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ABSTRACT
Motivation: Understanding the biochemistry of a newly
sequenced organism is an essential task for post-genomic
analysis. Since, however, genome and array data grow
much faster than biochemical information, it is necessary
to infer reactions by comparative analysis. No integrated
and easy to use software tool for this purpose exists as
yet.
Results: We present a new software system—BioMiner—
for analyzing and visualizing biochemical pathways and
networks. BioMiner is based on a new comprehensive, ex-
tensible and reusable data model—BioCore—which can
be used to model biochemical pathways and networks.
As a first application we present PathFinder, a new tool
predicting biochemical pathways by comparing groups of
related organisms based on sequence similarity. We suc-
cessfully tested PathFinder with a number of experiments,
e.g. the well studied glycolysis in bacteria. Additionally,
an application called PathViewer for the visualization of
metabolic networks is presented. PathViewer is the first
application we are aware of which supports the graphical
comparison of metabolic networks of different organisms.
Availability: http://www.zbi.uni-saarland.de/chair/
projects/BioMiner
Contact: schaefer@bioinf.uni-sb.de
Supplementary Information: Additional information on
experimental results can be found on our web site.
Keywords: Biochemical data model, metabolic and regu-
latory pathways, visualization, Java, XML.

INTRODUCTION
In the age of genomics and proteomics, large scale data
are produced by numerous scientific groups all over the
world. Even now, after the race for the human genome
has come to an end by the publication of the first drafts
of the human genome (Venter et al., 2001; International
Human Genome Sequencing Consortium, 2001), the total
amount of available biochemical data, e.g. proteomics

data, protein-protein interaction data, or information on
metabolic and regulatory networks, is growing at an
exponential rate.

However, because of its direct implications for patho-
genicity, agricultural productivity and drug-interaction, it
is the biochemistry of an organism which is of actual in-
terest. Only few model organisms are biochemically well
characterized. Inferring biochemcial information through
comparative analysis of large scale array data is therefore
both important and challenging. The main hurdles for an
efficient exploitation are, besides the sheer amount of data,
the plethora of different—and usually incompatible—data
formats of the databases†. This lack of integration and in-
teroperability gave rise to numerous bioinformatics tools
(Goesmann et al., 2002; Küffner et al., 2000; Arita et al.,
2000) and a few integrative systems (Kanehisa and Goto,
2000; Karp et al., 2000; Overbeek et al., 2000; van Helden
et al., 2000, 2001b).

Nevertheless, there is a strong need for user-friendly
systems allowing the user to handle and combine large and
diverse data sets from different sources and to gather the
required information and generate new insights from it.

A convenient user interface for the analysis of the data
should support visualization since biochemical knowl-
edge is difficult to conceptualise. For metabolic networks,
most graphical interfaces (Kanehisa and Goto, 2000;
van Helden et al., 2000; Appel et al., 1994; Overbeek
et al., 2000) are designed to display only expert-curated
static images of pathways and networks, i.e. the textbook
view of things. These static representations are often
inconsistent with the (more up-to-date) data found in
the database itself. Current graph layout algorithms as
described in Di Battista et al. (1999) are not sufficient to
fulfill the special requirements and graphical conventions

† See for example Kanehisa and Goto (2000); Karp et al. (2000); Overbeek
et al. (2000). An overview of metabolic databases can be found in Wittig and
De Beuckelaer (2001)
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for metabolic networks. A few systems provide dynam-
ically generated views of the underlying data and fulfill
the special requirements and graphical conventions for
metabolic pathways (Goesmann et al., 2002; Mendes et
al., 2000; Karp et al., 2000; Ellis et al., 2001; Branden-
burg et al., 2001), but they are not capable of handling
data from more than one organism and multiple pathways.

We present BioMiner, a new software framework for
rapid prototyping of integrative analysis tools for complex
biochemical data. BioMiner was designed to simplify
the implementation of tools for answering a broad range
of biochemical questions. It is based on a comprehen-
sive data model, named BioCore, representing complex
and diverse biochemical data in a unified fashion. This
model is currently able to handle metabolic pathways,
transcription data, protein-protein interaction data, and
some of the more important regulatory processes (e.g.
signaling pathways). The implementation uses LEDA

(Mehlhorn and Naher, 1999), a software library providing
many standard graph algorithms. This makes BioMiner
extremely helpful for rapid prototyping of biochemical
software tools for the comparative analysis of complex
biochemical networks.

In the following sections we give an overview of
BioMiner. We then discuss the architecture and describe
the biochemical data model in general. PathFinder and
PathViewer are introduced before we describe the exper-
imental results obtained. We finally discuss these results
and point out future directions for the development of
BioMiner.

SYSTEMS AND METHODS
BioMiner consists of two components, BioCore and
yWays (see Figure 1). BioCore is a comprehensive bio-
chemical data model consisting of a number of classes as
well as class methods implementing core graph functions,
i.e. a set of functions to be applied to these classes. yWays
is the visualization component of BioMiner including
a special data model and functions to layout metabolic
pathways and networks.

In the following sections we use a number of technical
terms like pathway, graph etc. For definitions of these
terms see appendix.

