
Designing ETL Processes
Using Semantic Web Technologies
Dimitrios Skoutas

Nat'l Techn. Univ. of Athens
School of Electr. and Comp. Eng

Athens, Greece
Tel: +30-210-772-1436

dskoutas@dblab.ece.ntua.gr

Alkis Simitsis
Nat'l Techn. Univ. of Athens

School of Electr. and Comp. Eng
Athens, Greece

Tel: +30-210-772-1402

asimi@dblab.ece.ntua.gr

ABSTRACT
One of the most important tasks performed in the early stages of a
data warehouse project is the analysis of the structure and content
of the existing data sources and their intentional mapping to a
common data model. Establishing the appropriate mappings be-
tween the attributes of the data sources and the attributes of the
data warehouse tables is critical in specifying the required trans-
formations in an ETL workflow. The selected data model should
be suitable for facilitating the redefinition and revision efforts,
typically occurring during the early phases of a data warehouse
project, and serve as the means of communication between the
involved parties. In this paper, we argue that ontologies constitute
a very suitable model for this purpose and show how the usage of
ontologies can enable a high degree of automation regarding the
construction of an ETL design.

Categories and Subject Descriptors
Η.2.1 [Database Management]: Logical design - data models,
schema and subschema.

General Terms
Algorithms, Design.

Keywords
Data warehousing, ETL, conceptual modeling, transformations,
ontologies, reasoning, semantic web technology.

1. INTRODUCTION
It has been extensively argued in the literature [12, 28] that one of
the most important parts during the design and deployment phase
of a data warehouse project is the design of the flow of data from
the source relations towards the target data warehouse relations.
For the construction of such flow, specialized tools are already
available under the general name of ETL tools. Extraction-
Transformation-Loading (ETL) tools are pieces of software re-
sponsible for the extraction of data from several sources, their
cleansing, customization and insertion into a data warehouse. Up
to now, there exist several commercial ETL tools [2,10,11,16,18],
while the field has extensively been studied by research too
[13,25,28]. All the aforementioned efforts focus on the represen-

tation and formal description of the ETL transformations required,
while, it is assumed that the task of the identification of the neces-
sary ETL transformations is manually performed by the designer
or the administrator of the data warehouse.
However, this is not a straightforward procedure. The design of an
ETL process is driven by the semantics of the data sources and
the constraints and requirements of the data warehouse applica-
tion. This information is typically available in natural language
format in the form of application specifications and documenta-
tion, comments embedded in the sources’ schemata, or even, it
has to be recorded after oral communication with the different
parties involved in the project.
In this paper, we address the issue of using Semantic Web tech-
nologies to facilitate the process of selecting the relevant informa-
tion from the available data sources and appropriately transform-
ing it to populate the data warehouse. In particular, we present an
ontology-based approach that facilitates the construction of an
ETL workflow. The main idea underlying our approach is the use
of ontologies to formally and explicitly specify the semantics of
the data source schemata, as well as the data warehouse schema.
We show that having this formal and explicit description of the
domain, it is possible to automate in a large degree the process of
the ETL workflow creation.
The decision of using an ontology-based approach, instead of
using another technology for example a UML-based approach,
lies in the fact that ontologies provide an elegant way to perform
reasoning that is required for the automatic determination of ETL
transformations as we will present later. An ontology is most
commonly defined as “a formal, explicit specification of a shared
conceptualization”. “Explicit” means that the type of concepts
used, and the constraints on their use are explicitly defined. “For-
mal” refers to the fact that the ontology should be machine read-
able [6]. An ontology describes the knowledge in a domain in
terms of classes and properties, as well as relationships between
them. Thus, it may be considered as an appropriate solution to
confront with the main challenge in the back stage of the data
warehouse, namely heterogeneity.
In general, integrating data from heterogeneous sources faces two
main problems: structural heterogeneity and semantic heteroge-
neity. Structural heterogeneity refers to the fact that different in-
formation systems store their data in different structures, thus
there is a need for homogenization. For instance, information that
is stored in one attribute/relation in a schema may be stored in
more than one attributes/relation in another schema (what is
called 1:n and n:1 matching in the schema matching bibliogra-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
DOLAP’06, November 10, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-530-4/06/0011...$5.00.

67

phy). Semantic heterogeneity considers the intended meaning of
the information items. In order to achieve semantic interoperabil-
ity in a heterogeneous information system, the meaning of the
information that is interchanged has to be understood across the
systems. In [7] three main causes for semantic heterogeneity are
identified: (a) “confounding conflicts”, which occur when infor-
mation items seem to have the same meaning, but differ in reality;
e.g. owing to different temporal contexts; (b) “scaling conflicts”,
which occur when different reference systems are used to measure
a value; e.g. different currencies or different date formats; and (c)
“naming conflicts”, which occur when naming schemes of infor-
mation differ significantly (a frequent phenomenon is the pres-
ence of homonyms and synonyms.).

