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Abstract

The hypothesis of physiological emotion specificity has been tested using pattern classification analysis (PCA). To

address limitations of prior research using PCA, we studied effects of feature selection (sequential forward selection,

sequential backward selection), classifier type (linear and quadratic discriminant analysis, neural networks, k-nearest

neighbors method), and cross-validation method (subject- and stimulus-(in)dependence). Analyses were run on a data

set of 34 participants watching two sets of three 10-min film clips (fearful, sad, neutral) while autonomic, respiratory,

and facial muscle activity were assessed. Results demonstrate that the three states can be classified with high accuracy

by most classifiers, with the sparsest model having only five features, even for the most difficult task of identifying the

emotion of an unknown subject in an unknown situation (77.5%). Implications for choosing PCA parameters are

discussed.

Descriptors: Emotion, Pattern classification, Feature selection, Autonomic nervous system, Cardiovascular system,

Respiration, Electrodermal system, Affective neuroscience, Affective computing

There exists a long tradition of psychophysiological research on

differential physiological responding among emotions, originally

based on James’ (1884) peripheral perception theory and revived

by basic emotion theory (e.g., Ekman, Levenson, & Friesen,

1983; see Friedman, 2010, for a review). These theories hold as a

central tenet that basic human emotions have distinct physio-

logical patterns. In an influential series of publications, Fridlund

and colleagues (Fridlund & Izard, 1983; Fridlund, Schwartz,

& Fowler, 1984) argued for the advantages of a formal pattern-

classification approach for the study of such physiological pat-

terns of emotion. This approach recognizes the interactive and

configurative nature of physiological response systems and de-

termines individual physiological response patterns that are most

discriminative of emotional states. With the advancement of

computational techniques, this analysis approach is now in-

creasingly applied to study physiological emotion specificity

(e.g., Christie & Friedman, 2004; Kreibig, Wilhelm, Roth, &

Gross, 2007; Nyklicek, Thayer, &VanDoornen, 1997; Rainville,

Bechara, Naqvi, & Damasio, 2006; Sinha & Parsons, 1996).

However, although traditional statistical analysis packages often

offer only a restricted functionality of pattern classification anal-

ysis, the affective computing movement promises a reviving

cross-fertilization by applying a full-fledged automated pattern

classification approach to such data sets. The present article thus

aims to introduce a comprehensive automated pattern classifi-

cation approach to the study of physiological emotion specificity.

We first review prior research on physiological emotion spec-

ificity using pattern classification analysis and identify three as-

pects of pattern classification analysis, where the application of

automated computational methods promises important ad-

vancements. In an exemplary fashion, we next demonstrate the

various steps of conducting an automated pattern classification

analysis on a comprehensive physiological data set. Finally,

we discuss implications of the results of the pattern classification

analysis andpoint to important directions for future research.We

The first and second authors contributed equally to this work. This

research was supported by the 6th Framework Programme Project EU-

CLOCK (018741) funded by the European Commission (F.W., V.K.),

the Basel Scientific Society (F.W.), and the National Center of Compe-

tence in Research Affective Sciences funded by the Swiss National Sci-

ence Foundation (51NF40-104897) and hosted by the University of

Geneva (S.K.) and the Swiss National Science Foundation (PBGEP1-

125914; S.K.). Some of these data were presented at the annual meeting

of the Society for Psychophysiological Research (October, 2007).
Address correspondence to: Frank Wilhelm, University of Salzburg,

Institute of Psychology, Department of Clinical Psychology, Psycho-
therapy, and Health Psychology, Hellbrunnerstrasse 34, A-5020 Salz-
burg, Austria. E-mail: frank.wilhelm@sbg.ac.at

Psychophysiology, 48 (2011), 908–922. Wiley Periodicals, Inc. Printed in the USA.
Copyright r 2011 Society for Psychophysiological Research
DOI: 10.1111/j.1469-8986.2010.01170.x

908

mailto:frank.wilhelm@sbg.ac.at


introduce some terminology of automated pattern classification,

as it will be used throughout the article, in the glossary in Table 1.

Emotion Classification Based on Physiological Signals

The pattern classification approach to physiological response

patterns in emotion represents a complementary approach to the

traditional group mean analysis. In fact, to test the discrimin-

ability of physiological response patterns, pattern classification

has been suggested to be the better-suited analysis approach of

these two (Fridlund et al., 1984). In pattern classification anal-

ysis, units consisting of multiple response measures are classified

into well-defined groups (Huberty, 1994). An individual’s emo-

tion is thus predicted from a combination of physiological vari-

ables (Kreibig, Brosch, & Schaefer, 2010). Classification analysis

has therefore been used to corroborate the differentiation of

physiological responses between emotions (e.g., Christie &

Friedman, 2004; Fridlund et al., 1984; Kreibig et al., 2007;

Nyklicek et al., 1997; Rainville et al., 2006; Sinha & Parsons,

1996). This approach is also used in the field of affective com-

puting, where it has inspired a number of applied research pro-

jects (e.g., Kim &André, 2008; Kim, Bang, & Kim, 2004; Lisetti

& Nasoz, 2004; Nasoz, Alvarez, Lisetti, & Finkelstein, 2004;

Picard, Vyzas, & Healey, 2001).

Previous research on emotion classification has documented a

considerable degree of patterning among physiological response

variables between different emotions (e.g., Friedman, 2010).

Thus, it is instructive to review the classification approaches used

and associated classification performance of previous studies on

emotion classification. It should, however, be kept in mind that

numeric results of such previous studies are not directly compa-

rable if the number of emotions considered in the analysis varies

between studies. This, in turn, affects the chance classification

rate, against which such results are compared (e.g., chance cor-

rect classification is 50% if only two emotions are considered,

33.3% if three emotions are considered, and 25% if four emo-

tions are considered).

Research published in psychophysiology journals typically

relied on the linear classifier approach and has used discriminant

function analysis (DFA)1 on an ad hoc preselection of a large

number of physiological variables (features). Whereas not all

studies included cross-validation, if it was included, it was most

often of the leave-one-out nature. These studies achieved average

classification accuracy on data used for training of 37% to 84%

(e.g., Christie & Friedman, 2004; Fridlund et al., 1984; Kreibig et

al., 2007; Nyklicek et al., 1997; Rainville et al., 2006; Sinha &

Parsons, 1996).

By applying methods of automated pattern classification devel-

oped within the affective computing research framework, this ap-

proach canbe refined and improved in three respects. First, whereas

ad hoc selected feature sets may not represent the optimal feature

set, automated feature selectionmay achieve improved classification

accuracy with a reduced feature subset, thus resulting in a sparser

classification model. Picard and colleagues (2001), for example,

explored feature selection and transformation with Sequential

Floating Forward Search (SFFS), Fisher Projection (FP), and a
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Table 1. Glossary of Terms for Automated Pattern Classification

Analysis

Terms Definition

Chance classification rate The classification accuracy achieved if the
data were classified by random guessing.

Class Discrete emotional state that needs to be
discriminated, for example, fearful, sad, or
neutral.

Class label An identifier assigned to a class.
Classification accuracy or
correct classification rate

The percentage of correct classifications
achieved with a particular classification
model computed as the ratio of correctly
classified patterns to the total number of
presented patterns.

Classification model or
classifier

A mathematical model or an algorithm used
to automatically assign class labels to
incoming patterns, that is, to predict to which
class the incoming observation belongs.

