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ABSTRACT 
One of the most important tasks performed in the early stages of a 
data warehouse project is the analysis of the structure and content 
of the existing data sources and their intentional mapping to a 
common data model. Establishing the appropriate mappings be-
tween the attributes of the data sources and the attributes of the 
data warehouse tables is critical in specifying the required trans-
formations in an ETL workflow. The selected data model should 
be suitable for facilitating the redefinition and revision efforts, 
typically occurring during the early phases of a data warehouse 
project, and serve as the means of communication between the 
involved parties. In this paper, we argue that ontologies constitute 
a very suitable model for this purpose and show how the usage of 
ontologies can enable a high degree of automation regarding the 
construction of an ETL design. 

Categories and Subject Descriptors 
Η.2.1 [Database Management]: Logical design - data models, 
schema and subschema. 

General Terms 
Algorithms, Design. 

Keywords 
Data warehousing, ETL, conceptual modeling, transformations, 
ontologies, reasoning, semantic web technology. 

1. INTRODUCTION 
It has been extensively argued in the literature [12, 28] that one of 
the most important parts during the design and deployment phase 
of a data warehouse project is the design of the flow of data from 
the source relations towards the target data warehouse relations. 
For the construction of such flow, specialized tools are already 
available under the general name of ETL tools. Extraction-
Transformation-Loading (ETL) tools are pieces of software re-
sponsible for the extraction of data from several sources, their 
cleansing, customization and insertion into a data warehouse. Up 
to now, there exist several commercial ETL tools [2,10,11,16,18], 
while the field has extensively been studied by research too 
[13,25,28]. All the aforementioned efforts focus on the represen-

tation and formal description of the ETL transformations required, 
while, it is assumed that the task of the identification of the neces-
sary ETL transformations is manually performed by the designer 
or the administrator of the data warehouse. 
However, this is not a straightforward procedure. The design of an 
ETL process is driven by the semantics of the data sources and 
the constraints and requirements of the data warehouse applica-
tion. This information is typically available in natural language 
format in the form of application specifications and documenta-
tion, comments embedded in the sources’ schemata, or even, it 
has to be recorded after oral communication with the different 
parties involved in the project. 
In this paper, we address the issue of using Semantic Web tech-
nologies to facilitate the process of selecting the relevant informa-
tion from the available data sources and appropriately transform-
ing it to populate the data warehouse. In particular, we present an 
ontology-based approach that facilitates the construction of an 
ETL workflow. The main idea underlying our approach is the use 
of ontologies to formally and explicitly specify the semantics of 
the data source schemata, as well as the data warehouse schema. 
We show that having this formal and explicit description of the 
domain, it is possible to automate in a large degree the process of 
the ETL workflow creation.  
The decision of using an ontology-based approach, instead of 
using another technology for example a UML-based approach, 
lies in the fact that ontologies provide an elegant way to perform 
reasoning that is required for the automatic determination of ETL 
transformations as we will present later. An ontology is most 
commonly defined as “a formal, explicit specification of a shared 
conceptualization”. “Explicit” means that the type of concepts 
used, and the constraints on their use are explicitly defined. “For-
mal” refers to the fact that the ontology should be machine read-
able [6]. An ontology describes the knowledge in a domain in 
terms of classes and properties, as well as relationships between 
them. Thus, it may be considered as an appropriate solution to 
confront with the main challenge in the back stage of the data 
warehouse, namely heterogeneity. 
In general, integrating data from heterogeneous sources faces two 
main problems: structural heterogeneity and semantic heteroge-
neity. Structural heterogeneity refers to the fact that different in-
formation systems store their data in different structures, thus 
there is a need for homogenization. For instance, information that 
is stored in one attribute/relation in a schema may be stored in 
more than one attributes/relation in another schema (what is 
called 1:n and n:1 matching in the schema matching bibliogra-
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phy). Semantic heterogeneity considers the intended meaning of 
the information items. In order to achieve semantic interoperabil-
ity in a heterogeneous information system, the meaning of the 
information that is interchanged has to be understood across the 
systems. In [7] three main causes for semantic heterogeneity are 
identified: (a) “confounding conflicts”, which occur when infor-
mation items seem to have the same meaning, but differ in reality; 
e.g. owing to different temporal contexts; (b) “scaling conflicts”, 
which occur when different reference systems are used to measure 
a value; e.g. different currencies or different date formats; and (c) 
“naming conflicts”, which occur when naming schemes of infor-
mation differ significantly (a frequent phenomenon is the pres-
ence of homonyms and synonyms.). 

Contributions. The proposed approach deals with the problem of 
heterogeneity and facilitates the construction of the ETL work-
flow in a conceptual level. Specifically, the contributions of this 
work are as follows. 
1. Construction of the application vocabulary. We describe the 

creation of a common vocabulary that deals with different 
naming schemes. 

