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Abstract

One of the most important parts of designing an expert system is
elicitation of the expert’s knowledge. This knowledge usually consists
of facts and rules. Eliciting these rules and facts is relatively easy, the
more complicated task is assigning weights (numerical or interval-valued
degrees of belief) to different statements from the knowledge base. Expert

1



often cannot quantify their degrees of belief, but they can order them (by
suggesting which statements are more reliable). It is, therefore, reasonable
to try to reconstruct the degrees of belief from such an ordering.

In this paper, we analyze when such a reconstruction is possible,
whether it lead to unique values of degrees of belief, and how compu-
tationally complicated the corresponding reconstruction problem can be.

1 How to Elicit Numerical Degrees of Belief
Without Asking for Them:
Formulation of the Problem

It is necessary to describe degrees of belief. The core of a knowledge-
based system is a body of knowledge elicited from the experts. This knowledge
usually consists of facts and rules. Eliciting these rules and facts is a relatively
easy task (to be more precise, it is doable; see, e.g., [11]). However, these facts
and rules are not all we need. Experts usually have different degrees of belief
in different statements: they have more belief in some of them and less belief in
some others.

To describe these degrees of belief, expert systems usually use numbers from
the interval [0, 1], so that:

• 1 corresponds to the case when the expert is absolutely sure that the
statement is true,

• 0 corresponds to the case when the expert is absolutely sure that the
statement is false, and

• intermediate values describe intermediate degrees of belief.

To describe the expert’s degree of belief in logical combinations of the original
statements, such as Ai&Aj , Ai ∨Aj , etc., we must generalize logical operations
defined for two-valued logic to the case when truth values can take any values
from an arbitrary interval [0, 1]. Many such generalizations are known [9, 13].
Generalizations of & are usually called t-norms, and generalizations of ∨ are
called t-conorms.

Comments.

• A t-norm is usually defined as a continuous function & : [0, 1] × [0, 1] →
[0, 1] which is commutative (a&b = b&a for all a and b), associative
(a&(b&c) = (a&b)&c), non-decreasing in each variable (i.e., a ≤ a′ and
b ≤ b′ imply a&b ≤ a′&b′), and satisfies the conditions a&1 = a and
a&0 = 0.
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• Similarly, a t-conorm ∨ is usually defined as a continuous function
∨ : [0, 1]× [0, 1] → [0, 1] which is commutative (a ∨ b = b ∨ a), associative
(a∨ (b∨ c) = (a∨ b)∨ c), non-decreasing in each variable, and satisfies the
conditions a ∨ 1 = 1 and a ∨ 0 = a.

• Finally, a negation operation ¬(a) is usually defined as a continuous func-
tion for which ¬(0) = 1, ¬(1) = 0, and ¬(¬(a)) = a for all a. (The most
widely used example is ¬(a) = 1− a.)

For many experts, it is difficult to describe their degrees of belief. If
an expert can provide us with the numbers that describe his degrees of belief,
great. However, the very necessity of an expert system comes from the fact that
experts often cannot quantify their knowledge. For example, the majority of
people who consider themselves experts in driving a car cannot describe their
driving in different situations in precise numerical terms, like “if the speed is 63
km/h, and there is a 40 km/h speed limit 1 mile ahead, step on the brakes for
1.3 sec”. Instead, the expert can only say fuzzy statements like “if the lower
speed limit is some distance ahead, step on the brakes for a little while”.

If an expert cannot easily quantify the part of his knowledge for which there
is, in principle, a natural quantification, then he is even less capable of quanti-
fying his degree of belief, the quantity for which no natural quantification exists.

So, the problem is: how to elicit the expert’s degrees of belief without explicitly
asking for them?

This problem is easier for intelligent control systems, more difficult
for expert systems. The problem of eliciting numbers without explicitly
asking for numbers is somewhat easier for intelligent control, where in principle,
we can relieve an expert from the necessity of answering any questions at all:
we can simply:

• observe his behavior (either in the real control situation, or on a simulator),
and

• extract his rules and degrees of belief from the observed control behavior
(see, e.g., [1]).

This problem is much more complicated for expert systems, where such a solution
is not available.

An additional complication: it is often more adequate to describe
degrees of belief by intervals. One way to elicit the expert’s degrees of
belief is to ask an expert to estimate his degree of belief in a given statement
by picking a number, say, on a scale from 0 to 10. This procedure is often used
by the pollsters who simplify the respondent’s task by adding the words like
“absolutely sure”, “sure”, etc., to describe different numbers on the scale. If an
expert picks, e.g., 6, then we take 6/10 = 0.6 as the desired degree of belief.
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Often, an expert is quite sure about his degree of belief, and this procedure
works, but for some statements, he may be unsure about his degree of belief,
and he may mark several values as equally well describing his degree of belief.
For example, he may mark 5, 6, and 7. This means that this expert’s degree
of belief is best described not by a single number, but rather by an interval
[0.5, 0.7].

Even when a single number (say 6) is picked, it does not necessarily mean
that the expert’s degree of belief is exactly 0.6: it is quite possible that if we
take a more detailed scale and ask an expert to mark his degree of belief on a
scale of 0 to 100, he will mark not 60, but 62, or 58, or several numbers that
are close to 60. The only thing that we can hope for is that the expert’s choice
for the 0 to 100 scale will be consistent with his choice for the 0 to 10 scale, i.e.,
that the resulting degree of belief from the 0 to 100 scale will be closer to 0.6
than to 0.5 or to 0.7. The borderlines between “closer to 0.6”, “closer to 0.5”,
and “closer to 0.7”, are the midpoints 0.55 and 0.65. As a result, from the fact
that a person has marked 6 on a 0 to 10 scale, we can only conclude that his
actual degree of belief is somewhere in the interval [0.55, 0.65] (for a detailed
description, see, e.g., [12]).

