = Bkl · Ik (see
Figure 1). In the second part of our framework, we use the
initial estimates of the layers made by the first part as input
into a re-synthesis algorithm which refines the layer sprites
Ll, including the opacitiesαl. This second step requires a
generative or forward model of the image formation pro-
cess and is discussed in Section 3.

In Figure 2 we illustrate the processing steps of the
framework. Given any three ofLl, nl, Zl, andBkl, there
are techniques for estimating the remaining one. The first
part of our framework therefore consists of first initializing
these four quantities, and then iteratively estimating each
one while fixing the other three. After good initial esti-
mates of the layers are obtained, we move on to the second
part of the framework in which we use real valued opacities
and refine the entire layer sprites, including the opacities.
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2 Initial Computation of the Layers
2.1 Initialization of the Layers

Initialization of the layers is a difficult task, which is
inevitably somewhat ad-hoc. A number of approaches have
been proposed in the parametric motion literature:
• Randomly initialize a large number of small layers,

which grow and merge until a small number of layers
remain which accurately model the scene [34, 24, 5].
• Iteratively apply dominant motion extraction [15, 24],

at each step applying the algorithm to the residual re-
gions of the previous step.
• Perform a color segmentation in each image, match

the segments, and use as the initial assignment [2].
• Apply a simple stereo algorithm to get an approximate

depth map, and then fit planes to the depth map.
• Get a human to initialize the layers. (In many applica-

tions, such as model acquisition [10] and video pars-
ing [24], the goal is a semi-automatic algorithm and
limited user input is acceptable.)

In this paper, we assume a human has initialized the layers.
As discussed in Section 5, fully automating the framework
is left as future work.
2.2 Estimation of the Plane Equations

To compute the plane equation vectornl we need to map
the pixels in the masked imagesMkl onto the plane defined
by nTl x = 0. If x is a 3D world coordinate of a point and
uk is the image ofx in cameraPk, we have:

uk = Pkx (2)

where equality is in the 2D projective spaceP2 [11]. Since
Pk is of rank 3, it follows that:

x = P∗kuk + spk (3)

whereP∗k = PT
k (PkPT

k )−1 is the pseudo-inverse of the
camera matrixPk, s is an unknown scalar, andpk is a
vector in the null space ofPk, (i.e. Pkpk = 0). If x lies
on the planenTl x = 0 we have:

nTl P∗kuk + snTl pk = 0. (4)

Solving this equation fors, substituting into Equation (3),
and rearranging yields:

x =
(
(nTl pk)I− pknTl

)
P∗kuk. (5)

The importance of Equation (5) is that it allows us to map
a pixel coordinateuk in imageMkl onto the point on the
planenTl x = 0, of which it is the image. So, we can now
map this point onto its image in another cameraPk′ :

uk′ = Pk′
(
(nTl pk)I− pknTl

)
P∗kuk ≡ Hl

kk′uk (6)

whereHl
kk′ is a homography (collineation ofP2 [11]).

Equation (6) describes the mapping between the two im-
ages which would hold if the pixels were all images of

points on the planenTl x = 0. Using this relation, we can
warp all of the masked images onto the coordinate frame of
one distinguished image1 (w.l.o.g. imageM1l) as follows:(

Hl
1k ◦Mkl

)
(u1) ≡ Mkl

(
Hl

1ku1

)
. (7)

Here,Hl
1k ◦Mkl is the masked imageMkl warped into the

coordinate frame ofM1l.
The property which we use to computenl is that, assum-

ing the pixel assignments to the layersBkl are correct, the
world is piecewise planar, and the surfaces are Lambertian,
the warped imagesHl

1k ◦Mkl should agree with each other
where they overlap. There are a number of functions which
can be used to measure the degree of consistency between
the warped images, including least squares [4] and robust
measures [9, 24]. In both cases, the goal is the same: find
the plane equation vectornl which maximizes the degree
of consistency. Typically, this extremum is found using
some form of gradient decent, such as the Gauss-Newton
method, and the optimization is performed in a hierarchi-
cal (i.e. pyramid based) fashion to avoid local extrema [4].
To apply this standard approach [31], we simply need to de-
rive the Jacobian of the image warpHl

