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Abstract-This  paper presents a method for planning the motions of
autonomous vehicles moving on general terrains. The method obtains
the geometric path and vehicle speeds that minimize motion time consid-
ering vehicle dynamics, terrain topography, obstacles, and surface mo-
bility. The terrain is represented by a smooth cubic B patch, and the
geometric path consists of a B spline curve mapped to the surface. The
time optimal motions are computed by first obtaining the best ohstacle-
free path from all paths represented by a uniform grid. This path is
further optimized with a local optimization, using the optimal motion
time along the path as the cost function and the control points of a B
spline as the optimizing parameters. Examples are presented that
demonstrate the method for a simple dynamic model of a vehicle
moving on a mountainous terrain.

I. INTRODUCTION

THE problem of motion planning of autonomous vehicles
consists of selecting the geometric path and vehicle speeds

so as to avoid obstacles and to minimize some cost function,
such as time or energy. While extensive work has focused on
computing the geometric path, little attention has been given to
selecting the optimal vehicle speeds. Selecting the wrong speeds
can cause the vehicle to loose its path, or to waste time or
energy.

In this paper a method is presented that obtains the time
optimal and collision-free paths between given end points, con-
sidering vehicle dynamics, terrain topography, and surface mo-
bility. The terrain is represented by a continuous B patch, and
the path is represented by a B spline curve, constructed on the
surface. This is in contrast to most current methods that consider
flat surfaces, and paths made of simple geometric shapes, such
as straight lines and circular arcs [5], [7], or other specific
functions designed to smooth path curvature [6], [13]. Terrain
elevation has been addressed in a limited number of works,
ignoring the effects of vehicle dynamics [2], [14]. Vehicle
dynamics were considered in [3] for planning feasible vehicle
motions in the plane, without addressing the issues of motion
optimality  and obstacle avoidance.

The motion planning problem is formulated as a three-stage
optimization. First, the optimal speeds along a given path are
computed to minimize motion time, using an algorithm previ-
ously developed in [l] and later modified in [18]. To minimize
motion time, the algorithm selects highest possible speeds that
do not violate dynamic constraints on vehicle motions, such as
tangential and side slip, tip-over, and separation between vehicle
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and ground. The local optimal path that avoids obstacles and
further minimizes motion time is obtained by a parameter opti-
mization, using the motion time along the path as the cost
function and the control points of a B spline as path parameters
[17]. The initial guess to this optimization that is likely to
converge to the global optimal path is obtained by a graph
search, following the method presented in [16]. Obstacles and
regions of different cultural types are considered using a mobil-
ity factor that multiplies the original coefficient of friction be-
tween the vehicle and ground. A mobility of zero is assigned to
unaccessible  regions, and a mobility of one is assigned to perfect
roads. Other regions that allow restricted motions, such as
forests and rough terrain, are assigned mobility values between
zero and one.

The method presented combines various aspects of motion
planning of autonomous vehicles in a unified way. Vehicle
kinematics, dynamics, and terrain topography are used to formu-
late a single velocity curve, representing the upper bounds on
vehicle motions along a given path. This allows computing a
single valued cost function, facilitating the search for a better
path at a higher optimization level, free of the detailed computa-
tion of the multiparameter objective function. To allow such a
unified approach, we resort to simplified kinematic and dynamic
models. Accurate models of rolling vehicles are quite involved
and are beyond the scope of this paper. As demonstrated in the
examples, even the simplest model provides very useful informa-
tion for planning the motions of rolling vehicles.

While the method presented minimizes motion time, the ap-
proach is general and applicable to other path-dependent cost
functions, such as energy, distance from obstacles, time spent in
hostile environments, etc. The method can be extended to any
path representation that maps a finite set of parameters to a
geometric curve on the surface.

In this paper, we first derive vehicle kinematics, solving for
its orientation and steering angle along the path. In Section III,
vehicle dynamics are derived in terms of path geometry, and the
constraints on vehicle motions are formulated in Section IV. The
terrain and the path representations are given in Section V, and
the local and global optimizations  are briefly discussed in Sec-
tion VI. Section VII includes several examples that demonstrate
the approach for a vehicle moving on three-dimensional terrains
with obstacles.

