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To support and engineer the spatial coordination of distributed pervasive services, we propose a
chemical-inspired model, which extends tuple spaces with the ability of evolving tuples mimicking
chemical systems, i.e. in terms of reaction and diffusion rules that apply to tuples modulo semantic
match. The suitability of this model is studied considering a self-adaptive display infrastructure
providing nearby people with several visualisation services (advertisements, news, personal and
social content). The key result of this paper is that general-purpose chemical reactions inspired
by population dynamics can be used in pervasive applications to enact spatial computing patterns
of competition and gradient-based interaction.
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1. INTRODUCTION

The increasing availability of pervasive sensing and actuating devices (RFID tags, PDAs,
localisation devices) will lead to providing a new generation of general-purpose adaptive
services. These will include services to coordinate and ease customers’ activity (e.g., in an
airport, intelligent signs showing the gate for my flight as I get nearby), pervasive location-
based information services (finding a shop in the terminal which sells goods I might be
interested in), or social services exploiting contextual information (custom advertisements,
news or personal content, appearing on the screen installed in my seat while waiting at the
gate).

Coordination infrastructures providing a networked set of shared spaces, such as those
already proposed in [Mamei and Zambonelli 2009; Picco et al. 1999; Omicini and Zam-
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bonelli 1999], can be used to properly reify interactions between people, devices, services
and data of the pervasive system. Such interactions can then be managed through proper
coordination laws to be designed and deployed over such spaces, supporting properties
such as situatedness, adaptivity and diversity (opennes), which are key in order to imple-
ment pervasive applications.

According to some recent visions of service systems [Barros and Dumas 2006; Ulieru
and Grobbelaar 2007; Agha 2008; Zambonelli and Viroli 2008], we find it useful to see per-
vasive services (software functionality, pervasive devices, users’ preferences, data, knowl-
edge, and signals) as species in a “ecology”, defining what we call a pervasive service
ecosystem. Such pervasive services get injected in some location of the network and pos-
sibly evolve/diffuse around, interacting with one another in a context-dependent way, and
then being possible active in a region of the whole network space. In other words, their
global state can be regarded as a spatial concept — a map from nodes to the service lo-
cal state, namely, a computational field [Beal and Bachrach 2006; Mamei and Zambonelli
2009] — while the dynamics of the whole pervasive ecosystem is naturally seen as a spatial
computation.

By focussing on the characterisation of adaptive pervasive systems as “spatial comput-
ers”, this paper describes a coordination model able to suitably support the requirements
that fully adaptive pervasive computing calls for. To this end, we adopt the chemical-
inspired tuple space model proposed in [Viroli and Casadei 2009], an extension of standard
tuple spaces [Gelernter 1985] in which semantic chemical reactions are used as coordina-
tion laws to manage tuples over time (enacting service interaction/evolution) and move
them in the neighbourhood (enacting service diffusion). The motivation for adopting this
model is twofold: (i) when used as a model for pervasive services, chemistry can support
the key properties of situatedness (context-awareness), adaptivity and diversity, and (ii)
it has been proven that ecology dynamics can be suitably modelled in terms of chemical
reactions [Berryman 1992; Gillespie 1977].

Via selected use cases related to a pervasive display infrastructure in an airport scenario,
we show that our model is able to suitably provide visualisation services to interested users
by enacting spatial coordination patterns of competition and gradient-based interaction.

The remainder of the paper is organised as follows. In Section 2, we detail the motiva-
tions for a chemical-inspired model of spatial coordination of pervasive services. Section 3
describes the coordination model. Section 4, 5, and 6 incrementally introduce the chemical
reactions for defining local/spatial service competition and interaction based on computa-
tional gradients. Section 7 discusses related work and Section 8 concludes providing final
remarks. On-line appendix A provides a description of the formalisation of the model and
discusses some main issues concerning simulation and implementation.

2. BACKGROUND AND MOTIVATION
2.1 Requirements for Adaptive Pervasive Service Systems

In order to better explain the motivation behind the model presented in this paper, we rely
on a case study, which we believe well represents a large class of pervasive computing
applications in the near future.

We consider a pervasive display infrastructure, used to fill our environments with digital
displays, from those in our wearable devices and domestic hardware, to wide wall-mounted
screens that already pervade urban and working environments [Ferscha et al. 2006]. How-
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ever, instead of considering displays as static information servers as usual today (i.e. show-
ing information in a manually configured manner), we envision a truly general, open, and
adaptable information service infrastructure. As a reference domain, we consider an air-
port terminal filled with wide screens mounted in the terminal area, i.e in the shops, in the
corridors and in the gates, down to tiny screens installed in each seat of the gate areas or
directly on passengers’ PDAs.c

We first notice that information should be generally displayed based on the current state
of the surrounding physical and social environment. For instance, by exploiting informa-
tion coming from surrounding temperature sensors and passenger profiles/preferences, an
advertiser could decide to have ice tea commercials — instead of liquor ones — displayed
in a warm day and in a location populated by teenagers. Thus, a general requirement for
pervasive services is (i) Situatedness. Namely, pervasive services deal with spatially and
socially situated users’ activities, hence, they should be able to interact with the surround-
ing physical and social world and accordingly adapt their behaviour. As a consequence,
the infrastructure itself should act based on spatial concepts and data.

Secondly, and complementary to the above, the display infrastructure, and the services
within it, should be able to automatically adapt to changes (or contingencies) in an auto-
matic way. For instance, when a great deal of new information to be possibly displayed
emerges, the displayed information should overall spontaneously re-distribute and re-shape
across the set of existing local displays, possibly discharging obsolete visualisation ser-
vices. Accordingly, another requirement is (ii) Adaptivity. Namely, pervasive services and
infrastructures should inherently exhibit self-adaptation and self-management properties,
S0 as to survive contingencies without any human intervention and at limited management
costs.

Finally, the display infrastructure should be not only intrinsically open to any kind of
visualisation services that may be added to the system, but also able to allow users — other
than display owners — to upload information to displays so as to enrich the information
offer or adapt it to their own needs. For instance, a passenger could watch private content
uploaded from her/his PDA to a wider screen close to her/his seat, and may be willing
also to share it with people nearby. Put it simply, users should act as “prosumers”—i.e.
as both consumers and producers of devices, data, and services. Another general require-
ment is hence (iii) Diversity. Namely, the infrastructure should tolerate open models of
service production and usage without limiting the number and classes of services poten-
tially provided, but rather taking advantage of the injection of new services by exploiting
them to improve and integrate existing services whenever possible—also properly tackling
the security concerns that this obviously raises.

2.2 Toward an Ecological Model

Standard solutions to implement services in distributed settings, e.g. service-oriented ar-
chitectures (SOAs), would be inadequate to support very open scenarios like those that we
envision [De Cecco 2009]: we argue that pushing them towards the extreme consequences
of supporting situation, adaptivity and diversity, inevitably leads to the service ecosystem
vision supported in this paper.

SOAs consider a service as a “locus” of functionality interacting with others through
a variety of middleware services, handling discovery, context, orchestration, and shared
data-space components to support data-mediated interactions. They neglect situatedness
and spatiality, or do not regard them as primary abstractions: a sophisticated context ser-
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vice has to embed spatial descriptions of each component into its discovery table, causing
frequent and costly updates of the table as a result of the inherent mobility of many com-
ponents. Adaptivity can be supported only via expensive pointwise solutions: either all
components need to recognise relevant changes in the environment and properly plan cor-
rective actions as a response, or some orchestration server should embed the entire adapta-
tion logic (e.g. as an autonomic manager [Kephart and Chess 2003]), but this would have
to be too complex for managing the entire distributed application. Finally, diversity cannot
be easily accommodated since service deployment, relocation, and disposal — which will
become quite as frequent as any other service interaction — are not light and automatic
processes, so they cannot be tolerated in the long term without high re-engineering costs.

Complexity and costs can be reduced by a more distributed solution, in which any system
locality is managed by its own middleware server, coordinating local devices, users and
services, thus simplifying discovery and naturally enforcing spatial interactions. However,
by pushing this solution to its extreme consequences — the system is a large, mobile, and
context-dependent networked set of very small localities (nodes) — the distinction among
the various classes of middleware services tends to disappear: the dynamics of each node
would resemble a sort of light shared data-space model (basically just formed by a small
local lookup table of service and device descriptions), where components more directly and
easily interact with and know of one another. The overall architecture is then perceivable as
a (possibly very dense) spatial environment, upon which a number of very diverse, spatially
situated components will discover, interact, and get orchestrated with one another via a
limited set of rules (subsuming the role of discovery, context, data-space, and orchestration
services) embedded in the spatial substrate itself.