If we use intervals, then we must extend logical operations to the case of
intervals. This extension is pretty straightforward:

• if the only thing we know about the degree of belief ai in a statement Ai

is that ai belongs to an interval [a−i , a
+
i ], and

• if the only thing we know about the degree of belief aj in a statement Aj

is that aj belongs to a certain interval [a−j , a
+
j ],

• then all possible values ai&aj for ai ∈ [a−i , a
+
i ] and aj ∈ [a−j , a

+
j ] (where

& is the chosen t-norm) are possible values of degree of belief in Ai&Aj ,

Since a t-norm is assumed to be monotonically non-decreasing in both argu-
ments, the smallest possible value of ai&aj is attained when both ai and aj
attain the smallest possible values (i.e., when ai = a−i and aj = a−j ). Similarly,

the largest possible values of ai&aj is attained when ai = a+i and aj = a+j .
Hence, the interval of possible values of ai&aj is

[a−i , a
+
i ]&[a−j , a

+
j ] = [a−i &a

−
j , a

+
i &a

+
j ]. (1)

Similarly, it is natural to define ∨− and ¬−operations on interval values of
degrees of belief as [a−i , a

+
i ] ∨ [a−j , a

+
j ] = [a−i ∨ a−j , a

+
i ∨ a+j ] and

¬[a−i , a
+
i ] = [¬a+i ,¬a

−
i ]. (2)

Summarizing: In many cases, intervals are a more adequate description of de-
grees of belief. So, the problem of eliciting degrees of belief becomes: how to
elicit interval-valued degrees of belief?
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2 How to Elicit Numbers
Without Asking for Them:
Main Idea

Main idea: ordering instead of quantifying. It is often very difficult for
an expert to quantify his degrees of belief, be it in the form of a number or in
the form of an interval. However, an expert usually has no problem ordering
his degrees of belief, i.e., deciding, for some pairs of statements Ai and Aj , that
his belief in Ai is definitely not greater than his belief in Aj (we will denote this
relation by Ai ≤ Aj).

This relation can be easily reformulated in interval terms. Indeed, let us
denote the interval of possible degrees of belief in Ai by [a−i , a

+
i ], and the interval

of possible values of degree of belief in Aj by [a−j , a
+
j ]. Then the relation Ai ≤ Aj

means that for all ai ∈ [a−i , a
+
i ] and for all aj ∈ [a−j , a

+
j ], we have ai ≤ aj . To

guarantee this inequality for all possible values ai and aj , it is sufficient to make
sure that this inequality holds for the largest possible ai (i.e., for ai = a+i ) and
for the smallest possible aj = a−j . Hence, Ai ≤ Aj is equivalent to a+i ≤ a−j .

Modification of the main idea: we can also order logical combinations.
In addition to ordering the degrees of belief in the original statements from the
knowledge base, the experts can, as easily, order their degrees of belief in the
logical combinations of these statements such as Ai&Aj , Ak&¬Al, etc.

As a result, we arrive at the following idea:

• we have preferences ≤ between the propositional combinations of original
statements, and

• we would like to determine the intervals of possible values that are con-
sistent with these preferences in the sense that if Ai ≤ Aj , then for the
corresponding intervals [a−i , a

+
i ] and [a−j , a

+
j ], we have a+i ≤ a−j .

Comment. In this paper, we suggest the following way of handling the experts
knowledge:

• first, we elicit, from experts, preferences that describe their knowledge;

• then, we transform these preferences into intervals;

• finally, we use the known number- and interval-based expert system
methodologies to answer queries.

Alternatively, instead of attempting to use the existing interval-based methods,
we can try to develop new methods that lead directly from the preferences
to answers to the queries. There are many papers in which this “shortcut”
approach is being developed; an interested reader can, e.g., look into a detailed
survey [2].
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Reconstruction: in what sense? If for each statement Ai, we have found an
interval [a−i , a

+
i ] so that these intervals are consistent with the expert’s prefer-

ences, then every sequence of narrower intervals [a′
−
i , a

′+
i ] ⊆ [a−i , a

+
i ] will also be

consistent with the same preferences. However, if we select these narrower in-
tervals as the degrees of belief coming from the known preferences, then we will
be kind of cheating, because by choosing narrower and less ambiguous intervals
[a′

−
i , a

′+
i ] instead of the wider ones [a−i , a

+
i ] that are still consistent with the

expert preferences, we are imposing certainty that is not in any way contained
in the original preferences.

It is therefore desirable to choose, out of all possible combinations of intervals
that are still consistent with the preferences, the combination in which the
narrowest interval is the widest possible. In other words, if we have statements
A1, . . . , An, then we would like to choose the intervals [a−1 , a

+
1 ], . . . , [a

−
n , a

+
n ] that

are consistent with all preferences and for which the value

J (⃗a) = min(a+1 − a−1 , . . . , a
+
n − a−n ) (3)

is the largest possible.

Comments.

• This idea was first formulated (without explicit mathematical formulas)
in [5].

• The general idea of minimizing specificity is in line with such approaches
as minimum specificity/commitment principles in possibility theory (see,
e.g., [4]) or Dempster-Shafer theory (see, e.g., [17]), maximum entropy in
probabilistic approach (see, e.g., [10, 14, 15, 16]), etc.

3 How to Elicit Numbers
Without Asking for Them:
Main Problems

In the previous section, we formulated the idea of how to elicit numerical degrees
of belief without explicitly asking for them. With this idea, come the following
problems:

• First of all, is there always a solution to this problem? Experts can give
inconsistent preferences. Therefore, it is natural to ask: is it possible (and
is it computationally easy) to check that a solution exists, i.e., that the
expert’s preferences are consistent?

• If the preferences are consistent, does there exist an optimal assignment?

6



• Is the resulting optimal assignment of interval degrees of belief unique, or
for some preferences, there are several possible assignments with the same
value of the maximized criterion J (⃗a)?

• How to actually compute the optimal assignment? Is the problem of com-
puting this assignment computationally feasible?

In this paper, we will consider these problems. In order to describe our solution
to these problems, we will need two extra sections:

• First, we must formulate our idea in precise mathematical terms.

• Second, we must remind the reader what “computationally feasible”
means.

4 Expert Preferences and How They Lead to
Interval-Valued Degrees of Belief:
Precise Definitions

Definition 1. (given information) Let a positive integer n be given. This
integer will be called the number of statements in a knowledge base.

• By a statement, we mean an expression of the type Ai, where 1 ≤ i ≤ n.

• By an “and”-formula F , we mean either a statement, or an expression of
the type Ai& . . .&Aj , where Ai, . . . , Aj are different statements (i.e., Ai

with different indices).

• By an “and”-“not” formula F , we mean either a statement, or an arbitrary
expression that is obtained from statements by using & and ¬.

• By a preference, we mean an expression of the type F ≤ G, where F and
G are formulas.

• By preference base P , we will mean a finite set of preferences.

Comments.