II. V EHICLE K INEMATICS

The inverse kinematics problem of a rolling vehicle consists
of solving for vehicle orientation and the required steering angle
that will move a given vehicle fixed point along a desired path
Choosing the center of mass as the guiding point, and assuming
no sliding, makes the problem nonholonomic since only incre-
mental solutions for vehicle orientation and the steering angle
are possible (see [l0] and the references therein for examples of
nonholonomic systems).
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Path Frame

Fig. 1. Vehicle and path fixed frames.

Fig. 2. The steering angle 01.

We consider a four-wheeled vehicle with two fixed axles,
driven by fixed rear wheels and steered by the front wheels. A
rectangular coordinate frame xyz is attached to the vehicle at its
center of mass, and an inertial frame tqr is fixed to the terrain at
every point along the path, as shown in Fig. 1. The r vector is
normal to the surface, t is tangent to the path, and q is normal
to both. A unit vector n in the rq plane is defined in the
direction of the center of path curvature. The vectors q and II
coincide only on flat surfaces.

At every point along the path, the z axis of the vehicle fixed
frame is aligned with the r vector. The orientations of the other
vehicle axes, assumed to be parallel to the tq plane, are
determined based on the orientation and the steering angle at the
previous point. For perfect rolling, the rolling axis of every
wheel must pass through the instantaneous motion center (IMC).
If the front axle is fixed, this results in a different steering angle
of each of the front wheels. We consider only the average
steering angle Q!  as shown in Fig. 2, thus violating the assump-
tion of perfect rolling. By fixing the front axle and assuming
planar contact points, we simplify the analysis of the reaction
forces. This, however, restricts the terrain to be smooth and
obstacles to be large relative to vehicle size.

Referring to Fig. 2 and using simple trigonometric identities,
we solve for the steering angle a! that will move the mass center
along the path in the direction of the tangent t

tan (Y =
V& (1)

where d is half the distance between the axles (for a symmetric
vehicle), and p is the distance to the IMC from the mass center,
obtained by intersecting the lines of the rear axle and the q
vector, as shown in Fig. 2. Note that, generally, p is not the
radius of path curvature. It can be easily shown that a! is related
to the angle 19 between the x and t vectors by

(Y = tan-  (2tan8). (2)

The angle 0 is a function of the current vehicle position x and
the desired direction of motion t. Since x is the result of the

Fig. 3. The vehicle at two subsequent points along the path.

previous motions, we can solve only for the incremental changes
in 8.

Fig. 3 shows the vehicle at two positions: before and after an
incremental move of 6s along the path from some point i. Point
i + 1 is located at the end of the vector 6sti from point i.
During the incremental move, the rear axle slides along the xi
direction to a distance a from the point i. The new locations of
the mass center and the rear axle define the new vehicle orienta-
tion. Note that Bi+r is the angle between xi+r and ti+l. First,
express xi in terms of Bi

Xi = COS Biti  - sin 8iqj (3)

where the ti and qi are known for every point i along the path.
The vehicle changes its orientation from Xi to X~+~

xi+1

where

a = -asCOsei+ d2 - 6s2 sin2  Oi .

The angle ei+i is obtained by the dot product

Bi+i = cos-’  (Xi+1  * ti+l). (5)

Substituting (4) into (5) yields Oi.,_r in terms of the known
orientation at point i and the new direction of motion ti+i

ei+l

a 6s
-xi - ti+l + -ti * t,+1
d d (6)

The angle 0 obtained by (6) is used in (2) to solve for the next
steering angle. Equation (6) can be integrated from the initial
point along the path, given some initial condition on 0. Note that
we do not need Q! for the integration. Here, the steering angle is
required only for verifying that it stays within the range allowed
by the steering mechanism.

Although the path is specified along the terrain, we assume
that it represents the motions of the center of mass. This
simplifies vehicle kinematics and dynamics while introducing a
small error due to the ignored relative motions between the
center of mass and the path.