Contributions. The proposed approach deals with the problem of
heterogeneity and facilitates the construction of the ETL work-
flow in a conceptual level. Specifically, the contributions of this
work are as follows.
1. Construction of the application vocabulary. We describe the

creation of a common vocabulary that deals with different
naming schemes.

2. Annotation of the data stores. We provide a method for the
annotation of the data sources and data warehouse w.r.t. the
application vocabulary.

3. Generation of the application ontology. We introduce an
algorithm for the generation of an ontology that contains in-
formation about the appropriate inter-attribute mappings and
the conceptual transformations required.

4. Generation of conceptual ETL design. Finally, we provide a
method to automatically derive the mappings from the
source attributes to the attributes belonging to the data
warehouse, along with the appropriate ETL transformations.

Outline. The rest of the paper is structured as follows. Section 2
discusses the state of the art. Section 3 presents a method for the
construction of an ontology based on the schemata of the data
warehouse and of the data sources. Section 4 introduces a method
for the automatic derivation of the transformations required in an
ETL process, based on the constructed ontology. Finally, Section
5 concludes the paper with a prospect to the future.

2. RELATED WORK
In this section, we review related work in the fields of conceptual
modelling for ETL processes and of ontology-based information
integration.

Conceptual models for ETL. Although, there exists several ap-
proaches [12,13,25,28] for the conceptual part of the design of an
ETL scenario, so far, we are not aware of any other research ap-
proach that concretely deals with the automatic derivation of ETL
transformations and inter-attribute mappings in the early stages of
a data warehouse project.

Conceptual models for DW’s. On the other hand, there are some
approaches concerning the (semi-) automation of several tasks of
logical DW design from conceptual models, but they do not pro-
vide a formal method to specifically determine the flow of data
from the source recordsets towards the data warehouse. A couple
of approaches concern the development of dimensional models
from traditional ER-models [4,17]. In other approaches the data
warehouse logical schema is generated from a conceptual schema.

[20] presents a framework for generating a DW logical schema
from a conceptual schema. [5] is an approach to derive initial data
warehouse structures from the conceptual schemes of operational
sources. [8] proposes a general methodological framework for
data warehouse design, based on Dimensional Fact Model. [9]
presents a modelling framework, BabelFish, concerning the auto-
matic generation of OLAP schemata from conceptual graphical
models and discusses the issues of this automatic generation proc-
ess for both the OLAP database schema and the front-end con-
figuration. [21] proposes algorithms for the automatic design of
DW conceptual schemata. Finally, an approach for DW develop-
ment based on the Model Driven Architecture is presented in [14].

Ontology-based information integration. A survey of existing
approaches is presented in [26], where three general directions are
identified: single ontology approaches [1], multiple ontologies
approaches [15] and hybrid approaches [7]. A single, “global”,
ontology simplifies the integration process but is difficult to cre-
ate and maintain, especially in the presence of changes in the data
store schemata. Multiple ontologies provides flexibility; however
comparing the sources becomes considerably more difficult. In
hybrid approaches each source is described by its own ontology,
using terms from a global, shared vocabulary. The approach fol-
lowed in this work is hybrid, because a common vocabulary is
provided, containing the primitive terms of the domain, and the
data stores are described independently by a set of classes defined
by means of these common terms.

3. ONTOLOGY CONSTRUCTION

3.1 Preliminaries
In this section we discuss the construction of an ontology to
model the domain of discourse, as outlined by the schemata of the
data warehouse and the data sources and in accordance to the
provided application specifications. This ontology will be used to
resolve the semantic conflicts and identify the operations required
to achieve the information integration.
The construction of the ontology is based on a common vocabu-
lary that the designer provides, as well as provided annotations of
the involved data sources (also provided by the designer). This
type of information is derived from the application description
and requirements. There exist several ways to succeed in this:
apart from interpreting the model that represents the schemata of
the data stores, e.g. E/R model, it is also possible to extract infor-
mation from accompanying documents/specifications by exploit-
ing research results from the areas of natural language processing
or deriving ontologies from natural language descriptions, as well
as schema matching; still, this issue is orthogonal to the approach
described here.
This manual work required during the ontology creation phase is
not an additional overhead that our approach imposes to the de-
signer. The process of integrating the information from the avail-
able data sources and populating the data warehouse through the
construction of an appropriate ETL workflow requires that the
designer first clarifies and resolves the semantics of the involved
sources, either this is done by means of a naming convention [23]
and a reference vocabulary, or a global schema, a UML model,
and so on. Following an ontology-based approach presents some
significant benefits over these alternatives, such as:

68

1. Explicit and formal representation, with well-defined se-
mantics, allowing automated reasoning to be performed.

2. Better support for reuse and evolution.
3. Better support for visual representation and documentation.

In this work, we focus on the first point. Having well-defined
semantics makes it possible to leverage on existing reasoning
techniques in order to automate several parts of the process. This
is not possible when using for example a UML model, because
UML has no formally defined semantics, therefore no automated
reasoning can be performed.