2. Annotation of the data stores. We provide a method for the 
annotation of the data sources and data warehouse w.r.t. the 
application vocabulary.  

3. Generation of the application ontology. We introduce an 
algorithm for the generation of an ontology that contains in-
formation about the appropriate inter-attribute mappings and 
the conceptual transformations required. 

4. Generation of conceptual ETL design. Finally, we provide a 
method to automatically derive the mappings from the 
source attributes to the attributes belonging to the data 
warehouse, along with the appropriate ETL transformations.  

Outline. The rest of the paper is structured as follows. Section 2 
discusses the state of the art. Section 3 presents a method for the 
construction of an ontology based on the schemata of the data 
warehouse and of the data sources. Section 4 introduces a method 
for the automatic derivation of the transformations required in an 
ETL process, based on the constructed ontology. Finally, Section 
5 concludes the paper with a prospect to the future. 

2. RELATED WORK 
In this section, we review related work in the fields of conceptual 
modelling for ETL processes and of ontology-based information 
integration. 

Conceptual models for ETL. Although, there exists several ap-
proaches [12,13,25,28] for the conceptual part of the design of an 
ETL scenario, so far, we are not aware of any other research ap-
proach that concretely deals with the automatic derivation of ETL 
transformations and inter-attribute mappings in the early stages of 
a data warehouse project. 

Conceptual models for DW’s. On the other hand, there are some 
approaches concerning the (semi-) automation of several tasks of 
logical DW design from conceptual models, but they do not pro-
vide a formal method to specifically determine the flow of data 
from the source recordsets towards the data warehouse. A couple 
of approaches concern the development of dimensional models 
from traditional ER-models [4,17]. In other approaches the data 
warehouse logical schema is generated from a conceptual schema. 

[20] presents a framework for generating a DW logical schema 
from a conceptual schema. [5] is an approach to derive initial data 
warehouse structures from the conceptual schemes of operational 
sources. [8] proposes a general methodological framework for 
data warehouse design, based on Dimensional Fact Model. [9] 
presents a modelling framework, BabelFish, concerning the auto-
matic generation of OLAP schemata from conceptual graphical 
models and discusses the issues of this automatic generation proc-
ess for both the OLAP database schema and the front-end con-
figuration. [21] proposes algorithms for the automatic design of 
DW conceptual schemata. Finally, an approach for DW develop-
ment based on the Model Driven Architecture is presented in [14]. 

Ontology-based information integration. A survey of existing 
approaches is presented in [26], where three general directions are 
identified: single ontology approaches [1], multiple ontologies 
approaches [15] and hybrid approaches [7]. A single, “global”, 
ontology simplifies the integration process but is difficult to cre-
ate and maintain, especially in the presence of changes in the data 
store schemata. Multiple ontologies provides flexibility; however 
comparing the sources becomes considerably more difficult. In 
hybrid approaches each source is described by its own ontology, 
using terms from a global, shared vocabulary. The approach fol-
lowed in this work is hybrid, because a common vocabulary is 
provided, containing the primitive terms of the domain, and the 
data stores are described independently by a set of classes defined 
by means of these common terms. 

3. ONTOLOGY CONSTRUCTION 

3.1 Preliminaries 
In this section we discuss the construction of an ontology to 
model the domain of discourse, as outlined by the schemata of the 
data warehouse and the data sources and in accordance to the 
provided application specifications. This ontology will be used to 
resolve the semantic conflicts and identify the operations required 
to achieve the information integration.  
The construction of the ontology is based on a common vocabu-
lary that the designer provides, as well as provided annotations of 
the involved data sources (also provided by the designer). This 
type of information is derived from the application description 
and requirements. There exist several ways to succeed in this: 
apart from interpreting the model that represents the schemata of 
the data stores, e.g. E/R model, it is also possible to extract infor-
mation from accompanying documents/specifications by exploit-
ing research results from the areas of natural language processing 
or deriving ontologies from natural language descriptions, as well 
as schema matching; still, this issue is orthogonal to the approach 
described here. 
This manual work required during the ontology creation phase is 
not an additional overhead that our approach imposes to the de-
signer. The process of integrating the information from the avail-
able data sources and populating the data warehouse through the 
construction of an appropriate ETL workflow requires that the 
designer first clarifies and resolves the semantics of the involved 
sources, either this is done by means of a naming convention [23] 
and a reference vocabulary, or a global schema, a UML model, 
and so on. Following an ontology-based approach presents some 
significant benefits over these alternatives, such as: 
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1. Explicit and formal representation, with well-defined se-
mantics, allowing automated reasoning to be performed. 