Design of BioMiner
The system is designed as a three-tier application. The first
tier provides interfaces to existing databases†. The second
tier is responsible for the analysis of biochemical data. The
result of the analysis is visualized in the third tier. For data
exchange between analysis and visualization applications,

† At the time of writing, a KEGG (Kanehisa and Goto, 2000) interface
exists, interfaces to other databases like BIND, DIP, TRANSFAC and
TRANSPATH are in preparation.

C++, LEDA

Analysis

BioMiner

Application
XML

JAVA, yFiles

Visualization

BioCore yWays

PathFinder PathViewer

Fig. 1. BioMiner architecture.

BioMiner offers an XML export. For PathFinder and
PathViewer, e.g. which have been implemented on top of
BioMiner, an XML exchange format is provided.

The analysis and visualization components are separated
because of different requirements: While performance is
most important for the data analysis, for the visualization
it is more important to provide a rich set of user interaction
possibilities and to be platform independent. The analysis
part is implemented in C++ using LEDA (Mehlhorn and
Naher, 1999), a library which supplies many of the
relevant data structures and algorithms. The visualization
part is implemented in JAVA. This ensures availability
for a wide variety of platforms. We used the JAVA-
based library yFiles (Wiese et al., 2001) which provides
a powerful framework for visualization applications.

BioCore
Based on a thorough analysis of the biochemical terminol-
ogy and existing models (van Helden et al., 2001b, 2000;
Paton et al., 2000; Rzhetsky et al., 2000) as well as on dis-
cussions with biochemists, we designed a comprehensive
framework of classes to model biochemical entities. Bio-
Core contains a large number of classes, which are suffi-
cient to model the majority of biochemical processes of
interest. We will only briefly discuss some of the central
classes and refer to the documentation of BioCore (see our
web page) for details.

Modeling biochemical data. We consider all occurring
processes to be some kind of event. Let us consider
one of the most fundamental processes, a biochemical
reaction. Obviously, all entities taking part in that event
are compounds of one kind or other. The biochemical
community uses a vast set of sometimes fuzzy, often
overlapping terms to describe and to classify those com-
pounds, e.g. simple ions, small molecules, amino acids,
peptides etc. From that terminology, we derived a small
set of rather well-defined classes describing (chemical
or rather abstract) entities participating in the events:
Participant serves as a base class for several derived
classes like Protein or NucleicAcid on the one hand
and more abstract objects like Pathway or Gene on the
other hand. Substance classes which are not modeled

S220

 at Pennsylvania State U
niversity on M

ay 12, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


BioMiner

explicitly (e.g. lipids, nucleotides) are comprised in the
class Compound, which provides member flags for the
further characterization of its properties, i.e. a technique
to use a generic object which can be further specified by
setting special ‘switches’ depending on the kind of object
to be stored. This prevents the explosion of our class
hierarchy due to the large number of existing compound
classes.

Each of these compounds can take part in various
events, the most important one being a Reaction. In
that reaction, as in all other events, each participating
compound plays a certain role. Many of these roles are
implicitly given by conventions for writing biochemical
reactions: Reactants (or educts) are on the left-hand side
of the equation, products on the right-hand side, and so
on. In our model, we express this relationship through
roles. Each Participant plays a certain Role in a
given Event or Reaction, e.g. we can denote that
substrates (educts) and products, although both being of
type Participant, have different functions in an event.
A further distinction between Main Educt/Product
and Side Educt/Product is, e.g. important for the
PathFinder algorithm.
Participant, Role, and Event thus form the key-

stones of our object model. The model itself was devel-
oped using the Unified Modeling Language (UML, Booch
et al. (1999)). We assume that the reader is somewhat fa-
miliar with the notation of UML class diagrams for the
remainder of this section†.

Figure 2 shows the relationships of the central classes.
Most classes are self-explanatory through their names.
Role connects compounds and events, which allows us
to model the different contextual functions a compound
may have (e.g. a single compound can be an educt in
one reaction, but a product of another). Modeling the role
as an object also offers a convenient way for classifying
and extending the set of roles a compound can play in
different events. Figure 2 only shows metabolic classes;
for a complete overview we refer to our web site.

BioCore and other biochemical models. Comparing
existing data models described in van Helden et al.
(2001b); Paton et al. (2000); Rzhetsky et al. (2000); Karp
et al. (2000); Bader et al. (2001), the aMAZE data model
(van Helden et al., 2001b) seems to be the most flexible
in our sense because it does not focus on one kind of
biochemical interactions (like protein-protein-interactions
in BIND (Bader et al., 2001) or metabolic pathways
in Eco/MetaCyc (Karp et al., 2000)) but integrates a

† Just to recall the notation: Arrows with hollow triangles represent gener-
alization, e.g. a Protein is a GenericCompound. General associations be-
tween classes are shown as lines with cardinalities. Relationships with an
open diamond stand for part/whole relationships. Closed diamonds indicate
that the part cannot exist without the whole. Self associations as the complex
association in Figure 2 allow objects to include subobjects of same type.

Fig. 2. Central classes of BioMiner (simplified; core classes in red).
Only metabolic classes are shown here.

Educt

Catalyst

Product

Fig. 3. Node types used in BioMiner. Boxes represent event nodes,
circles stand for participant nodes. Edges are labeled with the
respective roles.

large variety of biochemical processes. Compared to
other models, the BioCore Role object allows to model
biochemical processes in a rather natural way describing
the function of a participant in detail. Additionally, the
number of classes and therewith the flexibility of BioCore
is very high.

