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Abstract the images into sub-images, commonly referred ttags

We propose a framework for extracting structure fromers,such that the pixels within each layer move in a manner
stereo which represents the scene as a collection of approx¢onsistent with a parametric transformation. The motion of
imately planar layers. Each layer consists of an explicit éach layer is determined by the values of the parameters.
3D plane equation, a colored image with per-pixel opac-An important transformation is the 8—parameter homog-
ity (a sprite), and a per-pixel depth offset relative to the raphy (collineation), because it describes the motion of a
plane. Initial estimates of the layers are recovered usingigid planar patch as either it or the camera moves [11].
techniques taken from parametric motion estimation. These While existing techniques have been successful in de-
initial estimates are then refined using a re-synthesis algotecting multiple independent motions, layer extraction for
rithm which takes into account both occlusions and mixedscene modeling has not been fully developed. One fact
pixels. Reasoning about such effects allows the recovenyhich has not been exploited is that, when simultaneously
of depth and color information with high accuracy, evenimaged by several cameras, each of the layers implicitly
in partially occluded regions. Another important benefit of lies on a fixed plane in the 3D world. Another omission
our framework is that the output consists of a collection ofis the proper treatment of transparency. With a few excep-
approximately planar regions, a representation which is fartions (e.g. [27, 3, 18]), the decomposition of an image into
more appropriate than a dense depth map for many applilayers that are partially transparent has not been attempted.

cations such as rendering and video parsing. In contrast, scene modeling using multiple partially trans-
. parentlayers is common in the graphics community [22, 6].
1 Introduction In this paper, we present a framework for reconstructing

Although extracting scene structure using stereo haa scene as a collection of approximately planar layers. Each
long been an active area of research, the recovery of aefthe layers has an explicit 3D plane equation and is recov-
curate depth information still remains largely unsolved.ered as @prite, i.e. a colored image with per-pixel opacity
Most existing algorithms work well when matching fea- (transparency) [22, 6, 32, 20]. To model a wider range of
ture points or highly textured regions, but perform poorly scenes, a per-pixel depth offset relative to the plane is also
around occlusion boundaries and in untextured regions. added. Recovery of the layers begins with the iteration of

A common element of many recent attempts to solveseveral steps based on techniques developed for paramet-
these problems is explicit modeling of the 3D volume ofric motion estimation, image registration, and mosaicing.
the scene [37, 13, 8, 25, 26, 30]. The scene volume iThe resulting layer estimates are then refined using a re-
discretized, often in terms of equal increments of disparitysynthesis step which takes into account both occlusions and
rather than into equally sized voxels. The goal is then tamixed pixels in a similar manner to [30].
find the voxels which lie on the surfaces of the objects in  Our layered approach to stereo shares many of the ad-
the scene. The major benefits of such approaches includeantages of the aforementioned volumetric techniques. In
the equal and efficient treatment of a large number of im-addition, it offers a number of other advantages:
ages [8], the possibility of modeling occlusions [13], and o The combination of the global model (the plane) with
the detection of mixed pixels at occlusion boundaries to  the |ocal correction to it (the per-pixel depth offset)
obtain sub-pixel accuracy [30]. Unfortunately, discretizing results in very robust performance. In this respect, the
space volumetrically introduces a huge number of degrees  framework is similar to thelane + parallaxwork of
of freedom, and leads to sampling and aliasing artifacts. [19, 23, 29], thenodel-based sterawork of [10], and

Another active area of research is the detection of para- theparametric motion + residual optical flowf [12].
metric motions within image sequences [1, 34, 12, 9, 15, | 1 output (a collection of approximately planar re-
14, 24, 5, 36, 35]. Here, the goal is the decomposition of  4i516) is more suitable than a discrete collection of

“The research described in this paper was conducted while the first ~ VOXEIS fOI" many applications, including, rendering
author was a summer intern at Microsoft Research. [10] and video parsing [15, 24].
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Figure 1:Supposek imagesl;, are captured by camera®Py,.
We assume that the scene can be representdddpyite images
L; on planes] x = 0 with depth offsetsZ;. The boolean masks
By, denote the pixels in imagg; from layer L; and the masked
images are given byfy; = By - Ix.
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Figure 2: We wish to compute the layer spritds, the layer
plane vectorsy, the residual paralla¥;, and the boolean mask
imagesBy;. After initializing, we iteratively compute each quan-
tity in turn fixing the others. Finally, we refine the layer sprite
estimates using a re-synthesis algorithm.