2. Better support for reuse and evolution. 
3. Better support for visual representation and documentation. 

In this work, we focus on the first point. Having well-defined 
semantics makes it possible to leverage on existing reasoning 
techniques in order to automate several parts of the process. This 
is not possible when using for example a UML model, because 
UML has no formally defined semantics, therefore no automated 
reasoning can be performed. 

3.2 The Web Ontology Language 
In our approach, we have chosen the Web Ontology Language 
(OWL) [24] as the representation language for the created ontolo-
gies. There are two main reasons behind this choice. First, OWL, 
and in particular OWL DL, is based on Description Logics [7], a 
decidable fragment of First Order Logic, constituting the most 
important and commonly used knowledge representation formal-
ism. This means that it provides a formal representation and the 
ability to leverage on existing reasoners for automating several 
tasks of the process, such as checking subsumption relationships 
between classes. Second, OWL is the proposed W3C standard for 
representing ontologies on the Web. Even though a data ware-
house application is not primarily a Web application, it may often 
be desired to provide a Web interface for some of the data 
sources, or the data warehouse itself, either in the form of dy-
namic Web pages or through a Web service. For example, it may 
be desired or required, due to policy constraints or security con-
siderations, to expose the data source via a Web service interface, 
so that access to data is restricted and controlled. In such cases, 
the established mappings between the database schema and the 
ontology could be reused for the task of annotating the dynami-
cally generated Web pages or for providing a semantic description 
of the service (e.g. using OWL-S). Moreover, the presented ap-
proach may be reused in order to model ETL processes as se-
quences of Semantic Web services. 
Our model does not require the complete features provided by the 
language. For example, OWL allows defining properties as being 
symmetrical, inverse, transitive, specifying arbitrary cardinality 
constraints, and so on. For our aim, we focus on the notions of 
class and property hierarchy, property domain and range restric-
tions, class equivalence and disjointness. This makes the resulting 
model simpler, both in terms of reasoning support, as well as from 
the aspect of the designer, since a not very detailed knowledge of 
the language is required. Especially, all the required features are 
available in the OWL DL part of the language, i.e. no additional 
features from OWL Full are required (e.g. meta-modeling), which 
ensures that the reasoning process is decidable. Table 2 summa-
rizes some of the main features of OWL, which are the ones used 
in this work. 

3.3 A Reference Example  
In the rest of this paper, we suppose a simple scenario comprising 
two data sources DS1 and DS2, and a data warehouse DW. The 
schemata are shown in Table 1 (underlined attributes denote pri-
mary keys, while attributes in italic denote foreign keys).The 
provided application description and requirements are as follows.  

Table 1. The data stores of the reference example 

Data Stores Schemata 
products(id,name,amount,price,guarantee,type,sid)DS1 
stores(sid,name,location) 
software(id,name,sid,quantity,price) 
hardware(id,name,sid,quantity,price) DS2 
stores(sid,name,city,street,number) 
products(id,name,sid,quantity,price) DW stores(sid,name,city,street) 

 

The data sources contain information regarding products and 
stores; each product is stored in one store. For each product, the 
available amount/quantity, as well as the price, are provided. The 
information regarding the amount of the product is not available 
for all products contained in DS1. DS1 contains also information 
regarding how many years guarantee are provided for the product. 
There are two distinct types of products: software and hardware. 
In DS1 the distinction is made by the attribute “type”, while in 
DS2 two separate relations are used. Prices in DS1 and DS2 are 
recorded in Euros and Dollars, respectively. Products in DS1 have 
a check constraint forcing a minimum price of 200 Euros. Each 
store has a name and an address, comprising city, street and num-
ber. In DS1 this information is contained in the attribute “loca-
tion”. In DW, attribute “street” contains both the street and the 
number of the store. We also, assume that each store is located in 
one of the following cities: Paris, Rome or Athens. In the data 
warehouse, the relation products should contain only software 
products, with prices ranging from 500 to 1500 euros, known 
quantity, and which are located either in Rome or Athens. Finally, 
the id’s in the data warehouse relations are surrogate keys that 
replace the original primary keys of the sources [12]. 