Graph core functions. Events in biochemistry are gener-
ally represented as networks (Michal, 1993). One can ei-
ther use very general representations (e.g. directed graphs
(Arita, 2000; van Helden et al., 2001a)) or more special-
ized ones, like petri nets (Hofestädt and Thelen, 1998;
Küffner et al., 2000).

Our graph representation is based on LEDA graphs.
In contrast to typical representations in biochemical
textbooks, our graph consists of only one type of directed
edges but two types of nodes. Figure 3 shows the
representation of a metabolic reaction in BioMiner.

The usual representations of (metabolic) reactions
in biochemical textbooks use hyperedges as given in
Figure 4. Representing a graph in such a manner, the
uniqueness of direction and sequence of such an event
is lost. In order to explicitly represent the direction and
the sequence of the involved participants, we decided
to use two types of nodes, one for events and one for
participants. Edges in a BioMiner graph are directed. If
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Fig. 4. Metabolic reaction as given in many biochemical textbooks:
This kind of edges are called hyperedges.

(as in most cases) an event is bidirectional, two edges are
inserted, one for each direction. To comprise an event
node, it is connected to all its participants via several role
edges. Thus, a participant node can take part in more than
one event, playing different roles.

BioMiner is based on LEDA, a library offering a set
of standard graph algorithms which had to be adapted
to fit our graph model with two different node types.
Examples are the query for a path between two arbitrary
chemical compounds s and t or the enumeration of all
biochemically valid paths and connections between s
and t. Biochemically valid means, e.g. only sequences like
substrate—enzyme—substrate are allowed.

yWays
In this section we discuss the visualization of metabolic
pathways as diagrams. Although there is no standard
notation for metabolic pathways, the diagrams in most
publications are quite similar. We use a notation of Michal
(1993). This notation has the following properties:

• A compound† is represented by a shape (rectangle, cir-
cle, etc.) usually containing the name of the compound.

• A reaction is represented by a set of curves, connect-
ing the compounds participating in it. All curves con-
necting the educts join at a single point and all curves
connecting the products join at a single point. These
points either coincide or are connected by a curve.

• The names of enzymes are placed near the lines
representing the catalyzed reaction.

In the diagram we distinguish between main and
side compounds. Whereas main compounds may be
connected to multiple reactions, side compounds are
always connected to exactly one reaction. Typically, the
side compounds are placed near this reaction and have
a smaller font than main compounds. In a diagram there
may be many occurrences of the same compound, every
time being side compound in a different reaction. The
reason for using the side compound notation is that some
compounds are ubiquitous in some network, e.g. ATP and
ADP in the glycolysis. Representing these compounds

† In the following we describe the visualization of metabolic pathways. Thus,
the participants of events are mainly compounds.

a c

d

b

a c

b

d

Fig. 5. Example for partition aesthetic criterion for a reaction with
educts (a,c) and products (b,d).

by multiple occurrences makes the diagram much more
readable.

The data model for the visualization can be kept very
simple, since it needs to model only the visual appearance
of the network and not the biochemistry behind it.
We represent a metabolic network (or more general a
biochemical network) by a directed hypergraph. Each
occurrence of a compound in the diagram of the metabolic
network corresponds to a node in the hypergraph, and each
reaction to a hyperarc.

Besides the model, the layout algorithm is important
to get a pleasing visualization result. The task of a
layout algorithm is to calculate the geometric properties
of the hypergraph such that the resulting diagram is
as readable as possible. These geometric properties are
the coordinates of the shapes representing nodes and
the description of the curves representing hyperedges.
Because it is hard to mathematically define a concept such
as ‘readability’, a layout algorithm tries to optimize some
aesthetic criteria which can be formulated mathematically.
We can divide these criteria into application independent
criteria, which apply to any layout algorithm regardless
of its application domain, and domain specific aesthetic
criteria. Application independent criteria are, e.g. the
number of line crossings, the number of bends, the
occupied area and the length of the edges, see, e.g.
Di Battista et al. (1999). We will concentrate now on
the domain specific aesthetic criteria for diagrams of
metabolic networks. The first aesthetic criterion, called
partition criterion, is that the partition of a reaction into
educts and products should be clear from the visualization.
The second aesthetic criterion, called direction criterion,
is that, if parts of the metabolic network are directed, i.e.
the metabolic network contains a metabolic pathway, this
should be shown on the diagram.

Layout algorithm. In this section we discuss the auto-
matic layout algorithm for metabolic networks. The au-
tomatic layout algorithm can be roughly divided into the
following phases: In the first phase we construct a graph
from the metabolic network, the induced graph G. The in-
duced graph contains a vertex for each compound and a
vertex for each reaction. A compound vertex and a reac-
tion vertex are connected by an edge if the compound is
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an educt or product of the reaction. In the second phase
we calculate an orientation for G such that the resulting
directed graph D is acyclic. In the third phase we calculate
the layout of D with the hierarchic graph layout algorithm
of yFiles. This graph layout algorithm is an implementa-
tion of the layered graph drawing approach for directed
acyclic graphs, see, e.g. Bastert and Matuszewski (2001)
for a comprehensive overview of this approach. Using a
sophisticated implementation of a classical graph drawing
algorithm as back end has the advantage that the appli-
cation independent aesthetic criteria are optimized. It re-
mains to handle the domain specific criteria.