We use homogeneous coordinates for both 3D world coscribed in Section 2, we assume boolean opacities to get
ordinatesx = (z,v,2,1)T and for 2D image coordinates a first approximation to the structure of the scene. If the
u = (u,v,1)T. The basic concepts of our framework are opacities are boolean, each point in each imAgis only
illustrated in Figure 1. We assume that the input consistshe image of a point on one of the laydts We therefore

of K images!l;(uy), I2(u2),...,Ix(uk) captured byK
cameras with known projection matrices, P, ..., Pk.
(In what follows, we drop the image coordinatgsunless

introduce boolean maskB;; which denote the pixels in
imagely that are images of points on layEr. So, in addi-
tion to L;, n;, andZ;, we also need to estimate the masks

they are needed to explain a warping operation explicitly.)B;;. Once we have estimates of the masks, we immedi-

We wish to reconstruct the world as a collection/ofp-

ately compute masked input imagkf,; = By - I (see

proximately planar layers. Following [6], we denote a layerFigure 1). In the second part of our framework, we use the

sprite withpre-multiplied opacitiedy:
(1)

wherer; = r;(u;) is the red bandy;, = g;(u;) is the green
band,b; = b;(uw;) is the blue band, and; = «;(w,) is the
opacity. We also associate a homogeneous vagtavith

Li(w) = (aq -7, 00+ g1, g - by, o)

initial estimates of the layers made by the first part as input
into a re-synthesis algorithm which refines the layer sprites
L;, includingthe opacitiesy;. This second step requires a
generative or forward model of the image formation pro-
cess and is discussed in Section 3.

In Figure 2 we illustrate the processing steps of the

each layer (which defines the plane equation of the layeframework. Given any three df;, n;, Z;, and By, there

vian!'x = 0) and a per-pixel residual depth offsét(u;).
Our goal is to estimate the layer spritég the plane
vectorsn;, and the residual depttis. To do so, we wish

are techniques for estimating the remaining one. The first
part of our framework therefore consists of first initializing
these four quantities, and then iteratively estimating each

to use techniques for parametric motion estimation. Un-one while fixing the other three. After good initial esti-
fortunately, most such techniques assume boolean-valuedates of the layers are obtained, we move on to the second
opacitiesy; (i.e., unique layer assignments). We thereforepart of the framework in which we use real valued opacities
split our framework into two parts. In the first part, de- and refine the entire layer sprites, including the opacities.
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2 Initial Computation of the Layers points on the planalx = 0. Using this relation, we can
2.1 Initialization of the Layers warp all of the masked images onto the coordinate frame of

Initialization of the layers is a difficult task, which is ©ONe€ distinguished imaggw.|.o.g. imagel/y,) as follows:
inevitably somewhat ad-hoc. A number of approaches have (H) 0 Miy) (wi) = My (HYuy) . @)

been proposed in the parametric motion literature: Here,H!, o M,, is the masked imag#f,; warped into the
e Randomly initialize a large number of small layers, coorc’iing’ze frame ofy, ’
which grow and merge until a small number of layers The property which we use to computgis that, assum-
remain VIVh'Ch ?c((j:ura.tely modgl the scene [34, 24, 5]. ing the pixel assignments to the laydss; are correct, the
e lteratively apply dominant motion extraction [15, 24], 4 is piecewise planar, and the surfaces are Lambertian,
aF each step app.lylng the algorithm to the residual "the warped imageHl’, o M, should agree with each other
gions of the previous step. o . where they overlap. There are a number of functions which
* Perform a color segmentation in each image, match., he ysed to measure the degree of consistency between
the segments, and use as the initial assignment [2]. he warped images, including least squares [4] and robust
* Apply asimple stereo algorithm to get an approximatemeasures [9, 24]. In both cases, the goal is the same: find
depth map, and then fit planes to the depth map.  ne plane equation vecter; which maximizes the degree
* Getahuman to initialize the layers. (In many applica-of consistency. Typically, this extremum is found using
tions, such as model acquisition [10] and video parSsome form of gradient decent, such as the Gauss-Newton
ing [24], the goal is a semi-automatic algorithm and method, and the optimization is performed in a hierarchi-
limited user inputis acceptable.) cal (i.e. pyramid based) fashion to avoid local extrema [4].
In th|.s paper, we assume a human has |r.1|t|aI|zed the layersy apply this standard approach [31], we simply need to de-
As discussed in Section 5, fully automating the frameworkyjye the Jacobian of the image wakg, with respect to the
is left as'futur'e work. ' parameters afi;. Thisis straightforward from Equation (6)
2.2 Estimation of the Plane Equatlons because we know the cameras matriBgs
To compute the plane equation veatipmwe needtomap 2.3 Estimation of the Layer Sprites
the pTiers inthe masked imageés, onto the plane dgfined Before we can compute the layer sprifes we need to
by n; x = 0. If x is a 3D world coordinate of a pointand choose 2D coordinate systems for the planes. Such coor-
u, is the image ok in cameraP,, we have: dinate systems can be specified by a collection of arbitrary
u, = Ppx ) (.rank 3) camera matriceQ,;.> Then, similarly to Equ.a-
o o _ tions (5) and (6), we can show that the image coordinates
where equality is in the 2D projective spaRé [11]. Since  y, of the pixel in imagel;, which is projected onto the
Py is of rank 3, it follows that: pixel u; on the p|anel'lTX =0is given by