III. VEHICLE DY NAMICS

In this section, the dynamic equations of a simple vehicle
model are derived. The wheels consist of massless rigid disks,
making point contacts with ground. The moment of inertia of the
vehicle is neglected, assuming that the mass is concentrated at
one point. At each contact point, there are three unknown
forces: two friction and one normal force. For four contact
points, this adds to a total of 12 unknowns. The six equations of
motion are insufficient to solve for all the reaction forces, and
the problem is indeterminate. Approximate solutions can be



found by assuming equal force distribution between any collinear
forces and by stating linear relations between the normal and the
friction forces [8]. The models using these assumptions are
cumbersome and beyond the scope of this paper. Therefore,
except for the tip-over constraint, we transfer the reaction and
friction forces to the mass center. In the following, F and R
represent the summations of the external friction and reaction
forces acting on the vehicle, respectively.

It is useful to first define some identities. The vectors t and
n, which uniquely specify path geometry, are obtained by
differentiating the path, p(S), with respect to path distance S

ap
t=Ps=as

where

a%
PSS = *.

Gravity is defined in the opposite direction of the unit vector k
fixed to an inertial reference frame. The projections of the unit
vectors k and n on t and q are obtained by the dot products

k, = k. t k, = k . q k, = k . r (8)

and

A. Engine Torque Constraint

The engine torque produces the friction force f, tangent to the
path at the contact points. A positive torque produces a force in
the direction of motion, while a negative torque, or a braking
force, produces a force in the opposite direction. This force is
bounded by the maximum equivalent engine force F,, and the
maximum braking force Fmh

n,=n*t nq=n* q n,=n*r. (9)

The external forces acting on the vehicle consist of the friction
forces between the vehicle and ground, the normal forces, and
the gravity force. The total friction force F, tangent to the tq
plane, is represented in path coordinates as

F=f,t+f,q w
where ft and f4 are the components tangent and normal to the
path, respectively. The equation of motion of the vehicle can be
written in terms of the tangential speed s and the tangential
acceleration is:

F,,Sf,rF_. (1%

These limits are assumed to be constant and independent of
speed. Substituting (12.)  into (19) yields the feasible acceleration
range due to constraints on the equivalent engine force

F,,/m-gk,~~~F_/m-gk,. (20)

The engine torque constraint limits only the acceleration since
the effect of speed on engine torque was not considered.

ftt + f4q + Rr - mgk = mKnS2 + mtS’ (11)

where R is the magnitude of the reaction force in the r

direction, and m is the lumped vehicle mass. The projections of
the external forces in the t, q, and r directions are obtained by
dot multiplying both sides of (11) with the vectors t, q, and r

f, = mgk, + rnL? (12)

f4 = mgk, + mKn,S2 (13)

R = mgk, -I- mK n,S2 (14

where K is path curvature. It is convenient to express the friction
forces also in the xy coordinates

f, = ftcos  0 - f,sin  e (15)

fy = f,sin 0 + f,cos 8. (16)

Substituting (12) and (13) into (15) and (16) yields

f, = mcos 08 - mrtn,sin  OS2 + mg(k,cos 0 - k,sin 0)

B. Sliding Constraint

If the friction force required by vehicle motion (speed and
acceleration) exceeds the limits

F2 = f: + f4”  I p2R2 (21)

the vehicle will slide and deviate from the desired path. Substi-
tuting (12)-(14)  in (21) yields a quadratic inequality equation in
S

I

s2+ 2gk,j+ K"(nt- p2nf)S4

+ 2gK (k,n,  - p2k,n,)S2 + g”(kt  + k: - p2kz)  5 0.

(22)

Solving (22) for 3 yields the feasible range of acceleration along
the path due to the sliding constraint

s, I s I s, (23)

where

i,= -gk,+ JaS4+2bS2+c

(17) s, = -gk, - JaS4 + 2 bs2 + c
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f,, = msines f mKn,cosOS2 + mg(k,sinO  + k,cos0).

(18)

Equations (12) to (18) can be used to determine the required
forces for the prescribed motion, or alternatively, to determine
the feasible speed and acceleration for given limits on the
friction and normal forces.

IV. D YNAMIC C O N S TR AI N T S

Several constraints between the vehicle and ground are con-
sidered to ensure vehicle dynamic stability along the path. The
constraints treated in this paper include: a) limits on engine
torque, b) limits on the coefficient of friction (sliding constraint),
c) positive contact between the vehicle and ground (contact
constraint), and d) tip-over. Generally, each constraint can be
transformed to constraints on vehicle tangential speed and accel-
eration as shown below.
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U = K2(yl?Tl; - tZ”4)

b = gK ( /A2krn, - k,n,)

c = g2( p2k; - k;) .