Cross-validation Common approach for estimating the
classification accuracy with unknown data
(i.e., data outside of the training set). In this
approach, the entire data set is divided into
N nonoverlapping parts. Training and
validation are performed repeatedly N
times. At iteration k of the cross-validation,
all parts of the data except for the kth part
are used for training, and the kth part of the
data is used for validation.

Feature A variable involved in analysis; in the
context of psychophysiological
measurements, psychophysiological
variables represent features.

Feature selection Method for selecting a subset of features
providing optimal classification accuracy
of the classification model. Although it
might be counterintuitive that fewer
features result in better classification
accuracy, feature selection usually results in
improvement of accuracy by eliminating
redundant or irrelevant features (Fridlund
et al., 1984; Huberty, 1994). This is
particularly true if not all variables in the
classification analysis contribute
substantially to the intergroup differences.
By adding or substituting features, the
variance overlap engendered under these
conditions may alter the roles of some
features from discriminative variables to
moderator or suppressor variables, thus
affecting the patterns of correlation
structure, and by this, classification
accuracy.

Observation Data point representing one emotion for a
particular subject.

Overfitting Poor classification accuracy on the
validation data set, while the classification
accuracy on the training set approaches
100%, that is, the model loses its
generalizability due to an excessive number
of adjustable parameters in the model in
relation to the number of observations in
the training data.

Pattern A vector comprising feature values for one
observation.

Pattern classification The process of assigning class labels to
observations or the result of this process.

Training Determining the parameters of a
classification model based on a special
representative data set called training data.

Training data Representative data set for which the class
labels are known and based on which the
parameters of a classification model are
determined.

1Because the focus here is on predicting the outcome (emotion) based
on a combination of physiological variables, we use DFA to refer to
predictive discriminant analysis, as contrasted to descriptive discriminant
analysis that characterizes the observed differences between groups
(Huberty, 1994) orFin the present contextFemotions.



combination of both (SFFS-FP) and applied the k-nearest neigh-

bors algorithm (KNN) and Maximum a Posteriori (MAP) for

classification. Average classification accuracywas up to 81%with 2

to 19 features on eight emotion classes.

Second, whereas linear classifiers have been applied widely to

the study of physiological emotion specificity, it remains unclear

whether this is the most suitable type of classifier. A systematic

comparison of the performance of different linear and nonlinear

classifiers is therefore necessary. Linear discriminant functions are

best suited for data with linear boundaries between different classes

in the feature space classes and are inherently connected with the

assumption of normality of data distribution in each class, such

that the covariance matrices of the multivariate normal distribu-

tions for each class are equal (Hastie, Tibshirani, & Friedman,

2001). A linear classifier decides class membership by comparing a

linear combination of the features to a threshold and is represented

by a line in twodimensions or a hyperplane in higher dimensions. If

the covariancematrices of different classes cannot be assumed to be

equal while the assumption of normality is still valid, quadratic

discriminant analysis can be applied (Hastie et al., 2001). If the class

boundaries are nonlinear and the assumption of normality is not

valid, methods that do not rely on the type of data distribution are

worth attention. Among a great variety of such nonlinearmethods,

particularly the KNN algorithm (Cover & Hart, 1967) and arti-

ficial neural networks (ANN; Haykin, 1999; for a detailed de-

scription of these approaches, see below) have found application in

research on emotion classification. Work by Nasoz, Lisetti, and

colleagues, for example, analyzed classification of physiological

emotional responding using DFA, KNN, and ANN (Lisetti &

Nasoz, 2004; Nasoz et al., 2004; Nasoz, Ozyer, Lisetti, & Fink-

elstein, 2002). They found classification accuracies between 72%

and 75% using DFA, 72% and 84% using KNN, and 84% using

ANN. This suggests that nonlinear classifiers can achieve higher

classification accuracy.

Third, whereas most of the emotion classification studies did

not test their classifiers with a different data set than it was

trained with, cross-validation is an essential step for evaluating

the performance of a given classifier in case of unknown data.

Moreover, as individual and situational specificity has long been

acknowledged in psychophysiological research (Hinz, Seibt,

Hueber, & Schreinicke, 2000; Lacey & Lacey, 1958; Marwitz &

Stemmler, 1998), it is important that also emotion classification

studies acknowledge the need for a differential treatment of sub-

ject and situation dependence in trained classifiers. Supporting

the importance of considering the influence of such varying fac-

tors, generalizability theory (Webb & Shavelson, 2005) suggests

that facets, across which generalization is sought, such as subject

and stimulus characteristics should be taken into account.

Those studies on emotion recognition that employed cross-

validation (e.g., Kim & André, 2008; Kreibig et al., 2007; Lisetti

& Nasoz, 2004; Picard et al., 2001; Rainville et al., 2006) were

based on the leave-one-out approach. In this approach, one ob-

servation representing one emotion for a particular subject is left

out at a time, the rest of the data is used for training of the

classifier, and the left-out observation is used for validation. This

means that both a known subject and known stimulus material

(except for one emotion for the classified subject) are used in the

training of the emotion classifier. However, this approach does

not reflect the accuracy of emotion classification when all mea-

surements to be classified come from a subject not included in the

training set or are induced by stimulus material (e.g., film clips)

other than those used for training of the classifier. Only a few

studies have implemented subject-independent (e.g., Bailenson et

al., 2008) or context-independent cross-validation (e.g., Sinha &

Parsons, 1996) in the context of psychophysiological emotion

classification. Still, a comprehensive evaluation of subject- and

context-independent cross-validation, hasFto our knowl-

edgeFnot yet been applied to this research question. For both

theoretical questions of advancing our knowledge regarding the

tenability of physiological emotion specificity and practical ap-

plications of human–computer interactions (HCI; Picard, 2000),

subject-independent or stimulus-independent emotion discrimi-

nation is of central importance. On the theoretical level, gener-

alizability theory (Webb & Shavelson, 2005) recognizes that

measurements can be independently influenced by a number of

error sources, including subject and stimulus characteristics. In

an applied context, a subject- or stimulus-independent technique

could be employed, for example, in an HCI system capable of

emotion recognition without need of adaptation to an unknown

user or unknown context.

Taken together, the current psychophysiological approach to

emotion classification calls for improvement and refinement in

three respects: (1) applying an objective method for selecting a

minimal or optimal feature subset, rather than ad hoc selected

features; (2) systematically evaluating and making an informed

choice of the specific type of classifier rather than exclusive reliance

on DFA; and (3) using a systematic approach to ensure both sub-

ject and stimulus independence of results rather than nonindepen-

dence of cross-validation. To realize improvements 1 and 2, various

forms of feature selection methods and classifiers are explored in

the present article. To address improvement 3, we propose the

following schematic of different types of cross-validation, summa-

rized inTable 2. The ‘‘standard technique’’ or ‘‘leave-one-out cross-

validation’’ used in many other studies corresponds to the upper

left cell of the table (subject- and stimulus-dependent cross-valida-

tion). The upper right cell represents subject-independent cross-val-

idation or the ‘‘leave one subject out’’ approach, whereas the lower

left cell represents stimulus-independent cross-validation. Finally,

the lower right cell combines the two latter approaches to subject-

and stimulus-independent cross-validation.