x = Pju; + spy ®) w, = Py ((n/@)I—qn}) Qfu = Hiu, (8)

whereP; = PT(P,PT)~! is the pseudo-inverse of the whereQ; is the pseudo-inverse @, andq, is a vector
camera matrixPy, s is an unknown scalar, ang, is a  in the null space 0€);. The homograph¥l} can be used
vector in the null space @y, (i.e. P,pr = 0). If x lies  to warp the imagé\/;; forward onto the coordinate frame
on the plane x = 0 we have: of the planen{'x = 0, the result of which is denoted!, o
Mjy,;. Then, we can estimate the layer sprite (with boolean

T* T _
n; Prug + sn;pp = 0. (4)  opacities) byblendingthe warped images:
Solving this equation fog, substituting into Equation (3), K
and rearranging yields: L = @ H. o My, 9)
x = ((nf'pr)I — pan] ) Piuy. (5) =

. . . . Lt is possible to add an extra 2D perspective coordinate transforma-
The importance of Equation (5) is that it allows us to maption here. Suppos# is an arbitrary homography. We could warp each
a pixel coordinatey,, in image M}, onto the point on the masked image ontbl o H',, o My (u1) = M (HH}, u1). The addi-
planeanx = 0, of which it is the image. So, we can now tion of the homograph$# can be used to remove the dependence on one

. . . . . distinguished image, as advocated by Collins [8].
map this point onto its image in another camera: 2A suitable choice folQ; would be one of the camera matrices,,

. T . T * _ 1 in which case Equation (8) reduces to Equation (6). Another interesting
wy = Pp ((nl pi)l = pry ) Piup = Hypue (6) choice is one in which the null space @, is perpendicular to the plane

1 ; ; 2 defined byn;, and the pseudo-inverse maps the coordinate axes onto per-
where Hy,, is a homography (collineation b= [11]). pendicular vectors in the plane (i.e. a camera with a frontal image plane).

Equation. (6) describes the map.ping between j[he tWO IMRote that often we do not want a fronto-parallel camera, since it may un-
ages which would hold if the pixels were all images of necessarily warp the input images.
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wherep is the blending operator. There are a number of K . K .

ways in which blending could be performed. One simple L1 = @ (His tht, Z1) 0 My = @ Wi oMu (11)
method would be to take the mean of the color values. A k=1 k=1

refinement would be to usefaatheringalgorithm such as rather than Equation (9).

[28], where the average is weighted by the distance of each.5 Pixel Assignment to the Layers

pixel from the nearest invisible pixel (i.ex = 0) in M. The basis for the computation of the pixel assignments
Alternatively, robust techniques could be used to estimatg; 5 comparison of the warped imag@g, o M, with the

L;. The simplest such example is the median operator, bygyer spritesr,;.2 If the pixel assignment was correct (and
more sophisticated alternatives exist. _ neglecting resampling issues) these images should be iden-
~An unfortunate effect of the blending in Equation (9) tical where they overlap. Unfortunately, comparing these
is that averaging tends to increase image blur. Part of thgnages does not yield any information outside the current
cause is non-planarity in the scene (which is modeled irgstimates of the masked regions.