Note that the maximum acceleration is not necessarily positive,
nor is the maximum deceleration always negative; this depends
on k,, which represents the forward slope of the path. In
addition to limits on the acceleration, (23) also expresses limits
on the feasible vehicle speeds along the path. The argument
under the square root should be positive; otherwise, (22) cannot
be satisfied (the acceleration must be a real number to retain its
physical meaning)

A = as4 f 2bS2  + c 2 0. (24)

The feasible speed range is determined by the roots of (24).
Only the positive roots are of interest since we assume forward
motion. Depending on the values of the coefficients a, b, and c,
it is possible to obtain a feasible speed range that does not
include s = 0. In such a case, the vehicle is statically unstable
due to surface characteristics (traction and geometry).

Plotting the velocity limits for all points along the path creates
a velocity limit curve in the phase plane S-S, representing the
upper bound on vehicle speeds above which the constraint is
violated. To ensure vehicle stability for the entire speed range,
we consider only the lower feasible regions, excluding feasible
islands at high speeds for which the motion is possible.

C. Contact Constraint

The speeds of autonomous vehicles moving on bumpy roads
need to be carefully selected in order to maintain continuous
contact with ground. Vehicles bouncing off the ground can easily
tip over or loose their absolute position. A positive contact with
ground is guaranteed if the normal force R applied on the
vehicle is positive. Setting R = 0 in (14),  we obtain the maxi-
mum speed allowed by the contact constraint

35 -3.
/----Knr

(25)

The projection of r on k, k,, is always positive; otherwise, the
vehicle moves along an inverted slope. Equation (25) therefore
applies only to cases where n, is negative. This occurs when
path curvature points opposite to the direction of surface normal
r. Considering the reaction forces at each contact point would
result in more conservative velocity limits than the ones ex-
pressed in (25).

D. Tip-Over Constraint

The tip-over constraint is obtained by expressing the condition
for which the vehicle is about to tip over in terms of s, j, and
terrain topography. The limiting case for this constraint occurs
when the entire weight shifts to one side of the vehicle, and the
wheels on the other side are about to lose contact with ground.
Referring to Fig. 4, if the vehicle is about to tip over counter
clockwise (CCW), then the total reaction force R is applied on
the left wheel, and the friction force fy points downward, as
shown (the friction force can be applied in the other direction,
but then the vehicle will not tip over CCW). The vehicle will
not tip over CCW if the resultant moment created by the
reaction and the friction forces around its center of mass is

ClockWise  Tip Over Counter ClockWise  Tip Over

Fig. 4. Tip over constraint.

positive (note that a positive fy points in the positive y direc-
tion)

f,,h + Rb 2 0 (26)

where h and b are defined in Fig. 4 and R is defined in (14).
The condition for not tipping over CCW is therefore

f,,> -R;. (27)

The condition for not tipping over in the clockwise direction is

f+R;. (28)
Equations (27) and (28) can be combined to one constraint
equation

(29)
Substituting (14) and (18) into (29) transforms the tip over

constraint to quadratic inequality equation in S and S

a,S2 + 2(a2S2 + a,)$ + a4S4  + 2a,S2 + a6 5 0 ( 3 0 )

where

a, = sin2  0

a2 = KnqSin6COS8

a3 =  gsinO(k,sin0  -t k,cos0)

a4 = K’(nZgcos’f3  - /3’nT)

05 = Kg(n4cos8(ktsin8  + k,cos0)  - P2n,k,)

a6 = g’[(k,sine + k,cos8)Z - f12k:]

and fi = b/h. Equation (30) can be solved for the feasible
acceleration as a function of S. Similarly to the sliding con-
straint, the limits on 3 are derived by satisfying the inequality

A = (a; - ~,a,)$” + 2(a,a, - LZ,~~)$~ + a; - a,a6 > 0.

(31)

This inequality defines another velocity limit curve that must be
satisfied to ensure safe vehicle motions.