Linear and Nonlinear Classification Approaches

The classification models that we consider in this article fall into

the following three categories:

1. Discriminant analysis. Two models fall within the category of

discriminant analysis, namely, the classical linear discriminant
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Table 1. (Contd.)

Terms Definition

Validation The estimation of classification accuracy of
a classification model with a data set
different from that used during training,
called validation data.

Validation data Representative data set for which the class
labels are known and based on which the
classification accuracy of a classification
model is tested; the validation data set
should be nonoverlappingwith the training
data set. A good classification model with
properly chosen training data should have
comparable classification accuracywith the
training and validation data sets.



analysis (LDA) and quadratic discriminant analysis (QDA;

for details, see Hastie et al., 2001). LDA is a proven, simple,

reliable, and therefore widely used classification technique.

QDA is an extension of LDA that allows the covariance ma-

trices of individual classes to differ from each other and the

class boundaries to be quadratic rather than linear. The pa-

rameters of the algorithm estimated based on the data are the

covariance matrices and class means in the feature space. The

LDA estimates one covariance matrix, which is assumed

equal for all the classes, whereas theQDA estimates a separate

covariance matrix for each class.

2. Artificial neural networks. The most popular types of artificial

neural networks used for pattern classification are multilayer

perceptrons (MLP; Haykin, 1999) and radial basis function

networks (RBFN; Moody & Darken, 1989) models. The ad-

vantages of neural networks compared to the conventional

techniques, like LDA, is the ability to cope with data with

arbitrary nonlinear input–output relations and non-Gaussian

distributions. In the context of pattern classification, this also

means that the boundary between classes in the feature space

can be different from a linear one and are not restricted to a

particular type of nonlinearity. AnANN consists of a number

of elementary processing units called artificial neurons, which

work in parallel in a way inspired by the parallel information

processing in living brains. The desired input–outputmapping

of an ANN is realized via the so-called training algorithm

based on input–output examples (input patterns and desired

responses) from a representative training data set. In such a

way, anANN learns to approximate the distribution of data in

the training set and to generalize for unknown data outside of

the training set. The RBFNmodel is closely related to Gauss-

ian mixtures (Yiu, Mak, & Li, 1999) and approximates non-

Gaussian distributions with a weighted combination of

Gaussian basis functions. The MLP model is constructed of

two ormore layers of artificial neurons, each corresponding to

a logistic regression model (Hastie et al., 2001) capable of

linear classification. By combining such elementary classifiers

in layers, an arbitrary nonlinear boundary between classes can

be constructed. In ANNs, all layers of neurons except the

output layer are called ‘‘hidden layers.’’ AnRBFNalways has

one hidden layer of basis functions, whereas anMLP can have

a different number of hidden layers, usually one or two, rarely

more. We used an MLP model with one hidden layer because

of the relatively small size of our data set. Using only one layer

reduces the number of model parameters and thus guards

against overfitting that may result in poor generalization to

unknown data.

3. Memory-based classification. The KNN algorithm ismemory-

based in the sense that it has no model to fit and the classi-

fication result is determined as a majority vote of the k nearest

neighbors of the observation that is being classified (Cover &

Hart, 1967). The KNN model does not involve any training

other than assigning a ‘‘training’’ data set to the ‘‘memory’’ of

the classifier, from which the nearest neighbors are being se-

lected in the classification phase based on the distances from

the classified observation. Despite its simplicity, the KNN

algorithm is one of the most successful classification tech-

niques (Hastie et al., 2001). Like ANN, the KNN algorithm

can classify data with complex nonlinear boundaries between

classes in the feature space.

The Present Study

In the present study, we tested the applicability of feature selec-

tion, linear and nonlinear classifiers, as well as systematic cross-

validation (see Table 2) to automated emotion classification. To

this aim, we reanalyzed psychophysiological data from an emo-

tion elicitation study using film clips (Kreibig et al., 2007). This

data set is of particular interest for the present research question

as it consists of a test and retest within the same experimental

session with different stimulus material. In the previous study,

Kreibig et al. (2007) used a predictive discriminant analysis based

on 14 features. This approach achieved an average classification

accuracy of 84.5% with training data and 69.0% with validation

data using the leave-one-out approach, that is, when one obser-

vation at a time was removed from the training data set and was

used for testing. The data set consisted of 84 data points alto-

gether, collected from 28 subjects (recordings from another 6

subjects had missing values and were not included in that anal-

ysis). The data were averaged between two sets of three films

each, thus giving three data points for each subject. For the

present study, the reanalyzed data set contained 204 data points

coming from six film clips (three clips from two separate film sets)

for all 34 subjects, with missing values interpolated.

Method

Participants

Thirty-four healthy student volunteers (19 women), age 18 to 26

years, participated in the experiment. All participants provided
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Table 2. Types of Cross-validation

Known subject Unknown subject

Known stimulus
material

Subject- and stimulus-
dependent cross-
validation

Subject-independent
cross-validation

One sample representing
one emotion for a
particular participant is
left out at a time; the rest
of the data is used for
training of the classifier
and the left out sample
for validation of the
classifier.

In each iteration, all
measurements
corresponding to a
particular participant are
removed from the
training set and used for
validation.

Unknown
stimulus material

Stimulus-independent
cross-validation

Subject- and Stimulus-
independent cross-
validation

All measurements from
one of the two film sets
are used for training and
from the other film set for
validation.

The data set is divided
into two parts
corresponding to the two
film sets. Then, each of
the two parts is used for a
cross-validation, where
all measurements
corresponding to a
particular participant are
removed from the
training set and
validation is done with
the respective
measurements for the
same participant but
from the other film set.
Results from the two
runs are averaged.



written informed consent prior to the experiment and were paid

US$30.

Materials

Six 10-min film clips (two frightening, two sad, and two neutral)

were used to elicit fear, sadness, and a neutral emotional state.

Film clips were edited from the movies I Know What You Did

Last Summer and I Still Know What You Did Last Summer (for

fear), Steel Magnolias and John Q. (for sadness), and Alaska’s

Wild Denali (two different clips for a neutral emotional state).

Each clip was preceded by a 30-s audio introduction. For a de-

tailed description of the content of the film clips, see Kreibig et al.

(2007).

Startle was elicitedwith brief (50ms) bursts of 95 dB(A) white

noise (20–20,000 Hz), 0.1-ms rise/fall time (Lang, 1995), ad-

ministered binaurally by headphones, with a 60-s intertrial in-

terval (unpredictably varying). There were a total of 10 stimuli

per film and three stimuli per pre-film rest period.

Procedure

Data recording was conducted individually for each participant,

who was seated in a chair. After attachment of physiological

sensors and amplifier calibration, participants viewed the series

of six film clips, presented in a Latin square design between par-

ticipants. Films were preceded by 3-min rest periods, during

which participants were instructed to sit quietly. Immediately

after each film, participants’ retrospective feeling self-report to

the film clip were assessed (self-report results have been reported

in Kreibig et al., 2007). Finally, participants were disconnected

from monitoring devices, debriefed, reimbursed, and dismissed.

Physiological Measures

An SA Instruments (San Diego, CA) 12-channel bioamplifier

was interfaced with a Data Translation (Marlborough, MA)

DT3001 PCI 12-bit 16-channel A/D conversion board to a com-

puter, which sampled physiological channels at 400 Hz, except

for electromyography (EMG), which was sampled at 1000 Hz,

and impedance cardiography, which was sampled at 1200 Hz.