3.4 Annotating the Data Stores 
In what follows, we assume that each data store is described by a 
relational schema. This assumption is made for simplicity reasons 
and does not compromise the generality of our approach. Non-
relational stores may be handled by providing suitable wrappers. 
For example, regarding web sources, in a previous work [19] a 
wrapper for extracting pieces of information from Web pages has 
been presented. The objects extracted by such wrapper may then 
be further filtered and given an internal structure according to the 
specified relational schema. 
We present a model for semantically annotating each data store, 
based on the provided information. We use knowledge representa-
tion techniques to formally and explicitly describe the semantics 
of each store. A common vocabulary, specified by the designer, is 
used according to the available descriptions about the data stores 
and the requirements of the application. Once an ontology has 
been created to describe the available data stores, it is further used 
to automatically identify the appropriate transformations for the 
integration of the available information. 
Application vocabulary. The designer provides a set of related 
terms constituting the shared vocabulary of the application. This 
common vocabulary is used to annotate the data stores and to 
construct the application ontology, and has the following form:  

V = (VC, VP, VF, VT, fP, fF, fT), 
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Table 2. Summary of OWL features used in our approach 

Notation Name Description 

A, B, C, D Class Defines a group of individuals sharing some properties. We use classes to represent the relations contained in 
the data sources, as well as custom data types. 

A ⊑ B subClassOf 
Used to create class hierarchies, by stating that a class A is a subclass of (or is subsumed by) another class B. 
Organizing classes in a hierarchy is used to resolve the semantic conflicts and identify the transformations 
required to integrate information from different data sources. 

P Property Used to relate an instance of a class to an instance of another class (ObjectProperty) or to an instance of a 
datatype (DatatypeProperty). Properties are mainly used in our model for representing attributes. 

dom(P) domain Specifies the class(-es) to which the individuals the property applies to, belong. 
rang(P) range Specifies the class(-es) to which the individuals being the values of the property, belong.  
∀P.C allValuesFrom Used to restrict the range of a property, when this property is applied to individuals of a specific class. 

=nP cardinality Specifies the cardinality of a property in respect to a specific class. We use this feature to denote whether an 
attribute is present in a relation or not and whether null values are allowed. 

C ⊓ D = ∅ disjointWith States that two classes A and B are disjoint, i.e. an individual may not belong to both A and B. This feature is 
used to prevent data records from one relation being integrated with data records from another relation. 

allDiff[x,y,...] allDifferent 
States that two or more individuals are different from each other. This statement is necessary because the 
“unique names assumption” does not hold in OWL, i.e. two individuals x and y are not assumed to be neces-
sarily different unless explicitly stated so. 

C ≡ D equivalent Used to state that two classes are equivalent, i.e. each instance of the one class is also an instance of the other. 
C ⊔ D unionOf Denotes the union of two classes. 

C ⊓ D intersectionOf Denotes the intersection of two classes. 
C = {a1, …, an} oneOf Used to define an enumerated class, i.e. a class that contains exactly the instances specified in the definition. 

∃P.{a} hasValue Restricts the property to having a specific value. 
 
where: 
− VC is a set of terms denoting the primitive concepts of the 

domain of discourse. 
− VP is a set of terms denoting the features that characterize 

each of the above concepts. A feature may describe an as-
pect of the concept or may relate the concept with another 
concept. 

− VF is a set of terms denoting the different representation 
formats that may be used for a feature. 

− VT is a set of terms denoting the allowed values that an 
enumerated feature may take. If the feature has different 
representation formats, then each format has its own set of 
values. 

− fP : VP  VC is a function associating each feature to the 
primitive concept it describes. 

− fF : VF  VP is a function associating each representation 
format to a feature. 

− fT : VT  VF ∪ VP is a function associating each value to a 
representation format, or directly to a feature. 

From the above vocabulary it is straightforward to derive the fol-
lowing information. 
The set of features associated to a given concept c∈VC:  

VPc = {p : fP(p) = c} 
The set of representation formats for a given feature p∈VP: 

VFp = {φ : fF(φ) = p} 
Additionally, for enumerated features: 
The set of values for a given representation format φ∈VF:  

VTφ = {t : fT(t) = φ} 
The set of values for a given feature p∈Vp: 

VTp =  {t : fT(t) = p} 

Data store annotation. Each data store DS contains a set of rela-
tions RDS, each one comprising one or more attributes AR. The 
process of annotating a data store refers to providing two types of 
information: (a) establishing the appropriate mappings between 
the data store relations and attributes and the concepts and fea-
tures of the vocabulary; and (b) describing each relation in terms 
of the cardinality, representation format and (range of) values of 
its associated features. The mappings are specified by means of a 
function fRM : RDS  VC, associating each relation to a primitive 
concept, and a relationship MAM ⊆ ADS × VP between attributes 
and features. For each relation R, the following information is 
provided for each feature p of the concept c to which R is 
mapped:  

IR,p = (φ, min, max, T, n, R΄, Γf, Γα) 
where: 
− φ∈VFp is the representation format used for this feature in 

this relation (in the case of a feature having different repre-
sentation formats). 

− min and max denote the minimum and maximum value for 
this feature. This information is required when different 
value ranges are used for this feature in the data stores, 
meaning that comparisons are needed to determine if a given 
value falls within a specified range. 