• In the following text, we will show that already for “and” and “not” the
natural questions like checking consistency or computing the optimal as-
signment become computationally intractable. Therefore, if we addition-
ally allow “or” (and thus allow full propositional logic), we will also get a
computationally intractable problem. In view of this comment, in the fol-
lowing text, we only analyze the formulas with propositional connectives
“and” and “or”.
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• It is natural to also consider preferences of the type F > G which express
a natural expert’s statement like “I believe in F more than in G”. If we
express the degree of belief in F by an interval [f−, f+] and the degree of
belief in G in G by an interval [g−, g+], then this condition is naturally
represented by the condition that each number from the interval [f−, f+]
is larger than any number from the interval [g−, g+]. This condition can
be easily reformulated as f− > g+. However, as we show in the “Proofs”
Appendix, if we allow such seemingly natural preferences, then even for
the simplest case of only two statements A1 and A2 and a preference
A1 > A2, there is no optimal assignment. In view of this complication,
in the present paper, we only consider “weak” preferences, of the type
F ≥ G.

Definition 2. (desired assignment of interval-valued degrees of belief) Let an
integer n be given; let & be a t-norm [9, 13], and let ¬ be a negation operation.

• By an assignment of interval-valued degrees of belief (or simply assignment,
for short), we mean a tuple a⃗ = (a1, . . . , an) of n intervals ai = [a−i , a

+
i ].

The interval ai is called the degree of belief in the statement Ai.

• For each assignment a and for each “and”-formula F = Ai& . . .&Aj , we
define the formula’s degree of belief as the interval f = [f−, f+], where
f− = a−i & . . .&a−j and f+ = a+i & . . .&a+j .

• For each assignment a and for each “and”-“not” formula F , we define
its degree of belief f = [f−, f+] as the result of substituting intervals ai
instead of the statements Ai, and operations (1), (2) instead of & and ¬.

• We say that an assignment a is consistent with a preference F ≤ G if the
corresponding degrees of belief f = [f−, f+] in F and g = [g−, g+] in G
satisfy the inequality f+ ≤ g−.

• We say that an assignment a is consistent with a preference base P if it
is consistent with all preferences from this preference base.

• We say that a preference base is consistent if there exists an assignment
a that is consistent with P .

• For every consistent preference base P , by an optimal assignment, we
mean an assignment that is consistent with P and for which the value of
the criterion J (⃗a) (formula (3)) is the largest among all assignments that
are consistent with P .

Comment. We want to know which computational reconstruction problems are
feasible and which are intractable. Before we formulate our results, let us briefly
recall how “feasible” and “intractable” are usually defined.
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Some algorithms require lots of time to run. For example, some algorithms
require the running time of ≥ 2n computational steps on an input of size n. For
reasonable sizes n ≈ 300, the resulting running time exceeds the lifetime of the
Universe and is, therefore, for all practical purposes, non-feasible.

In order to find out which algorithms are feasible and which are not, we must
formalize what “feasible” means. This formalization problem has been studied
in theoretical computer science; no completely satisfactory definition has yet
been proposed.

The best known formalization is: an algorithm U is feasible iff it is polynomial
time, i.e., iff there exists a polynomial P such that for every input x, the running
time tU (x) of the algorithm U on the input x is bounded by P (|x|) (here, |x|
denotes the length of the input x).

This definition is not perfect, because there are algorithms that are polyno-
mial time but that require billions of years to compute, and there are algorithms
that require in a few cases exponential time but that are, in general, very prac-
tical. However, this is the best definition we have so far.

For many mathematical problems, it is not yet known (1998) whether these
problems can be solved in polynomial time or not. However, it is known that
some combinatorial problems are as tough as possible, in the sense that if we
can solve any of these problems in polynomial time, then, crudely speaking,
we can solve many practically important combinatorial problems in polynomial
time. The corresponding set of important combinatorial problems is usually
denoted by NP, and problems whose fast solution leads to a fast solution of
all problems from the class NP are called NP-hard. The majority of computer
scientists believe that NP-hard problems are not feasible. For that reason, NP-
hard problems are also called intractable. For formal definitions and detailed
descriptions, see, e.g., [6].

5 Checking Consistency:
Feasible for “and” Only,
NP-Hard (For Some t-Norms) if We Use Both
“and” and “not”

It is easy to show that when we only use “and”, then the preference base is
always consistent:

PROPOSITION 1. Every preference base that uses “and”-formulas is con-
sistent.

Proof. Take ai = [1, 1] for all i. It is easy to check that an arbitrary preference
F ≤ G between “and”-formulas is consistent with this assignment. Q.E.D.

9



If we use both “and” and “not”, then whether checking consistency is feasible
or not depends on the choice of a t-norm (i.e., “and”-operation). There are three
main types of t-norms (see, e.g., [9, 13]):

• a&b = min(a, b);

• Strictly Archimedean t-norms, i.e., t-norms of the type a&b = φ−1(φ(a) ·
φ(b)) for some strictly increasing continuous function φ. The most widely
used example of such a norm is the t-norm a&b = a · b which corresponds
to φ(a) = a.

• Non-strictly Archimedean t-norms, i.e., t-norms of the type a&b =
φ−1(max(φ(a)+φ(b)−1, 0)) for some strictly increasing continuous func-
tion φ. The most widely used example of such a norm is the “bold inter-
section” a&b = max(a+ b− 1, 0).

In this paper, we are interested in computational feasibility of different opera-
tions, so, we will assume that both the function φ and the inverse function φ−1

are feasible (i.e., can be computed in polynomial time).

PROPOSITION 2.

• For & = min, every preference base with “and”-“not” formulas is consis-
tent.

• For every strictly Archimedean t-norm, the problem of checking consis-
tency of preference bases with “and”-“not” formulas is NP-hard.

Comments.

• For reader’s convenience, the proof of this proposition, as well as the proofs
of other results presented in this paper, are placed in a special Appendix
at the end of the paper.

• We have already mentioned that formulas that use “not” are more am-
biguous that formulas that only use “and”. Since it turns out that adding
“not” also drastically increases the computational complexity of knowl-
edge elicitation, in the remaining parts of the paper, we will primarily
consider preference bases with preferences between “and” formulas,

6 Computing Optimal Assignments

If the knowledge base is consistent, then we face a problem of computing the
optimal assignment. In this section, we show that the optimal assignment always
exists, that it is not always uniquely defined, and that the feasibility of finding
an optimal assignment depends on the choice of a t-norm.
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PROPOSITION 3. If a t-norm is a continuous function, and a preference
base is consistent, then there exists an optimal assignment.

PROPOSITION 4.

• For some consistent preference bases with “and” formulas, there exists
exactly one optimal assignment.