1k with respect to the
parameters ofnl. This is straightforward from Equation (6)
because we know the cameras matricesPk.
2.3 Estimation of the Layer Sprites

Before we can compute the layer spritesLl, we need to
choose 2D coordinate systems for the planes. Such coor-
dinate systems can be specified by a collection of arbitrary
(rank 3) camera matricesQl.2 Then, similarly to Equa-
tions (5) and (6), we can show that the image coordinates
uk of the pixel in imageMkl which is projected onto the
pixel ul on the planenTl x = 0 is given by:

uk = Pk

(
(nTl ql)I− qlnTl

)
Q∗l ul ≡ Hl

kuk (8)

whereQ∗l is the pseudo-inverse ofQl, andql is a vector
in the null space ofQl. The homographyHl

k can be used
to warp the imageMkl forward onto the coordinate frame
of the planenTl x = 0, the result of which is denotedHl

k ◦
Mkl. Then, we can estimate the layer sprite (with boolean
opacities) byblendingthe warped images:

Ll =
K⊕
k=1

Hl
k ◦Mkl (9)

1It is possible to add an extra 2D perspective coordinate transforma-
tion here. SupposeH is an arbitrary homography. We could warp each
masked image ontoH ◦Hl

1k ◦Mkl(u1) ≡Mkl(HHl
1ku1). The addi-

tion of the homographyH can be used to remove the dependence on one
distinguished image, as advocated by Collins [8].

2A suitable choice forQl would be one of the camera matricesPk,
in which case Equation (8) reduces to Equation (6). Another interesting
choice is one in which the null space ofQl is perpendicular to the plane
defined bynl, and the pseudo-inverse maps the coordinate axes onto per-
pendicular vectors in the plane (i.e. a camera with a frontal image plane).
Note that often we do not want a fronto-parallel camera, since it may un-
necessarily warp the input images.
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where
⊕

is the blending operator. There are a number of
ways in which blending could be performed. One simple
method would be to take the mean of the color values. A
refinement would be to use afeatheringalgorithm such as
[28], where the average is weighted by the distance of each
pixel from the nearest invisible pixel (i.e.α = 0) in Mkl.
Alternatively, robust techniques could be used to estimate
Ll. The simplest such example is the median operator, but
more sophisticated alternatives exist.

An unfortunate effect of the blending in Equation (9)
is that averaging tends to increase image blur. Part of the
cause is non-planarity in the scene (which is modeled in
Section 2.4), but image noise and resampling error also
contribute. One simple method of compensating for this
effect is todeghostthe sprites [28]. Another solution is
to use image enhancement techniques such as [16, 21, 7],
which can even be used to obtain super-resolution sprites.
2.4 Estimation of the Residual Depth

In general, the scene will not be piecewise planar. To
model any non-planarity, we allow the pointul on the plane
nTl x = 0 to be displaced slightly. We assume it is displaced
in the direction of the ray throughul defined by the cam-
era matrixQl. The distance it is displaced is denoted by
Zl(ul), as measured in the directionnormal to the plane.
In this case, the homographic warps used in the previous
section are not applicable, but using a similar argument, it
is possible to show (see also [19, 23]) that:

uk = Hl
kul + w(ul)Zl(ul)tkl (10)

whereHl
k = Pk

(
(nTl ql)I− qlnTl

)
Q∗l is the planar ho-

mography of Section 2.3,tkl = Pkql is the epipole, and it
is assumed that the vectornl = (nx, ny, nz, nd)T has been
normalized such thatn2

x + n2
y + n2

z = 1. The termw(ul)
is a projective scaling factor which equals the reciprocal of
Q3
l x, whereQ3

l is the third row ofQl andx is the world
coordinate of the point. It is possible to writew(ul) as a
linear function of the image coordinatesul, but the depen-
dence onQl andnl is quite complicated and so the details
are omitted. Equation (10) can be used to map plane coor-
dinatesul backwards to image coordinatesuk, or to map
the imageMkl forwards onto the plane. We denote the re-
sult of this warp by(Hl

k, tkl, Zl) ◦Mkl, or more concisely
Wl

k ◦Mkl.
Almost any stereo algorithm could be used to compute

Zl(ul), although it would be preferable to use one favoring
small disparities. Doing so essentially solves a simpler (or
what Debevecet. al [10] term amodel-based) stereo prob-
lem. To compute the residual depth map, we initially set
Zl(ul) to be the value (in a range close to zero) which min-
imizes the variance of(Hl

k, tkl, Zl) ◦Mkl acrossk. After-
wards a simple smoothing algorithm is applied toZl(ul).
Once the residual depth offsets have been estimated, the
layer sprite images should be re-estimated using:

Ll =
K⊕
k=1

(Hl
k, tkl, Zl) ◦Mkl =

K⊕
k=1

Wl
k ◦Mkl (11)

rather than Equation (9).
2.5 Pixel Assignment to the Layers

The basis for the computation of the pixel assignments
is a comparison of the warped imagesWl

k ◦Mkl with the
layer spritesLl.3 If the pixel assignment was correct (and
neglecting resampling issues) these images should be iden-
tical where they overlap. Unfortunately, comparing these
images does not yield any information outside the current
estimates of the masked regions.

To allow the pixel assignments to grow, we take the old
estimates ofBkl and enlarge them by a few pixels to yield
new estimates̃Bkl. These new assignments can be com-
puted by iterating simple morphological operations, such
as settingB̃kl = 1 for the neighbors of every pixel for
which Bkl = 1. Enlarged masked images are then com-
puted using:

M̃kl = B̃kl · Ik (12)

and a new estimate of the layer sprite computed using:

L̃l =
K⊕
k=1

Wl
k ◦ M̃kl. (13)

(Here,Zl is enlarged inWl
k so that it declines to zero

smoothly outside the old masked region.) One small danger
of working withM̃kl andL̃l is that occluded pixels may be
blended together with unoccluded pixels and result in poor
estimates of thẽLl. A partial solution to this problem is to
use a robust blending operator such as the median. Another
part of the solution is, during the blend, weight pixels for
whichBkl = 1 more than those for whichBkl = 0 (and
B̃kl = 1). The weights should depend on the distance of
the pixel from the closest pixel for whichBkl = 1, in a
similar manner to thefeatheringalgorithm of [28].

Given L̃l, our approach to pixel assignment is as fol-
lows. We first compute a measurePkl(ul) of the likelihood
that a pixel inWl

k ◦ M̃kl(ul) is the warped image of the
pixel ul in the enlarged spritẽLl. There are a number of
ways of definingPkl. Perhaps the simplest is theresidual
intensity difference[24]:

Pkl = ‖L̃l −Wl
k ◦ M̃kl‖. (14)

Another is the magnitude of theresidual normal flow:

Pkl =
‖L̃l −Wl

k ◦ M̃kl‖
‖∇L̃l‖

. (15)

3Alternatively, we could compare the input imagesIk with the layer
sprite images warped back onto image coordinates(Wl

k)−1 ◦ Ll. This
means comparing the input image with a twice resampled, blended image.
Both blending and resampling tend to increase blur, so, even if the pixel
assignment was perfect, these images may well differ substantially.
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Locally estimated variants of the residual normal flow have
been used by Irani and coworkers [16, 17, 15]. A final
possibility would be to compute the optical flow between
Wl

k ◦ M̃kl andL̃l. Then a decreasing function of the mag-
nitude of the flow could be used forPkl.

Next,Pkl is warped back into the coordinate system of
the input imageIk to yield:

P̂kl = (Wl
k)−1 ◦ Pkl. (16)

This warping tends to blurPkl, but this is acceptable since
we will want to smooth the pixel assignment anyway.4 The
new pixel assignment can then be computed by choosing
the best possible layer for each pixel:

Bkl(uk) =
{

1 if P̂kl(uk) = minl′ P̂kl′(uk)
0 otherwise.

(17)

3 Layer Refinement by Re-Synthesis
In this section, we describe how the estimates of the

layer sprites can be refined, now assuming that their opaci-
tiesαl are real valued. We begin by formulating a genera-
tive model of the image formation process. Afterwards, we
propose a measure of how well the layers re-synthesize the
input images, and show how the re-synthesis error can be
minimized to refine the estimates of the layer sprites.