E. Velocity Limit Curve
The feasible acceleration is determined by the intersection of

the feasible acceleration ranges given in (20),  (23),  and (30). In
addition, vehicle speeds should not exceed the limits expressed
in (24),  (25),  and (31). The feasible speeds form a region that is
a subset of the region formed by the intersection of the feasible
regions of the individual constraints, considered separately. This
creates a unified velocity limit curve below the union of the
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Forbidden Region

Velocity Limit Curve /
*

S

Fig. 5. A unified velocity limit curve.

individual curves, as shown schematically in Fig. 5. The veloc-
ity limit curve represents a unified mapping of the various
dynamic constraints to the phase plane S-S. It allows planning
safe vehicle motions simply by ensuring that vehicle speeds stay
below the velocity limit. Staying below the limit curve does not,
however, guarantee that a given velocity profile is feasible.
Staying below the time optimal velocity profile does.

V. T ERRAIN AND P ATH R E P R E S E N T A T I O N S

Terrain representation is central to determining vehicle dy-
namic stability. A continuous representation is essential as it
allows for generating directly smooth paths for which the gradi-
ent, tangent, and normal vectors at every point can be computed.
We use B-spline patches to represent the terrain and B-spline
curves to represent the path. B-spline patches can be generated
from a topographic map or specified interactively using com-
puter graphics interfaces.

A. Surface Representation by B Spline Patches
A B-spline patch is a parametric surface made of a mesh of B

splines. A typical point q on a single patch in a three-dimen-
sional space is a function of two parameters u and w [12].

q(u, w) = VMRMTWT (32)
where,

v = [ u%l]  ) u = [o, l]

and

w = [ W3W3Wl]) w = [o, 11.

M is the 4 x 4 matrix specifying the type of spline used to
construct the patch, and R is the 4 x 4 matrix of 16 control
points. Each control point has an xy location, usually defined as
the grid point on a uniform mesh, and a z value that represents
its height. A large surface can be composed by several patches.

B. Path Representation
A smooth curve on the surface is obtained by parameterizing

u and w with a single parameter u

p(u) = V(u)MRMTWT(u). (33)
A line in the U-W space is mapped to a continuous curve on the
B patch. The line in the u-w space is represented by the B
spline

U(U)
[ 1w(u)

= UMR, (34)

where

u = [ U3U2Ul], 24 = [o, 11.

R, is a 4 x 4 x 2 array of the control points in the u-w space,
and u is the independent parameter along the B spline. B
splines are second-order continuous, which is found to be essen-
tial for time-optimal paths. We chose to represent the curve by a
B spline, but any other continuous representation will suffice as
long as it provides a finite set of parameters for each curve. The
path is initially obtained as a function of the parameter u; then it
is resealed in terms of the distance along the path S.

C. Obstacles and Surface Mobility Representations
Obstacles and areas with different surface quality are repre-

sented by rectangle primitives in the u-w space, mapped to the
B-patch surface using (32). A point is determined to be inside an
obstacle simply by comparing its u and w values to those of the
obstacle. We restrict the obstacle-avoidance problem to gross
motions, assuming large obstacles and wide pathways compared
to vehicle size. Collision is detected simply by testing the
collision of the contact points. Collision avoidance is achieved
by adding a penalty to the cost function, as explained later.

To account for surfaces with various cultural types or trac-
tions, we represent surface characteristics with a mobility factor
q = [O, I]. A mobility of one is assigned to paved roads, and
zero to areas not accessible to the vehicle, such as large obsta-
cles, lakes, or dangerous zones. A mobility value between zero
and one is assigned to areas where vehicle motions are restricted
and slowed down due to surface quality and other obstructions
such as mud, sand, trees, small stones, and mines. The mobility
factor 1 multiplies the original friction coefficient p. The result-
ing effect is to lower the limit curve, reducing the maximum
average speed allowed in a specific region.

VI. P ATH O P T I M I Z A T I O N

Distance is the simplest cost function that can be obtained with
a two-dimensional graph search. For more complex cost func-
tions, such as motion time or energy, the search must be done in
three dimensions (position and speed). To avoid a three-dimen-
sional search, the problem is divided into two smaller problems:
1) a one-dimensional optimization of the motions along a speci-
fied path, and 2) a search for the optimal path in the position
space. This separation of the problems makes the approach
computationally practical for a variety of cost functions and
constraints. It has been used for optimizing the motions of
realistic six-dimensional robotic manipulators [ 161,  [ 171.