• For some consistent preference bases with “and” formulas, there exist sev-
eral optimal assignments.

PROPOSITION 5. There exists a strictly Archimedean t-norm & for which
the problem of computing the optimal assignment for preference bases with “and”
formulas is NP-hard.

We will show that for other t-norms, this problem is feasible; namely, we will
show that it is feasible for the “bold intersection”

a&b = max(a+ b− 1, 0).

Before we formulate the result, we must make the following remark:

• When an expert states a preference F ≤ G, where F = Ai& . . .&Aj and
G = Ak& . . .&Al, i.e., that his belief in F is smaller than his degree of
belief in G, then he implicitly assumes that his degree of belief in F is
non-zero; otherwise, the inequality is trivially true and there is no reason
to state it.

• For strictly Archimedean t-norms, if a+i > 0, ..., and a+j > 0, then f+ > 0,
and thus, the degree of belief in F is automatically different from [0, 0].

• For the bold intersection, this is not automatically true, because we can
have a+i = a+j = 0.5 and a+i &a

+
j = max(0.5 + 0.5− 1, 0) = 0.

Hence, for the bold intersection, this condition needs to be specifically stated.
In other words, we need to modify the definition of consistency between the

preference and an assignment:

Definition 2′. We say that an assignment a is consistent with a preference
F ≤ G if the corresponding degrees of belief f = [f−, f+] in F and g = [g−, g+]
in G satisfy the inequalities [f−, f+] ̸= [0, 0] and f+ ≤ g−.

PROPOSITION 6. For the “bold intersection” t-norm, there exists a feasible
algorithm that computes, for every preference base with “and” formulas, the
optimal assignment (in the sense of Definition 2′).
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Conclusions

In this paper, we addressed the following problem:

• for knowledge-based systems, it is necessary to quantify the expert’s de-
grees of belief in their statements, but

• for many experts, it is very difficult to express their degrees of belief in
numerical form.

To solve this problem, we proposed a new method of extracting the numerical
values of degrees of belief from the expert’s ordering of his degrees of belief.

The results of this paper lead to two conclusions:

• It is, in principle, possible to reconstruct numerical intervals of degrees of
belief from the expert’s order.

• For some t-norms, however, the corresponding reconstruction problem is
computationally complicated; even, in the general case, intractable (NP-
hard).

NP-hardness means that we cannot hope to design a feasible reconstruction
algorithm that would work for all possible cases: we need heuristic methods.

Comment.

• The first result (that the reconstruction is possible) is clearly positive.

• The second one (that the reconstruction is computationally complicated)
may seem negative.

However, we should not be discouraged by NP-hardness of the problem of finding
the initial intervals of degrees of belief: Even if we get these degrees easily, the
problem of computing the degrees of belief for different queries is also NP-hard
[3], and hence, we need heuristic methods in knowledge-based systems anyway.
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Appendix: Proofs

Proof that for a preference base A1 > A2, there is no optimal assign-
ment. Let us consider a preference base with only two statements A1 and A2

and the only preference A1 > A2. We want to assign to each of these statement
an interval [a−i , a

+
i ] ⊆ [0, 1], i = 1, 2, so that a−1 > a+2 . For the sum of the

lengths of the two assigned intervals, we can prove the following:

• By re-arranging the terms, we can get

(a+1 − a−1 ) + (a+2 − a−2 ) = (a+1 − a−2 )− (a−1 − a+2 ).

• Due to a+1 ≤ 1 and a−2 ≥ 0, the first term in the re-arranged sum cannot
exceed 1− 0 = 1.

• Due to a−1 > a+2 , the second term is negative.

Hence, the sum of the two lengths is always smaller than 1. Since the sum of
the two lengths 1, the smallest J (⃗a) is < 0.5: Indeed, if the smallest of these
two length was ≥ 0.5, then both lengths would be ≥ 0.5, and hence, their sum
would be ≥ 1.

It is easy to show that for every ε, it is possible to have an assignment a⃗
which is consistent with the given preference and for which J (⃗a) ≥ 0.5 − ε:
indeed, we can take [a−1 , a

+
1 ] = [0.5, 1] and [a−2 , a

+
2 ] = [0, 0.5 − ε]. Thus, the

value J (⃗a) can be as close to 0.5 as possible. Since it cannot be > 0.5, if there
was an optimal arrangement, it would have to have J (⃗a) = 0.5. However, we
have shown that this equality is impossible. Thus, for this simple preference
base, there i not optimal assignment. The statement is proven.

Proof of Proposition 2. In the case a&b = min(a, b), we can easily show
that every preference base is consistent: If we take [a−i , a

+
i ] = [0.5, 0.5] for all i,

then f = [f−, f+] = [0.5, 0.5] for all formulas F , and hence, F ≤ G is always
consistent with this assignment.
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To complete the proof, it is, therefore, sufficient to consider the case of a
strictly Archimedean t-norm. Since all strictly Archimedean t-norms are iso-
morphic, it is sufficient to prove this result for the algebraic product a&b = a ·b.
Indeed, if for some preference base P , intervals [a−i , a

+
i ] form an assignment

that is consistent with P for the algebraic product, then, for an arbitrary strictly
Archimedean t-norm a&b = φ−1(φ(a)·φ(b)), the assignment [φ−1(a−i ), φ

−1(a+i )]
is consistent with the same preference base P for this t-norm.

Due to this remark, it is sufficient to show that the problem of checking
consistency is NP-hard for the algebraic product.

We will prove this result by showing that if we can solve this consistency
problem in polynomial time, then we will be able to solve the so called proposi-
tional satisfiability problem 3-SAT (we will describe it in a minute) in polynomial
time. Since 3-SAT is known to be NP-hard (it is actually historically the first
problem proven to be NP-hard), we can thus conclude that our consistency-
checking problem is also NP-hard: Indeed:

• The fact that 3-SAT is NP-hard means that whenever if can solve this
problem is polynomial time, then we can solve an arbitrary NP-problem
in polynomial time.

• If we can solve the consistency-checking problem in polynomial time, then
we will be able to solve also 3-SAT in polynomial time, and thus, solve all
the problems from the class NP in polynomial time. Hence, our problem
is NP-hard.

Let us now describe the satisfiability problem.

• Let x1, . . . , xm be a finite list of Boolean (propositional) variables, i.e.,
variables that take two possible values: “true” and “false”.

• By a literal a, . . ., we mean either a variable xi, or its negation.

• By a disjunction D, we mean an expression of the type a∨ b∨ c, where a,
b, and c are literals.