3.2 The Web Ontology Language
In our approach, we have chosen the Web Ontology Language
(OWL) [24] as the representation language for the created ontolo-
gies. There are two main reasons behind this choice. First, OWL,
and in particular OWL DL, is based on Description Logics [7], a
decidable fragment of First Order Logic, constituting the most
important and commonly used knowledge representation formal-
ism. This means that it provides a formal representation and the
ability to leverage on existing reasoners for automating several
tasks of the process, such as checking subsumption relationships
between classes. Second, OWL is the proposed W3C standard for
representing ontologies on the Web. Even though a data ware-
house application is not primarily a Web application, it may often
be desired to provide a Web interface for some of the data
sources, or the data warehouse itself, either in the form of dy-
namic Web pages or through a Web service. For example, it may
be desired or required, due to policy constraints or security con-
siderations, to expose the data source via a Web service interface,
so that access to data is restricted and controlled. In such cases,
the established mappings between the database schema and the
ontology could be reused for the task of annotating the dynami-
cally generated Web pages or for providing a semantic description
of the service (e.g. using OWL-S). Moreover, the presented ap-
proach may be reused in order to model ETL processes as se-
quences of Semantic Web services.
Our model does not require the complete features provided by the
language. For example, OWL allows defining properties as being
symmetrical, inverse, transitive, specifying arbitrary cardinality
constraints, and so on. For our aim, we focus on the notions of
class and property hierarchy, property domain and range restric-
tions, class equivalence and disjointness. This makes the resulting
model simpler, both in terms of reasoning support, as well as from
the aspect of the designer, since a not very detailed knowledge of
the language is required. Especially, all the required features are
available in the OWL DL part of the language, i.e. no additional
features from OWL Full are required (e.g. meta-modeling), which
ensures that the reasoning process is decidable. Table 2 summa-
rizes some of the main features of OWL, which are the ones used
in this work.

3.3 A Reference Example
In the rest of this paper, we suppose a simple scenario comprising
two data sources DS1 and DS2, and a data warehouse DW. The
schemata are shown in Table 1 (underlined attributes denote pri-
mary keys, while attributes in italic denote foreign keys).The
provided application description and requirements are as follows.

Table 1. The data stores of the reference example

Data Stores Schemata
products(id,name,amount,price,guarantee,type,sid)DS1
stores(sid,name,location)
software(id,name,sid,quantity,price)
hardware(id,name,sid,quantity,price) DS2
stores(sid,name,city,street,number)
products(id,name,sid,quantity,price) DW stores(sid,name,city,street)

The data sources contain information regarding products and
stores; each product is stored in one store. For each product, the
available amount/quantity, as well as the price, are provided. The
information regarding the amount of the product is not available
for all products contained in DS1. DS1 contains also information
regarding how many years guarantee are provided for the product.
There are two distinct types of products: software and hardware.
In DS1 the distinction is made by the attribute “type”, while in
DS2 two separate relations are used. Prices in DS1 and DS2 are
recorded in Euros and Dollars, respectively. Products in DS1 have
a check constraint forcing a minimum price of 200 Euros. Each
store has a name and an address, comprising city, street and num-
ber. In DS1 this information is contained in the attribute “loca-
tion”. In DW, attribute “street” contains both the street and the
number of the store. We also, assume that each store is located in
one of the following cities: Paris, Rome or Athens. In the data
warehouse, the relation products should contain only software
products, with prices ranging from 500 to 1500 euros, known
quantity, and which are located either in Rome or Athens. Finally,
the id’s in the data warehouse relations are surrogate keys that
replace the original primary keys of the sources [12].

3.4 Annotating the Data Stores
In what follows, we assume that each data store is described by a
relational schema. This assumption is made for simplicity reasons
and does not compromise the generality of our approach. Non-
relational stores may be handled by providing suitable wrappers.
For example, regarding web sources, in a previous work [19] a
wrapper for extracting pieces of information from Web pages has
been presented. The objects extracted by such wrapper may then
be further filtered and given an internal structure according to the
specified relational schema.
We present a model for semantically annotating each data store,
based on the provided information. We use knowledge representa-
tion techniques to formally and explicitly describe the semantics
of each store. A common vocabulary, specified by the designer, is
used according to the available descriptions about the data stores
and the requirements of the application. Once an ontology has
been created to describe the available data stores, it is further used
to automatically identify the appropriate transformations for the
integration of the available information.
Application vocabulary. The designer provides a set of related
terms constituting the shared vocabulary of the application. This
common vocabulary is used to annotate the data stores and to
construct the application ontology, and has the following form:

V = (VC, VP, VF, VT, fP, fF, fT),

69

Table 2. Summary of OWL features used in our approach

Notation Name Description

A, B, C, D Class Defines a group of individuals sharing some properties. We use classes to represent the relations contained in
the data sources, as well as custom data types.

A ⊑ B subClassOf
Used to create class hierarchies, by stating that a class A is a subclass of (or is subsumed by) another class B.
Organizing classes in a hierarchy is used to resolve the semantic conflicts and identify the transformations
required to integrate information from different data sources.