The result of the graph drawing algorithm is always
downward directed, i.e. all edges in the drawing are
monotonically decreasing in y-direction according to the
orientation of D. Therefore, the relative ordering of the
compounds according to the y-coordinate depends only on
the orientation which is defined in phase two. We can now
define the domain specific aesthetic criteria in terms of the
orientation.

• To ensure the partition aesthetic criterion, edges con-
necting the educts of an reaction must be oriented op-
posite to the edges connecting the products.

• To ensure the direction aesthetic criterion for irre-
versible reactions, the edges connecting educts are
directed towards and the edges connecting products
are directed away from the reaction vertex.

Unfortunately, the problem of minimizing the number of
edges, violating one of the above criteria, is NP-hard. This
follows directly from the fact that already the problem for
minimizing the number of edges for the second criterion
is NP-hard, which is a well known result in graph drawing
see, e.g. Bastert and Matuszewski (2001). We use a
heuristics for solving this problem. It is based on depth-
first search (DFS) and has linear running time. Details can
e.g. be found in Bastert and Matuszewski (2001).

APPLICATIONS
PathFinder
As a first application of BioMiner, we developed and
implemented PathFinder, a new tool for finding metabolic
pathways in newly sequenced organisms. The construction
of metabolic network is similar to the method described
in Küffner et al. (2000) while PathFinder uses a different
scoring function and another graph type.

The algorithm integrates known metabolic information
for a group of organisms collected from diverse data
sources into a metabolic graph. This graph is built using
the biochemical data model of BioMiner. On the basis
of sequence similarity and graph algorithms, pathways
can be predicted for newly sequenced organisms. The list

of found putative pathways is then ranked by assigning
weights to each generated pathway.

The input consists of the whole genome sequence
of a query organism q and the metabolic information
(networks) for a set of reference organisms Oref =
{o1, o2, . . .}. All organisms in Oref should be closely
related to q. The aim is to predict whether a known
pathway between two compounds s and t in one of the
reference organisms exists in the query organism as well
or if possible alternative pathways can be inferred.

A pathway P = (r1, r2, . . . , rk) is defined as a sequence
of reactions† ri , where the length k of the pathway is
defined as the number of reactions involved. The number
of possible pathways between two given compounds s and
t is often very large due to the high degree of substrate
connectivity observed in metabolic graphs (Jeong et al.,
2000). We therefore limit our search to pathways of a
reasonable maximum length k. A pathway may be linear
or cyclic.

The PathFinder algorithm. The metabolic data avail-
able for Oref constitutes our initial metabolic graph
MG(C, R, E), which contains vertices for all compounds
C (substrates) and all reactions R (corresponding to
enzymes), and the corresponding edges E .

To speed up the search or to exclude specific pathways,
it can be useful to restrict the set of compounds included
in MG to a subset of all compounds in C . Let Cside
the set of all side substrates (ubiquitous compounds as
defined in KEGG) and Cex a set of user-defined excluded
compounds. We then define three restricted compound sets

1. Cres1 = C\Cside,

2. Cres2 = C\Cex,

3. Cres3 = C\(Cside ∪ Cex).

If one of these these restricted sets is used, the search
graph MGs reduces from the full metabolic graph MG to
the corresponding restricted graphs defined by Cres and the
induced reactions and edges.

The algorithm consists of four steps:

1. Construction of a compressed metabolic graph
MGc: To reduce the complexity of the search graph,
we collapse all primitive reactions ri with the
same set of ingoing/outgoing compounds in MGs
into a compressed reaction rc = {r1, r2, . . . , rn}.
We call the resulting graph MGc(C, {rci }, E ′) the
compressed metabolic graph. Each compressed
reaction can contain identical reactions present
in different organisms of Oref and reactions with
the same educts and products but catalyzed by a
different enzyme in the same organism.

† For ease of reading, in the context of metabolic pathways we will use the
term reaction instead of the generic term event.
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2. Refine search space in MGc: To limit our search
to paths of at most k reactions, we compute the set
of nodes that are reachable in k/2 reactions from s
and t . All nodes outside this set cannot be part of
pathways of length k or less and are deleted from
MGc along with the corresponding edges.

3. Assigning weights to reactions: For each com-
pressed reaction rc we consider its primitive
reactions ri and align the enzyme sequence catalyz-
ing ri with the whole genome of q using BLAST

(Altschul et al., 1997). We then compute the weight
w(ri ) of the primitive reaction based on the p-value
pmax (ri ) of the best alignment computed:

w(ri ) = ln(1 − pmax (ri )) (1)

We define the weight w(rc) of the compressed node
as the maximum of the weights of its primitive
reactions

w(rc) = max
ri ∈rc

w(ri ) (2)

4. Pathway search: We explore all putative pathways
P = (rc1, rc2, . . . , rcN ) using depth-first search
and assign a weight

w(P) = exp(
1

N

N∑

i=1

w(rci )) (3)

All putative pathways are ranked with respect to
their weight and reported in that order.

Implementation status. The PathFinder algorithms are
implemented and several experiments have been run
(see experimental section). At the time of writing, the
necessary data import filters and methods to configure the
system via configuration files exist. PathFinder exports its
results into ASCII text files as well as into XML data
files containing the pathways identified. A graphical user
interface will be implemented in the near future.