3.1 The Image Formation Process
We formulate the generative (forward) model of the im-

age formation process using image compositing operations
[6], i.e. by painting the sprites one over another in a
back-to-front order. The basic operator used to overlay the
sprites is theoveroperator:

F �B ≡ F + (1− αF )B, (18)

whereF andB are the foreground and background sprites,
andαF is the opacity of the foreground [22, 6]. This defini-
tion of the over operator assumes pre-multiplied opacities,
as in Equation (1). The generative model consists of the
following two steps:

1. Using the camera matrices, plane equations, and resid-
ual depths, warp each layer backwards onto the coor-
dinate frame of imageIk using the inverse of the oper-
ator in Section 2.4. This yields theun-warpedsprite:

Ukl = (Wl
k)−1 ◦ Ll. (19)

Note that the opacities should be warped along with
the color values [6].

4We may want to smoothPkl even more, e.g. using an isotropic
smoother such as a Gaussian. Other alternatives include, (1) performing a
color segmentation of each input image and only smoothing within each
segment in a similar manner to [2], and (2) smoothingPkl less in the di-
rection of the intensity gradient since strong gradients often coincide with
depth discontinuities and hence layer boundaries.

2. Composite the un-warped sprites in back-to-front or-
der (which can be computed from the plane equa-
tions):

Sk =
L⊙
l=1

Ukl = Uk1 � · · · � Ukl (20)

to obtain thesynthesizedimageSk. If we have solved
the stereo reconstruction problem, and neglecting re-
sampling issues,Sk should match the inputIk.

This last step can be re-written as three simpler steps:

2a. Compute thevisibility of each un-warped sprite [30]:

Vkl = Vk(l−1) (1−αk(l−1)) =
l−1∏
l′=1

(1−αkl′) (21)

whereαkl is the alpha channel ofUkl, andVk1 = 1.

2b. Compute the masked images,Mkl = VklUkl.

2c. Sum up the masked images,Sk =
∑L
l=1Mkl.

In these last three substeps, the visibility map makes the
contribution of each sprite pixel to the imageSk explicit.

3.2 Minimization of Re-Synthesis Error
As mentioned above, if the layer estimates are accurate,

the synthesized imageSk should be very similar to the in-
put imageIk. Therefore, we refine the layer estimates by
minimizing the prediction error:

C =
∑
k

∑
uk

‖Sk(uk)− Ik(uk)‖2 (22)

using a gradient descent algorithm. (In order to further con-
strain the space of possible solutions, we can add smooth-
ness constraints on the colors and opacities [30].) Rather
than trying to optimize over all of the parameters (Ll, nl,
andZl) simultaneously, we only adjust the sprite colors and
opacities inLl, and then re-run the previous motion estima-
tion steps to adjustnl andZl (see Figure 2 and Section 2).

The derivatives of the cost functionC with respect to
the colors and opacities inLl(ul) can be computed using
the chain rule [30]. In more detail, the visibility mapVkl
mediates the interaction between the un-warped spriteUkl
and the synthesized imageSk, and is itself a function of the
opacities in the un-warped spritesUkl. For a fixed warping
functionWl

k, the pixels inUkl are linear combinations of
the pixels in spriteLl. This dependence can either be ex-
ploited directly using the chain rule to propagate gradients,
or alternatively the derivatives ofC with respect toUkl can
be warped back into the reference frame ofLl [30].
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3: Results on theflower gardensequence: (a) first and (b) last input images; (c) initial segmentation into six layers;
(d) and (e) the six layer sprites; (f) depth map for planar sprites (darker denotes closer); front layer before (g) and after (h)
residual depth estimation.

(a) (b) (c)

(d) (e) (f)

Figure 4: Results on thesymposiumsequence: (a) third of five images; (b) initial segmentation into six layers; (c) recovered
depth map (darker denotes closer); (d) and (e) the five layer sprites; (f) residual depth image for fifth layer.
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(a) (b) (c)

Figure 5: 3D views of the reconstructedsymposiumscene: (a) re-synthesized third image (note extended field of view). (b)
novel view without residual depth; (c) novel view with residual depth (note the “rounding” of the people).

4 Experiments
To validate our approach, we experimented on two

multi-frame data sets. The first of these data sets is a stan-
dard motion sequence of a scene containing no indepen-
dently moving objects. The second consists of 40 images
taken simultaneously. The camera geometry is not given
for either sequence, so we used point tracking and a stan-
dard structure from motion algorithm to estimate the cam-
era matrices. Our experiments do not yet include the results
of applying the layer refinement step described Section 3.