Recorded signals were analyzed and averaged for each film pe-

riod using an integrated set of biosignal analysis programs writ-

ten in MATLAB (Mathworks, Inc., Natick, MA; Wilhelm,

Grossman, & Roth, 1999; Blechert, Lajtman,Michael, Margraf,

&Wilhelm, 2006; see SPRSoftware Repository, http://www.spr-

web.org/). Table 3 provides an overview of the assessed physi-

ological measures. They represent a broad range of organismic

responding, including responses from the cardiovascular, elec-

trodermal, respiratory, and motor systems. Details of parameter

quantification are reported in Kreibig et al. (2007).

Data Reduction

Artifactual epochs were edited manually for each channel. Film

periods were subdivided into three intervals of equal length, av-

eraging 180 s, for each of which a mean score was calculated.

Likewise, the average of the 180-s baseline preceding each film

clip was calculated.

Missing data points were interpolated following the proce-

dure described by Stemmler (1989). Percentage of missing data

for individual physiological variables ranged from 9 to 33 of 816

conditions or 1.10% to 4.04% of total conditions recorded

(1.93% on average).

Reactivity scores were calculated by subjecting the data to a

modified Z-standardization within participants based solely on

the pooled within-conditions sums of squares (Stemmler, 1987).

Maximal reactivity from baseline was determined for each emo-

tion induction, resulting in one score per film clip. By quantifying

responses as maximal reactivity from baseline over three con-

secutive 3-min averages over the 10-min film clip, we strove to

combine advantages of increased reliability from averaging over

relatively long measurement intervals with increased sensitivity

to short-term reactivity changes (Ax, 1953). Determination of

maximal reactivity was guided by empirically based hypotheses

about direction of change (Kreibig et al., 2007) and confirmed by

inspection of waveforms. Briefly, the following algorithm was

used: For heart rate (HR) and systolic blood pressure (SBP),

reactivity was defined as maximum increase from baseline for the

fear condition, whereas maximum decrease was used for the sad

and neutral conditions. Conversely, for preejection period (PEP),

end-tidal carbon dioxide partial pressure (pCO2), and finger

temperature (FT), reactivity was defined as maximum decrease

frombaseline for the fear condition and asmaximum increase for

the sad and neutral conditions. Reactivity was defined as max-

imum increase from baseline for skin conductance level (SCL),

rate of skin conductance fluctuations (SRR), respiratory rate

(RR), general somatic activity (ACT), startle response magni-

tude (SM), musculus corrugator supercilii (CS), and musculus

zygomatic major (ZM) and as maximum decrease from baseline

for respiratory sinus arrhythmia (RSA) and tidal volume (Vt) for

all conditions. By subtracting the prior rest period from the film

mean score, standardized difference scores were determined

(additional detail is available in Kreibig, 2004). For each of 34
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Table 3. Assessed Physiological Channels, Computed Features, Abbreviations, and Units

Channels Features No. Abbr. Unit

Electrocardiography Heart rate 1 HR beats per min
Electrocardiography Respiratory sinus arrhythmia 2 RSA ms2

Impedance cardiography Preejection period 3 PEP ms
Blood pressure monitor Systolic blood pressure 4 SBP mmHg
Electrodermal activity Skin conductance level 5 SCL mS
Electrodermal activity Rate of skin conductance fluctuations 6 SRR fluctuations per min
Respiratory inductive plethysmography Respiratory rate 7 RR cycles per min
Respiratory inductive plethysmography Tidal volume 8 Vt ml
Capnography End-tidal carbon dioxide partial pressure 9 pCO2 mmHg
Temperature sensor Finger temperature 10 FT 1C
Piezo-electric sensor General somatic activity 11 ACT g
Eyeblink EMG Startle response magnitude 12 SM mV
Facial expression EMG Musculus corrugator supercilii 13 CS mV
Facial expression EMG Musculus zygomatic major 14 ZM mV

http://www.sprweb.org/
http://www.sprweb.org/
http://www.sprweb.org/
http://www.sprweb.org/
http://www.sprweb.org/
http://www.sprweb.org/


participants, six scores corresponding to each of the six film clips

were computed, giving 204 data points altogether.

Classification Analysis

The problem to be solved was to classify this data set into three

classes corresponding to the emotion that a particular film in-

duced (fear, sadness, and neutral). Our classification analysis was

performed for the five classification models introduced above

(LDA, QDA, MLP, RBFN, and KNN; see also subsection

‘‘Classification models’’ below for implementation details) with

the four different cross-validation types (see Table 2). The anal-

ysis consisted of the twomain steps of feature selection and cross-

validation:

1. Feature selection for four different types of cross-validation. At

this step, features providing the best classification accuracy

were selected based on the best performance of the respective

classification models at each of the cross-validation iterations

with the respective training data. The feature selection algo-

rithms were run inside the respective cross-validation loops

every time with different training data corresponding to the

current cross-validation iteration, that is, N times where N is

the number of cross-validation iterations (N5 2, 34, or 204,

depending on cross-validation type, for details see the sub-

section Cross-validation below). Thus, separate subsets of

selected features varying between the cross-validation itera-

tions were produced. Where applicable, additional structure

optimization was performed for the respective classification

models. The whole procedure was repeated for five models

and four different cross-validation types, that is, 20 times.

Afterward, 20 subsets of most frequently selected features

were determined from the results of feature selection, one

subset for each combination of the five models and four cross-

validation types.

2. Cross-validation with preselected 20 subsets of most frequent

features obtained from Step 1 with additional structure opti-

mization for classification models (where applicable) and best

model selection for the respective types of cross-validation.

Additional structure optimization was performed, because

feature subsets at this step remained constant for the entire

cross-validation, in contrast to Step 1. Estimates of classifi-

cation accuracy for five classification models with four cross-

validation types were obtained, and the best model for each of

the four cross-validation types was determined.

Below, we explain the algorithms andmodels that we used in our

analysis in Steps 1 and 2 for feature selection, classification, and

cross-validation.

Feature selection. To determine optimal feature sets for each

of the classification models, sequential feature selection algo-

rithms were used: sequential forward selection (SFS) and se-

quential backward selection (SBS). With SFS, the algorithm

starts with an empty set of features. A new feature is selected if

the model performs better after the inclusion of this feature (i.e.,

if there are fewer classification errors). The algorithm stops when

no improvement in model performance can be achieved or when

a maximum number of features are selected.

With SBS, the algorithm starts with a full set of features and

excludes them one by one if such exclusion results in improved or

the same model performance. The algorithm stops when no per-

formance improvement can be achieved or a minimum number

of features remain in the feature set.

In our analysis, the feature selection procedures were included

in the cross-validation loop as in Picard et al. (2001; for a sub-

stantiation of such an approach, see Zhang et al., 2006). Ac-

cording to this approach, feature selection in our computations

was done with the training data only and repeated as many times

as the number of iterations of cross-validation. For each model

and cross-validation, the two feature selection procedures, SFS

and SBS, were tried. Because the training data in each of the

cross-validation iterations is different, feature subsets produced

by feature selection procedures may also differ between cross-

validation iterations. After the cross-validation with feature se-

lection, we determined a subset of most frequently selected fea-

tures between all cross-validation iterations as the overall result

of the feature selection run: features selected by majority vote,

that is, in more than 50% of cross-validation iterations (relative

frequency450%), were included in this subset. A similar feature

selection procedure was performed for five classification models

and for four different cross-validation types described in Table 2.