− T⊆VTφ∪VTp is the value(s) that this feature has on the given 
relation (in the case of an enumerated feature). 

− n∈{0,1,null} denotes the cardinality of this feature in the 
given relation. n = 0 means that no information is provided 
in this relation for this feature, while n = 1 means that all the 
data records contained in this relation have a (not null) value 
for this feature. It is important to note that this constraint 
should be specified only for properties for which no null 
values are allowed in the data warehouse. This is because 
the information integration process in a data warehouse ap-
plication is asymmetric: a data source can not be integrated 
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if necessary information is missing; however, it is not a 
problem if the data source contains additional information 
that is not required in the data warehouse. 

− R΄ is the relation referenced by the associated attribute (in 
the case that this attribute is a foreign key). 

− Γf, ΓP are provided in the case that the annotated property 
has values resulting from an aggregation operation. Then, Γf 
denotes the aggregation function (e.g. sum, max, avg) and 
ΓP denotes the property(-ies) on which the aggregation is 
based, i.e. the one(s) that would appear on the “group by” 
part of the corresponding SQL statement. 

Example (cont’d). We revisit the reference example to determine 
the application vocabulary: 
VC = {product, store} VFpid = {source_pid, dw_pid}
VPstore = {sid, sName, city, street} VFsid = {source_sid, dw_sid}
VFprice = {dollars, euros} VTtype = {software, hardware}
VPproduct = {pid, pName, quantity, 
                  price, type, storage} 

VTcity = {paris, rome, athens}

Note: we have not included a property “guarantee”, since this 
information is not required in the data warehouse.  
We then use this vocabulary to annotate the data stores. The anno-
tation for DS1 is illustrated in Figures 1 and 2. For the interest of 
space, the annotation of the rest data stores is omitted. 

3.5 Ontology Generation 
Given the application vocabulary and the annotations, the next 
step is to construct the application ontology, which comprises: 
(a) a set of primitive classes corresponding to the specified con-
cepts, representation formats and ranges or sets of values; (b) a 
set of properties corresponding to the specified features of the 
concepts of the domain; and (c) a set of defined classes repre-
senting the data stores. The algorithm is outlined below. 
1. A class is created for each primitive concept c∈VC. 
2. A class is created for each different representation format 

φ∈VF. 
3. An enumerated class is created for each enumerated (format 

of a) feature, having as instances the specified values. If 
these values are mutually exclusive, this fact is asserted by 
means of an “allDifferentFrom” statement. 

4. A class is created for each range of values specified in the 
provided annotations. These classes are organized in a hier-
archy according to the represented value ranges. That is, if 
classes C1 and C2 represent the range of values [r1, r2] and 
[r3, r4], respectively, and r1 ≥ r3, r2 ≤ r4, then C1 ⊑ C2. 

5. An object property P is created for each feature p ∈ VP. The 
domain of P is set to be the class corresponding to the primi-
tive concept c = fP(p). 

6. A functional object property “hasValue” is created. Also, 
two functional datatype properties “hasAggregateFunction” 
and “hasAggregateAttributes” are created. 

7. For each relation R a defined class is created. The class defi-
nition has the form: CR ≡ C ⊓ c1 ⊓ …  ⊓ cn, where C is the 
class representing the primitive concept to which R is 
mapped, and each ci is derived from the annotation of R. In 
particular, given each tuple IR,p = (φ, min, max, T, n, R΄) de-
scribing R, the following conditions apply: 

a. if φ ≠ null, and F is the class corresponding to the repre-
sentation format φ, then the constraint ∀P.F is added. 

b. if min ≠ null or max ≠ null, and R is the class represent-
ing this range of values, then the constraint ∀P.R is 
added. 

c. if T ≠ null, the constraint ∀P.(∃hasValue.{v1} ⊔ … ⊔ 
∃hasValue.{vn}) is added, where v1, …, vn are the values 
specified by T. 

d. if n = 0 or n = 1, the cardinality constraint =nP is added. 
e. if R΄ ≠ null, the constraint ∀P.D is added, where D is the 

defined class corresponding to the relation R΄. 
f. if {Γf, ΓP} ≠ null, a value restriction of the form 
∀P.(∃hasAggregateFunction.{f}⊓∃hasAggregateAttribu
tes.{P}) is added, where f is the aggregate function de-
noted by Γf and P the property(-ies) denoted by ΓP. 

After the ontology is constructed, a reasoner is used to infer sub-
sumption relationships, classifying the defined classes accord-
ingly. 