To initialize our algorithm, we first decided how many
layers were required, and then performed a rough assign-
ment of pixels to layers by hand. Various automated tech-
niques for performing this initial labeling are described in
Section 2.1. Next, the automatic hierarchical parametric
motion estimation algorithm described in [31] was used to
find the 8-parameter homographies between the layers and
estimate the layer sprites. (For the experiments presented
in this paper, we setQl = P1, i.e. we reconstructed the
sprites in the coordinate system of the first camera.) Us-
ing the computed homographies, we found the best plane
estimate for each layer using a Euclidean structure from
motion algorithm [33].

The results of applying these steps to the MPEGflower
gardensequence are shown in Figure 3. Figures 3(a) and
(b) show the first and last image in the subsequence we used
(the first nine even images). Figure 3(c) shows the initial
pixel labeling into seven layers. Figures 3(d) and (e) show
the sprite images corresponding to each of the seven lay-
ers, re-arranged for more compact display. (These sprites
are actually the ones computed after residual depth esti-
mation.) Note that because of the blending that takes place
during sprite construction, each sprite is larger than its foot-
print in any one of the input images. Figure 3(f) shows a
depth map computed by painting every pixel with its corre-
sponding grey codedZ value, where darker denotes closer.

Once we have recovered the initial geometric structure,
we recompute the homographies by directly adjusting the
plane equations, as described in Section 2.2. We then run
the the residual depth estimation algorithm described in

Section 2.4 and recompute the sprites. Since the corre-
spondence is now much better across images, the resulting
sprites are much less blurry. Figure 3(g) shows the original
sprite obtained for the lower flower bed, while Figure 3(h)
shows the same sprite after residual depth estimation.

Our second set of experiments uses five images of a 40-
image stereo data set taken at a graphics symposium. Fig-
ure 4(a) shows the middle input image, Figure 4(b) shows
the initial pixel assignment to layers, Figure 4(c) shows
the recovered planar depth map, and Figure 4(f) shows
the residual depth map for one of the layers. Figures 4(d)
and (e) show the recovered sprites. Figure 5(a) shows the
middle image re-synthesized from these sprites. Finally,
Figures 5(b–c) show the same sprite collection seen from
a novel viewpoint (well outside the range of the original
views), first with and then without residual depth correc-
tion. The gaps in Figure 5 correspond to parts of the scene
which where not visible in any of the five input images.

5 Discussion
We have presented a framework for stereo reconstruc-

tion which represents the scene as a collection of approxi-
mately planar layers. Each layer consists of a plane equa-
tion, a layer sprite image, and a residual depth map. The
framework exploits the fact that each layer implicitly lies
on a fixed plane in the 3D world. Therefore, we only need
to recover three plane parameters per layer, independently
of the number of images. We also showed how an initial
estimate of the scene structure allows us to reason about
image formation. We proposed a forward model of image
formation, and derived a measure of how well the layers
re-synthesize the input images. Optimizing this measure
allows the layer sprites to be refined, and their opacities
estimated.

Our initial results are very encouraging, however further
work is required to complete an implementation of the en-
tire framework. In particular, we are currently implement-
ing the layer refinement algorithm described in Section 3.
Other areas which we are exploring include automatic ini-
tialization of the layers and more sophisticated pixel as-
signment strategies.
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[33] T. Viéville, C. Zeller, and L. Robert. Using collineations
to compute motion and structure in an uncalibrated image
sequence.IJCV, 20(3):213–242, 1996.

[34] J.Y.A. Wang and E.H. Adelson. Layered representation for
motion analysis. InCVPR ’93, pages 361–366, 1993.

[35] Y. Weiss. Smoothness in layers: Motion segmentation us-
ing nonparametric mixture estimation. InCVPR ’97, pages
520–526, 1997.

[36] Y. Weiss and E.H. Adelson. A unified mixture framework
for motion segmentation: Incorporating spatial coherence
and estimating the number of models. InCVPR ’96, pages
321–326, 1996.

[37] Y. Yang, A. Yuille, and J. Lu. Local, global, and multilevel
stereo matching. InCVPR ’93, pages 274–279, 1993.

441