Comparison with other systems. Several systems ex-
ist that include a search for pathways between two
compounds s and t .

KEGG contains an algorithm to generate possible path-
ways of length k between two given compounds (Goto et
al., 1997). However, the resulting pathways are not organ-
ism specific and no other information than the EC num-
ber is used for computation. So the result can only give a
rough overview of possible paths between s and t without
biological meaning.

In Küffner et al. (2000), a very similar method for a
pathway search is implemented. Additionally to the KEGG

data, other data from BRENDA (Schomburg et al., 2002)
and ENZYME (Bairoch, 1999) are used. The actual al-
gorithm is different from ours: First, a petri net contain-
ing all biochemical data is constructed. Then, all possible

pathways of length k between s and t are computed, re-
sulting in a huge number of putative pathways which then
is reduced by several additional user defined and biologi-
cally motivated restrictions. In the last step, the remaining
pathways are weighted by using expression data. Our al-
gorithm starts by redefining the search space (see step 2
of algorithm description). The following edge weighting
is based on sequence similarity and reduces the search
space again. The resulting metabolic graph is quite small
compared to the original search graph. The actual pathway
search can then be performed efficiently.

In Goesmann et al. (2002), annotation data are parsed.
Based on KEGG reference pathways, enzymes that were
found in the annotation data are marked in the underlying
graph as well as enzymes that were not mentioned in
the annotation although given in the KEGG reference
pathway. Possible subways are calculated and presented to
the user. Subways are defined as acyclic subpaths between
external nodes with external nodes being metabolites
playing distinct roles in a metabolic pathway. It is the task
of the user to find appropriate DNA or protein sequences in
the organism of interest to support the pathway hypothesis
of the system.

In aMAZE (as described in van Helden et al. (2001a)),
the metabolic network containing data from sequence
databases is also represented as a graph consisting of
two types of nodes. In contrast to BioMiner, no roles
describing reaction nodes exist. Edges only describe
substrate-reaction and reaction-product relationships.
With help of expression data, those reaction nodes that are
supported by fitting enzymes are marked. The algorithm
then tries to link all marked reaction nodes together
with the respective substrate and product nodes to form
meaningful pathways. These pathways are then compared
to known pathways contained in KEGG, Eco/MetaCyc
and aMAZE databases.

PathViewer
PathFinder results can be exported in XML† and loaded
into PathViewer, the second application we built using
BioMiner. To visually compare metabolic networks and
verify found pathways, PathViewer can display arbitrary
parts of biochemical networks for different organisms
graphically at the same time for comparison purposes.
PathViewer is based on yWays and has many features,
among them automatic layout of diagrams, displaying of
side compounds and enzymes can be switched on/off,
custamizable set of visualized organisms, coloring of
reactions according to organism, and highlighting of found
pathways.

These features allow the user to interactively explore
the data. To get an overview over the data the user can

† The XML format description (DTD) is available from our web site.
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choose not to show any details, e.g. side compounds and
enzymes can be hidden. This leads to a very compact
representation of the metabolic network. By zooming, the
user can focus on a special part of the pathway and, if
deemed useful, details can be switched on. Furthermore,
an additional window can be opened which shows details
of the currently selected compound or reaction. The
predicted paths can be highlighted in the network in
various ways.

PathViewer and other systems. Compared to other sys-
tems, PathViewer combines several advantages and adds
further functionality. A number of systems for visualizing
metabolic pathways are based on existing libraries. Often,
these libraries were not originally designed to visualize
biochemical processes. E.g., the visualization component
in Goesmann et al. (2002) is based on a tool implemented
to draw compiler graphs and thus results in rather unusual
images that biologists are not familiar with. This visual-
ization is restricted to reactions with a single substrate and
product, and it does not support cosubstrates or -products
in the drawings.

Other approaches as given in Brandenburg et al. (2001)
or Karp et al. (2000) come closer to biologists demands
concerning the visualization of metabolic processes. But
still, as far as we know, no system exists that would
allow a comfortable analysis of metabolic data integrating
the visualization of calculated results with the help of a
dynamic, interactive viewer. Furthermore, most systems
are restricted in the input data by allowing only one
organism and/or one pathway to be chosen as source of
input data. Finally, often only a small part of the metabolic
network can be visualized in a certain level of detail.

See appendix for figures showing screenshots of
PathViewer, displaying PathFinder results described in
the next section.

EXPERIMENTAL RESULTS
Currently our main data source is KEGG†. KEGG includes
all necessary genome and enzyme sequences. For conve-
nience, in the following we give the respective RefSeq
numbers for NCBI when introducing organisms.

We defined different test data sets on which we ran the
PathFinder algorithm. In the following, we give a short
overview of the results. Details can be found on our web
site.