We argue that we would end up with something that notably resembles the intrinsic “ar-
chitecture” of natural ecological systems: a set of spatially situated entities (resembling
species) interacting according to a well-defined set of “natural” laws enforced by the spa-
tial environment in which they are situated (e.g. trophic interactions in ecological niches
[Agha 2008]). Such a natural metaphor can be pushed further than the simple behavioural
similarity, to act as the ground upon which identifying a coordination model supporting
the requirements of situatedness, adaptivity, and accommodation of diversity—which are
inherent properties of natural ecosystems.

2.3 Chemical-inspired Tuple Spaces for Pervasive Ecosystems

To implement a distributed shared space for supporting pervasive service ecosystems, we
start from the tuple space approach—which has already been used in the context of per-
vasive computing (see an overview in Section 7). Tuple spaces [Gelernter 1985] pro-
vide all the “agents” of the system (software agents, users, devices, software developers)
with shared spaces where local interactions occur and are reified as tuples (data records),
and which provide primitives used to insert a tuple, and read/remove a tuple matching a
template—written as a tuple with wildcards in place of some of its arguments. Among
the various tuple space models proposed in literature, we adopt the chemical tuple space
model [Viroli and Casadei 2009], in which tuples — containing semantic information about
the individuals to be coordinated — evolve in a stochastic and spatial way through coordi-
nation laws resembling chemical reactions. We observe that this model can properly tackle
the requirements sought for adaptive pervasive services:

Situatedness. The current situation in a system locality is represented by the tuples ex-
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isting in the tuple space. Some of them can act as catalysts for specific chemical reactions,
thus making system evolution intrinsically context-dependent. Moreover, mechanisms re-
sembling chemical diffusion (e.g. chemotaxis [Eyiyurekli et al. 2010]) can be designed to
identify localities larger than the single node, facilitating retrieval of services and data in
mobile environments as in the computational-gradient approach [Beal and Bachrach 2006;
Mamei and Zambonelli 2009].

Adaptivity. It is known from biology that some complex chemical systems are auto-
catalytic (i.e. they produce their own catalyst), providing positive-negative feedbacks that
induce self-organisation [Camazine et al. 2001] and lead to the spontaneous toleration of
environment perturbations. Such systems can be modelled by simple idealised chemical
reactions, e.g. prey-predator systems, Brussellator, and Oregonator [Gillespie 1977]. Re-
garded as a set of coordination laws for pervasive services, this kind of chemical reactions
has the potential to intrinsically support adaptivity.

Diversity. Chemical reactions follow a simple pattern: they have some reactants (typi-
cally 1 or 2) which combine, resulting in a set of products, through a chemical propensity
(or rate) dictating the likelihood for this combination to actually happen. In nature, this
generates a plethora of specific chemical reactions that take into account the diversity of
chemical species, and the possibility of creating complex molecular structures. In our
framework, general reactions can be designed that can be instantiated to the specific and
unforeseen services that will be injected in the system over time—using semantic matching
to fill the gap.

Designing the proper set of chemical reactions regulating system behaviour is hence
crucial. Without excluding the appropriateness of other solutions, in this paper we mostly
rely on chemical reactions resembling laws of population dynamics as, e.g., the prey-
predator system [Gillespie 1977; Berryman 1992]. Not only has this kind of idealised
chemical reactions been successfully used to model auto-catalytic systems manifesting
self-organisation properties, but it can also nicely fit the ecological metaphor we want to
adopt, namely seeing pervasive services as situated species in a service ecosystem—also
making interesting patterns like extinction and competition, or concepts like diseases and
food, appearing by emergence.

3. THE SPATIAL COORDINATION MODEL OF CHEMICAL TUPLE SPACES

The coordination model we propose in this paper is based on the idea of reifying the dis-
tributed state of a pervasive service as a tuple diffused in the network of tuple spaces—a
sort of field [Mamei and Zambonelli 2009; Beal and Bachrach 2006] mapping each tu-
ple space (i.e. each network node) to a tuple representing the state of the service in that
node. The effect of diffusing a pervasive service is however context-dependent: a service
may happen to effectively work only in one or more regions of the whole network space—
analogously to the “niches” where individuals of an ecology live and prosper. Namely,
the state and behaviour of each service will be understood as a spatial concept, while the
dynamics of the whole system of pervasive services is naturally seen in terms of spatial
computation. In particular, the notion of spatiality we rely upon is that induced by network
(wireless/wired) connections, as reported in other works such as [Mamei and Zambonelli
2009]. Namely, our “space” is the graph connecting each network node (also called loca-
tion, hosting a tuple space) to those it can directly interact with—a more involved space
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notion addressing the position of nodes in a metric space is not considered here, but may
be an interesting subject of future work.

The proposed model enhances standard tuple spaces by equipping tuples with a con-
centration value evolving over time by some chemical-like coordination laws embedded in
each tuple space at design-time, which apply to tuples modulo semantic match, and which
also account for transferring tuples in neighbouring tuple spaces—as detailed in the fol-
lowing. By making tuples reify the occurrence of people, devices, services, as well as their
interactions, this model will be shown to enact self-* properties in pervasive applications.

Tuple Concentration. A key idea underlying the proposed model is to attach an inte-
ger value called “concentration” to each tuple, measuring the pertinence/activity value of
the tuple in the given tuple space: the higher such a concentration, the more likely and
frequently the tuple will be retrieved and selected by the coordination laws to influence
system behaviour. Tuple concentration is dynamic, as is typically the pertinence of system
activities.

Chemical-like Reactions. Tuple concentration “spontaneously” evolves similarly to
what happens in chemical behaviour, namely, a tuple with concentration N is handled
pretty much in the same way as if it were a chemical substance made of N molecules of the
same species. This is achieved by coordination rules in the form of chemical reactions—
the only difference with respect to standard chemical reactions is that they now specify tu-

ple templates instead of molecules. For example, a reaction “X + Y 2L X + X would
mean that two tuples x and y matching X and Y are to be selected, get combined, and as
a result the concentration of tuple y decreases by one, and that of x increases by one. A
reaction is active if reagents occur in the space, in which case it will be selected with a
certain “rate” (i.e. frequency): this is computed precisely as the rate of the corresponding
reaction in chemistry [Gillespie 1977]. Namely, the transition of the above reaction is seen
as a Poisson event with rate 0.1 X #x X #y (#x is the concentration of x)—see Appendix
A for a complete account of this mechanism. In particular, we note that the average interval
A, between the selections of any two reactions is computed as 1/R where R is the sum
of rates of all available reactions [Gillespie 1977]. This model gives rise to a tuple space
running as a sort of chemical simulator, picking reactions probabilistically: external agents
interact with each other in a mediated way through tuples, hence system coordination will
follow the dynamics of the corresponding natural/artificial chemical system described by
those reactions.

Semantic Matching. It is easy to observe that standard syntactic matching for tuple
spaces can hardly deal with the openness requirement of pervasive services, in the same
way as syntactic match making has been criticised for Web services [Paolucci et al. 2002].
This is because we want to express general reactions that apply to specific tuples inde-
pendently of their syntactic structure, which cannot be clearly foreseen at design time.
Accordingly, semantic matching can be considered as a proper matching criterion for our
coordination infrastructure [Paolucci et al. 2002; Bandara et al. 2008; Bobillo and Straccia
2008; Tolksdorf et al. 2008; Giunchiglia et al. 2007].

It should be noted that matching details are orthogonal to our model, since the appli-
cation at hand may require a specific implementation of them, ranging from expressive
though costly approaches like [Bobillo and Straccia 2008], to more lightweight ones like
[Bandara et al. 2008]. We only assume that matching (which can even change over time,
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e.g. rely on an external domain ontology description) is fuzzy [Bobillo and Straccia 2008],
i.e. matching a tuple with a template returns a vagueness value between 0 and 1. Vagueness
affects the actual application rate of chemical reactions: given the above chemical reaction,
and assuming tuple x matches X with vagueness 0.4, and tuple y matches Y with vague-
ness 0.5, we would then obtain a transition rate equal to r x 0.4 x 0.5 X #x X #y—only
20% of the expected value. Namely, the role of semantic matching in our framework is to
allow for coding general chemical laws that can uniformly apply to specific cases, where
it is possible for transition rates to be properly decreased—though in some cases we may
still want to rely on semantic templates with crisp matching.

Tuple Transfer. We add to the model in [Viroli and Casadei 2009] a mechanism by
which a (unit of concentration of a) tuple can be allowed to move towards the tuple space
of a neighbouring node, thus generating a computational field [Mamei and Zambonelli
2009]—a map from network nodes to tuples. This is again inspired from chemistry: in
fact, such a mechanism mimics chemical diffusion through membranes in biochemistry.