P Property Used to relate an instance of a class to an instance of another class (ObjectProperty) or to an instance of a
datatype (DatatypeProperty). Properties are mainly used in our model for representing attributes.

dom(P) domain Specifies the class(-es) to which the individuals the property applies to, belong.
rang(P) range Specifies the class(-es) to which the individuals being the values of the property, belong.
∀P.C allValuesFrom Used to restrict the range of a property, when this property is applied to individuals of a specific class.

=nP cardinality Specifies the cardinality of a property in respect to a specific class. We use this feature to denote whether an
attribute is present in a relation or not and whether null values are allowed.

C ⊓ D = ∅ disjointWith States that two classes A and B are disjoint, i.e. an individual may not belong to both A and B. This feature is
used to prevent data records from one relation being integrated with data records from another relation.

allDiff[x,y,...] allDifferent
States that two or more individuals are different from each other. This statement is necessary because the
“unique names assumption” does not hold in OWL, i.e. two individuals x and y are not assumed to be neces-
sarily different unless explicitly stated so.

C ≡ D equivalent Used to state that two classes are equivalent, i.e. each instance of the one class is also an instance of the other.
C ⊔ D unionOf Denotes the union of two classes.

C ⊓ D intersectionOf Denotes the intersection of two classes.
C = {a1, …, an} oneOf Used to define an enumerated class, i.e. a class that contains exactly the instances specified in the definition.

∃P.{a} hasValue Restricts the property to having a specific value.

where:
− VC is a set of terms denoting the primitive concepts of the

domain of discourse.
− VP is a set of terms denoting the features that characterize

each of the above concepts. A feature may describe an as-
pect of the concept or may relate the concept with another
concept.

− VF is a set of terms denoting the different representation
formats that may be used for a feature.

− VT is a set of terms denoting the allowed values that an
enumerated feature may take. If the feature has different
representation formats, then each format has its own set of
values.

− fP : VP VC is a function associating each feature to the
primitive concept it describes.

− fF : VF VP is a function associating each representation
format to a feature.

− fT : VT VF ∪ VP is a function associating each value to a
representation format, or directly to a feature.

From the above vocabulary it is straightforward to derive the fol-
lowing information.
The set of features associated to a given concept c∈VC:

VPc = {p : fP(p) = c}
The set of representation formats for a given feature p∈VP:

VFp = {φ : fF(φ) = p}
Additionally, for enumerated features:
The set of values for a given representation format φ∈VF:

VTφ = {t : fT(t) = φ}
The set of values for a given feature p∈Vp:

VTp = {t : fT(t) = p}

Data store annotation. Each data store DS contains a set of rela-
tions RDS, each one comprising one or more attributes AR. The
process of annotating a data store refers to providing two types of
information: (a) establishing the appropriate mappings between
the data store relations and attributes and the concepts and fea-
tures of the vocabulary; and (b) describing each relation in terms
of the cardinality, representation format and (range of) values of
its associated features. The mappings are specified by means of a
function fRM : RDS VC, associating each relation to a primitive
concept, and a relationship MAM ⊆ ADS × VP between attributes
and features. For each relation R, the following information is
provided for each feature p of the concept c to which R is
mapped:

IR,p = (φ, min, max, T, n, R΄, Γf, Γα)
where:
− φ∈VFp is the representation format used for this feature in

this relation (in the case of a feature having different repre-
sentation formats).

− min and max denote the minimum and maximum value for
this feature. This information is required when different
value ranges are used for this feature in the data stores,
meaning that comparisons are needed to determine if a given
value falls within a specified range.

− T⊆VTφ∪VTp is the value(s) that this feature has on the given
relation (in the case of an enumerated feature).

− n∈{0,1,null} denotes the cardinality of this feature in the
given relation. n = 0 means that no information is provided
in this relation for this feature, while n = 1 means that all the
data records contained in this relation have a (not null) value
for this feature. It is important to note that this constraint
should be specified only for properties for which no null
values are allowed in the data warehouse. This is because
the information integration process in a data warehouse ap-
plication is asymmetric: a data source can not be integrated

70

if necessary information is missing; however, it is not a
problem if the data source contains additional information
that is not required in the data warehouse.

− R΄ is the relation referenced by the associated attribute (in
the case that this attribute is a foreign key).

− Γf, ΓP are provided in the case that the annotated property
has values resulting from an aggregation operation. Then, Γf
denotes the aggregation function (e.g. sum, max, avg) and
ΓP denotes the property(-ies) on which the aggregation is
based, i.e. the one(s) that would appear on the “group by”
part of the corresponding SQL statement.

Example (cont’d). We revisit the reference example to determine
the application vocabulary:
VC = {product, store} VFpid = {source_pid, dw_pid}
VPstore = {sid, sName, city, street} VFsid = {source_sid, dw_sid}
VFprice = {dollars, euros} VTtype = {software, hardware}
VPproduct = {pid, pName, quantity,
 price, type, storage}

VTcity = {paris, rome, athens}

Note: we have not included a property “guarantee”, since this
information is not required in the data warehouse.
We then use this vocabulary to annotate the data stores. The anno-
tation for DS1 is illustrated in Figures 1 and 2. For the interest of
space, the annotation of the rest data stores is omitted.