Section 2.4), but image noise and resampling error also g allow the pixel assignments to grow, we take the old
effect is todeghostthe sprites [28]_. Another solution is pew estimatesB);. These new assignments can be com-
to use image enhancement techniques such as [16, 21, futed by iterating simple morphological operations, such
which can even be used to obtain super-resolution spritesgg settingBy; = 1 for the neighbors of every pixel for

2.4 Estimation of the Residual Depth which By, = 1. Enlarged masked images are then com-
In general, the scene will not be piecewise planar. Touted using: . N
model any non-planarity, we allow the poimton the plane My = By - I (12)

n/ x = 0 to be displaced slightly. We assume it s displaced and a new estimate of the layer sprite computed using:
in the direction of the ray through; defined by the cam-

era matrixQ,;. The distance it is displaced is denoted by

Z;(u;), as measured in the directiorormal to the plane.

In this case, the homographic warps used in the previous

section are not applicable, but using a similar argument, i{Here, Z, is enlarged inW', so that it declines to zero

is possible to show (see also [19, 23]) that: smoothly outside the old masked region.) One small danger

w, = Hiw + w(w)Z(w)t (10)  Of working with My, _andil is that occluded pixels may be

blended together with unoccluded pixels and result in poor

estimates of thé,. A partial solution to this problem is to

: T use a robust blending operator such as the median. Another

is assumed that the vector = (n;, 1y, 7, na)" hasbeen o4t of the solution is, during the blend, weight pixels for

normalized such thatﬁ +nj + "_3 =1. Thetermw(w)  \which By, = 1 more than those for whick,, — 0 (and

is a projective scaling factor which equals the reciprocal okal — 1). The weights should depend on the distance of

Q7x, whereQ; is the third row ofQ, andx is the world 4,0 pixel from the closest pixel for whicBy; = 1, in a

coordinate of the point. It is possible to write(u;) as a  gimilar manner to théeatheringalgorithm of [28].

linear function of the image coordinatag but the depen- Given L, our approach to pixel assignment is as fol-

dence orQ; andn; is quite complicated and so the details lows. We first compute a measub (u;) of the likelihood

are omitted. Equation (1Q) can be usgd to map plane COOfpat a pixel inWL ° Mkl(ul) is the warped image of the

dlnqteSul backwards to image coordinatas, or to map pixel u; in the enlarged sprité;. There are a number of

the |mag.eMkl forwards onto the plane. We denote'the re'ways of definingPy,. Perhaps the simplest is thesidual

sult of this warp by(H} , ty, Z;) o My, or more concisely intensity differencé24]:

ch o My;. |
Almost any stereo algorithm could be used to compute Py = Hil ~Wio MMH. (14)

Z;(u;), although it would be preferable to use one favoring , , ,

small disparities. Doing so essentially solves a simpler (of\n0ther is the magnitude of thesidual normal flow

K
I~/l = @Wk OMM. (13)
k=1

whereH}, = Py, ((n{ q;)I — qin}) Q; is the planar ho-
mography of Section 2.3;; = Pyq; is the epipole, and it

what Debeveet. al[10] term amodel-base}istereo prob- Ly — W o My

lem. To compute the residual depth map, we initially set Py = ||VE i (15)
Z;(u;) to be the value (in a range close to zero) which min- !

imizes the variance C(ch, tr, Zl) o M, acrossk. After- SAlternatively, we could compare the input imaggswith the layer

i i . : : ite i i i 1\ —1 i
wards a simple smoothing algorithm is applied4du,).  SPite images warped back onto image coording¥) ) o L. This

. . means comparing the input image with a twice resampled, blended image.
Once the residual depth offsets have been estimated, th&n piending and resampling tend to increase blur, so, even if the pixel

layer sprite images should be re-estimated using: assignment was perfect, these images may well differ substantially.
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Locally estimated variants of the residual normal flow have 2. Composite the un-warped sprites in back-to-front or-
been used by Irani and coworkers [16, 17, 15]. A final der (which can be computed from the plane equa-
possibility would be to compute the optical flow between tions):
W o My, andL;. Then a decreasing function of the mag-
nitude of the flow could be used fé1;.

Next, Py; is warped back into the coordinate system of
the input imagd, to yield:

L
Sk = @Ukl = U ©--- 0 Uy (20)
=1

to obtain thesynthesizednagesSy. If we have solved
the stereo reconstruction problem, and neglecting re-
sampling issuesS, should match the input;.