—Chemical diffusion involves signal molecules, produced by some intra-cellular reaction
and then secreted on the surface of the cell. Accordingly, we introduce the notion of
“firing” tuple denoted ¢, which is tuple ¢ scheduled for being sent to a neighbouring
tuple space—we shall denote by A,, the average interval between production of two
firing tuples.

—In the same way chemical transfer can occur only between cells in a proximity, we
introduce the concept of (unidirectional) /ink between spaces (reflecting the possibility
of communicating): each link has a rate r that measures the maximum transfer of tuples
per time unit.

—Chemical transfer can be affected by the concentration of some substance in the source
and target cells ([Alberts et al. 2002]). Accordingly, each firing tuple defines a local
gradient tuple G, and a local gradient direction § in {0, +, —}: when 4 is 0, transfer rate
is not influenced by G (it remains fixed to ), when ¢ is “+”, a molecule can only ascend
the gradient created by G, and when § is “~”, the molecule can only descend it.

—Due to thermodynamic noise, there is still a probability for a substance to move indepen-
dently of the gradient. This is modelled through a fixed noise value (10~ in this paper'),
which represents the probability for a firing tuple to move in the direction opposite to
that specified by )—a mechanism introducing a form of simulated annealing.

By the resulting model, the designer can program the self-organising coordination be-
haviour of the distributed systems in terms of general-purpose chemical-like reactions, to
be properly installed in each tuple space of the system—as exemplified in the next sections.

4. LOCAL COMPETITION

We now discuss some examples of chemical reactions enacting general coordination pat-
terns of interest for pervasive service ecosystems. We proceed incrementally: in this sec-
tion we discuss basic laws for service matching and competition, which will be extended in
subsequent sections towards a distributed setting (Section 5), and with chemical-inspired
gradients to support other patterns for distributed interaction (Section 6). Each section
first introduces chemical reactions, discussing them in general terms, and then a case

LA wide range of values lead to analogous results as far as the experiments of this paper are concerned.
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study based on the pervasive display infrastructure for the airport scenario is discussed—
discussing practical examples of advertisement, news and custom information services.

4.1 Chemical Reactions

We initially consider a simple yet interesting scenario in which a single tuple space me-
diates the interactions between pervasive services (providing some software functionality)
and their users (clients) in an open and dynamic system. In the pervasive display infras-
tructure, this example is meant to model the basic case where, given the node where a
display is installed, visualisation services are to be selected based on the profile of users
nearby the display.

We aim at enacting the following behaviour: (i) services that do not attract users fade un-
til eventually disappearing from the system, (ii) successful services attract new users more
and more, and accordingly, (iii) overlapping services compete one another for survival, so
that some/most of them eventually come to extinction.

An example protocol for service providers can be as follows. A tuple service is
first inserted in the space to model publication, specifying service identifier and (seman-
tic) description of the service content. Dually, a client inserts a specific request as a tuple
request—insertion is the (possibly implicit) act of publishing user preferences. The
tuple space is charged with the role of matching a request with a reply, creating a tuple
toserve (service, request), combining a request and a reply semantically match-
ing. Such tuples are read by the service provider, which collects information about the re-
quest, serves it, and eventually produces a result emitted in the space with a tuple reply,
which will be retrieved by the client.

The rules we use to enact the described behaviour are as follows:

(USE) SERV | REQ —» SERV | SERV | toserve (SERV, REQ)
(DECAY) sErRv % 0

Rule (USE) has a twofold role: (i) it first semantically matches a service and a request,
accordingly creates a toserve tuple, and removes the request; and (i) it increases the
concentration of the service, so as to provide a positive feedback—resembling the prey-
predator system described by Lotka-Volterra equations [Berryman 1992; Gillespie 1977].
We refer to use rate of a couple service/request as u multiplied by the match degree as
described in the previous section: as a result, it can be noted that the higher the match
degree, the more likely a service and a request are combined®. On the other hand, rule
(DECAY) makes any concentration item of the service tuple disappear at rate d, contrasting
the positive feedback of (USE): here, the overall decay rate of a service is d multiplied by
the match degree—with no match, we would have no decay at all.

Prey-predator dynamics. In Figure 1 (left) we consider a scenario in which requests r
are injected at average rate 50, and a matching service s exists in the system with initial
concentration 1,000: we additionally have decay rate 0.01 and use rate 0.05°. We can
observe that after an initial growth, the number of requests which are not served stabilises

2 A slightly more involved protocol could make use rate also take into account the user feedback after exploiting
the service, reified as a tuple and responsible of increasing service concentration. Hence, in general, we consider
the use rate as a measure of the service appropriateness for the specific request.

3For this case, and for the others appearing in this paper, we simply simulated the Continuous-Time Markov
Chains system described by the chemical reactions at hand, using the approach detailed in Appendix A.
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Fig. 1. Service s exploited by matching requests r (left); and competition between services s1 and s2 (right).

to few hundreds, while the concentration of s grows to about 5,000. The behaviour of
service concentration can be understood in terms of the positive-negative feedback loop of
rules (USE) and (DECAY). In general, the positive feedback is caused by the injection of
requests, followed by the execution of (USE). For the sake of the discussion, we consider
the delay due to use rate negligible (in the scenarios tackled in this paper, the time to find
matches is much faster than the average time between the arrival of two requests). Under
this hypothesis, service concentration increases at the rate of injection of requests (pumping
rate p) and decreases at the service decay rate (decay rate d). We can approximate the
resulting stochastic behaviour by the continuous Ordinary Differential Equations (ODEs)
interpretation of such chemical reactions—describing service concentration s over time by
the law of mass action [Cardelli 2008]. Along with its analytical solution, it is as follows:

% =p—ds = s(t) = Z
Namely, the service concentration increases exponentially and stabilises to about p/d,
which is actually 5,000 in our case as shown in Figure 1 (left). Most notably, once the
service decay rate is fixed, service concentration is proportional to the rate at which re-
quests are served, without risk of divergence. In a tuple space with these reactions, the
overall rate R has two contributions: the pumping rate (independent of service concen-
tration), and the decay rate multiplied by service concentration, namely, R = p + d X s.
When stability is reached (s = p/d), this becomes R = 2p, and hence the minimum av-
erage transition time A, is 1/(2p)—this result will be used in the case study in Section
4.2.

(1- e_dt)

Competition scenario. We now consider a similar scenario, now with two services sl
and s2 with initial concentration 2,000 and 3,000 respectively, and matching the same
requests, though with different use rate: 0.04 for s1, and 0.06 for s2. This models the
situation in which two different services exist to handle requests, one leading to a better
match. The result is that s1 and s2 engage a competition: this is lost by s1 which starts
fading until completely vanishing (i.e. being disposed) even though it has an initially higher
concentration, as shown in Figure 1 (right). In fact, the sum of the concentrations of sl
and s2 still stabilises to 5,000, but the contribution of s1 and s2 changes depending on the
number of requests they can serve. Hence, matching degree is key when more services are
concerned and the shape and dynamics of user requests is unknown, as it is responsible of
the rate at which a service is selected each time, and ultimately, of the evolution of service
concentration, i.e. of the competition/survival/extinction dynamics. Note that in this case
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Parameter | Value Description

r.req 141/137 min~T | preference injection rate, as passengers per flight over interval be-
tween two flights

t_stay 50 min passenger time nearby the display

r_ads 100 year—1 advertisement service injection rate

t_show 30 sec showing time for an advertisement service

c-ad 1,000 maximum expected concentration of an advertisement service

r_match 1,000 sec— 1 match rate

Fig. 2. Airport scenario: competition of services in one display. Simulation parameters.

we still have AT,. = 1/(2p), independently of the number of services.

4.2 Case study of long-term competition

To better ground the discussion, and emphasise the adaptive and ecological character of
our model, we consider the airport display infrastructure, and analyse the behaviour of a
single display, located near a gate where passengers wait for the departure of their flight.
As soon as a passenger gets nearby, her/his preferences are sensed, and become tuples
representing requests for a visualisation service—such sensing might be due to either the
passenger’s PDA or the passenger’s data which are stored in an RFID (or alike) placed
on the boarding pass. Visualisation services are continuously injected in the system (in
the long-term, they could be many): they are meant to tackle passengers’ preferences (e.g.
sport, food, tourism) and accordingly compete with one another, since the display is meant
to probabilistically select the best service/passenger match.