Classification models. Classification models that were used in

our analysis are listed in Table 4. As in Kreibig et al. (2007), we

used LDA for pattern classification, and additionally QDA
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Table 4. Classification Models

Model
Standard

abbreviation
Abbreviation in
our analysis Structure optimization Notes

Linear Discriminant Analysis LDA L N/A, one discriminant function per class Linear class boundaries
Quadratic Discriminant Analysis QDA Q N/A, one discriminant function per class Quadratic class boundaries
Multilayer Perceptron MLP Mxx Number of units (neurons) in hidden layers

can vary
Arbitrary class boundaries can be
approximated by hyperplanes
defined by the parameters of
artificial neurons

Radial Basis Function Network RBFN Rxx Number of basis functions can vary Arbitrary class boundaries, data
distribution is approximated by a
weighted combination of Gaussian
basis functions

K-Nearest Neighbors KNN Kxx Number of nearest neighbors can vary Arbitrary class boundaries, no
training is required, pattern
classification is based on the voting
scheme by the majority of the
nearest patterns (neighbors)

Note: Models are specified as Mxx5MLP with xx hidden layer neurons, Rxx5RBFN with xx basis functions, Kxx5KNN with xx neighbors. For
LDA and QDA models structure optimization is not applicable. Models MLP and RBFN belong to the class of artificial neural networks.



(Hastie et al., 2001), MLP (Haykin, 1999), RBFN (Moody &

Darken, 1989), and the KNN algorithm (Cover & Hart, 1967).

Particularmodels and reasons for choosing themare explained in

the introduction above. Here we address some implementation-

specific details to ensure replicability.

Both LDA and QDA models contain no additional param-

eters that need to be adjusted outside of the classification algo-

rithm itself. TheMLP, RBFN, and KNNmodels in our analyses

have only one additional adjustable parameter that defines the

complexity of their internal structure, subsequently called ‘‘the

number of nodes.’’ By ‘‘nodes’’ we mean hidden layer neurons in

MLP, basis functions in RBFN, or ‘‘neighbors’’ in KNN. This

parameter needs to be chosen carefully. For ANN, too few nodes

result in poor performance on both the training and validation

data set because the model is too simple to capture the relations

between the input and output variables. On the other hand, too

many nodes result in overfitting. For KNN, too few nodes result

in too ‘‘noisy’’ classification whereas with too many nodes the

boundaries of classes become too ‘‘smooth.’’ In both cases the

performance of the classifier is degraded. Because the number of

nodes is an integer and has a limited range of possible values, it

can be easily optimized by exhaustive search. More details on

choosing the number of nodes are given at the end of this section

under the heading ‘‘Structure optimization.’’

For the LDA, QDA, and KNN classifiers we used our own

MATLAB implementation, whereas for the MLP and RBFN

models we chose the free MATLAB neural network toolbox,

NetLab (Nabney, 2003, 2004). The MLP model had the logistic

activation function in the hidden layer and the softmax activation

function in the output layer, which is a usual choice for classi-

fication problems. TheRBFNhadGaussian basis functions. The

MLP was trained with the scaled conjugate gradient algorithm,

and for the RBFN the training algorithm was expectation max-

imization (Nabney, 2004). The number of training epochs for

both the MLP and RBFN classifiers was 25. More information

on ANNs can be found in Haykin (1999).

Cross-validation. Because our data contain recordings of

emotions from a relatively large number of subjects (N5 34) and

two different sets of film stimuli with three types of emotions

each, we were able to simulate in our experiments all four pos-

sible combinations of cross-validation with known or unknown

subjects and stimulus material. See Table 2 for a description of

different types of cross-validation that were used to simulate

these four combinations. These four different types of cross-val-

idation were performed with all five classification models: LDA,

QDA, MLP, RBFN, and KNN.

As we mentioned in the introduction, among the four pre-

sented types of cross-validation, only the leave-one-out cross-

validation is usually encountered in the literature. In contrast to

many other studies, we paid special attention to testing different

classification approaches in settings with subject independence,

stimulus independence, and a combination of both.

Our leave-one-out cross-validation used for comparison is sim-

ilar to the usual approach, where one measurement is taken out of

the data set and used to validate the classification model or algo-

rithm trained with the rest of the data. This is done iteratively with

all measurements. With our data, this was a 204-fold cross-vali-

dation, as the data set contained 204 measurements. Whereas the

leave-one-out setting is the conventional approach, it is not very

useful for real-world applications because it does not provide es-

timates of classification accuracy with unknown subjects or with

unknown stimulus material (i.e., subject- and stimulus-dependent

cross-validation). In order to simulate subject-independent, stim-

ulus-independent, and the combination of both subject- and stim-

ulus-independent classification, we did the following.

For subject-independent cross-validation, we carried out a 34-

fold cross-validation removing all six measurements correspond-

ing to a particular subject for all film clips (two film sets with

three clips each) from the data set. The remaining 198 measure-

ments from the other 33 subjects were used for training the clas-

sifiers, and the data from the removed subject was used for

validation. Thus, this was subject-independent cross-validation

because the data set used for training did not contain any data

from any of the six film clips for the subject used for validation

and, vice versa, the data used for validationwere from the subject

that was completely removed from the training data set. This

procedure was repeated 34 times for each of the subjects in the

sample, and results from the 34 iterations were averaged. For a

substantiation of this approach, which is also called ‘‘leave-one-

subject-out,’’ see Esterman, Tamber-Rosenau, Chiu, and Yantis

(2010). In other domains, this approach is the generally accepted

choice for ensuring subject independence as opposed to the sub-

ject-dependent leave-one-out approach (see, e.g., Ho, Brown, &

Serences, 2009; Howard, Plailly, Grueschow, Haynes, & Gott-

fried, 2009; Zhao & Lu, 2005).

For stimulus-independent cross-validation, no subject inde-

pendence was assumed. We simulated the classification of un-

known stimulus material for known subjects. In this setting, the

data were divided into two halves, each containing 102 mea-

surements from one of the two sets of film clips of the three types

(fearful, sad, and neutral). The cross-validation was twofold:

First, the classifiers were trained with 102 measurements of the

first film set and validated against 102 measurements from the

second film set. Then the procedure was repeated using the sec-

ond film set for training and the first set for validation. Results

from these two iterations were averaged.

For subject- and stimulus-independent cross-validation, we as-

sumed subject and stimulus independence at the same time. The data

set was divided as in the previous case in two parts containing 102

measurements each and corresponding to two film sets. Then we

ran two 34-fold cross-validations in which three measurements

corresponding to a particular participant (from 1 to 34) were re-

moved from the training set, the training was based on the re-

maining 99 measurements, and the validation was carried out with

the respective three measurements for the removed participant but

from the other film set. The results from the two 34-fold cross-

validations were averaged. Thereby, we ensured that the classifi-

cation model or algorithm was validated using data from both a

subject and a film set that were not used during training.