A. Time Optimal Motions Along Speci@ed  Paths

The optimization along a given path follows an algorithm
originally developed for minimizing motion times of robotic
manipulators, subject to actuator constraints and the full nonlin-
ear manipulator dynamics [l]. This algorithm has been extended
to include general constraints such as the limitation on the
gripping force and the maximum tolerable acceleration of the
payload [15],  [17]. The transformation of the dynamic con-
straints to velocity limit curves follows the basic principles
presented in [l] and [ 171.

Following the time-optimization algorithm, vehicle motions
are optimized by maximizing the acceleration or deceleration at
every point along the path, while avoiding the limit curves [l].
The maximum acceleration or deceleration at every point is
obtained by the intersection of the feasible acceleration ranges
defined in (20),  (23),  and (30). The main computational effort in
this part is to compute the switching points between the accelera-
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Optimal Path
Parameters

Initial Path

Fig. 6. The parameter optimization procedure.

tion and deceleration. Efficient computation of the switching
points is presented in [19]. The original algorithm was recently
modified to account for singular points where the assumption of
maximum acceleration and deceleration fails [ 181.  The reader is
referred to [ 11, [ 171,  and [ 181 for a full description of the
method. The computation time of the time-optimal motions
along a given path is of the order of less than 1 s on a Silicon
Graphics IRIS-4D. The efficient computation of the motion time
along the path makes this method suitable for evaluating the cost
function in a local path optimization.

B. Local Optimization
The objective of the local optimization is to find the path with

the minimum time, in the vicinity of an initial guess. The
problem is formulated as a parameter optimization by represent-
ing smooth paths with a relatively small number of parameters,
such as the control points of a B spline, using the motion time
along the path as the cost function. The dynamic constraints,
discussed earlier, are transparent to this optimization, allowing
the use of unconstrained optimization procedures. The ability to
consider constraints of various types in a unified way is one of
the main advantages of this approach.

Using the control points as path parameters, the unconstrained
optimization minimizes a cost function J through variations of
path parameters _a:

min J = J(g) (35)
_a

where the vector _a represents the control points of the B spline
in the u-w space, and J is any single valued cost function that
can be evaluated for every path. The problem stated in (35) can
be solved with standard parameter optimization methods [ 1 l] . A
typical parameter optimization procedure is shown schematically
in Fig. 6.

The lack of analytical relations between path parameters and
the cost function restricts the use of gradient-type methods.
Optimization procedures that compute the gradient by finite
differences are suitable for smooth cost function over the entire
parameter space. That is often difficult to achieve due to the
discrete nature of the path representation and the approximations
involved in computing the cost function. A pattern search method
that does not require gradients has been most successful in the
majority of the problems treated here [4]. Since the pattern
search is essentially a heuristic method, the optimality of the
solutions obtained cannot be guaranteed.

Constraints on path geometry due to obstacles or unsafe
regions create voids in the solution space, requiring the use of
constrained optimization methods. To retain the unconstrained
nature of the problem, the objective function is augmented with
a penalty value that adds a high cost for violating a constraint. It
is convenient to use the number of infeasible points along the

f Grid Search

Evaluation of
Selected Paths

elect and Remove

Filterring Similar
Paths

Fig. 7. Global search for the time optimal path.

path to formulate the penalty function. The augmented cost
function is

J, = J(_a) + WIZ (36)
where w is a weighting factor, and n is the number of infeasible
points. A point along the path might be infeasible if the velocity
limit is zero, the steering angle exceeds its limit, or the vehicle
passes through an obstacle of zero mobility. This penalty value
is zero if the path is completely feasible, and it increases
gradually when the path penetrates into a forbidden region. The
effect of the penalty function is to repel the path from infeasible
regions. This penalty function is not differentiable, but neither is
the cost function. The use of a pattern search reduces the
sensitivity of the optimization to this problem.

C. Global Search for the Initial Path
The initial path for the local optimization is obtained with a

global search, following the method presented in [16]. The
algorithm, described schematically in Fig. 7, consists of a graph
search in the position space for a set of paths that are likely to be
in the vicinity of the global optimum. We briefly outline the
method. The reader is referred to [ 161 for further details.