Figure 2 shows all the parameters of the considered simulation scenario, in which 100
visualisation services are injected during a year. Parameters r_req and t_stay are in-
ferred from Heathrow statistics in 2008 *. Match rate is the rate at which a single match can
be performed: note this is negligible with respect to the time between arrival of two pas-
sengers’ preferences (namely, about 1 minute due to r_req). For the simulation, we used
decay rate d = 1/30,000 sec™! = 1/(c_ad x t_show), since the final service concen-
tration c_ad has been shown to be p/d, and the pumping rate for services p is 1/t _show
(service concentration increases by 1 each 30 seconds).

This simulation scenario is relative to a class of advertisement services (e.g., concerning
food), which can match 5 different “marketing targets” (e.g. beverages, pasta, pizza, meat,
and fish). Each passenger is associated to a single marketing target, while each advertise-
ment can cover many marketing targets (e.g. a fast food advertisement somehow matches
both beverages and meat). Accordingly, each time an advertisement service is created, we
randomly draw its match degree (a number in between 0 and 1) with respect to the 5 dif-
ferent marketing targets, though we keep the sum of such degrees less than the “overlap
factor” 1.5 (OF)—to avoid the unrealistic case in which some advertisement perfectly fits
all marketing targets (which could happen if OF = 5). Note that, since in this applica-
tion pumping rate p is 30 sec™!, AT, = 1/(2p) = 15 sec, which poses no significant
performance constraints on implementation.

Figure 3 shows a simulation over a whole year. We note that: (i) only few services are
actually active at a given time (i.e., they have non-negligible concentration), for the others
get extinguished throughout system evolution, and (ii) some new service can overcome an

4nttp://www.caa.co.uk/.

ACM Journal Name, Vol. 2, No. 2, ? 20?.



Spatial Coordination of Pervasive Services . 11

1000 03! ! ' ' ! E E

| 1
200 |- | 1

b
t

1000 s 29

1

600 [~ i 1 1 | H 1
Nt ke AR S LI e At ' A '

Sty gl N e S e

200 |

1000 s 91

|
600 |- 1

200 |- M T s st
: .
:

-3
¢
%
£
3
P
’
-z
£

1000

: :
600 [~ ! : : ' : '
: : : : i
P T
200 ' 1 ' _‘J"“-"rf‘m ey :Wlf“l-ﬂ\_‘.f oy
! [ ' ' '
1000 - s 51 i :

i i i
1 | H
600 ! ' i
! | f ;
i
'
. ;

i '

1000 M 5 89 | 1
| ;

i
v
'
'
'
'

so0 I' W n o Ar : : E
T I e o T T CVE
200 | ' : : : [ N

; H H
Time (days} H -
o 50 100 150 200 250 300 350

Fig. 3. Airport scenario: competition of services in one display. Charting concentration of the 6 services active
throughout the simulation.

existing and established one, causing its extinction (e.g. s5H1 enters the system at day 290,
and makes s89 extinguishing at day 350)—tesults of a larger number of simulations show
that the average number of active services in the system is about 3.25. At the end of the
year, only the following three services are active (reported with their matching degrees):

s91[0.52,0.11,0.84,0,0], s20[0.62,0.84,0,0,0], s51[0,0,0,0.75,0.70]

Namely, s91 is mainly tackling the fourth marketing target (and a good deal of the first),
520 is mainly tackling the second marketing target (and a good deal of the first as well),
while s51 mainly tackles the fourth and fifth targets. By increasing the number of market-
ing targets and their overlap factor we can deal with more involved situations; for instance,
analogous simulations with 20 marketing targets and OF = 3 give an average number of
7 visualisation services for the specific class considered. In general, it is predictable that
the services that best tackle one ore more marketing targets will survive, while most of the
others will end up extinguishing without unnecessarily overloading the system, and with
no human intervention. This “ecological” behaviour is typical of today socially situated
domains like social networks, and will be likely to play a key role in future pervasive com-
puting systems [Agha 2008; Ulieru and Grobbelaar 2007; Zambonelli and Viroli 2008].
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5. SPATIAL COMPETITION

We here extend our discussion to a network of tuple spaces, so as to emphasise the spatial
and context-dependent character of competing services.

5.1 Chemical reactions

Now suppose that instead of a single tuple space, we have a network of tuple spaces,
all programmed with the above set of chemical reactions (USE,DECAY) plus a simple
diffusion law for service tuples:

(DIFFUSE) SERV % SERV™

The resulting system can be used to coordinate a pervasive service scenario in which a
service is injected into a node of the network (e.g. the node where the service is more
urgently needed, or where the prosumer resides), it starts diffusing around on a step-by-
step basis (following no local gradient), until possibly covering the whole network—hence
becoming a global service. This situation is typical in the pervasive display infrastructure,
since a frequent policy for visualisation services would be to show them on any display of
the network—although more specific policies might be enacted to make certain services
only locally diffuse.

In this system, we can observe the dynamics by which the injection of a new and im-
proved service may eventually result in a complete replacement of previous versions—
spatially speaking, the region where the new service is active is expected to enlarge until
covering the whole system, while the old service diminishes. In the context of visualisation
services, for instance, this would amount to the situation where an existing advertisement
service is established, but a new one targeted to the same users is injected that happens to
have greater use rate, namely, it is more appropriate for the average profile of users: we
might expect this new service to overcome the old one, which accordingly extinguishes.

Reference topology. For this experiment (and also for the others developed in the re-
mainder of this paper) we need to consider a reference network topology to use. Although
this choice may evidently affect the result of simulations, and many topologies could be
considered and compared, we here stick to a single case which we consider of general
validity for the context of pervasive services. On the one hand, locations are placed as
nodes of a square grid, such that each location has in its proximity 8 nodes (4 in the hori-
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zontal/vertical direction, and 4 in the diagonal direction — locations at the boundary of the
grid have less neighbours). This choice is motivated by the fact that very often comput-
ing devices are placed more or less uniformly over the “space” formed by the buildings,
corridors, or rooms of the pervasive computing systems of interest. On the other hand,
we find it useful to introduce some randomness in the topology, to tackle heterogeneity
of the environment at hand, failures, and so on. Hence, we actually draw the connections
between such locations randomly: namely, the probability that a node is connected to one
of those 8 in its proximity is 50%: in this way, the average overall number of nodes in
the neighbourhood is 4, though the topology is not uniform. We call this a random grid

topology.

Competition with diffusion. For the sake of explanation, we start from an abstract case,
with a reference random grid of 30 x 20 nodes. In every node, requests for using a service
are supposed to arrive at a fixed rate for simplicity, and a service called s1 is the only
available to match the requests (we use the following parameters: use rate © = 0.01, decay
rate d = 0.01, request injection rate p = 50, moving rate m = 0.01). In particular, in every
node, the system stabilises approximately to a concentration of 5,000 s1 (p/d as usual), in
spite of diffusion.

Another service s2 is at some point developed that can serve the same requests of s1,
now with use rate 0.1 instead of 0.05, namely, it is a service developed to more effectively
serve requests—it matches requests twice as much as s1 does. This service is injected
into a randomly chosen node of the network, with an initial very low concentration (10
in our experiment). Figure 4 shows in each column a different snapshot (from left to
right), reporting concentration of s1 on top and s2 on bottom: we can observe that s2
starts diffusing where it is injected, until completely overcoming service s1 after about
3,000 time units. Note that even in this case AT, is 1/(2p), since at the equilibrium all
locations stabilise to the situation discussed in the previous section. For this case, we
can also compute AT,,: the rate at which firing tuples are produced is m x s which is
m x p/d = 0.5, hence the infrastructure should guarantee that AT;,, = d/(m x p) to avoid
firing tuples to accumulate without being promptly sent—that is, 1 tuple transfer per tuple
space each 2 time units.

ACM Journal Name, Vol. ?, No. 2, ? 20?.
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5.2 Case-Study of Context-Dependent Spatial Competition

We now analyse a more concrete example, extending the airport scenario studied in pre-
vious section to show the spatial character of our framework. Instead of a single display
we now consider an airport terminal with 5 gates in a row, and 25 displays near each gate
disseminated in the corridor and gate areas. This is modelled as a 25 x 5 random grid (gates
are at coordinates (3, 3), (8, 3), (13, 3), (18, 3), (23, 3)).

Advertisement services are now injected from a random node of the network (taken
from 8 nodes in the perimeter of the grid considered as entry point nodes), using same
dynamics of previous case. Such services diffuse using (DIFFUSE) reaction and diffusion
rate 0.0001 min~—!. Since link rates can be assumed to be much faster (i.e. I > m),
tuples are actually transferred at the (slower) rate at which firing tuples are created, which
is m x s =m x p/d = 0.1 min~!—each space has an average of one tuple transmission
per 10 minutes.