Dandekar et al. (1999) and Bork et al. (1998) discuss
the plasticity of the glycolysis in various archaea and bac-
teria. By a comparative genome analysis and computation
of elementary modes a number of alternative routes from
glucose to pyruvate where identified by these groups. We
used similar organism data as input. The maximum length

† Version dated from 03/11/2002

of a pathway was set to ten reactions, leading from glu-
cose (s) to pyruvate (t). To reduce the search space, the
substrate set was chosen to be Cres3, thus excluding ubiq-
uitous substrates and typical side metabolites. PathFinder
results included the alternative pathways and detours given
in Dandekar et al. (1999) and Bork et al. (1998). Addition-
ally, several other variants were computed by PathFinder.
Here we give a short description of two experiments we
performed:

Experiment 1
In the first experiment, H. pylori‡ served as query organ-
ism q. Oref included four strains of E. coli§. PathFinder
correctly stated that there is no phosphofructokinase
(EC 2.7.1.11) present in H. pylori. This coincides with
Dandekar et al. (1999) and Bork et al. (1998); the best
sequence similarity found was less than 5 %. Thus, the
standard glycolysis could not be found by PathFinder.
Instead, a detour via the pentose phosphate pathway
(PPP) was detected, similar to the detour described
in Dandekar et al. (1999) for M. hominis¶, starting at
β-D-fructose 6-phosphate, leading via transketolase
(EC 2.2.1.1) to D-Xylulose 5-phosphate and again via
transketolase back to glycolysis, namely glyceraldehyde
3-phosphate. From thereon, Pathfinder states the conver-
sion of glyceraldehyde 3-phosphate by standard pathway
via glyceraldehyde 3-phosphate dehydrogenase (EC
1.2.1.12) to 3-phospho-D-glyceroyl phosphate, followed
by phosphoglycerate kinase (EC 2.7.2.3) to 3-phospho-
D-glycerate and phosphoglycerate mutase (EC 5.4.2.1) to
2-phospho-D-glycerate, and finally via phosphopyruvate
hydratase (EC 4.2.1.11) to phosphoenolpyruvate.

As described in the above mentioned papers, H. pylori
has no pyruvate kinase (EC 2.7.1.40) which would be
the next step in standard glycolysis. Instead, PathFinder
proposed an alternative reaction catalysed by phos-
phoenolpyruvate synthase (EC 2.7.9.2), converting
phosphoenylpyruvate to pyruvate, which is actually a
detour via the pyruvate metabolism. Figure 6 shows the
result of experiment 1 graphically.

This pathway is given as the first and top ranked in the
result list and thus the most likely pathway with a pathway
weight w(P) = 1. It is therewith supporting the detours
described in Dandekar et al. (1999). Detailed information
can be found on our web site.

Experiment 2
In the second experiment we chose H. influenza‖ to be q .
Oref included the same strains of E. coli as given in

‡ Helicobacter pylori 26695, NCBI RefSeq NC 000915
§ Escherichia coli K-12 MG1655, Escherichia coli K-12 W3110, Escherichia
coli O157 EDL933, Escherichia coli O157 Sakai
¶ Mycoplasma hominis
‖ Haemophilus influenzae Rd, NCBI RefSeq NC 000907
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experiment one, additionally B. subtilis, T. pallidum,
Synechocystis and two strains of H. pylori∗∗. The top
ranked pathway with a pathway weight w(P) = 1
reflects the standard glycolysis (see Figure 7). Fur-
thermore, the results contained variants of the PPP as
described in Dandekar et al. (1999) and Bork et al.
(1998), e.g. leading from glucose via glucokinase (EC
2.7.1.2) resp. hexokinase (EC 2.7.1.1) to α-D-glucose
6-phosphate, then entering the oxidative part of the
PPP with glucose-6-phosphate 1-dehydrogenase (EC
1.1.1.49) leading via D-glucono-1,5-lactone 6-phosphate
to 6-phosphogluconolactonase (EC 3.1.1.31) resulting in
6-phospho-D-gluconate, followed by phosphogluconate
dehydrogenase (EC 1.1.1.44) to D-ribulose 5-phosphate.
This is the starting point for the non-oxidative PPP:
Ribose 5-phosphate epimerase (EC 5.3.1.6) leads to
D-ribose 5-phosphate, followed by transketolase (EC
2.2.1.1). Figure 8 shows the generated pathway.

Another highly ranked pathway corresponds to the
Entner-Doudoroff pathway (EDP), shown in Figure 9:
Starting at α-D-glucose via glucokinase resp. hexokinase
and via α-D-glucose 6-phosphate it leads with glucose-6-
phosphate 1-dehydrogenase (EC 1.1.1.49) to D-glucono-
1,5-lactone 6-phosphate. 6-phosphogluconolactonase (EC
3.1.1.31) outputs 6-phospho-D-gluconate. Then the two
key enzymes for the EDP, phosphogluconate dehydratase
(EC 4.2.1.12) and 2-dehydro-3-deoxyphosphogluconate
aldolase (EC 4.1.2.14), follow. The pathway gets back to
glyceraldehyde 3-phosphate, and the standard pathway is
realized again.

Several variants of the described and other pathways
from glucose to pyruvate were identified, too. We refer to
our web site.

Similarly as stated in Dandekar et al. (1999), those re-
sults are theoretical and based only on sequence align-
ment. They have to be verified by experiments. Neverthe-
less, they can be used to direct the search for pathways
in the right direction, whenever a genome of a newly se-
quenced organism becomes available. The integration of,
e.g. expression data which will be implemented in the near
future will lead to a further improvement of pathway pre-
diction.

Complexity
Tables 1 and 2 give an overview of the time and space
complexity based on the above described experiments†.