Example (cont’d). We revisit the reference example to construct 
the ontology. The following sets of classes and properties result 
from the provided vocabulary and annotations: 
SC = {Product, Store, Dollars_Price, Euros_Price, Source_Pid, 
DW_Pid, Source_Sid, DW_Sid, Type_Values, City_Values, 
Above_200, From_500_To_1500}. 
SP = {pid, pName, quantity, price, type, storage, sid, sName, city, 
street, hasValue, hasAggregateFunction, hasAggregateAttributes}. 
The following classes are then defined, based on the above classes 
and properties, in accordance to the provided annotations of the 
respective data stores: DS1_Products, DS1_Stores, DS2_Software, 
DS2_Hardware, DS2_Stores, DW_Products and DW_Stores. For 
instance, the definition of class DS1_Products is shown in Figures 
3 and 4. The rest of the definitions are omitted due to space limi-
tations. Finally, the reasoner is used to infer the class hierarchy 
depicted in Figure 5. 

4. ETL DESIGN GENERATION 
Having constructed an ontology that describes the application 
domain and the mappings between this ontology and the source 
schemata, we describe how the appropriate ETL transformations 
for integrating data from the data sources and loading it to the 
data warehouse, may be automatically derived.  
Table 3 presents a set of operators that are typically encountered 
in an ETL process. This set contains, among others, filter (σ), 
project (π), join (J), aggregation (γ), function (convert), that are 
core operators in practically every frequently used ETL transfor-
mation. However, our work does not anticipate the formal deter-
mination of the functionality of each transformation, rather we 
aim at the identification of a conceptual transformation, whose 
functionality will be determined later by the designer through a 
template library similar to the one proposed in [27]. 
The first step of our method is to determine from which sources, 
and more specifically, from which attributes/relations of these 
sources, information needs to be extracted in order to populate 
each attribute/relation in the data warehouse.  
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 DS1 

products  product 
id  pid 

name  pName 
amount  quantity 

price  price 
type  type 

sid  storage 

stores  store sid  sid 
name  sName 

location  city 
location  street 

Figure 1. The mappings for the data store DS1 

DS1 φ min max T n R΄ Γf Γα
Ipid source_pid - - - 1 - - -
IpName - - - - 1 - - -
Iquantity - - - - - - - -
Iprice euros 200 - - 1 - - -
Itype - - - {software, hardware} 1 - - -pr

od
uc

ts
 

Istorage - - - - 1 store - -
Isid source_sid - - - 1 - - -
IsName - - - - 1 - - -
Icity - - - {paris, rome, athens} 1 - - -st

or
es

 

Istreet - - - - 1 - - -
Figure 2. Annotation for the data store DS1 

<owl:Class rdf:ID="DS1_Products"> 
  <owl:intersectionOf rdf:parseType="Collection"> 
    <owl:Class rdf:about="#Product"/> 
    <owl:Restriction> 
      <owl:onProperty rdf:resource="#pid"/>   
      <owl:cardinality rdf:datatype="&xsd; 
                  nonNegativeInteger">1</owl:cardinality> 
    </owl:Restriction> 
...     
    <owl:Restriction> 
      <owl:onProperty rdf:resource="#price"/>   
      <owl:allValuesFrom> 
        <owl:Class> 
          <owl:intersectionOf rdf:parseType="Collection"> 
            <owl:Class rdf:about="#Euros_Price"/> 
            <owl:Class rdf:about="#Above_200"/> 
          </owl:intersectionOf> 
        </owl:Class> 
      </owl:allValuesFrom> 
    </owl:Restriction> 
...     
  </owl:intersectionOf> 
</owl:Class> 

Figure 3. Code snippet for DS1_Products Figure 4. Definition for DS1_Products Figure 5. The class hierarchy
  

Suppose that RT is a relation contained in the data warehouse, 
represented in the ontology by the defined class CT. Then a rela-
tion R, contained in a data source and represented in the ontology 
by the defined class C, is used as a provider relation in the ETL 
process for RT, iff the following conditions hold: 
a) C and CT are subclasses of the same primitive class, where 

by primitive class we refer to classes in the ontology repre-
senting the primitive concepts of the domain, i.e. the terms 
specified in VC. 

b) C and CT are not disjoint, i.e. C ⊓ CT ≠ Ø. 
The first condition ensures that the integrated data records have 
the same semantics. The second condition prevents the integration 
of information from sources having constraints that contradict the 
constraints imposed by the data warehouse. 
The next step is to determine the transformations required to inte-
grate data from the source relations to the target relation. The 
required transformations are determined by the specified map-
pings and by the relative position of the source and target classes 
in the class hierarchy. The following algorithm identifies the ETL 
transformations for transferring data from a source relation RS, 
corresponding to the defined class CS, to the target relation RT, 
corresponding to class CT.  
Phase 1. 
1. A “project” π(α1, …, αn) is inserted, where for each attribute 

αi of RS exists p∈VP such that (αi,p)∈MAM. That is, this 
transformation excludes source attributes not mapped (via 
the vocabulary) to an attribute of the target relation.  