In a scenario in which passenger preferences are uniformly distributed in space and time,
we would expect a behaviour similar to that of Figure 4, where winning services diffuse in
the whole network reaching an uniform value. But in a real-life situation preferences are
not uniform but context-dependent, and this influences the actual region in which certain
services can actually win competition. As an example, we consider a class of services
containing news about specific locations in the world, and each passenger’s profile specifies
a preference for just one continent, namely, the one where she/he is flying to, automatically
extracted from the RFID in the boarding pass. As in the previous case, the overlap factor is
1.5 (in that some news service might span more continents). Now assume each gate hosts
flights towards a given continent: this means that each gate is a context where passengers
will more likely be interested in news on the corresponding continent. This is obtained
by making the injection rate of preferences dependent on the distance from the gate: the
higher the distance, the smaller the rate (and still r_req in the node of the gate, as in
previous section).

A simulation result is shown in Figure 5, which emphasises again the ecological char-
acter of our framework, now also taking into account spatial aspects. Only 4 services are
active at the end of the simulation, which are those actually charted. At day 60, s51 is
already established at 2"? gate (from left). At day 167, s51 is also establishing on 1°¢ gate,
while 538 established on gate 4*" and 5". At day 274, 59 is appearing on 3"¢ gate and 582
is taking over 1%¢ gate winning competition against s51. At the end of simulation, both s9
and s82 completely established.

Note that in this model, service tuples act as a reification of the spatial service state
as enacted by the coordination infrastructure: the resulting system features situatedness
(success of a service in a location depends on requests and existing services there), adap-
tivity (the best service actually wins, and unused services fade and get garbage-collected),
and accommodation of diversity (the arrival of new services is not foreseen at design time,
but automatically managed).

6. INTERACTION PATTERNS BASED ON GRADIENTS

Other spatial patterns can arise as soon as we identify mechanisms by which the distributed
structure of a tuple extends to a limited locality of the overall space. Based on this idea,
computational gradients [Beal et al. 2008] are proposed as a key building brick for perva-
sive computing systems [Mamei and Zambonelli 2009]. A gradient is a field initiated (i.e.
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pumped) from a source node, and diffusing in the surrounding until each node of the net-
work features a stable value depending only on the estimated distance of the node from the
source. This spatial data structure is primarily used to project some data from the source
to a neighbouring region, so that all “agents” in it may not only be aware of such data,
but also retrieve the source by simply moving on a step-by-step basis towards the source,
namely, choosing at each step the neighbouring node whose gradient value indicates the
nearest node to the source.

6.1 Chemical reactions

In our framework there can be many ways of creating a gradient through reactions gener-
ating firing tuples; we here focus on the following chemical system:

(PUMP) puMP 2 PUMP | GRAD
(DECAY)  GRAD % 0
(MOVE) GRAD % GRAD™(GRAD")

Initially, assume a PUMP token with concentration 1 is inserted into the source node. Re-
action (PUMP) starts spawning units of the GRAD service, such that GRAD concentration
starts raising. On the other hand, (DECAY) rule makes any single GRAD unit disappear
after an average 1/d time units—reaching an equilibrium as discussed in previous section.
Additionally, (MOVE) is used to turn tuples into “firing tuples”, representing GRAD units
that will be moved to a neighbouring node where the concentration of GRAD is lower—note
gradient GRAD and direction “~". As a result, the computational gradient starts diffusing
in the neighbourhood where it is also subject to decay. The nearer the source is, the higher
is the influence of the “pumping force”, hence the higher is the gradient value; this value
completely fades at a distance called the gradient horizon.

The shape of gradients. An estimation of the overall “size” of the gradient — namely
the sum of gradient values in all network nodes — can be given by considering that reaction
(MOVE) simply replaces units of concentration, hence it does not affect overall size, which
is then (as seen in previous sections): S = p/d. On the other hand, the gradient value in
the location where it is pumped — namely the gradient peak P — can be computed by
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considering that (MOVE) reaction drops units of concentration with same dynamics of
(DECAY), hence’: P = p/(d + m). As a result, we can see that while p and d are
responsible for the overall size of the gradient, increasing m causes tuples to more quickly
escape the peak, resulting in a gradient with a larger horizon and a lower peak.

An example of simulated gradient is reported in Figure 6, showing the spatial structure
of a gradient with p = 1,000, d = 1 and m = 20: it is easy to verify that peak (about 50)
and overall size (about 1,000) are as expected, and that the horizon is about 15 steps. Note
that the slope of the field is exponential, but — especially in its boundary — very noisy due
to the stochastic dynamics.

A general indication about how move rate m influences the gradient horizon and stabil-
isation time is given in the simulation results in Figure 7 (top). We observe that: (i) final
gradient horizon slowly grows with move rate, (ii) stabilisation time is mostly independent
of the actual final horizon, and (iii) in spite of the stochastic nature of these fields, stan-
dard deviation is reasonably small—around 5% of the average value. Note that as the final
shape of a gradient is only influenced by the relative value of rates, their absolute value
influences the time needed to establish the gradient—e.g. by multiplying p, d, m by ten we
obtain a gradient with same shape, but stabilising 10 times faster.

Of course, it is the infrastructure that prevents the choice of arbitrary large rates. The
location hosting the peak is the one in which we have the tuple space with the highest
workload, and there we have the same requirement on performance as seen before: sum of
transition rates for reactions (PUMP,DECAY,MOVE)is R = p+ s X d+ s X m = 2p,
hence again AT, = 1/(2p). The rate at which firing tuples are produced (due to reaction
MOVE alone) is instead s x m = P x m = p x m/(d + m) = p since sufficiently large
gradients always have m > d, hence we set AT, = 1/p to again avoid firing tuples to
accumulate without being promptly sent. Given these constraints, we would be forced to
keep p rather low: e.g., 100 sec™!, assuming we can send 100 tuples per second.

However, relying on an implementation in which firing tuples are packed, and sent to-
gether at a fixed rate (as mentioned in Section A.2) can be useful—we call such a rate
packet transfer rate (PTR). Simulation results shown in Figure 7 (middle) clearly empha-
sise that by using a PTR equal to 100 sec™*, we can support a pump rate p = 1,000 without
significantly affecting accuracy of the result—note that a packet in this case is nothing but
a single tuple with concentration greater than 1. Using lower PTRs (e.g., 10) would make
the gradient establishing slowly. In general, simulations show that we can easily support
up to pump rates equal to 5,000 without losing accuracy.

A final comment concerns the impact of link rates in our model. Note that such rates are
typically not a design choice, but just a measure of connection speed useful to run more
accurate simulations of diffusion dynamics. In Figure 7 (bottom) we show how a gradient
establishes when different link rates are used. What we observe is that when using link
rates greater than 10 — a rather low rate, by which transferring a tuple introduces an average
0.1 sec delay — the dynamics of a gradient is not sensibly affected by the actual link rate
value. Namely, in our spatial coordination patterns and our reference pervasive scenarios
what is more important is the rate of reaction (MOVE), which is the basic parameter we
can act upon to design gradient horizon. Of course, link rates are still useful to simulate
those situations in which some connection is e.g. particularly slow.

5Some units of concentration can actually get back into the peak due to noise, but this contribution is negligible
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Ascending a field. We now consider a typical retrieval scenario of spatial computing
(see e.g. [Mamei and Zambonelli 2009]), which is a main application of computational
gradients. Suppose a request r located in a node pumps a gradient g to look for a given
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Fig. 8. Field-based attraction: a service enacts a gradient (top) used by an answer service to reach the requester
(down).

service s: as soon as this gradient reaches a node hosting s, an answer a is pumped for
a limited time which ascends the gradient until reaching r. At that point, a can simply
interact with r and interrupt the creation of gradient g. This behaviour is realised by
the following set of reactions, extending (PUMP,DECAY,MOVE) described in previous
section:

(ANSWER) SERV | GRAD % PUMP-A
(PUMP-A) PUMP-A % PUMP-A | ANSW
(DECAY-PA) pump-2 L 0

(ASCENT) ANSW % ANSW™(GRADY)
(DECAY-A) ANSW % 0

(STOP) ANSW | PUMP % 0

Figure 8 provides a visualisation of the corresponding dynamics, using the following
rates (expressed as sec™M): p = 5,0000m = 20,d = 1,d = 1. Attimet = 0 the
requester located at node (22, 7) starts pumping gradient g, which is already visible at time
t = 0.2sec. Attimet = 0.8 sec, the gradient reaches the target node at (8, 7), which
creates a pump token pa by reaction (ANSWER). This generates and diffuses an answer
service as usual, by reaction (PUMP-A): however, this effect lasts for a limited amount of
time (1 sec in our case due to rate d’), then the answer gradually fades. Meanwhile, the
answer diffuses around and probabilistically ascends the gradient by rule (ASCENT). At
time ¢t = 1.8 sec, it reaches the requester, so as to complete the interaction. As a result, the
gradient pump is dropped by rule (STOP), so that also the gradient fades away, as shown
at time ¢t = 2.8 sec.