3.5 Ontology Generation
Given the application vocabulary and the annotations, the next
step is to construct the application ontology, which comprises:
(a) a set of primitive classes corresponding to the specified con-
cepts, representation formats and ranges or sets of values; (b) a
set of properties corresponding to the specified features of the
concepts of the domain; and (c) a set of defined classes repre-
senting the data stores. The algorithm is outlined below.
1. A class is created for each primitive concept c∈VC.
2. A class is created for each different representation format

φ∈VF.
3. An enumerated class is created for each enumerated (format

of a) feature, having as instances the specified values. If
these values are mutually exclusive, this fact is asserted by
means of an “allDifferentFrom” statement.

4. A class is created for each range of values specified in the
provided annotations. These classes are organized in a hier-
archy according to the represented value ranges. That is, if
classes C1 and C2 represent the range of values [r1, r2] and
[r3, r4], respectively, and r1 ≥ r3, r2 ≤ r4, then C1 ⊑ C2.

5. An object property P is created for each feature p ∈ VP. The
domain of P is set to be the class corresponding to the primi-
tive concept c = fP(p).

6. A functional object property “hasValue” is created. Also,
two functional datatype properties “hasAggregateFunction”
and “hasAggregateAttributes” are created.

7. For each relation R a defined class is created. The class defi-
nition has the form: CR ≡ C ⊓ c1 ⊓ … ⊓ cn, where C is the
class representing the primitive concept to which R is
mapped, and each ci is derived from the annotation of R. In
particular, given each tuple IR,p = (φ, min, max, T, n, R΄) de-
scribing R, the following conditions apply:

a. if φ ≠ null, and F is the class corresponding to the repre-
sentation format φ, then the constraint ∀P.F is added.

b. if min ≠ null or max ≠ null, and R is the class represent-
ing this range of values, then the constraint ∀P.R is
added.

c. if T ≠ null, the constraint ∀P.(∃hasValue.{v1} ⊔ … ⊔
∃hasValue.{vn}) is added, where v1, …, vn are the values
specified by T.

d. if n = 0 or n = 1, the cardinality constraint =nP is added.
e. if R΄ ≠ null, the constraint ∀P.D is added, where D is the

defined class corresponding to the relation R΄.
f. if {Γf, ΓP} ≠ null, a value restriction of the form
∀P.(∃hasAggregateFunction.{f}⊓∃hasAggregateAttribu
tes.{P}) is added, where f is the aggregate function de-
noted by Γf and P the property(-ies) denoted by ΓP.

After the ontology is constructed, a reasoner is used to infer sub-
sumption relationships, classifying the defined classes accord-
ingly.

Example (cont’d). We revisit the reference example to construct
the ontology. The following sets of classes and properties result
from the provided vocabulary and annotations:
SC = {Product, Store, Dollars_Price, Euros_Price, Source_Pid,
DW_Pid, Source_Sid, DW_Sid, Type_Values, City_Values,
Above_200, From_500_To_1500}.
SP = {pid, pName, quantity, price, type, storage, sid, sName, city,
street, hasValue, hasAggregateFunction, hasAggregateAttributes}.
The following classes are then defined, based on the above classes
and properties, in accordance to the provided annotations of the
respective data stores: DS1_Products, DS1_Stores, DS2_Software,
DS2_Hardware, DS2_Stores, DW_Products and DW_Stores. For
instance, the definition of class DS1_Products is shown in Figures
3 and 4. The rest of the definitions are omitted due to space limi-
tations. Finally, the reasoner is used to infer the class hierarchy
depicted in Figure 5.

4. ETL DESIGN GENERATION
Having constructed an ontology that describes the application
domain and the mappings between this ontology and the source
schemata, we describe how the appropriate ETL transformations
for integrating data from the data sources and loading it to the
data warehouse, may be automatically derived.
Table 3 presents a set of operators that are typically encountered
in an ETL process. This set contains, among others, filter (σ),
project (π), join (J), aggregation (γ), function (convert), that are
core operators in practically every frequently used ETL transfor-
mation. However, our work does not anticipate the formal deter-
mination of the functionality of each transformation, rather we
aim at the identification of a conceptual transformation, whose
functionality will be determined later by the designer through a
template library similar to the one proposed in [27].
The first step of our method is to determine from which sources,
and more specifically, from which attributes/relations of these
sources, information needs to be extracted in order to populate
each attribute/relation in the data warehouse.