]Skl = (Wéc)_l o Pyy. (16)

This warping tends to bluPy;, but this is acceptable since
we will want to smooth the pixel assignment anyviayhe
new pixel assignment can then be computed by choosin

the best possible layer for each pixel: 2a. Compute theisibility of each un-warped sprite [30]:

B 1 if Pkl(uk) = miny Pkl/(uk)
By () = { 0 otherwise.

Ehis last step can be re-written as three simpler steps:

(17) =1
Vii = Vi1 (1—apq-1)) = H(l_akl’) (21)

. . '=1
3 Layer Refinement by Re-Synthesis

In this section, we describe how the estimates of the
layer sprites can be refined, now assuming that their opacis- . _
tiesoy are real valued. We begin by formulating a genera- 2b. Compute the masked imagés, = Via U
tive model of the image formation process. Afterwards, W€ 2¢. Sum up the masked imagés, — Zlel M.
propose a measure of how well the layers re-synthesize the
input images, and show how the re-synthesis error can bk these last three substeps, the visibility map makes the
minimized to refine the estimates of the layer sprites. contribution of each sprite pixel to the imag§g explicit.

3.1 The Image Formation.Process ~ 3.2 Minimization of Re-Synthesis Error
We formulate the generative (forward) model of the im- A mentioned above, if the layer estimates are accurate,

age formation process using image compositing operationﬁ]e synthesized imag®, should be very similar to the in-

[6], k"e' fby palntlnghthe SF’”teS one over anotherl in f]‘ ut imagel,. Therefore, we refine the layer estimates by
back-to-front order. The basic operator used to overlay t inimizing the prediction error:

sprites is theveroperator:
— 2
FOB = F+(1-ap)B, (18) C=>_> lIS(ur) — I(us))| (22)
k  ug

whereF andB are the foreground and background sprites, . . .
. . : .- 'using a gradient descent algorithm. (In order to further con-
andar is the opacity of the foreground [22, 6]. This defini- . . .
strain the space of possible solutions, we can add smooth-

ion of the over rator m re-multipli iti . »
to 0 the overope ator assu €s pre-mu tiplied .OpaCteShess constraints on the colors and opacities [30].) Rather
as in Equation (1). The generative model consists of th?han trvi -
. ) ying to optimize over all of the parametefs,(n,,
following two steps: : : :
; ] ] ~andZ;) simultaneously, we only adjust the sprite colors and
1. Using the camera matrices, plane equations, and resi¢iyacities inZ;, and then re-run the previous motion estima-
ual depths, warp each layer backwards onto the coorony steps to adjust; andZ; (see Figure 2 and Section 2).
dlnat.e f;amg of |2m4ag_i!_§,;]'u3|pgléher|‘r;\1/erse Ofctge prar- The derivatives of the cost functiah with respect to
ator in Section 2.4. This yields ther-warpedsprite: o ¢qors and opacities ih;(u;) can be computed using
_ the chain rule [30]. In more detail, the visibility maj,
_ 1y—1 ,
Ua = (Wy) oLy (19) mediates the interaction between the un-warped spite
Note that the opacities should be warped along withand the synthesized imagg, and is itself a function of the
the color values [6]. opacities in the un-warped sprit&g;. For a fixed warping
4We may want to smoottP;,, even more, e.g. using an isotropic function W, the pixels inUy,; are linear combinations of
smoother such as a Gaussian. Other alternatives include, (1) performingtie pixels in spritel,;. This dependence can either be ex-
color segmentation of each input image and only smoothing within eacl ; ; ; ; ;
segment in a similar manner to [2], and (2) smoothifg less in the di- rbIOIted dlre.CtIy using the C.ham rUIe. to propagate gradlents’
rection of the intensity gradient since strong gradients often coincide wittO! alternatively the derivatives 6fwith respect tdJ;; can
depth discontinuities and hence layer boundaries. be warped back into the reference framd.p{30].

whereqy; is the alpha channel @fy;, andVy; = 1.
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Figure 3: Results on thilower gardersequence: (a) first and (b) last input images; (c) initial segmentation into six layers;
(d) and (e) the six layer sprites; (f) depth map for planar sprites (darker denotes closer); front layer before (g) and after (h)
residual depth estimation.