6.2 Case study of Service Retrieval

We now analyse a more concrete example based on the airport scenario. We again consider
the airport terminal with 5 gates in a row, modelled as a 25 x 5 random grid. We suppose
that in every position of the terminal, a passenger passing by a display with her/his boarding
pass generates a request service in charge of retrieving updated flight information. Accord-
ing to the interaction pattern described above, the request would pump a gradient from the
current display, which generates an answer service upon reaching the gate of interest. In
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turn, this answer service retrieves the requester by ascending the gradient, such that proper
information can be displayed: e.g. if the passenger is late, an alert message with directions
to the gate can be shown as the user pass by the display.

To design proper rates for chemical reactions, we can first consider that pump and decay
rate can be fixed as usual (p = 5,000 and d = 1) since the size of the network is known;
however, move rate m in reaction (ASCENT) can vary. We can expect that with relative
high values of m we can more quickly obtain a reply from the gate, though this results in a
higher cost for the infrastructure, since the gradient will reach much more tuple spaces of
the network.

Figure 9 (top) shows simulation results charting the time to complete the interaction de-
pending on the distance, with different move rates—average values out of 50 simulations
have been reported. This figure only reports results for interactions that were successful.
In fact, as shown in Figure 9 (bottom), there is a probability that no answer reaches the
display—namely, the answer gradient has not yet reached the requester when its pump
fades due to reaction (DECAY-PA). If this is the case, simply the passenger would experi-
ence no updated information about his/her flight on the display.

After observing that higher move rates mean higher probability of success and quicker
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replies, we can design a flight information service by which the actual move rate m is
dynamically selected depending on the urgency/priority of the answer. This can be auto-
matically dealt with by semantic matching. Namely, we can impose m = 100, and then
design semantic template ANSW in reaction (ASCENT) such that it best matches “urgent
answers”. For instance, we could give higher match degree to requests of passengers over
65 years, or to flights departing soon, or to flights with some important update information;
also, it is possible to give no match at all for passengers who do not need any update infor-
mation, and make sure that no answer at all is created and diffused. This again emphasises
the importance of semantic match, and its influence to the selection of chemical reactions
to be executed.

7. RELATED WORK
7.1 Coordination Models

The issue we face in this article can be framed as the problem of finding the proper coordi-
nation model [Malone and Crowston 1994] for enabling and ruling interactions of perva-
sive services. Coordination models generated by the archetypal LINDA model [Gelernter
1985], which simply provides for a blackboard with associative matching for mediating
component interactions through insertion/retrieval of tuples. A radical change is instead
the idea of engineering the coordination space of a distributed system by some policy “in-
side” the tuple spaces as proposed here, following the pioneer works of TUCSON [Omicini
and Zambonelli 1999] and MARS [Cabri et al. 2000]—in fact, as discussed in Section A.2,
TuCSoN can be used as a low-level virtual platform for enacting the chemical tuple-space
model. As already mentioned, the work presented in this article is based on [Viroli and
Casadei 2009], properly extended to deal with a mechanism for tuple transfer taking into
account concentration of tuples in source and target nodes—a key mechanism to exploit
gradients, and hence, to support awareness. In [Viroli and Casadei 2010], this model is
exploited to deal with self-composition of services, a concept that is essential in pervasive
service ecosystems though not deepened here.

Chemistry has been proposed as an inspiration for several works in distributed com-
puting and coordination over many years, like in the Gamma language [Bonatre and
Le Métayer 1996] and the chemical abstract machine [Berry and Boudol 1992]. Although
these models already show the potential of structuring coordination policies in terms of
chemical-like rewriting rules, we observe that they do not bring the chemical metaphor
to its full realisation, as they do not exploit chemical stochastic rates—behaviour is non-
deterministic rather than probabilistic as in our model.

7.2 Spatial Computing

The spatial patterns we achieve using the chemical tuple space model very much resemble
(and are inspired from) previous works in the context of Spatial Computing. The series of
papers [Beal and Bachrach 2006; Beal et al. 2008] discusses various algorithms for defining
gradient data structures, featuring different robustness and performance properties. The
main idea of this approach is to establish a computational gradient in which the field value
in the source is 0, and increases by 1 at each hop—in the case of multiple paths toward
a node the smallest value is retained. Variations of this basic algorithm are used to speed
up the transition to a new stable state as a result of some topological changes, or to trade
speed for precision.
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Our chemical-inspired gradient structures are different since: (i) our fields decrease with
the distance from the source, (ii) the slope is exponential and not linear, (iii) by acting on
rates we can set up size and horizon of a field, (iv) the actual field value at any point
is established as a result of the probabilistic (and timed) selection of chemical reactions.
Similarly to [Beal et al. 2008], our approach is intrinsically robust to changes in the topol-
ogy and to the position of the source, though the performance of field establishment and
evolution are not comparable—however we believe they are reasonable for the context of
pervasive service ecosystems. Filling the performance gap between the two approaches is
in fact a main future direction of investigation.

It is worth noting that the chemical approach developed in this article is somehow related
to the vision of [Beal and Bachrach 2008], which already points out the connection between
bio-chemistry and spatial computation. However, while this is focused on adopting spatial
computing technologies (e.g. Proto language) to model/simulate biochemical processes,
we consider the other way round: we take (existing, idealised, or newly invented) chemical
systems and get inspiration from them to build spatial coordination strategies for pervasive
computing.

The spatial middleware that most resembles the one presented in this article is TOTA
(Tuples On The Air) [Mamei and Zambonelli 2009]. In TOTA each tuple, when inserted
into a node of the network, is equipped with a content (the tuple data), a diffusion rule (the
policy by which the tuple has to be cloned and diffused around) and a maintenance rule
(the policy whereby the tuple should evolve due to events or time elapsing). Hence, while
in our approach the coordination laws (chemical reactions) are meant to be fixed for the
application domain and apply to all tuples (depending on semantic matching criteria), in
TOTA the tuple is responsible for carrying its behavioural rules. So, while we call for spec-
ifying the evolution rules of tuples at design-time, when the application goals are identified,
TOTA instead promotes a run-time approach: diffusion behaviour is defined by an agent
before injecting the tuple in the system. From this viewpoint, a key aspect of our approach
is that ontology-based semantic matching can be used to make one general law apply in
different ways to different, possibly unforeseen tuples. Accordingly our framework has a
better ability of predicting system behaviour at design-time, and tackling diversity.

7.3 Service Environments and Pervasive Middleware

In recent years, we have witnessed a trend combining researches in the areas of service
environments and pervasive middleware: there, the need for enforcing adaptivity, other
than advanced forms of context-awareness, has been tackled in several ways.

Situatedness and Context-Awareness. Considering the issues of situatedness and
context-awareness, extensions or modifications to the traditional SOAs have been recently
proposed to address context-awareness and adaptivity in pervasive environments. The
PLASTIC approach [Autili et al. 2009] adopts a philosophy somewhat similar to ours,
in that service descriptions are coupled with dynamic annotations related to the current
context and state of a service, to be used for enforcing contextual and adaptable forms
of service discovery. Our approach pushes the idea further, since it gets rid of traditional
discovery services and enforces dynamic and adaptive service interaction via simple be-
haviour rules (chemical reactions) and a minimal middleware, which are key to tolerate
diversity.

In many proposals for pervasive computing environments and middleware infrastruc-
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tures, the idea of “situatedness” has been promoted by the adoption of shared virtual spaces
for services and components interactions. The pioneering system Gaia [Romaén et al. 2002]
introduces the concept of active spaces, a middleware infrastructure enacting distributed
active blackboard spaces, acting as the means for service interactions. Later on, a number
of proposals have extended upon Gaia, to include additional functionalities and features for
active spaces to enforce dynamic semantic pattern-matching for service composition and
discovery [Fok et al. 2009] or access to contextual information [Costa et al. 2006]. Other
related approaches include: Egospaces [Julien and Roman 2006], exploiting a network of
tuple spaces to enable location-dependent interactions across components; LIME [Picco
et al. 1999], proposing tuples spaces that temporarily merge based on network proximity,
to facilitate dynamic interactions and exchange of information across mobile devices; its
extension, TeenyLime [Costa et al. 2007] targeting sensor networks; and the already men-
tioned TOTA [Mamei and Zambonelli 2009]. Our model shares the idea of conceiving
components as “living” and interacting in a shared spatial substrate (of tuple spaces) where
they can automatically discover and interact with one another. Yet, our aim is broader,
namely, to dynamically and systemically enforce situatedness, service interaction, and data
management with a simple language of chemical reactions, and most importantly, enacting
an ecological behaviour.