• By a 3-SAT formula, we mean an expression of the type D1& . . .&Dk,
where D1, . . . , Dk are disjunctions.

• By a Boolean vector, we mean a sequence of n truth values x1, . . . , xn. For
each Boolean vector, we can define the truth value of a 3-SAT formula F
by substituting the values xi into the formula F .

• By a 3-SAT problem, we mean the following problem:

– Given: a 3-SAT formula;

– To compute: a Boolean vector that makes it true, or a message “no
satisfying vector” if no such vector exists.
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Let us now describe the reduction of 3-SAT formulas to the problem of
checking consistency of reference bases.

Let F be an arbitrary 3-SAT formula with variables x1, . . . , xm.
The corresponding reference base will describe n = m + 9 statements
A1, . . . , Am, Am+1, . . . , Am+9 and consist of the following preferences:

• For each statement Am+i, 1 ≤ i ≤ 9, two special preferences:

Am+1 ≤ ¬Am+1 and ¬Am+1 ≤ Am+1.

• For each statement Ai, 1 ≤ i ≤ m, a preference

Ai&¬Ai ≤ Am+1&Am+2&Am+3&Am+4.

• For each disjunction Dj = a ∨ b ∨ c, a preference

Am+1&Am+2& . . .&Am+9 ≤ A&B&C,

where:

– for a positive literal a = xi, A means Ai, and

– for a negative literal a = ¬xi, A means ¬Ai.

Let us show that this reference base is consistent if and only if the original
3-SAT formula is satisfiable.

1. If the original 3-SAT formula F is satisfiable, i.e., if there exists a Boolean
vector xi (with values from the set {0, 1}) that makes F true, then we can take
ai = [xi, xi] for i ≤ m, and am+i = [0.5, 0.5].

For this assignment:

• a+m+i = 0.5 ≤ 1− a+m+i = 0.5, and similarly, the second preference related
to Am+i is also true.

• Since each statement Ai, 1 ≤ i ≤ m, gets assigned the value “true” or
“false” (0 or 1), the truth value of Ai&¬Ai will be 0, and therefore, the
assignment is consistent with the preference relations special for these
variables (of the type Ai&¬Ai ≤ . . .)

• Since the Boolean vector x1, . . . , xm makes the formula F = D1& . . .&Dk

true, it means (according to the properties of “and” in 2-valued logic)
that it makes all the disjunctions Dj true. Hence, the truth value of
A&B&C will be 1 ([1, 1]), and therefore, the preference corresponding to
this disjunction is also consistent with this assignment.
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So, if the formula F is satisfiable, then this preference base is consistent.

2. Let us now show that if the preference base is consistent, then the original
formula F is satisfiable.

Indeed, let a⃗ = ([a−1 , a
+
1 ], . . .) be the assignment that is consistent with the

above-defined preference base P . Let us use this assignment to construct a
satisfying vector for the formula F .

2.1. From the fact that a⃗ is consistent with the preferences Am+i ≤ ¬Am+i and
¬Am+i ≤ Am+i, we conclude that a+m+i ≤ 1− a+m+i and that 1− a−m+i ≤ a−m+i.

From the first inequality, by moving the term −a+m+i to the left-hand side, we

conclude that 2a+m+i ≤ 1 and that a+m+1 ≤ 0.5. Similarly, from the second

inequality, we conclude that a−m+1 ≥ 0.5. Hence, 0.5 ≤ a−m+i ≤ a+m+i ≤ 0.5, and
therefore, none of these four inequalities can be a strict inequality, they must
all be equalities, i.e., a−m+i = a+m+i = 0.5.

2.2. From the fact that a⃗ is consistent with the preference Ai&¬Ai ≤
Am+1& . . .&Am+4, we conclude that a+i (1 − a−i ) ≤ a−m+1 · . . . · a−m+4. Since

we already know that a−m+i = 0.5 = 1/2, we conclude that a+i (1− a−i ) ≤ 1/16.

• Since a−i ≤ a+i , we conclude that a−i (1− a−i ) ≤ a+i (1− a−i ) ≤ 1/16.

• Similarly, from the fact that 1−a+i ≤ 1−a−i , we conclude that a
+
i (1−a

+
i ) ≤

a+i (1− a−i ) ≤ 1/16.

So, we have an inequality z(1− z) ≤ 1/16 for both z = a−i and for z + a+i .
The function z(1− z) = z − z2 is strictly increasing for z ≤ 0.5, and strictly

decreasing for z ≥ 0.5. For z = 1/8 and z = 7/8, we have

z(1− z) = (1/8) · (7/8) > 1/16.

Therefore, from z(1 − z) ≤ 1/16, we can conclude that either z < 1/8, or
z > 7/8. Hence, both a−i and a+i are either < 1/8, or > 7/8. Since a−i ≤ a+i ,
we can, in principle, have three different cases:

1) a+i < 1/8; in this case, a−i ≤ a+i < 1/8, and ai = [a−i , a
+
i ] ⊆ [0, 1/8).

2) a−i > 7/8; in this case, 7/8 < a−i ≤ a+i , and ai = [a−i , a
+
i ] ⊆ (7/8, 1].

3) a−i < 1/8 and a+i > 7/8.

Let us show that the third case is impossible. Indeed, in this case, a+i > 7/8
and 1− a−i > 7/8, hence, a+i (1− a

−
i ) > (7/8)2 > 1/16, which contradicts to our

conclusion that a+i (1− a−i ) ≤ 1/16.
Hence, we are left with only two cases: 1) and 2). Now, we are ready to

define the Boolean values that will satisfy our formula F :

1) In the first case, when [a−i , a
+
i ] ⊆ [0, 1/8), we take xi = 0.
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2) In the second case, when [a−i , a
+
i ] ⊆ (7/8, 1], we take xi = 1.

2.3. Let us show that the Boolean vector chosen in part 2.2 of this proof satisfies
the formula F , i.e., makes all its disjunctions Dj true.

Let us first start with the remark about literals. If a literal a is the variable,
then, as we have proven, either [a−, a+] ⊆ [0, 1/8) and xi =“false”, or [a−, a+] ⊆
(7/8, 1] and xi =“true”. If a literal a is a negation of a variable, the similar
inclusions can be easily deduced. Hence, for every literal a, we have one of the
two cases:

• [a−, a+] ⊆ [0, 1/8); in this case, the literal a is “false” for the chosen
Boolean vector xi.

• [a−, a+] ⊆ (7/8, 1]; in this case, the literal a is “true” for the chosen
Boolean vector xi.