The time consumption depends on several factors.
Table 1 shows that the number of nodes and edges (and
thus the search space) reduce noticable in step 1 by a factor
of nearly five (nodes) resp. fourteen (edges). This is done
by compressing MG and taking out side substrates and

∗∗Helicobacter pylori 26695, Helicobacter pylori J99
† System: UltraSPARC III CPU, 750 Mhz. 8 Gbyte RAM. gcc compiler,
v2.95.3 on SOLARIS 8, optimizing flag O2.

Table 1. Space and run time of the experiments performed, concerning step 1
(construction of compressed graph MGc) in seconds (s) resp. number of
nodes/edges

Step Experiment 1 Experiment 2

Build MG (s) 0.4 0.68
# nodes in MG 13,970 19,617
# edges in MG 58,119 84,995

Build MGc (s) 30.27 47.50
# nodes in MGc 7,729 10,1929
# edges in MGc 21,955 29,137

Reduce C in MGc to Cres1 (s) 0.09 0.1
# remaining nodes 2,822 2,990
# remaining edges 4,509 4,838

Reduce C in MGc to Cres3 (s) 0.009 0.01
# remaining nodes 2,802 2,969
# remaining edges 4,209 4,513

manually excluded compounds. E.g. in experiment 1 the
number of nodes reduces from 13 970 to 2802, the number
of edges goes down from 58 119 to 4209.

Table 2 points out how the time complexity for the
pathway search benefits from step 2 of the algorithm.
Reducing the number of nodes and edges leads to a
significant performance improvement. E.g. in the case of
k = 10 the number of remaining nodes in MGc can be
reduced from 2802 to 1097 in only 0.05 seconds. The
weighting step reduces from 54.6 minutes to 36 minutes.
The pathway search needs 6.76 seconds instead of 8.06
seconds. The main reason for the time saving is the
number of alignments to be performed: When MGc is not
reduced by step 2, the number of nodes and edges is much
larger than in the case that step 2 is applied. Furthermore,
the reaction nodes MGc are compressed, i.e. each reaction
node can comprise more than one biochemical reaction
resulting in a number of alignments necessary per node.
In the case of k = 10, the number of necessary alignments
without step 2 is 2672 (see table 2), when step 2 was
applied this number reduced to 1766. Table 2 shows
that the time for the pathway search and the number of
generated pathways grow exponentially in k.

Limitations
PathFinder still has some limitations which we describe in
the following paragraphs.

Correctness of data. Because KEGG is the only database
used by PathFinder at the time of writing, the algorithm
heavily depends on the correctness of the data in this
database. Importing incorrect data leads to generating
biochemically incorrect pathways. This cannot be pre-
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Table 2. Space and run time of experiment 1, refining search space (step 2),
weighting and pathway generation (step 3)

step 2 applied without step 2

k = 10 k = 11 k = 10 k = 11

run time step 2 (s) 0.06 0.07

# nodes in MGc 1,097 1,186 2,802 2,802
and edges after step 2 2,139 2,291 4,209 4,209

weighting (s) 2158 2400 3274 3274
# alignments 1766 1957 2672 2672

Pathway search (s) 6.76 24.61 8.06 26.08

# pathways 36,526 117,392 36,526 117,392

vented automatically, and it is the users task to evaluate
the PathFinder results to exclude mistaken pathways. By
integrating other data sources, the algorithm will become
more robust to this kind of ‘noise’ in the input data.

Pathway length. The complexity of the PathFinder algo-
rithm grows exponentially in k, the maximal length of gen-
erated pathways. Run time depends furthermore on how
‘dense’ the metabolic network is, i.e. how may reactions
exist connecting the substrate nodes. If there are a lot of
variants to convert one substrate into another, the num-
ber of putative pathways grows very fast by increasing k.
Generally a number of round about 10 reactions should be
sufficient to get meaningful biochemical pathways. This
is a number which still results in resonable runtime and
number of generated pathways.

CONCLUSION
In this paper we present BioMiner, a software system
for representing, analyzing and visualizing diverse bio-
chemical data. Its underlying comprehensive data model
BioCore is capable of integrating complex data and
contains powerful methods to gain new biological infor-
mation. PathViewer as application of the visualization
component yWays allows the comparison of metabolic
information of different organisms. We presented first
applications of BioMiner and its data model and showed
the usability of the contained graph structures to rep-
resent and analyze biochemical networks. PathFinder
and PathViewer demonstrate that powerful applications
can be rapidly implemented with the help of BioMiner.
BioMiner will be extended by integrating methods for
target identification and comparison of cells in normal and
disease (e.g. cancer) states. The weighting function will be
extended by several other parameters, e.g. expression data

and stoichiometry. Furthermore, including calculation
of elementary modes can help to improve the pathway
prediction of PathFinder.

Although the data model is already capable of repre-
senting the most important regulatory processes, new
classes for more complex regulatory components are
under construction. Import functions for expression data
from DNA micro arrays and proteomics data will be
implemented soon. At the time of writing, interfaces to
BIND (Bader et al., 2001), DIP (Xenarios et al., 2002),
TRANSFAC (Wingender et al., 2001) and TRANSPATH
(Schacherer et al., 2001) are in development.
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APPENDIX
DEFINITIONS
In the following we give definitions that are important in
the context of biochemical pathway modeling.