Self-organisation. Several recent works exploit the lessons of adaptive self-organising
natural and social systems to enforce self-awareness, self-adaptivity, and self-management
features in distributed and pervasive computing systems. At the level of individual com-
ponent modelling, these proposals take the form of either situated reactive agents [Parunak
et al. 2002] or proactive and goal-oriented ones [Ricci et al. 2007]. At the level of inter-
action models, these proposals typically take the of form of specific nature- and socially
inspired interaction mechanisms [Babaoglu et al. 2006] (e.g., pheromones [Parunak et al.
2002], virtual fields [Mamei and Zambonelli 2009], or gossiping [Jelasity et al. 2005]), en-
forced either at the level of component modelling or via specific middleware-level mech-
anisms. We believe our framework integrates and improves these works in three main
directions: (i) it abstracts from the specific internal characteristics of components (no mat-
ter whether they are simple reactive components or complex goal-oriented ones) and rather
proposes an approach that seamlessly applies to both cases; (ii) it tries to identify an inter-
action model that is able to represent and subsume the diverse nature-inspired mechanisms
under a unifying self-adaptive abstraction (i.e. the semantics chemical reactions); (iii) the
ecological approach we undertake goes beyond most of the current studies that limit to
ensembles of homogeneous components, defining a suitable framework for supporting the
vision of novel pervasive and Internet scenarios as made up of self-adaptive devices and
services, that autonomously cooperate for the creation of global services—a sort of cyber-
organisms as envisioned in [Agha 2008].

8. CONCLUSIONS AND FUTURE WORK

The proposed chemical-oriented extension of the tuple space model can be regarded as
a ground for building self-organising coordination infrastructures for open and pervasive
spatial-oriented service systems. As we showed in this article, the chemical metaphor
— along with the semantic character of chemical laws and the possibility of modelling
chemical diffusion by tuple transfer — plays a crucial role to enable coordination models
to tackle the requirements of engineering adaptive pervasive services. In particular, we

ACM Journal Name, Vol. 2, No. 2, ? 20?.



Spatial Coordination of Pervasive Services . 23

showed that with very simple chemical reactions, it is possible to model reaction/diffusion
behaviour that amounts to useful spatial patterns: indeed, our model promotes a view of
pervasive systems as spatial computers, and of adaptive services in it as spatial structures
that compete and diffuse in a context-dependent way—other patterns of segregation and
clustering can be supported which are not described in the article.

As this article is aimed at describing an executable model and spatial pattern emergence
via simulation, it paves the way towards several research activities. A main research di-
rection concerns implementation, and in particular semantic matching and performance
issues. Currently, we are studying an architecture for tuple spaces which can allow to plug
semantic match algorithms in an easy and flexible way. Indeed, different applications may
require different semantic approaches, from expressive but costly ones like [Bobillo and
Straccia 2008], to more light approaches such as [Bandara et al. 2008].

Concerning performance, we see two main research directions. On the one hand, op-
timised implementation techniques are to be designed for the tuple space architecture: in
particular, T-leaping [Rathinam et al. 2003; Cao et al. 2006] is worth investigating, which
is based on the idea of applying faster reactions many times in one single step, which under
certain conditions can be shown to produce a very accurate chemical dynamics. In gen-
eral, we believe that chemical reaction/diffusion mechanisms can be supported in a rather
efficient way by a trade-off with accuracy, still obtaining reasonably good spatial coordi-
nation behaviours. On the other hand, different chemical reactions can be designed that
may exhibit similar properties to those proposed in this article, though providing better
performance.
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A. CHEMICAL TUPLE SPACES:
FROM FORMAL MODEL TO IMPLEMENTATION

A.1  Formal model

We introduce an executable model of chemical-inspired tuple spaces, which can be used to
both compile any system specification into a Continuous-Time Markov Chain (CTMC)-
usable to simulate system behaviour — and as an abstract design of the distributed execution
platform. To keep the description of this model as simple as possible, we focus on chemical
reaction and diffusion of tuples, and hence abstract away from the semantics of the coordi-
nation primitives to insert and observe tuples, which is orthogonal—the interested reader
can find details on this in [Viroli and Casadei 2009]. Formalisation is provided using no-
tation and style of process algebras [Milner et al. 1992]—which is typical for coordination
models [Busi et al. 2000].

Syntax. Let meta-variable o range over tuple-space identifiers, 7 over first-order terms
(namely, the actual content of tuples), r over positive real numbers, and n, m over natu-
ral numbers—real and natural numbers, as well as literals, can be used as constants for
building terms.

The syntax of the model (along with the operational semantics described later) is expressed
in Figure 10. Term 7(n) represents a tuple with content 7 and concentration value n.
Syntax (1) is considered optional, so that tuple 7 actually means 7(1). A firing tuple ft
is instead of the kind 7,7 (Tgm 2)(n), where 7,00 is the tuple to be moved, 74,44 is the
tuple creating the local gradient, and ¢ is the local gradient direction: when § = 0, we
simply denote the firing tuple as 7, for there is no gradient influence. Note that in order
to represent tuples, we rely on generic terms rather than mere lists of values and wildcards
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Syntax:
t = 7(n) Tuple
ft oa= T (Tgmd)m) Firing Tuple
T = 0|t ft|(T|T) Tuple set
L = [T; 5 T, Chemical Law
S =0|T|L|(S|S) Tuple Space

C,D == 0]|[S]o | c~0 | (C|C) Configuration

Auxiliary functions: (S ifrim) ¢ S

T(n if 7(m

T(n) &8 = { € otherwise
"™G(T,8) if T =7(n)® T
G(T, S) = n
(T, 7(m) ® 5) {1 T =0

noise ifé =+ and n <m
F(Ss @ 1g(n), St ® 174(m), 74,8) = { noise if § = - and m < n

1 otherwise

Transition rules:
R) T[T 5 To)| S]o

M) [y (79) (1) @ Slo | [S"] 60 | o~ 0”

DT, [rAT/T T L 1) S

r(n S,8" 74,6 r
ADPES 700, [ (72) () & S]o | [ S'] o0 | 0 o0

Fig. 10. Computational Model

as in LINDA—similarly to [Omicini and Zambonelli 1999]. This choice is consistent with
the need for a general approach to abstractly deal with (semantic) matching.

T denotes a composition of tuples and firing tuples by using composition operator “
that is assumed to be commutative, associative, and able to absorb term 0—i.e. it is a
multiset composition operator. We also assume that term 7(n) | 7(m) is syntactically
equivalent to 7(n + m)—hence a tuple can be seen as either joined into a single term, rep-
resenting the whole substance in the solution, or split in two (or recursively more) terms
down to tuples with concentration 1. L is a chemical-like law (also called reaction), ex-
pressing transformation of tuple set 7; (reactants) into 7T}, (products) with chemical rate r;
note that although not explicitly prevented here, laws whose reactants (left-hand side) in-
clude firing tuples seem not useful—and hence might be excluded from a surface language
for chemical laws. S is a composition of laws L and tuples 7', which hence represent a
tuple space. Finally, C' is a system configuration, which is modelled as a flat composition
of tuple spaces [S], (o is the space identifier) and links between tuple spaces o ~ o’ (r
represents the link rate).

Note that all the above syntactic elements are considered as terms, e.g. “.(.)” is consid-
ered as a binary functor. The same applies to all the other constructs: hence, firing tuples
are a special kind of tuple since 7, . (Tgm 4) 1s a special kind of term.

i)

Substitution and Matching. We equip terms with the concepts of substitution and match-
ing, which are application-specific: as a consequence, they are considered abstract in
our model. We first assume the existence of a matching function p for terms, such that
wu(t,7") € [0,1]. Secondly, we need a concept for substitution, introduced via a ternary
partial function 7{7; /72 }. This function first matches two terms 7, and 5. Such a match
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intuitively returns a substitution (e.g. from variables to terms in first-order logic), which is
however left implicit: we only consider the effect of applying it to 7, which returns a new
term. This ternary operator is partial, since it provides no result in the case 7; and 7 do
not match. Matching function g is in principle orthogonal to substitution: though, in our
calculus the result of 7{7y /72 } is used only if (71, 72) > 0. Considering syntactic match-
ing, we would have as usual that ¢(X){q(X)/q(1)} = t(1): intuitively, {q(X)/q(1)}
yields substitution X /1 which is then applied to ¢(X). If we consider semantic matching
in our chemical-like scenario, supposing that tuple = matches semantic template X and
y matches semantic template Y, we would have (X|X){(X|Y)/(z|ly)} = (z|z): intu-
itively, X |Y matches tuples z and y yielding substitution {X/x,Y/y}, which is then applied
to X| X giving z|x. This mechanism is used when applying chemical laws; it would make
chemical law X |Y" -5 X|X applicable to tuple set x|y, producing tuple set z|z.