For each disjunction, from the fact that the assignment a⃗ is consistent with the
preference

Am+1& . . .&Am+9 ≤ A&B&C,

we can conclude that a+m+1 · . . . · a
+
m+9 ≤ a− · b− · c−. We know from part 2.1 of

this proof that a+m+i = 0.5, hence, a− · b− · c− ≥ (1/2)9.
If all three literals a, b, and c were false, we would have a− < 1/8, b− < 1/8,

and c− ≤ 1/8, hence, a− · b− · c− < (1/8)3 = (1/2)9, which contradicts to
the inequality that we have just derived. Hence, the assumption that all three
literals are false is wrong, so, one of these literals must be true. Hence, the
disjunction Dj is true.

So, all disjunction are true, i.e., the formula F is indeed satisfied.

3. So, a 3-SAT formula F is satisfiable if and only if the corresponding preference
base is consistent. As we have already mentioned in the beginning of the proof,
this means that checking consistency is NP-hard.

Comment. In this proof, we assumed that ¬a = 1 − a. For different
¬−operations, instead of 0.5, we must take the truth value a0 for which
a0 = ¬(a0). Q.E.D.

Proof of Proposition 3. Each assignment a⃗ consists of 2n numbers from the
interval [0, 1]. Thus, the set of all possible assignments is a subset of a unit cube
[0, 1]2n in the (2n)−dimensional space and therefore, it is a bounded set in a
(2n)−dimensional space R2n.

To prove that the optimal assignment always exists, we will show:

• first, that the optimality criterion J (⃗a) (defined by the formula (3)) is a
continuous function, and

• that the set C of all assignments that are consistent with a given preference
base P is a closed and bounded (hence, compact) subset of R2n.
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Then, the existence of the optimal assignment will follow from the well-known
result from calculus that every continuous function on a compact set attains its
maximum.

• The function J (⃗a) is clearly a continuous function of all its 2n arguments
a−i and a+i .

• The set C of all assignments that are consistent with a given preference
base P is a subset of the bounded set of all assignments, and is, therefore,
itself bounded.

• Let us show that this set C is closed, i.e., that if a⃗(N) ∈ C for all N ,
and a⃗(N) → a⃗, then a⃗ ∈ C. In other words, we want to prove that if for
every N , assignments a(N) are consistent with all the preferences from the
preference base P , then the limit assignment a⃗ is consistent with the same
preferences.

Since the t-norm & is continuous, for every “and”-formula F , the expres-
sions for f−(⃗a) and f+(⃗a) that correspond to an assignment a⃗ are contin-
uous functions of the assignment values a−i and a+i . Thus, from a⃗(N) → a⃗,
we can conclude that f+(⃗a(N)) → f+(⃗a) and g−(⃗a(N)) → g−(⃗a).

Let F ≤ G be a preference from the preference base P . The fact that
each of the assignments a(N), N ≥ N0, is consistent with each preference
F ≤ G means that we have f+(⃗a(N)) ≤ g−(⃗a(N)) for the degrees of belief
f+ and g− that correspond to the assignment a⃗(N).

Hence, from f+(⃗a(N)) ≤ g−(⃗a(N)), we conclude, in the limit, that f+(⃗a) ≤
g−(⃗a), i.e., that the assignment a⃗ is also consistent with the preference
F ≤ G.

So, the limit assignment a⃗ is consistent with each of the preferences.
Therefore, the limit assignment is consistent with the preference base.
Thus, the set C is closed.

Closeness of C was the only thing missing in the proof. With closeness proven,
the proposition is now proved as well. Q.E.D.

Proof of Proposition 4. Let us first give an example of uniqueness. Let
us take n = 2, and the preference base that consists of only one preference
A1 ≤ A2.

The assignment is consistent with this preference iff a+1 ≤ a−2 . In other
words, the two intervals [a−1 , a

+
1 ] and [a−2 , a

+
2 ] that form the assignment can

intersect at most at one point. Hence, the total width of these two intervals
cannot exceed the total width of the interval [0, 1] on which they both lie. In
other words, the sum of the widths is ≤ 1. Hence, at least one of these widths is
≤ 0.5 (otherwise, the sum of their widths would exceed 1). Thus, the smallest
of these two widths is ≤ 0.5. In other words, for each assignment a⃗ that is
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consistent with this preference base, the value of the optimality criterion (3)
cannot exceed 0.5.

It is easy to find the assignment for which this criterion is equal to exactly
0.5: a1 = [0, 0.5] and a2 = [0.5, 1].

Let us show that this is the only possible assignment with this value of the
optimality criterion. Indeed, let us assume that a⃗ is an assignment for which
the value of the criterion (3) is equal to 0.5. This means that the widths of both
intervals [a−i , a

+
i ] are 0.5 or greater. Since the sum of these widths cannot exceed

1, none of these widths can exceed 0,5, so, each of these interval has a width of
exactly 0.5. The total width of the part of [0, 1] that is not covered by these two
intervals is thus 1 − 0.5 − 0.5 = 0. Hence, the entire interval [0, 1] is covered;
in particular, the point 0 is covered. Since a−2 ≥ a+1 = a−1 + 0.5 ≥ 0.5 > 0, the
point 0 cannot be covered by the second interval. It is, therefore, covered by
the first interval. So, a−1 = 0, hence a+1 = a−1 + 0.5 = 0 + 0.5 = 0.5, and the
only possible location of the second interval is a2 = [0.5, 1].

So, for this particular preference base, there is exactly one optimal assign-
ment.

Let us now give an example of non-uniqueness. Let us take n = 3 and the
preference base that consists of the only preference A1 ≤ A2. Then, similar to
the proof for the uniqueness example, we can show that the optimal value of
the criterion (3) is 0.5, and that this value is attained when a1 = [0, 0.5] and
a2 = [0.5, 1]. However, we no longer have uniqueness, because for the third
interval a3, the only restriction that stems from optimality is that its width be
≥ 0.5. There are many intervals with this property, e.g., [α, α + 0.5] for any
α ∈ [0, 0.5]. So, for this preference base, there exist several different optimal
assignments. The proposition is proven.