The position space is initially represented by a uniform grid in
the u-w space from which all infeasible grid points due to the
tip-over constraint and obstacles were eliminated. To avoid
generating paths with tight turns, the grid is represented by a
special graph that accounts for the directions of motion and
departures from each grid point. The cost for each grid segment
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Fig. 8. The graphic display for interactive motion planning.
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Initial Point

Fig. 9. The shortest path.
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Fig. 10. The velocity limit curve for the shortest path.

consists of a lower bound estimate on the motion time, computed
by integrating the velocity limit along the segment. To obtain at
least one path in the vicinity of every potential local optimum, a
large set of best paths are obtained along the grid, using the
Dryfus  search method for the K best paths [9]. These paths are
smoothed by B splines, using the grid points as control points.
The continuous limit curve is then computed for each path to test
their feasibility due to the sliding or to the tip-over constraint at

zero speeds. Some paths become infeasible after the smoothing
due to path curvature that is ignored along the grid.

The feasible paths are evaluated and filtered, based on their
optimal motion time, to retain a smaller set of distinct paths. The
filtering process consists of eliminating all paths within a tube of
some radius Dmax around the best path. This is repeated for the
next best path, until all paths in the original set have been either
selected to represent a distinct region or have been eliminated.
The retained paths are assumed each to converge to a different
potential local optimum in the local optimization. L),, is se-
lected heuristically based on the grid size and the anticipated size
of the convergence regions.

This method can be guaranteed to converge to the global
optimum only if the grid size is sufficiently small and the number
of paths in the initial set is sufficiently large. For more practical
grid sizes, like the one used in the examples shown below, the
global optimality of the solution is not guaranteed. However, the
solutions obtained for the cases shown appear to be the global
optimum. Further, this search discovered local optimal solutions
that were not anticipated with manual selection of initial guesses.

VII. EXAMPLES

The method has been implemented in an interactive computer
program on a Silicon Graphics IRIS-4D Workstation. User
interfaces have been developed to invoke the various levels of
the optimization: computation of the velocity limit and the
optimal trajectory along a given path, a local optimization, and a
global search for the best initial path. Fig. 8 shows a typical
graphics display of the program. The main window displays the
terrain, the path, and the obstacles, colored according to their
mobility factors. The top right window displays the B spline in
the u-w space. The user can modify the path by moving the
control points in this window. The next window displays the
velocity limit curves and the time-optimal trajectory (if the path
is feasible). The third window displays data on the required
force, energy, and friction force. The lower window displays the
distance and motion time for interactive evaluation and optimiza-
tion of the path.

The following examples were generated by this system, using
a vehicle with the parameters given in Table I.

A. Minimum Distance Path
In the first example, the distance between two points on the

terrain was minimized. Setting the cost function as the path
distance, the global search, followed by the local optimization,
obtained the shortest path shown in Fig. 9, with a total distance
of 1460 m. Fig. 10 shows the velocity limit curves for this path,
from which it is evident that the path is infeasible. The infeasible
region along the path corresponds to the section where the
velocity limit is zero. This occurs due to the steep slopes at the
center of the terrain where the sliding and the tip over con-
straints are violated.

B. Time-Optimal Motions with No Obstacles

The next example obtains the time-optimal path between the
same points as in the previous example. Using a grid resolution
of 10 x 10, the first 240 paths found by the global search were
considered. The filtering procedure resulted in six distinct paths;
all are shown in Fig. 11. Each of these paths represents the best
path within a tube of 200-m radius. The best three local optimal
paths obtained by the local optimization are shown in Fig. 12,
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TABLE I
VEHICLE PARAMETERS

Mass =ZOOOkg Length (2d) =4m
Max Engine Force =3OOON Aspect Ratio (l/p) = 2
Max Braking Force = -15 000 N Max. Steering Angle = 300’
Friction Coefficient = 0.7 Terrain Scale =1OOOx1OOOm

Final Point

100

W-

Initial Point 4 0

Fig. 11. Near-optimal paths selected by the global search after filtering.

20 Time Optimal Trajectory

Final Point

ON
0 300 6 0 0 900 1200 i500

a meters

‘r- Fig. 13. The time optimal trajectory for the global optimal path.