2. A “concatenate” c(α1, …, αn, P) is inserted if for each i 

(αi,p)∈MAM, i.e. if the source attributes αi are mapped to the 
same property P. Similarly, a “split” operation s(α, P1, …, 
Pn,) is inserted for each source attribute α that is mapped to 
more than one property. 

3. If a tuple IRs,p = (φ, min, max, T, n, R΄) has R΄ ≠ null, then 
the steps 1 and 2 are performed for R΄ and a “join” is in-
serted. For the rest of the process the attributes of R and R΄ 
are treated similarly; i.e. the transformations required for R΄ 
are also identified and included in the ETL process. 

Phase 2. In this phase a set of “select”, “convert” and “not null” 
operations are added to the ETL workflow, depending on the 
subsumption relationship between the two classes CS and CT, 
which is determined by the reasoner. Specifically, the following 
distinct cases exist: 
1. Classes CS and CT are equivalent: CS ≡ CT. In this case, the 

data records in the source relation satisfy exactly the same 
constraints as the ones imposed by the target relation; thus 
no transformations are required. 

2. Class CS is subsumed by class CT: CS ⊏ CT. In this case, the 
data records in the source relation satisfy all the constraints 
imposed by the target relation, plus some additional ones; 
thus, again, no transformations are required. 

3. Class CS subsumes class CT: CS ⊐ CT. In this case, the data 
records in the source relation satisfy only a subset of the 
constraints imposed by the target relation, meaning that a 
filtering is required to exclude those data records not fulfill-
ing the additional constraints. For each of these additional 
constraints ci, we distinguish: 
a. ci is a format constraint: ∀P.F, where F is a class corre-
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sponding to a representation format. This means that no 
representation format is specified for the source values, 
which in turn means that no values exist for this property. 
Therefore, no transformation is performed at this point. 
(In Phase 3 “add” transformations are inserted to appro-
priately fill missing values.) 

b. ci is a range constraint: ∀P.R, where R is a class corre-
sponding to a value range. Α “select” is added: σ(P, R). 

c. ci is a value constraint: ∀P.(∃hasValue.{v1} ⊔ … ⊔ 
∃hasValue.{vn}). A “select” transformation is added: 
σ(P, R), where R here is the set of values v1, …, vn. 

d. ci is a value constraint regarding an aggregated property: 
∀P.(∃hasAggregateFunction.{f}⊓∃hasAggregateAttribu
tes.{Pγ}). In this case an “aggregate” is added: γ(f, P, Pγ). 
Note that if two or more aggregate transformations with 
the same set of properties Pγ exist, they should be merged 
in a single aggregate transformation. 

e. ci is a cardinality constraint: =1P. This occurs when 
source relation allows null values while the target rela-
tion does not. Thus, a “not null” is added to exclude data 
records having null values for this property: nn(P). 

4. Classes CS and CT are overlapping (neither one is subsumed 
by the other). Again, we are interested in the constraints of 
the target relation that do not apply to the source relation. 
Such constraints can be derived by defining a temporary 
class with constraints the conjunction of all the constraints 
of CS and CT. This class is a subclass of CS, so, as before, 
the additional constraints are identified. Each of these con-
straints is handled as in the previous case, apart from the 
format constraints. If a format constraint ∀P.F occurs, the 
source class includes a corresponding constraint ∀P.F΄, 
where F and F΄ denote different representation formats. 
Thus, a “convert” transformation is inserted: f(P, F΄, F). 

Phase 3. 
1. For each additional attribute α contained in the target rela-

tion, an “add” transformation is inserted: add(α, v), where v 
is either a default value specified in the annotation of the 
source relation (specifically contained in the set T of the 
corresponding tuple IR,p) or null. 

2. A “union” is inserted to aggregate the (transformed) data 
records coming from this source relation with (transformed) 
data records from the other source relations. 