Auxiliary functions. The auxiliary infix and partial function & is introduced to extract
the overall concentration of a tuple into a tuple space. It takes a tuple 7(n) and a space S:
if S does not include 7, it simply composes 7(n) with S, otherwise it provides no result.
Note that @ is not a syntactic constructor (it is not part of the syntax), but simply a lookup
function: for instance, the equation 7|7|7/|7(5)|7'(4) = 7(n) & S has only one solution,
which givesn = 7and S = 7/|7/(4) = 7/(5)

Another auxiliary definition concerns function GG, which takes the reactants 7" of a law
and the content of a tuple space S, and computes how many different combinations of
tuples in T can be found in S—this function is key to properly compute chemical rates
according to Gillespie’s algorithm [Gillespie 1977]. Suppose T includes n different copies
of 7 (in natural chemical systems it is often supposed that n < 2, though our model does
not have this limitation), and let m be the overall concentration of 7 in the current location,
then the multiplicative contribution of 7 to the overall number of combinations is given by
binomial (""). For instance, we have:

10x9
2

Finally, function F' is used to compute the transfer rate for a firing tuple. It takes the
content of the source tuple space, the content of the target tuple space, the local gradient
tuple, and the local direction ¢, and returns a real number in [0, 1] — to be multiplied by the
actual link rate . After getting the concentration of the local gradient tuple in source and
target (n and m), it yields a noise value if the tuple has to ascend the local gradient, 1
otherwise.

G(r|r|r", 7(10)|7'(20)) = G(7|r, 7(10))G(7', 7' (20)) = x 20

Operational semantics. The operational semantics of this calculus is given in terms of
a Continuous-Time Markov Chains model—following the work by Gillespie [Gillespie
1977] and other existing stochastic languages for biochemistry [Priami 1995]. A transi-
tion system (C, —, Rg ) is defined (bottom part of Figure 10) where transitions are of the
kind C' 5 €', meaning that system C' moves to C” with dynamics/likelihood expressed by
Markovian rate r. Such transition rules are intended as local rewrite rules—they can be
applied to any system sub-part in isolation.

Rule (R) handles the execution of a chemical reaction inside a space. Let o be a space
including law [T; N T,] as well as reactants 7" matching T;; then, a transition can occur
which replaces T' with T,{T'/T;} with rate rG(T, T'|.S): this is because each single combi-
nation of the molecules in 7" is equally subject to the chemical law with rate r. As a simple
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example, consider a single space with tuple 2(1000), and the chemical law of radioactive

decay [Gillespie 1977] “[X iR 10.00” that we denote as L, with x perfectly matching X.

The system allows for a chain of transitions leading to the decrease of tuple concentration:

10000 9990 10

[2(1000) | L], —— [=(999) | L], — ... — [=(0) | L], =

Rule (M) handles movement of one firing molecule towards a neighbouring space. Let
o and ¢’ be two spaces connected by a link with rate r, and suppose that inside o there is
a firing tuple 7,7 (’7’3) with overall concentration 7 + 1; then, a transition can occur which
decreases such a concentration to n, while inside ¢’ we add a tuple 7,,,. The rate of this
transition is 7(n + 1)F (S, S’, 74, ), in that each single item of 7, can move with rate r,

multiplied by transfer function as computed by (M ). To exemplify the application of this

rule, consider now the chemical law L = [X 20 x ~*] used to move any tuple X to a

neighbouring space without relying on any local gradient (direction is set to 0), and a space
initially holding 2:(1000). Initially, only the following transition is applicable:

Co = [(1000) | L], | [0]o | 0% 0" % [2(999) | 2 | L], | [0]0 | 0% o' = €y
Then, two transitions are available from C4, one creating another firing tuple and one
moving the firing tuple to o’ due to (F):

Cy =2 [3(998) | 0(2) | Lo | 0] | 050
Cy 2% [2(999) | Ll | [(1)]or | oo

Note that the production of firing tuples and their movement to o’ proceed in parallel, until

all the tuples are transferred to o”.

A.2 Putting the model to work

We here outline the main issues arising when using the above model as an executable
specification, both for simulating system behaviour and as basis for implementing an ex-
ecution infrastructure. These details are also useful to understand the performance limits
our implementation is subject to.

Simulation Methodology. In order to test the expected behaviour of our chemical-
inspired tuple spaces, we rely on formal simulations of the evolution of tuple concentration
in given scenarios. Such simulations can be conducted relying on the above operational se-
mantics. As such, once initial tuple space state and laws are fixed, the evolution of a service
ecosystem can be simulated using any available framework for CTMCs, like e.g. PRISM
[University of Birmingham 2007] (which also allows for stochastic model-checking), typ-
ically working via Stochastic Simulation Algorithms based on [Gillespie 1977]. In spite of
their optimised variants (e.g. [Gibson and Bruck 2000]), they all are based on the iterative
execution of the following procedure: (i) the list of all possible transitions is generated,
each equipped with its own Markovian rate (computed as shown in our operational seman-
tics), (ii) one transition is chosen probabilistically, giving higher probability to those with
higher rates (proportionally), (iii) the corresponding transition rule is applied to the system
state, and (iv) the simulation time is increased by AT time units computed as in(1/7)/R,
where 7 is a random number between 0 and 1, and R is the sum of the transition rates—
note the average AT is 1/R. Specific optimisations as described in [Gibson and Bruck
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2000], which turn out to be useful when systems with many compartments are to be sim-
ulated, include recomputing only changed rates instead of performing item (i) each time,
and using a binary (cumulative) search tree to perform item (7ii) in logarithmic time.

Implementation Infrastructure. As far as implementing an infrastructure for chemical-
oriented tuple spaces is concerned, we observe that an implementation from scratch should
not be necessary, but existing programmable coordination platforms can be reused. For
instance, following the guidelines described in [Viroli et al. 2009], an infrastructure for
chemical-oriented tuple spaces can be directly mapped over TUCSON [Omicini and Zam-
bonelli 1999], which provides tuple centres—namely, tuple spaces programmable via a
logic reaction system. In this case, supporting chemical tuple spaces amounts to: (i) inject
coordination laws in the form of proper tuples into tuple centres, (ii) program the suitable
matching algorithm for the application at hand (the full power of Prolog language is used
to this end), (iii) program tuple centres so as to pick up chemical reactions and apply them
probabilistically, following the above algorithm. Relying on TUCSON provides implemen-
tation aspects which are orthogonal to our model, such as the management of tuple spaces,
their retrieval, and the interaction between agents and tuple spaces.

Concerning semantic matching, we rely on the approach outlined in [Nardini et al.
2010], where W3C standard OWL (Ontology Web Language) [Horrocks et al. 2003] is
used to model domain ontology, and Fuzzy Description Logics [Baader et al. 2003; Bo-
billo and Straccia 2008] for implementing semantic match—tuples are seen as domain
objects, templates as domain concepts, and matching as instance checking.

Performance Issues. From the viewpoint of performance, implementation is necessarily
constrained by the fact that the average AT drawn at each step of Gillespie’s algorithm may
be too short. On the one hand, actually executing a chemical reaction may require a time
that is greater than the average reaction transition time A, of the chemical system (com-
puted through transition rule (R)): if this is the case, obviously the infrastructure would
slow system evolution down with respect to the expected Markovian dynamics. Similarly,
the average time for transferring a tuple may be greater than the average moving time A,,,
of the chemical system (computed through transition rule (M)). Note that an implementa-
tion sending a whole packet of firing tuples altogether, instead of one-by-one as prescribed
by the operational semantics, is possible—in Section 6.1 we analyse the corresponding
accuracy.

Given the application at hand, the designer of chemical reactions is generally responsi-
ble for the task of guessing (or enacting) the rate at which individuals are injected in the
system, detecting AT, and AT;, in the worst case (e.g. in the tuple space with higher com-
putational load), and accordingly adjusting chemical rates so as to guarantee — whenever
possible — an accurate execution of chemical reactions. A deeper description of method-
ological aspects is out of the scope of this paper, though in this paper we exemplify how
performance issues can be analysed in selected case studies.
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