Figure 4: Results on theymposiunsequence: (a) third of five images; (b) initial segmentation into six layers; (c) recovered
depth map (darker denotes closer); (d) and (e) the five layer sprites; (f) residual depth image for fifth layer.
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(b)

Figure 5: 3D views of the reconstructsgmposiunscene: (a) re-synthesized third image (note extended field of view). (b)
novel view without residual depth; (c) novel view with residual depth (note the “rounding” of the people).

4 Experiments Section 2.4 and recompute the sprites. Since the corre-

To validate our approach, we experimented on tWospondence is now much better across images, the resulting

multi-frame data sets. The first of these data sets is a staﬁprites are much less blurry. Figure 3(g) shows the original
dard motion sequence of a scene containing no indepeﬁprite obtained for the lower floyver bed, while .Figu_re 3(h)
dently moving objects. The second consists of 40 image§hOWS the same sprite afte'r residual depth gst|mat|on.
taken simultaneously. The camera geometry is not given Our second set of experiments uses .flve Images of a4Q-
for either sequence, so we used point tracking and a staffhage stereo data set' takep at a'graphlcs' symposium. Fig-
dard structure from motion algorithm to estimate the cam-Ure 4(2) shows the middle input image, Figure 4(b) shows
era matrices. Our experiments do not yet include the resuli1® initial pixel assignment to layers, Figure 4(c) shows

of applying the layer refinement step described Section 3.h€ recovered planar depth map, and Figure 4(f) shows
To initiali loorith first decided h the residual depth map for one of the layers. Figures 4(d)
0 Inflializ€ our aigorithm, we Nirst decided how many o, (e) show the recovered sprites. Figure 5(a) shows the

layers were required, and then performed a rough assign- . : . . . ;
ment of pixels to layers by hand. Various automated techr%nlddle image re-synthesized from these sprites. Finally,

niaques for performing this initial labelina are described in Figures 5(b—c) show the same sprite collection seen from
Iqu P ing this it ng ' N a novel viewpoint (well outside the range of the original

Section 2.1. Next, the automatic hierarchical parametrlgliews)l first with and then without residual depth correc-

motion estimation algorithm described in [31] was used toti n. The gaps in Figure 5 correspond to parts of the scene

fmd_ the B-parameter h.omograph|es betwe.en the layers an hich where not visible in any of the five input images.
estimate the layer sprites. (For the experiments presented

in this paper, we se); = Py, i.e. we reconstructed the 5 Discussion

sprites in the coordinate system of the first camera.) Us- \yg have presented a framework for stereo reconstruc-
ing the computed homographies, we found the best plang,, hich represents the scene as a collection of approxi-

estimate for_each layer using a Euclidean structure fro"?nately planar layers. Each layer consists of a plane equa-
motion algorithm [33]. tion, a layer sprite image, and a residual depth map. The
The results of applying these steps to the MAlB®er  framework exploits the fact that each layer implicitly lies
gardensequence are shown in Figure 3. Figures 3(a) andn a fixed plane in the 3D world. Therefore, we only need
(b) show the first and lastimage in the subsequence we used recover three plane parameters per layer, independently
(the first nine even images). Figure 3(c) shows the initialof the number of images. We also showed how an initial
pixel labeling into seven layers. Figures 3(d) and (e) shovestimate of the scene structure allows us to reason about
the sprite images corresponding to each of the seven laymage formation. We proposed a forward model of image
ers, re-arranged for more compact display. (These spritefgrmation, and derived a measure of how well the layers
are actually the ones computed after residual depth estre-synthesize the input images. Optimizing this measure
mation.) Note that because of the blending that takes placgilows the layer sprites to be refined, and their opacities
during sprite construction, each sprite is larger than its footestimated.
print in any one of the input images. Figure 3(f) shows a  Qur initial results are very encouraging, however further
depth map computed by painting every pixel with its corre-work is required to complete an implementation of the en-
sponding grey coded value, where darker denotes closer. tire framework. In particular, we are currently implement-
Once we have recovered the initial geometric structureing the layer refinement algorithm described in Section 3.
we recompute the homographies by directly adjusting théther areas which we are exploring include automatic ini-
plane equations, as described in Section 2.2. We then ruialization of the layers and more sophisticated pixel as-
the the residual depth estimation algorithm described irsignment strategies.
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