Training and validation data were restandardized in each

cross-validation iteration to simulate a real situation where new

observations with unknown mean and standard deviation need

to be classified with a classification model based on the statistical

characteristics of the known training data only. The data stan-

dardization for each of the cross-validation iterations was done

as follows: First, means and standard deviations were computed

for the respective variables in the training set. Then the means of

the training data were subtracted from both the training and

validation data, and the results were divided by the respective

standard deviations of the training data.

Structure optimization. ForMLP, RBFN, andKNNmodels,

another external loop of structure optimization was executed in
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order to find the number of nodes that yields the highest clas-

sification accuracy for the validation data set. Thus, the cross-

validation for the respective classification models was iterated

with an increasing number of nodes, and the optimal number of

nodes was chosen based on classification accuracy. The mini-

mum number of nodes was 2 for MLP and 3 for RBFN and

KNN. The maximum number of nodes was 10 for MLP and 20

for RBFN and KNN. These numbers were chosen based on

several trial runs. Further increasing of the indicated upper

bounds on the number of nodes did not result in better classi-

fication models.

Information on Computational Complexity

The computations were performed in MATLAB v. 6.5 (The

MathWorks, Inc., Natick, MA) under Windows XP (Microsoft,

Redmond, WA) on a PC with 2 GB of RAM and an Intel Core

Duo T2500 CPU running at 2.0 GHz. The total execution time

was approximately 35 h for all combinations of five models, four

types of cross-validation, two types of feature selection, and with

structure optimization forMLP, RBFN, andKNN. On average,

one feature selection procedure took about 4 s. For each of the

LDA and QDA models, the feature selection procedures were

run 2 � (2041341212 � 34)5 616 times. Taking into account

structure optimization for the nonlinear models, the number of

feature selection runs for MLP was 616 � 95 5,544, and

616 � 185 11,088 for each of the RBFN and KNN models.

Thus, the total number of runs of the feature selection procedures

was 2 � 61615,54412 � 11,0885 28,952. The total execution time

of cross-validation with constant feature subsets was about 1 h

including structure optimization for MLP, RBFN, and KNN.

Results

Feature Selection

First, we determined optimal subsets of features for the four

different types of cross-validation shown in Table 2 using SFS

and SBS algorithms. Outcomes of thus selected features are re-

ported in Table 5. The quality of the feature selection was es-

timated based on the classification accuracies on the validation

data sets, whereas the selection of features in the respective fea-

ture selection procedures was driven by the accuracy on the

training set in each individual cross-validation run as described

above. Classification accuracies in Table 5 were computed as

averages of all cross-validation iterations for the respective mod-

els. In what follows, by ‘‘classification accuracy’’ we refer to that

of the validation data unless otherwise indicated.

Classification accuracy ranged between 66.2% (based on 13

features) and 79.4% (based on 7 features), and was highest most

often with the RBFN classifier (three times), followed by the

KNN and MLP classifiers (both two times), which co-occurred

with RBFN in a tie.

Feature subsets were determined separately in each of the

cross-validation iterations because the feature selection proce-

dures were run inside the cross-validation loop. The number of

selected features ranged between 5 and 14 (i.e., the complete

feature set). Features selected in more than 50% of cross-vali-

dation iterations aremarked in Table 5 with a cross. Only the best

results based on classification accuracy among the two feature

selection procedures SFS and SBS (designated by ‘‘F’’ and ‘‘B,’’

respectively) are shown. In some cases, the feature selection pro-

cedure did not improve the average classification accuracy for

training data; therefore all 14 features were selected. For such

cases, the best feature selection algorithm is designated by ‘‘N’’

(none).

Applying SBS most often resulted in the highest classification

accuracy with the selected feature subset, followed by the count

of N, that is, using the full feature set, and least often by applying

SFS. Out of 20 analyses run, the full feature set resulted in highest

classification accuracy nine times, a feature subset of equal to or

more than 10 features resulted in highest classification accuracy

four times, and a feature subset of equal to or less than 8 features

resulted in highest classification accuracy seven times. These

findings suggest that inmore than half of the cases a considerable

reduction of features used in classification is possible and

achieves better classification outcomes than the full feature set,

resulting in a less complex and thus sparser model.

Notably, in two cases, the same or similarly high classification

accuracies were obtained with different classifier methods based

on the full feature set or a significantly simplified feature subset:

for the subject-independent cross-validation, we found a classi-

fication accuracy of 77.5% forMLP with 9 hidden layer neurons

and 8 features and 77.9% for RBFNwith 10 basis functions and

14 features. Similarly, for the stimulus-independent cross-vali-

dation, we found a classification accuracy of 77.9% for both

RBFN with 9 basis functions and 14 features and KNN with 17

neighbors and 5 features. These results point to the importance of

considering the application context and classifier used when try-

ing to determine the appropriate number of features for classi-

fication.

It can also readily be seen that there are five common features

that were selected in all runs for all models: PEP, SRR, pCO2,

CS, and ZM.

Cross-validation with Constant Feature Subsets

As was noted above, for practical applications it is reasonable to

have a constant subset of features. Therefore we used the feature

subsets selected by feature selection (as identified in Table 5), the

full set of 14 features, and the common 5 features (PEP, SRR,

pCO2, CS, and ZM) to determine which feature subsets provide

the best classification accuracy and with which models. Results

are reported in Table 6. Table 6a contains results of cross-val-

idation with the most frequent features (those encountered in

more than 50% of feature selection results in Table 5) for each of

the models separately. Table 6b contains results with the five

common features for all models from Table 5 (PEP, SRR, pCO2,

CS, and ZM). Table 6c contains results with the full set of all 14

features. This information is used as a basis for comparison in-

dicating the amount of improvement in classification accuracy

that can be achieved with feature selection, given the added

complexity in computation, on the one hand, but the outlook of a

sparser model (and thus the need to assess fewer parameters) on

the other hand.

In all the runs with constant feature subsets (results shown in

Table 6), an external structure optimization loop was executed

for the MLP, RBFN, and KNN models. This resulted in a

different optimal number of nodes for these modes compared to

those shown in Table 5, where the feature subsets varied among

cross-validation iterations because a feature selection procedure

was executed inside the respective cross-validation loops. As can

readily be seen, there is little difference in accuracy between the

previous analysis reported in Table 5 and the present one re-

ported in Table 6, that is, with only five features it is possible to

classify the three emotion states quite well.
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Statistical Significance of Classification Results

Classification results were highly significantly better than chance

for all the five models in all cross-validation runs; therefore the

respective significance levels are not shown separately in Table 6.

T tests with 33 degrees of freedom against the expected average

classification accuracy of a random classifier (33.3%) resulted in

p values smaller than 10� 8 for all the models in all runs. Similar

levels of significance of the classification results (po10� 9) with

all the fivemodels in all runs were indicated by p values computed

with Huberty’s (1994) method as in the work by Kreibig (Krei-

big, 2004; Kreibig et al., 2007). For these tests, classification

results were averaged for each of 34 subjects, giving 34 numbers

corresponding to average classification accuracy with the re-

spective classification models.

Comparison of Classification Models

We used the Wilcoxon matched pairs test (Wilcoxon, 1945) to

find significant differences between classification models using

the same 34 values of average classification accuracy as in sig-

nificance tests of classification results. These 34 numbers of the

respective models were compared pairwise among different mod-

els (for the same cross-validation type) as dependent samples.

We also compared models of the same cross-validation type

with different feature sets: the models with the most frequent

features to the respective models with the five common features

and to the models with the complete set of 14 features, as well as

the models with the five common features to the models with 14

features.