71

 DS1

products product
id pid

name pName
amount quantity

price price
type type

sid storage

stores store sid sid
name sName

location city
location street

Figure 1. The mappings for the data store DS1

DS1 φ min max T n R΄ Γf Γα
Ipid source_pid - - - 1 - - -
IpName - - - - 1 - - -
Iquantity - - - - - - - -
Iprice euros 200 - - 1 - - -
Itype - - - {software, hardware} 1 - - -pr

od
uc

ts

Istorage - - - - 1 store - -
Isid source_sid - - - 1 - - -
IsName - - - - 1 - - -
Icity - - - {paris, rome, athens} 1 - - -st

or
es

Istreet - - - - 1 - - -
Figure 2. Annotation for the data store DS1

<owl:Class rdf:ID="DS1_Products">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Product"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#pid"/>
 <owl:cardinality rdf:datatype="&xsd;
 nonNegativeInteger">1</owl:cardinality>
 </owl:Restriction>
...
 <owl:Restriction>
 <owl:onProperty rdf:resource="#price"/>
 <owl:allValuesFrom>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Euros_Price"/>
 <owl:Class rdf:about="#Above_200"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:allValuesFrom>
 </owl:Restriction>
...
 </owl:intersectionOf>
</owl:Class>

Figure 3. Code snippet for DS1_Products Figure 4. Definition for DS1_Products Figure 5. The class hierarchy

Suppose that RT is a relation contained in the data warehouse,
represented in the ontology by the defined class CT. Then a rela-
tion R, contained in a data source and represented in the ontology
by the defined class C, is used as a provider relation in the ETL
process for RT, iff the following conditions hold:
a) C and CT are subclasses of the same primitive class, where

by primitive class we refer to classes in the ontology repre-
senting the primitive concepts of the domain, i.e. the terms
specified in VC.

b) C and CT are not disjoint, i.e. C ⊓ CT ≠ Ø.
The first condition ensures that the integrated data records have
the same semantics. The second condition prevents the integration
of information from sources having constraints that contradict the
constraints imposed by the data warehouse.
The next step is to determine the transformations required to inte-
grate data from the source relations to the target relation. The
required transformations are determined by the specified map-
pings and by the relative position of the source and target classes
in the class hierarchy. The following algorithm identifies the ETL
transformations for transferring data from a source relation RS,
corresponding to the defined class CS, to the target relation RT,
corresponding to class CT.
Phase 1.
1. A “project” π(α1, …, αn) is inserted, where for each attribute

αi of RS exists p∈VP such that (αi,p)∈MAM. That is, this
transformation excludes source attributes not mapped (via
the vocabulary) to an attribute of the target relation.

2. A “concatenate” c(α1, …, αn, P) is inserted if for each i

(αi,p)∈MAM, i.e. if the source attributes αi are mapped to the
same property P. Similarly, a “split” operation s(α, P1, …,
Pn,) is inserted for each source attribute α that is mapped to
more than one property.

3. If a tuple IRs,p = (φ, min, max, T, n, R΄) has R΄ ≠ null, then
the steps 1 and 2 are performed for R΄ and a “join” is in-
serted. For the rest of the process the attributes of R and R΄
are treated similarly; i.e. the transformations required for R΄
are also identified and included in the ETL process.

Phase 2. In this phase a set of “select”, “convert” and “not null”
operations are added to the ETL workflow, depending on the
subsumption relationship between the two classes CS and CT,
which is determined by the reasoner. Specifically, the following
distinct cases exist:
1. Classes CS and CT are equivalent: CS ≡ CT. In this case, the

data records in the source relation satisfy exactly the same
constraints as the ones imposed by the target relation; thus
no transformations are required.

2. Class CS is subsumed by class CT: CS ⊏ CT. In this case, the
data records in the source relation satisfy all the constraints
imposed by the target relation, plus some additional ones;
thus, again, no transformations are required.

3. Class CS subsumes class CT: CS ⊐ CT. In this case, the data
records in the source relation satisfy only a subset of the
constraints imposed by the target relation, meaning that a
filtering is required to exclude those data records not fulfill-
ing the additional constraints. For each of these additional
constraints ci, we distinguish:
a. ci is a format constraint: ∀P.F, where F is a class corre-

72

sponding to a representation format. This means that no
representation format is specified for the source values,
which in turn means that no values exist for this property.
Therefore, no transformation is performed at this point.
(In Phase 3 “add” transformations are inserted to appro-
priately fill missing values.)

b. ci is a range constraint: ∀P.R, where R is a class corre-
sponding to a value range. Α “select” is added: σ(P, R).

c. ci is a value constraint: ∀P.(∃hasValue.{v1} ⊔ … ⊔
∃hasValue.{vn}). A “select” transformation is added:
σ(P, R), where R here is the set of values v1, …, vn.

d. ci is a value constraint regarding an aggregated property:
∀P.(∃hasAggregateFunction.{f}⊓∃hasAggregateAttribu
tes.{Pγ}). In this case an “aggregate” is added: γ(f, P, Pγ).
Note that if two or more aggregate transformations with
the same set of properties Pγ exist, they should be merged
in a single aggregate transformation.

e. ci is a cardinality constraint: =1P. This occurs when
source relation allows null values while the target rela-
tion does not. Thus, a “not null” is added to exclude data
records having null values for this property: nn(P).