Fig. 12. Three local time optimal paths.

with motion times of 53.2, 54.0, and 54.6 s. Some of the filtered
paths converged to the same local optimum (paths 2 and 3, and
paths 1 and 5). Fig. 13 shows the velocity limit curves and the
optimal trajectory for the best path. Here, the tip-over constraint
dominates the limit curves due to the high aspect ratio. In the
current implementation, we use the lowest limit curve to con-
struct  the optimal trajectory, neglecting the coupling between the
constraints.

SF = 1741

Initial Point

Fig. 14. Time optimal paths with obstacles.

Computation time for the global search was about 20 s,
obtained with no obstacles. Path 1 is the global optimum for this

including the generation of the cost along the grid, and the
case. In fact, it is close to a local optimal path, obtained with no

search for the best 240 paths. A typical computation of an
obstacles. This local optimum was not found in the previous

optimal trajectory along a given path was less then 1 s, including
example because of its relatively high motion time. Paths 2 and

the graphic display of the terrain, the path, and the optimal
3 are variations of paths 2 and 1 of the previous example,
modified to avoid the obstacles.

trajectory. Filtering took less than 1 s, and the local optimization
for a typical path with 10 control points required about 15 min. VIII. CONCLUSIONS

The computation of a global optimal path required a total
computation time in the order of 1 h.

A method for planning optimal vehicle motions on general
terrains has been presented. It accounts for vehicle kinematics,
dynamics, terrain topography, obstacles, and regions with vari-
ous mobility. The terrain and the path are represented by
B-spline patches and curves, allowing general geometric shapes.
The method obtains the path and vehicle speeds that minimize
motion time, subject to engine torque limits, a given coefficient
of friction, and vehicle kinematic and dynamic parameters.

C. Time-Optimal Motions with Obstacles
In this example, obstacles with zero mobility were added to

the original terrain. The obstacles were placed to block the local
optimal paths obtained in the previous example in order to force
the optimization to find other solutions. Here too, the best 240
paths obtained by the global search were selected and filtered.
The best three paths obtained by the local optimization are
shown in Fig. 14, with motion times of 57.4, 65.0, and 73.9 s.
All three paths are quite different from the time-optimal paths

For a given path, constraints on vehicle motions, such as
sliding, tip over, and contact, are transformed to velocity limit
curves, providing upper bounds on vehicle speeds. The optimal
motions along the path are obtained by a previously developed
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method that maximizes the acceleration or deceleration at all
points, while avoiding the limit curve. A local optimal path is
obtained by a parameter optimization procedure, optimizing over
the control points of the B spline, using the motion time as the
cost function. The initial guess to the local optimization is
obtained by a global graph search. The approach is general and
can be extended to include cost functions other than distance and
time, for instance, energy consumption, minimum threat, etc. in
military as well as civilian applications.

The method has been implemented in an interactive computer
program on a Silicon Graphics IRIS-4D workstation. Examples
are presented that demonstrate the approach for planning the
motions of a rolling vehicle moving along a mountainous terrain,
with and without obstacles. For the case shown, the time-optimal
path was found to be significantly different from the unsafe
minimum distance path, demonstrating the importance of terrain
topography and vehicle dynamics. Obstacle avoidance was
demonstrated by placing obstacles to block the unconstrained
local optimal solutions. The best solution obtained by the grid
search was found always to be in the vicinity of a local optimal
path, but not necessarily the global optimum. Computation time
for a full optimization was in the order of 1 h, spending most of
the time on the local optimization. The computation time can be
reduced by limiting the resolution of the map and the path, or by
increasing the grid resolution and avoiding the local optimiza-
tion.

A simple dynamic model is used to demonstrate the approach.
Except for the tip over constraint, the reaction and friction
forces are translated to the mass center to avoid solving explic-
itly for the reaction forces at the contact points. Exact models of
rolling vehicles are generally complex due to the indeterminate
nature of the problem and are beyond the scope of this paper.
Future work will focus on formulating the dynamic constraints
treated here with more realistic models. This method can be
used in other applications, such as determining safe speeds for
motor vehicles, using the time-optimal velocity profile along the
traveled path as an upper bound for the actual vehicle speeds.
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