Comment. It may seem, at first glance, that the non-uniqueness is caused by the
fact that one of the statements in the original knowledge base is not restrained
by any preference relation. However, a similar example can be proposed in which
every statement is restrained by some preference: e.g., n = 5, and P consists
of the following three preferences: A1 ≤ A2, A2 ≤ A3, and A4 ≤ A5. Then,
for the optimal assignment, we will similarly conclude that the optimal value
of the criterion (3) is 1/3, and that this value is attained when a1 = [0, 1/3],
a2 = [1/3, 2/3], and a3 = [2/3, 1]. However, optimal assignment is not unique,
because the only conditions on a4 and a5 are that their widths are≥ 1/3 and that
a5 follows a4. For example, for every α ∈ [0, 1/3], we can take a4 = [α, α+1/3]
and a5 = [α+ 1/3, α+ 2/3].

Proof of Proposition 5.

1. Let us show that for some strictly Archimedean t-norm the problem of finding
the optimal assignment is NP-hard. Namely, we will show that this problem
can be reduced to the propositional satisfiability for 3-SAT formulas.

Let F be a propositional formula with variables x1, . . . , xm. Let us form a
preference base P that describes 2m+5 statements A1, . . . , Am, A−1, . . . , A−m,
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B1, B
′
1, B2, B3, B4, and consists of the following preferences:

• B1 ≤ B2 ≤ B3 ≤ B4; B
′
1 ≤ B2.

• For every i ≤ m, three sets of preferences: B1 ≤ Ai ≤ B4, B1 ≤ A−i ≤ B4,
and B1&B2 ≤ Ai&A−i ≤ B2&B3.

• For every disjunction Dj = a∨b∨c, a preference B1&B
′
1&B2 ≤ A&B&C,

where:

– for positive literals a = xi, we take A = Ai, and

– for negative literals a = ¬xi, we take A = A−i.

The general strictly Archimedean t-norm can be describe as a&b =
φ−1(φ(a)·φ(b)). In other words, for every strictly Archimedean t-norm, there ex-
ists a strictly increasing function φ : [0, 1] → [0, 1] for which φ(a&b) = φ(a)·φ(b).
For our proof, we will need another mapping that maps φ(a) ∈ [0, 1] into
− log(φ(a)) ∈ [0,∞] and transforms multiplication into addition: ψ(a&b) =
ψ(a) + ψ(b). The function ψ(a) = − log(φ(a)) is a strictly decreasing function
from [0, 1] to [0,∞].

2. The consistency between each preference and an assignment can be expressed
in terms of this function ψ. Namely:

• A preference Ai& . . .&Aj ≤ Ak& . . .&Al is equivalent to a+i & . . .&a+j ≤
a−k & . . .&a−l .

• Since ψ is a decreasing function, this inequality, in its turn, is equivalent
to ψ(a−k & . . .&a−l ) ≤ ψ(a+i & . . .&a+j ).

• Finally, due to our choice of ψ, this is equivalent to ψ(a−k )+ . . .+ψ(a
−
l ) ≤

ψ(a+i ) + . . .+ ψ(a+j ).

3. Let us first show that if a formula F is satisfiable, then this preference
base has an assignment in which the width of each interval is ≥ 0.25 (i.e., an
assignment with J (⃗a) ≥ 0.25). Indeed, let xi be the Boolean vector that makes
the formula F true. Then, we take:

• b1 = b′1 = [0, 0.25], b2 = [0.25, 0.5], b3 = [0.5, 0.75], b4 = [0.75, 1];

• ai = [0.5, 0.75] and a−i = [0.25, 0.5] for those i for which xi = 1, and

• ai = [0.25, 0.5] and a−i = [0.5, 0.75] for those i for which xi = 0.

It is easy to check that this assignment is consistent with all the above prefer-
ences.

4. Let us now show that if some assignment a⃗ is consistent with the above
preferences, and J (⃗a) ≥ 0.25, then, from this assignment, we can extract a
satisfying vector for the formula F .
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4.1. First, from B1 ≤ B2 ≤ B3 ≤ B4, we can conclude that the intervals
b1, . . . , b4 follow one another practically without intersections (at most, the
neighboring intervals may intersect in one point). The width of each inter-
val is ≥ 0.25, therefore, their total width is ≥ 1, but since they are all in the
interval [0, 1], it cannot be greater than 1. So, each of these four intervals must
be exactly of width 0.25, and they must fill the entire interval [0, 1]. Thus,
b1 = [0, 0.25], b2 = [0.25, 0.5], b3 = [0.5, 0.75], and b4 = [0.75, 1].

Since a similar argument can be repeated with b′1 instead of b1, we can
conclude that b′1 = b1 = [0, 0.25].

4.2. From B1 ≤ Ai ≤ B4, we conclude that 0.25 ≤ a−i ≤ a+i ≤ 0.75.
Since the width of each interval is ≥ 0.25, we have a−i ≤ a+i − 0.25 ≤

0.75 − 0.25 = 0.5. Hence, for every i, we have 0.25 ≤ a−i ≤ 0.5. Similarly, we
have 0.25 ≤ a−−i ≤ 0.5.

For the further proof, let us denote the difference a−i − 0.25 by α, and the
difference 0.5− a−−i by β. Then, we have a−i = 0.25 + α and a−−i = 0.5− β.

4.3. From B1&B2 ≤ Ai&A−i, we conclude that

ψ(0.25 + α) + ψ(0.5− β) ≤ ψ(0.25) + ψ(0.5). (4)

Similarly, from Ai&A−i ≤ B2&B3, we conclude that a+i &a
+
−i ≤ b−2 &b

−
3 =

0.5&0.75. Since the width of each interval is ≥ 0.25, we have 0.5 + α = a−i +
0.25 ≤ a+i , and 0.75− β = a−−i +0.25 ≤ a+−i. Hence, from the monotonicity of a
t-norm, we conclude that (0.5 + α)&(0.75− β) ≤ 0.5&0.75. In terms of ψ, this
inequality takes the form

ψ(0.5) + ψ(0.75) ≤ ψ(0.5 + α) + ψ(0.75− β). (5)

Let us show that for an appropriate ψ, these two inequalities can only be true
for α = β = 0 or for α = β = 0.25.

To show that, we will take a function ψ(x) that is strictly convex for x ∈
[0.25, 0.5], and strictly concave for x ∈ [0.5, 0.75]. In other words, we will assume
that:

• the second derivative is negative (ψ′′(x) < 0) for x ∈ [0.25, 0.5); and

• the second derivative is positive (ψ′′(x) > 0) for x ∈ (0.5, 0.75].

As a result, the derivative ψ′(x) strictly decreases for x ∈ [0.25, 0.5], and strictly
increases for x ∈ [0.5, 0.75].