3. A “distribute” is inserted to accordingly store the incoming 
data records as specified by the provided mappings. 

4. A “detect duplicates” is inserted for each attribute having a 
“unique” constraint in the target relation. 

Example (cont’d). We conclude the reference example by pre-
senting the resulting conceptual ETL transformations.  
The class corresponding to the target relation DW.products is 
DW_Products, which is subsumed by the primitive class Product. 
Therefore, the relations to be considered are DS1.products, 
DS2.software and DS2.hardware. DS2.hardware is excluded, 
because, as inferred by the reasoner: DW_Products ⊓ 
DS2_Hardware ≠ Ø. Similarly, DS1.stores and DS2.stores are the 
source relations for DW.stores. 
First, the required operations for the source DS1 are identified. 
According to Phase 1 and the corresponding mappings, a “join” is 
required between DS1.products and DS1.stores, preceded by a 

transformation π(id,name,amount,price,type,sid) on DS1.products, 
to exclude attribute “guarantee” not mapped to any property, and 
a transformation s(location,city,street) on DS1.stores. To identify 
the operations resulting from Phase 2, given that none of the 
classes DW_Products and DS1_Products is subsumed by the 
other, a temporary class DW_P_DS1_P is defined, having all the 
constraints of these two classes. As expected, this class is classi-
fied by the reasoner as a subclass of DS1_Products, which helps 
in identifying the following additional constraints: 

− ∀storage.DW_Stores. The corresponding constraint in 
DS1_Products is ∀storage.DS1_Stores. Since DW_Stores 
and DS1_Stores are classes representing relations, the re-
spective transformation needs to be inserted at this point. 

− ∀pid.DW_Pid. The respective constraint in DS1_Products 
is ∀pid.Source_Pid. Classes DW_Pid and Source_Pid corre-
spond to representation formats, therefore a “convert” opera-
tion f(pid, Source_Pid, DW_Pid) is inserted. 

− ∀price.(Euros_Price⊓From_500_To_1500). The respective 
constraint in DS1_Products is ∀price.(Euros_Price⊓ 
Above_200). Thus, a “select” is inserted to restrict the range 
of values for property price: σ(price, From_500_To_1500). 

− =1quantity. Class DS1_Products does not specify any cardi-
nality constraint on this property. Therefore, a “not null” is 
inserted: nn(quantity). 

− ∀type.(∃hasValue.{hardware}). The respective constraint 
in DS1_Products is ∀type.((∃hasValue.{software})⊔ 
(∃hasValue.{hardware})). Thus, a “select” is inserted to ex-
clude the additional value “hardware” allowed in the data 
source but not in the data warehouse: σ(type, {software}). 

Figure 6 illustrates the axioms causing the inference in question. 
Notice that the parts of the two classes’ definitions that are 
stricken out by the reasoner, while performing this inference, 
indicate the above used constraints. 
Finally, resulting from Phase 3, a “union” operation is inserted to 
integrate the transformed data records with data records from 
other source relations, and a “distribute” operation to appropri-
ately store the tuples referring to products and stores. 
As a concluding comment, in a following step, the transforma-
tions produced should be ordered so that their input schemata may 
be successfully populated; i.e. each transformation should be 
placed in the ETL design as long as all its providers already exist 
in the design. For this procedure, we adopt the approach presented 
in [22]. 

 
Figure 6. DS1_Products integration 
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Table 3. A set of common ETL workflow operations 
Symbol Name Functionality 
σ(P, R) select Filters the values of property P, excluding those values that do not belong to the set specified by R. 

f(P, F1, F2) convert Converts the values of property P from the representation format F1 to the representation format F2. 
add(α, v) add Adds attribute α to the current schema, setting its values to v, where v is either a default value or null. 

nn(p) not null Deletes the data records having a null value for property p. 
dd(P) detect duplicates Detects, and appropriately removes, records having the same value for property P. 

π(α1, …, αn) project Projects the current schema preserving only the attributes denoted by α1, …, αn. 
c(α1, …, αn, P) concatenate Concatenates the values of attributes α1, …, αn to set the value of property P. 
s(α, P1,…, Pn) split Splits the value of attribute α to set the values of properties  P1, …, Pn. 

γ(f, P, Pγ) aggregate Aggregates the values of property(-ies) P by grouping them by those of property(-ies) Pγ and applying the function(-s)
f. 

U union As the operator “union” in SQL. 
J join As the operator “join” in SQL. 

D distribute The “inverse” operation of join: if the data records contain attributes from multiple relations, as a result from a previ-
ous join operation, then this operation distributes data to the involved relations accordingly. 

 

5. CONCLUSIONS 
In this paper, we have focused on the problem of determining the 
inter-attribute mappings and identifying the ETL transformations 
required for the conceptual design of an ETL process. We have 
presented an approach based on Semantic Web technologies to 
facilitate the process of selecting the relevant information from 
the available data sources and appropriately transforming it to 
populate the data warehouse. We have used ontologies to for-
mally and explicitly specify the semantics of the data stores’ 
schemata. We have shown that having this formal and explicit 
description of the domain, it is possible to automate in a large 
degree the process of the ETL workflow creation.  
Future plans include the study of the impact of changes to the 
ETL process using ontologies and the application of our method 
to real-world cases. 
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