As can be seen from the results in Table 6, the nonlinear

models (MLP, RBFN, and KNN) were generally better than the

LDA classifier. However, improvement was only marginally

significant (p � .063) when nonlinear models with higher clas-

sification accuracy were compared to LDA. Similarly, differ-

ences reached onlymarginal significance (p � .094) whenmodels

with five common features were compared to the respective

models with the most frequent features found with feature se-

lection algorithms.

Best Classification Models

Details of the best classification results for the four different types

of cross-validation with preselected feature sets across feature

selection and classification methods are shown in Table 7. The

KNN model was the best for both subject- and stimulus-depen-

dent and subject- and stimulus-independent classification. The

RBFN model was the best for subject-independent classification

(the KNN model provided the same accuracy but with 11 fea-

tures, whereas the RBFNmodel was sparser, being based on only

5 features), and the simplest LDA model was the best for stim-

ulus-independent classification. For subject-independent and

subject- and stimulus-independent classification, the same small-

est subset of five common features provided the best results.

It is interesting to note that the correct classification rate for

sadness was 81% for the subject- and stimulus-dependent cross-

validation (upper left corner of Table 7) and 69%–70% for the

other types of cross-validation. For fear, the highest classification

accuracy was achieved with stimulus-independent cross-valida-

tion (88%), whereas other cross-validation types resulted in

classification accuracy between 78% and 82%. For neutral

emotional states, the difference in classification accuracy between

different types of cross-validation was rather small.

Complementary Analysis without Data Interpolation for Missing

Values

To check the impact of data interpolation for missing measure-

ments, we did the same analyses with five classification models

and four cross-validation settings but with data containing only

28 subjects without any missing values in the measured variables

(as was done in Kreibig et al., 2007). This data set contained 168

data points instead of 204 for 34 subjects. Average classification

accuracy for best models ranged from 73.2% (KNN, subject-

and stimulus-independent cross-validation) to 80.4% (KNN,

subject- and stimulus-dependent cross-validation), that is, it was

very close to that achieved for the data set with 34 subjects and

interpolated missing values. Interestingly enough, the LDA

model was the best for stimulus-independent cross-validation,

just as it was for the data set with 34 subjects. In the other three

cross-validation settings, the nonlinear models provided better

results than LDA. These additional results confirmed that nei-

ther the percentage ofmissing data in the data set with 34 subjects

nor the data interpolation technique qualitatively impacted our

main findings.

Discussion

In the present study, we tested the applicability of three im-

provements and refinements of pattern classification analysis:

automated feature selection, various types of emotion classifiers,

and systematic cross-validation. We demonstrated that three

emotional states (fearful, sad, and neutral) can be successfully

discriminated based on a remarkably small number of psycho-

physiological variables, by most classifiers, and independently of

the stimulus material or of a particular person. For stimulus-

independent classification, the best model used only eight vari-

ables and achieved a classification accuracy of 79%. For both the

subject-independent as well as for the subject- and stimulus-in-

dependent classifications, only five variables were necessary to

achieve a classification accuracy of 79% and 77%, respectively.

Highest classification accuracy (82%) was achieved for the sub-

ject- and stimulus-dependent model, based on a considerably

reduced feature set of only seven variables. The relatively small

decrease in classification accuracy from subject- and stimulus-

dependent cross-validation over subject-independent cross-val-

idation and stimulus-independent cross-validation to subject-

and stimulus-independent cross-validation is noteworthy. Thus,

removing all information related to a particular person and a

particular stimulus context from the data set still achieved com-

parable and strikingly high classification accuracy.

For all the four cross-validation types, the classification ac-

curacy was higher than that reported in the previous study by

Kreibig et al. (2007). Whereas in the previous study, sadness was

the emotion condition less often correctly classified (64.3%),

followed by fear (67.9%) and neutral (75.0%), in the present

study, lowest classification accuracy was 69.1% up to 80.9% for

sadness, 79.4% to 83.8% for neutral, and 77.9% to 88.2% for

fear. This marks a considerable improvement of 4.4% to 8.8%

for neutral, 4.8% to 16.6% for sadness, and 10% to 20.3% for

fear in classification accuracy based on a rigorous feature selec-

tion and comprehensive cross-validation. Although different ap-

proaches for data reduction and response quantification were

used in the present study (maximum reactivity of three 3-min

means over the 10-min film clip) and the previous study by

Kreibig et al. (2007; mean reactivity over the 10-min film clip),

Affective computing approach to emotion specificity 917
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still very similar results were obtained. This outcome demon-

strates good generalizability of results based on different re-

sponse quantification.

Linear versus Nonlinear Classifiers

It should be noted that our analyses showed only small im-

provements of the nonlinear classifiers (QDA,MLP, RBNF, and

KNN) over the linear classifier (LDA). There are three possible

reasons for this outcome:

1. Ceiling effect. The present data set may reflect a ceiling effect,

because the base model already has very good classification

accuracy, which may be due to the small number of different

emotions, that is, threeFfear, sadness, and neutralFin the

present analysis.

2. Suboptimal feature selection. The analyses have been carried

out on an already selected variable set, which was selected a

priori to present an as diverse as possible feature set that is

representative of different processes in autonomic and respi-

ratory regulation. The feature selection performedmight thus

not have been as powerful as possible. Applied to a more

complex feature set of many moreFand possibly highly cor-

relatedFfeatures, the feature selection approachmay be even

more informative. It is also known that simple sequential

feature selection algorithms (SFS and SBS) effectively make

univariate decisions on inclusion/exclusion of features for ap-

plication in multivariate models, not taking into account the

interdependencies of features (Pudil, Novovièová, & Kittler,

1994). Therefore, it might be necessary to use more sophis-

ticated algorithms, such as sequential floating feature selec-

tion (Picard et al., 2001; Pudil et al., 1994), which might

provide better feature subsets. However, these methods are

computationally much more demanding and slower than

simple sequential algorithms because they contain an addi-

tional nested loop of feature selection.

3. Small data set. Although our data set was collected from a

larger number of subjects compared to most other studies, it

still contained only 204 data points. Such a sample size might

have been insufficient to reveal the advantages of such non-

linear classification models as neural networks in comparison

to the conventional linear discriminant analysis, and was

likely to result in at least a moderate degree of overfitting with

the more complex models (i.e., QDA, MLP), whereas this did

not seem to be a problem for the other models (i.e., LDA,

RBFN, and KNN). This might have been most critical for

stimulus-independent cross-validation and for the combina-

tion of both subject- and stimulus-independent cross-valida-

tion, where the training sets included only 102 and 99 data

points, respectively. Therefore, the simplest models per-

formed best (LDA with 8 features and KNN with K5 7

and 5 features). The overall poor performance of QDA was

also most likely due to the overfitting effect because the QDA

model contained three estimated covariance matrices instead

of one with LDA (Hastie et al., 2001).