4.4. Let us consider the function ψ(0.25+λ)+ψ(0.5−λ), where 0 ≤ λ < 0.125.
The derivative of this function w.r.t. λ is equal to ψ′(0.25+λ)−ψ′(0.5−λ). For
λ < 0.125, we have 0.25+ λ < 0.5− λ. Both values 0.25+ λ and 0.5− λ belong
to the interval [0.25, 0.5] on which the derivative ψ′(x) is strictly decreasing.
Therefore, ψ′(0.25 + λ)− ψ′(0.5− λ) > 0.
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The derivative of the function ψ(0.25 + λ) + ψ(0.5 − λ) is positive, and
therefore, this function is strictly increasing for λ ∈ [0, 0.125]. Hence, comparing
the value of this function for an arbitrary λ > 0 and the value of the same
function for λ = 0, we get the following inequality:

ψ(0.25 + λ) + ψ(0.5− λ) > ψ(0.25) + ψ(0.5). (6)

We have proven this inequality for λ ≤ 0.125. If 0.125 ≤ λ < 0.25, then we can
take λ′ = 0.25− λ. For λ′, we have λ′ < 0.125 and hence,

ψ(0.25 + λ′) + ψ(0.5− λ′) > ψ(0.25) + ψ(0.5). (7)

But, by definition of λ′, 0.5− λ′ = 0.25 + λ, and 0.25 + λ′ = 0.5− λ, hence, we
get the same inequality (6).

So, (6) is proven for all λ ∈ (0, 0.25).

4.5. Let us prove that if β ̸= 0 and β ̸= 0.25, then α > β. We will prove this
statement by reduction to a contradiction.

Let α ≤ β ̸= 0. Since ψ is a decreasing function, from β ≥ α, we can
conclude that ψ(0.25 + β) ≤ ψ(0.25 + α). From (4), we can now conclude that

ψ(0.25 + β) + ψ(0.5− β) ≤ ψ(0.25) + ψ(0.5),

which contradicts to (6).

4.6. Similarly, by considering the function ψ on the interval [0.5, 0.75], we can
conclude that if β ̸= 0 and β ̸= 0.25, then α < β.

Since it is impossible to have α > β and α < β at the same time, the only
remaining possibility is β = 0 or β = 0.25. Similarly, we can conclude that
α = 0 or α = 0.25.

From the inequalities (4) and (5) it now follows that we cannot have α = 0
and β = 0.25, and we cannot have α = 0.25 and β = 0. Hence, we have either
α = β = 0, or α = β = 0.25, i.e.,

• either a−i = 0.25 and a−−i = 0.5,

• or a−i = 0.5 and a−−i = 0.25.

4.7. Let us now define the values of the Boolean variables accordingly:

• If a−i = 0.25 and a−−i = 0.5, we take xi = 0.

• If a−i = 0.5 and a−−i = 0.25, we take xi = 1.

Now, from the condition B1&B
′
1&B2 ≤ A&B&C, we conclude that

0.25&0.25&0.5 ≤ a−&b−&c−, and therefore, that it is impossible for all three
literals to be false. Thus, for every disjunction, at least one of the literals is
true; hence, the disjunction itself is true, and so, the formula F is satisfied by
the Boolean variables x1, . . . , xn.
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To complete the proof, we must give an example of a decreasing func-
tion ψ(x) : [0, 1] → [0,∞] that is convex (ψ′′(x) < 0) for x ∈ [0.25, 0.5]
and concave (ψ′′(x) > 0) for x ∈ [0.5, 0.75]. Then, we will be able to define
φ(x) = exp(−ψ(x)), and the desired t-norm as a&b = φ−1(φ(a) · φ(b)). The
following is an example of such a function ψ(x):

• ψ(x) = 3/x for x ≤ 0.25;

• ψ(x) = 0.5 + 0.25 · sin(2πx) for 0.25 ≤ x ≤ 0.75;

• ψ(x) = 1− x for x ≥ 0.75.

The proposition is proven.

Proof of Proposition 6. The algorithm is easy to describe:

• First, we design a linear programming problem based on the given pref-
erence base. This problem will have 2n+ 1 variables: a−i (1 ≤ i ≤ n), a+i
(1 ≤ i ≤ n), and J , the optimization criterion J → max, and the following
linear inequalities:

– For every i = 1, . . . , n, the following four inequalities:

0 ≤ a−i , a
−
i ≤ a+i , a

+
i ≤ a−i + J, and a+i ≤ 1.

– For every preference of the type Ai& . . .&Aj ≤ Ak& . . .&Al, two
inequalities

a+i + . . .+ a+j −Nl + 1 > 0, (8)

a+i + . . .+ a+j −Nl ≤ a−k + . . .+ a−l −Nr, (9)

where Nl and Nr denote the number of statements correspondingly in
the left-hand side and in the right-hand side of the preference F ≤ G.

• Then, we apply one of the known polynomial-time algorithms for solving
linear programming problems (see, e.g., [8, 7]) to the resulting problem.

To prove that this algorithm is correct, let us first show that the above
inequalities (8) and (9) are indeed equivalent to the consistency between the as-
signment a⃗ and the preference F ≤ G. Indeed, this consistency can be expressed
as a+i & . . .&a+j ̸= 0 and

a+i & . . .&a+j ≤ a−k & . . .&a−l .

Since & is the bold intersection, we can transform these inequalities into the
following formulas:

max(a+i + . . .+ a+j −Nl + 1, 0) > 0 (10)

max(a+i + . . .+ a+j −Nl + 1, 0) ≤ max(a−k + . . .+ a−l −Nr + 1, 0). (11)
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The inequality (10) has the form max(z, 0) > 0 for some expression z. This
inequality cannot be true for z ≤ 0 and it is always true for z > 0, so (10) is
equivalent to (8).

The left-hand side of the inequality (11) is positive and hence, the right-hand
side is positive as well. The only way for max(z, 0) to be positive is when z > 0,
then max(z, 0) = z. So, the expression max(z, 0) in the right hand side can be
replaced by z. If we do a similar replacement for the left-hand side, we end up
with an inequality

a+i + . . .+ a+j −Nl + 1 ≤ a−k + . . .+ a−l −Nr + 1.

If we subtract 1 from both sides of this inequality, we get the desired inequality
(9).

So, the linear inequalities describe the fact that the intervals [a−i , a
+
i ] are

consistent with preferences. For given intervals, the conditions on J say that J
cannot exceed the width of each interval. The largest possible value with this
property is the width of the narrowest interval, i.e., exactly the formula (3).
The proposition is proven.
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