4. Classes CS and CT are overlapping (neither one is subsumed
by the other). Again, we are interested in the constraints of
the target relation that do not apply to the source relation.
Such constraints can be derived by defining a temporary
class with constraints the conjunction of all the constraints
of CS and CT. This class is a subclass of CS, so, as before,
the additional constraints are identified. Each of these con-
straints is handled as in the previous case, apart from the
format constraints. If a format constraint ∀P.F occurs, the
source class includes a corresponding constraint ∀P.F΄,
where F and F΄ denote different representation formats.
Thus, a “convert” transformation is inserted: f(P, F΄, F).

Phase 3.
1. For each additional attribute α contained in the target rela-

tion, an “add” transformation is inserted: add(α, v), where v
is either a default value specified in the annotation of the
source relation (specifically contained in the set T of the
corresponding tuple IR,p) or null.

2. A “union” is inserted to aggregate the (transformed) data
records coming from this source relation with (transformed)
data records from the other source relations.

3. A “distribute” is inserted to accordingly store the incoming
data records as specified by the provided mappings.

4. A “detect duplicates” is inserted for each attribute having a
“unique” constraint in the target relation.

Example (cont’d). We conclude the reference example by pre-
senting the resulting conceptual ETL transformations.
The class corresponding to the target relation DW.products is
DW_Products, which is subsumed by the primitive class Product.
Therefore, the relations to be considered are DS1.products,
DS2.software and DS2.hardware. DS2.hardware is excluded,
because, as inferred by the reasoner: DW_Products ⊓
DS2_Hardware ≠ Ø. Similarly, DS1.stores and DS2.stores are the
source relations for DW.stores.
First, the required operations for the source DS1 are identified.
According to Phase 1 and the corresponding mappings, a “join” is
required between DS1.products and DS1.stores, preceded by a

transformation π(id,name,amount,price,type,sid) on DS1.products,
to exclude attribute “guarantee” not mapped to any property, and
a transformation s(location,city,street) on DS1.stores. To identify
the operations resulting from Phase 2, given that none of the
classes DW_Products and DS1_Products is subsumed by the
other, a temporary class DW_P_DS1_P is defined, having all the
constraints of these two classes. As expected, this class is classi-
fied by the reasoner as a subclass of DS1_Products, which helps
in identifying the following additional constraints:

− ∀storage.DW_Stores. The corresponding constraint in
DS1_Products is ∀storage.DS1_Stores. Since DW_Stores
and DS1_Stores are classes representing relations, the re-
spective transformation needs to be inserted at this point.

− ∀pid.DW_Pid. The respective constraint in DS1_Products
is ∀pid.Source_Pid. Classes DW_Pid and Source_Pid corre-
spond to representation formats, therefore a “convert” opera-
tion f(pid, Source_Pid, DW_Pid) is inserted.

− ∀price.(Euros_Price⊓From_500_To_1500). The respective
constraint in DS1_Products is ∀price.(Euros_Price⊓
Above_200). Thus, a “select” is inserted to restrict the range
of values for property price: σ(price, From_500_To_1500).

− =1quantity. Class DS1_Products does not specify any cardi-
nality constraint on this property. Therefore, a “not null” is
inserted: nn(quantity).

− ∀type.(∃hasValue.{hardware}). The respective constraint
in DS1_Products is ∀type.((∃hasValue.{software})⊔
(∃hasValue.{hardware})). Thus, a “select” is inserted to ex-
clude the additional value “hardware” allowed in the data
source but not in the data warehouse: σ(type, {software}).

Figure 6 illustrates the axioms causing the inference in question.
Notice that the parts of the two classes’ definitions that are
stricken out by the reasoner, while performing this inference,
indicate the above used constraints.
Finally, resulting from Phase 3, a “union” operation is inserted to
integrate the transformed data records with data records from
other source relations, and a “distribute” operation to appropri-
ately store the tuples referring to products and stores.
As a concluding comment, in a following step, the transforma-
tions produced should be ordered so that their input schemata may
be successfully populated; i.e. each transformation should be
placed in the ETL design as long as all its providers already exist
in the design. For this procedure, we adopt the approach presented
in [22].

Figure 6. DS1_Products integration

73

Table 3. A set of common ETL workflow operations
Symbol Name Functionality
σ(P, R) select Filters the values of property P, excluding those values that do not belong to the set specified by R.

f(P, F1, F2) convert Converts the values of property P from the representation format F1 to the representation format F2.
add(α, v) add Adds attribute α to the current schema, setting its values to v, where v is either a default value or null.

nn(p) not null Deletes the data records having a null value for property p.
dd(P) detect duplicates Detects, and appropriately removes, records having the same value for property P.

π(α1, …, αn) project Projects the current schema preserving only the attributes denoted by α1, …, αn.
c(α1, …, αn, P) concatenate Concatenates the values of attributes α1, …, αn to set the value of property P.
s(α, P1,…, Pn) split Splits the value of attribute α to set the values of properties P1, …, Pn.

γ(f, P, Pγ) aggregate Aggregates the values of property(-ies) P by grouping them by those of property(-ies) Pγ and applying the function(-s)
f.