The most important term in this article may be pathway.
Several definitions exist, and it seems to depend heavily
on the viewpoint how this term is defined. From our point
of view, two definitions have to be distinguished:

DEFINITION 1. A biochemical pathway is a sequence
of events or reactions that lead from one compound
to another. This comprises metabolic and regulatory
pathways. The length k of a biochemical pathway is the
number of its events or reactions.

The analysis part in our algorithm generates biochemical
pathways in the sense of definition 1. Often, the term
pathway is used in a more general meaning which is
reflected by the next definition:

DEFINITION 2. A textbook pathway is a general, named
pathway as given in a tyipcal biochemical textbook. It
describes the general set of reactions that have to be
present in an organism to realize this pathway. A textbook
pathway is generally organism independent and could be
seen as a kind of reference pathway.

Examples for textbook pathways are glycolysis or TCA
cycle.

KEGG (Kanehisa and Goto, 2000) pathways are path-
ways in sense of definition 2: KEGG contains a set of
predefined pathway maps (GIF images and corresponding
database files), each describing the set of enzymes nec-
essary for the pathway to be realized. To map a KEGG

reference pathway onto an organism, the user can choose
an organism from a list, thereby instantiating the pathway.

Further important terms in the context of biochemical
pathways are graph and network which are often used as
synonyms. Mathematically, one would state:

DEFINITION 3. A network (directed network) is a
weighted graph (digraph).

We use the term network to describe the whole metabolic
and regulatory network present in an organism. With the
term graph we describe the technical representation of this
network.

Mathematicians also use the term path:
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Fig. 6. PathViewer visualizing the results of PathFinder on the
glycolysis (experiment 1): PathViewer offers a number of op-
tions, among them reaction clustering and show EC numbers/co-
compounds on/off. In default modus, reactions are clustered accord-
ing to their EC number, i.e. all edges with the same EC number
are collapsed into a single edge. In the above case, the reactions
are clustered and displayed in red. EC numbers are shown next to
the respective reaction edge. Co-compounds are hidden. If cluster-
ing is disabled, each organism is coded with a certain color used
for each reaction that belongs to this organism. The user can se-
lect which organisms are displayed. Furthermore, different views of
PathFinder results are possible, e.g. a global and a path view. In the
global view, the whole metabolic network (MG) is displayed. When
the user chooses a pathway from the list of found pathways, all ac-
cording reactions are highlighted in the graph. The user can browse
through the list to see the differences between the found pathways.
In the path view, only those reactions and substrates are shown that
actually belong to the chosen pathway. Further subwindows show,
amongst other things, the pathway as a list in the form substrate -
EC number - substrate, the list of organisms, the list of all com-
pounds with s and t being marked, an overview window, a reaction
window where a selected reaction is shown in detail, and a com-
pound window with detailed informations for a chosen compound.
The user can select from different layout algorithms and a number
of different parameters. The graph can interactively be rearranged
by clicking an object in the graph and dragging it to a new position.
Several tools for zooming, printing, image export and graph brows-
ing are available.

DEFINITION 4. A path in a graph from ver-
tex s to vertex t is a sequence of edges (s, vi ),
(vi , vi+1),. . . (vk−2, vk−1), (vk−1, t) such that s is the
start node and t is the target node. The above path has
length k.

We do not distinguish between paths and pathways;
following definition 1 a pathway in our meaning is a
sequence of k events or reactions, leading from s to t .

Fig. 7. Top ranked pathway for experiment 2: Here, only reactions
from E. coli O157 and T. pallidum are displayed. The pathway rep-
resents the standard glycolysis converting α-D-glucose to pyruvate.

Although the algorithm includes weighting mechanisms
and a scoring funtion to score the generated pathways, it
is the task of the user to evaluate if the putative pathways
are also meaningful and perhaps even textbook pathways.

We can assign weights not only to single edges but also
to pathways and graphs:

DEFINITION 5. The weight of a graph (pathway) is the
sum of the edge weights of the graph (pathway).

A further distinction is necessary between the internal
graph on which the analysis algorithms work, and the
graph used for visualization. Both are distinct objects.
The internal graph is a multigraph, while the vizualisation
graph is a hypergraph:

DEFINITION 6. A (directed) hyperedge is an (di-
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Fig. 8. Pathway result of experiment 2: This shows the oxidative and
the non-oxidative part of the pentose phosphate path as described
in the text. Reaction clustering was activated, enzyme numbers are
shown.

rected) edge which connects two or more vertices. A
(directed) hypergraph is a graph consisting of (directed)
hyperedges.†

DEFINITION 7. A directed multigraph G is a graph
whose edges are unordered pairs of vertices, and the same
pair of vertices can be connected by multiple edges.

† For more details of directed hypergraphs see, e.g. Gallo et al. (1993).

Fig. 9. Pathway result of experiment 2: Shown is the Entner-
Doudoroff-Pathway as described in the text. In the above picture,
instead of hierarchic layout mode, force-directed layout was chosen.

Using directed multigraphs to represent the biochemical
network in the computer enables us to model, e.g. that a
compound can take part in several reactions with different
roles.

Our algorithms can cope with graphs that contain cycles:

DEFINITION 8. A cycle is a path(way) starting and
ending on the same vertex (compound).

The algorithm takes care of only looking for simple cycles:

DEFINITION 9. A simple cycle is a cycle in which all
vertices are visited exactly once except the starting vertex
which is visited only twice.

This is, e.g. the case for metabolic pathways like TCA
cycle.
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