Nevertheless, for three of the four different cross-validation

types, the best classification results were achieved with nonlinear

models, and in only one case did the conventional LDA ap-

proach perform best, namely, for stimulus-independent cross-

validation (see Table 7). Besides that, the nonlinear models were

systematically better than the linear ones in all four cross-val-

idation settings with five common features, PEP, SRR, pCO2,

CS, and ZM (Table 6b). That is, the nonlinear models were able

to provide the same or a higher level of classification accuracy

with a smaller number of input variables. Thus, a fearful, sad,

and neutral state can be reliably discriminated using a remark-

ably small set of physiological measures of cardiac, electrode-

rmal, respiratory, and facial muscular activity. For theoretical

considerations, this finding provides further support to the no-

tion of physiological emotion specificity. For real-world appli-
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Table 7. Best Classification Results with Preselected Feature Subsets for the Respective Cross-Validationa

Subject- and stimulus-
dependent cross-validation

Subject-independent
cross-validation

Stimulus-independent
cross-validation

Subject- and stimulus-independent
cross-validation

Model K17S R12C LS K7C
Acc. � SD (%) 81.9 � 17.1 78.9 � 13.8 78.9 � 17.6 77.5 � 20.1
Fear 80.9 82.4 88.3 77.9
Sadness 80.9 70.6 69.1 70.6
Neutral 83.8 83.8 79.4 83.8

Selected features Selected features Selected features Selected features

HR
RSA
PEP x x x x

SBP x x
SCL
SRR x x x x

RR
Vt
pCO2 x x x x

FT x x
ACT x
SM
CS x x x x

ZM x x x x

No. Feat. 7 5 8 5

aFive common features for all models are shown in bold.



cations of HCI, this finding translates to a smaller number of

sensors needed for discriminating these emotions and, conse-

quently, lower cost, higher user comfort, lower subject reactivity

to the measurement context, and thus higher reliability.

Taken together, these results suggest three central outcomes:

First, feature selection can identify a considerably reduced subset

of variables that performs extremely well on the emotion classi-

fication task. Second, compared to nonlinear classifiers, linear

classifiers perform remarkably well on discriminating fearful, sad,

and neutral states. It may thus be concluded that alternative

nonlinear classification procedures are often not necessary for the

specific task of discriminating a small subset of emotions. Third,

either of the cross-validation strategies captures the magnitude of

physiological emotion specificity well. Still, as a central tenet of

generalizability theory (Cronbach, Gleser, Nanda, & Rajarat-

nam, 1972) holds that the facets across which generalizability is

sought should be taken into account, classification accuracy de-

creases from subject- and stimulus-dependent cross-validation

over subject-dependent or stimulus-dependent cross-validation to

subject- and stimulus-independent cross-validation. Thus, by ap-

plying the three aspects outlined here of feature selection, classifier

type, and cross validation to pattern classification analysis, im-

portant improvement and refinement of results can be expected.

Limitations and Future Directions

It is an important question how the results reported here will

generalize. The present study is but a first conceptual step to

systematically investigating the complex structure of psycho-

physiological emotion specificity. We thus had tomake a number

of limiting decisions and selections in the experimental design.

First, the type and number of emotions considered in the present

data set were restricted to three conditionsFfear, sadness, and a

neutral emotional stateFwith two of the conditions representing

negative, withdrawal-related emotions. Future research should

strive to apply these methods to data sets that include a larger

number of emotion conditions and thus have a lower a priori

chance classification rate of, for example, 25% (for four condi-

tions) to 14% (for seven conditions). In addition, it would be

desirable for future research to have emotion conditions varied

on several dimensions, such as basic motive features of behavior

(valence and arousal: Bradley & Lang, 2000; behavioral ap-

proach and avoidance: Carver, 2004) or appraisal processes (in-

cluding intrinsic pleasantness, motive congruence, and coping

potential; Frijda, 1986; Scherer, 2009).

Second, our analysis addressed subject- and stimulus-(in)de-

pendence in cross-validation for classification analysis. Still, the

sample size of our study was relatively small, and demonstration of

replication of our results will be essential. As a result of the limited

sample size, participants were drawn from a narrow age range;

social backgrounds and cultural origin were also restricted. To

evaluate whether a truly subject-independent system can be devel-

oped, it will be important for future studies to include participants

from diverse social and cultural backgrounds as well as of different

age groups, accounting for the diverse composition of our society.

Similar limitations are true for the stimulus material: Our

selection of film clips was limited to two per emotion condition,

andmorewould be desirable. Although film clips were selected to

vary by emotion, they additionally differed in ways that we did

not control, such as brightness, sound parameters, stimulus

complexity, and thematic development. These additional aspects

of between-emotion stimulus differences will need further exam-

ination.

It is, furthermore, noteworthy that emotional situations may

vary on yet other features than the stimulus dimension consid-

ered here, such as the induction context (e.g., film, imagery, or

music) or activity context (e.g., sitting, standing, moving). To

what extent context independence of emotion classifiers can be

found under varying stimulus conditions will be an important

topic for future research.

Finally, whereas the present study identified the physiological

parameters PEP, SRR, pCO2, CS, and ZM to be important for the

discrimination of fear, sadness, and a neutral state, these param-

eters do not need to be discriminative of other emotion contrasts.

Stemmler (2004), for example, reported that HR, SBP, SRR, and

FT were not discriminative for the emotion contrast of fear and

anger.Rather, he found cardiac output, total peripheral resistance,

and respiration rate to be fear specific and diastolic blood pressure,

somaticmotor activity, and facial temperature to be anger specific.

Yet other physiological parameters, such as RSA, may be impor-

tant for discriminating appetitive from defensive emotions. It will

be an important task for future research to study such emotion-

specific physiological discriminations in more detail.

We strongly encourage other researchers in this area to subject

their data sets to these new methods to confirm and extend their

utility. Applying the classification techniques described in the

present article to other comprehensive data sets will more real-

istically model the real application context of these classifiers.

With a larger and more diverse data set, it can also be expected

that nonlinear classification techniques, such as neural networks,

will provide significantly better results in comparison with the

conventional discriminant analysis, first of all in terms of statis-

tical significance of comparisons between the nonlinear models

and LDA. Generalization of the results of the present study to a

more varied data set, including ambulatory daily life settings

(Rosenfield et al., 2010; Wilhelm & Grossman, 2010; Wilhelm,

Pfaltz, & Grossman, 2006), is, moreover, of significant interest

for practical implementation in user- and context-independent

HCI systems with a minimum number of sensors and high ac-

curacy in emotion recognition.

Different cross-validation settings should also be considered

in future analyses, such as splitting the data set for subject-in-

dependent cross-validation in a different way, for example, a

two- or a fivefold split. This would allow researchers to test the

performance of the classification models with a larger number of

unknown subjects whose data were not included in the training

set of the classifier. However, such a split would require more

data to avoid overfitting, and, second, it should be remembered

that increasingN in anN-fold cross-validation theoretically leads

to a higher variance of the estimated accuracy and to lower bias

and vice versa (Hastie et al., 2001).

The present research has important implications for future

studies on emotion classification. We here demonstrated the im-

portance of a stringent feature selection, considering various

forms of classifiers, and systematic cross-validation that ac-

knowledges both subject and situation dependence of physio-

logical emotion responses. Although feature selection can afford

a classification model that uses a smaller number of measures, at

the same or better classification accuracy, cross-validation will

ensure generalization of classifiers to unknown individuals and

unknown stimuli. Future research should aim to integrate these

concepts into a programmatic analysis of emotion classification

problems, using peripheral psychophysiological measures pre-

sented here and expanding this approach to electrocortical and

functional magnetic resonance imaging data.

920 V. Kolodyazhniy et al.
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