U union As the operator “union” in SQL.
J join As the operator “join” in SQL.

D distribute The “inverse” operation of join: if the data records contain attributes from multiple relations, as a result from a previ-
ous join operation, then this operation distributes data to the involved relations accordingly.

5. CONCLUSIONS
In this paper, we have focused on the problem of determining the
inter-attribute mappings and identifying the ETL transformations
required for the conceptual design of an ETL process. We have
presented an approach based on Semantic Web technologies to
facilitate the process of selecting the relevant information from
the available data sources and appropriately transforming it to
populate the data warehouse. We have used ontologies to for-
mally and explicitly specify the semantics of the data stores’
schemata. We have shown that having this formal and explicit
description of the domain, it is possible to automate in a large
degree the process of the ETL workflow creation.
Future plans include the study of the impact of changes to the
ETL process using ontologies and the application of our method
to real-world cases.

6. REFERENCES
1. Arens, Y., Hsu, C.-H., Knoblock, C. Query Processing in the

Sims Information Mediator. Advanced Planning Tech., 1996.
2. Ascential Software Inc.url:http://www.ascentialsoftware.com
3. Baader, F., McGuiness, D. L., Nardi, D., Patel-Schneider, P.

(Eds). Description Logic Handbook: Theory, implementation
and applications. Cambridge University Press, 2002.

4. Ballard, C. Data Modeling Techniques for Data Warehousing.
IBM Red Book, ISBN 0738402451, 1998.

5. Boehnlein, M., Ulbrich-vom Ende, A. Deriving the Initial Data
Warehouse Structures from the Conceptual Data Models of the
Underlying Operational Information Systems. DOLAP, 1999.

6. Borst, W. N. Construction of Engineering Ontologies. PhD
thesis, University of Twente, Enschede, 1997.

7. Goh, C.H.. Representing and Reasoning about Semantic
Conflicts in Heterogeneous Information Sources. MIT, 1997.

8. Golfarelli, M., Rizzi, S. Methodological Framework for Data
Warehouse Design. DOLAP, 1998.

9. Hahn, K., Sapia, C., Blaschka, M. Automatically Generating OLAP
Schemata from Conceptual Graphical Models. DOLAP, 2000.

10. IBM. IBM Data Warehouse Manager. url: http://www-
3.ibm.com/software/data/db2/datawarehouse/

11. Informatica. PowerCenter. url:http://www.informatica.com/
products/data +integration/powercenter/default.htm

12. Kimball, R., et al. The Data Warehouse Lifecycle Toolkit.
John Wiley & Sons, 1998.

13. Luján-Mora, S., Vassiliadis, P., Trujillo, J. Data Mapping
Diagrams for Data Warehouse Design with UML. ER, 2004.

14. Mazon, J-N., Trujillo, J., Serrano, M., Piattini, M. Applying
MDA to the development of data warehouses. DOLAP, 2005.

15. Mena, E., Kashyap, V., Sheth, A., Illarramendi, A. Observer:
An Approach for Query Processing in Global Information
Systems Based on Interoperability Between Pre-Existing On-
tologies. CoopIS, 1996.

16. Microsoft. Data Transformation Services.
url: www.microsoft.com

17. Moody, D.L., Kortink, M.A.R. From Enterprise Models to
Dimensional Models: a Methodology for Data Warehouse
and Data Mart Design. DMDW, 2000.

18. Oracle. Oracle Warehouse Builder Product Page.
url: http://otn.oracle.com/products/warehouse/content.html

19. Papadakis, N., Skoutas, D. , Raftopoulos, K., Varvarigou, T.
STAVIES: A System for Information Extraction from Unknown
Web Data Sources through Automatic Web Wrapper Generation
Using Clustering Techniques. IEEE TKDE 17(12), 2005.

20. Peralta, V. Data Warehouse Logical Design from Multi-
dimensional Conceptual Schemas. CLEI, 2003.

21. Phipps, C., Davis, K. Automating Data Warehouse Concep-
tual Schema Design and Evaluation. DMDW, 2002.

22. Simitsis, A. Mapping Conceptual to Logical Models for ETL
Processes. DOLAP, 2005.

23. Simitsis, A., Vassiliadis, P., Sellis, T. State-Space Optimiza-
tion of ETL Workflows. IEEE TKDE 17(10), 2005.

24. Smith, M. K., Welty, C., McGuinness, D. L. OWL Web On-
tology Language Guide. W3C Recommendation. 2004.

25. Trujillo, J., Lujan-Mora, S. A UML Based Approach for
Modeling ETL Processes in Data Warehouses. ER, 2003.

26. Wache, H., et al. Ontology-Based Integration of Information
A Survey of Existing Approaches. IJCAI workshop on On-
tologies and Information Sharing, 2001.

27. Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M.,
Skiadopoulos, S. A Generic and Customizable Framework for
the Design of ETL Scenarios. Information Systems 30(7),
2005.

28. Vassiliadis, P., Simitsis, A., Skiadopoulos, S. Conceptual
Modeling for ETL Processes. DOLAP, 2002.

74

