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Abstract

This supplemental appendix provides some auxiliary materials for "On Standard Inference

for GMM with Seeming Local Identi�cation Failure" (Lee and Liao, 2014; cited as LL in this

appendix).

The notation in this appendix is consistent with that in LL. We continue to use DR to denote

Dovonon and Renault (2013). Throughout the appendix, C denotes some generic �nite positive

constant; k�k denotes the Euclidean norm; A0 denotes the transpose of a matrix A; �max(A) and
�min(A) denote the largest and smallest eigenvalues of a matrix A; respectively; for any square

matrix A, A � 0 means that A is a positive semi-de�nite matrix; for any positive integers k1 and

k2, Ik1 denotes the k1 � k1 identity matrix and 0k1�k2 denotes the k1 � k2 zero matrix; A � B

means that A is de�ned as B; an = op(bn) means that for any constants �1; �2 > 0, there is

Pr (jan=bnj � �1) < �2 eventually; an = Op(bn) means that for any � > 0, there is a �nite constant

C� such that Pr (jan=bnj � C�) < � eventually; for any two sequences an and bn, we use an . bn

to denote that an � Cbn where C is some �xed �nite positive constant; �!p�and �!d�denote

convergence in probability and convergence in distribution, respectively; and w.p.a.1 abbreviates

with probability approaching 1.

1 GMM Inference in Common CH Factor Model

In this Section we investigate new GMM estimation and tests for the common CH features proposed

in LL. Following Assumption 3.5 and 3.6 in LL, we explicitly use parameter space �� such that

�� =
�
�1; : : : ; �n�1; 1�

Xn�1

i=1
�i

�0
=
�
�0; 1�

Xn�1

i=1
�i

�0
= G2� + ln:
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To observe the moment conditions in (2.4) of LL for the common CH model, note that

mt (�) =

"
 t (�)

gt (�)

#
=

"
(zt � �z)

�
�0�Yt+1Y

0
t+1��
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;

and E [mt (�0)] = 0.

To introduce the feasible moment conditions, we replace the nuisance parameter �z by its

consistent estimator �z = T�1
P
zt so
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" b t (�)bgt (�)
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Strictly speaking
�
 ̂t (�) ; bgt (�)� are triangular arrays hence � ̂t (�) ; bgt (�)� = � ̂t;T (�) ; bgt;T (�)�.

However, standard CLT for these triangular arrays will hold since it is easy to show
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Note that
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and the last term is
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Therefore
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In an exactly same way,
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To keep notation simple, we use m̂t (�) =
�
 ̂t (�)

0 ; bgt (�)0�0 rather than array notation unless any
confusion arises.

Assumption 3.4 in LL and CLT for martingale di¤erence sequences
�
�00� Yt+1Y

0
t+1�

0
�;Ft

	
t�1 based

on the common feature �0 essentially deliver the following limit theory.

Corollary 1.1 Under Assumptions 3.1-6 in LL,

T�
1
2

TX
t=1

m̂t (�0) = T�
1
2

TX
t=1

"
 ̂t (�0)bgt (�0)

#
!d N (0;
m) (1.1)

where the long-run variance 
m = limT!1 V ar
h
T�

1
2
PT

t=1 m̂t (�0)
i
can be partitioned as


m =

 

 
 g


g 
g

!
: (1.2)

Moreover,

T�1
TX
t=1

@bgt (�0)
@�

= E

�
@gt (�0)

@�

�
+ op(1) = H+ op(1) (1.3)

Corollary 1.1 with notation of (1.1), (1.2) will be used throughout this Section1. Note that

H (�0) is free of �0 so H (�0) = H.

1.1 GMM Estimation and Limit Theory

In this subsection, the weight matrix Wj;T for j = m; g or g� are random weight matrix with

probability limits Wj for j = m; g or g�, respectively, hence Wm;T =Wm + op(1) and so on.

1Under the common feature �0, it is clear that 
 = 
 (�0) = E[(zt � �z) (zt � �z)
0 f(�00Yt+1)2 �

E[(�00Yt+1)
2
]g2] as given in Corollary 3.1 of DR. Similar expressions for 
 g and 
g can be easily obtained.
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Using all the moment conditions m̂t (�) = ( ̂
0
t (�) ; ĝ

0
t (�))

0, we de�ne the stacked/full GMM

estimator.

De�nition 1.1 The Full GMM estimator is de�ned as

b�m;T = arg min
�2��

"
T�1

TX
t=1

m̂t (�)

#0
Wm;T

"
T�1

TX
t=1

m̂t (�)

#
(1.4)

where Wm;T is now H (p+ 1)�H (p+ 1) weight matrix.

We next consider using the Jacobian-based moment restrictions only, hence (3.9) in LL.

De�nition 1.2 The Jacobian GMM estimator is de�ned as

b�g;T = arg min
�2��

"
T�1

TX
t=1

ĝt(�)

#0
Wg;T

"
T�1

TX
t=1

ĝt(�)

#
(1.5)

where Wg;T is now Hp�Hp positive de�nite weight matrix.

Finally, the modi�ed GMM estimator b�g�;T based on the modi�ed moment functions is de�ned.
De�nition 1.3 The Modi�ed GMM estimator is de�ned as

b�g�;T = arg min
�2��

"
T�1

TX
t=1

bg ;t(�)
#0
Wg�;T

"
T�1

TX
t=1

bg ;t(�)
#

(1.6)

where bg ;t(�) = gt(�)� b
g ;T b
�1 ;T t(b�g;T ) and Wg�;T = b
g;T � b
g ;T b
�1 ;T b
 g;T .
We present the limit theory of the newly suggested estimators.

1.1.1 Consistency

For consistency of b�m;T , denote
QT (�) = �

T�1
TX
t=1

m̂t (�)


WT

= �
"
T�1

TX
t=1

m̂t (�)

#0
WT

"
T�1

TX
t=1

m̂t (�)

#
and Q (�) = �kE [mt (�)]kW = � [mt (�0)]

0W [mt (�0)]

by random and nonstochastic criterion function as in standard Extremum Estimators, respectively.

Thanks to the polynomial structure of the moment restrictions in common CH factor model, uniform

consistency of T�1
PT

t=1 m̂t (�) over � directly follows (as pointed out by DR as well). Together

with the identi�cation condition given in Section 2, the standard consistency results of extremum

estimators (see e.g., Hayashi (2000, Section7)) hold so we have b�m;T = �0+op(1). Similar arguments

hold for the other two estimators, thus consistency for all three estimators is obtained.
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Proposition 1.1 Under Assumptions 3.1-6 in LL, b�m;T ;b�g;T and b�g�;T all converge to �0 in prob-
ability.

1.1.2 Rates of Convergence

We now discuss how to recover a regular
p
T -consistent estimator for �0 in our methods.

For simplicity, let us consider n = 2; p = 1 (two assets with one common feature) with the

normalization so (�0; 1� �0) is a unique common feature. Assume we use one instrument (H = 1).

Then Corollary 1.1 provides
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1
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t=1

"
 ̂t (�0)
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#
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=) N (0;
m) ; (1.7)
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1
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#
=

"
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H

#
+ op(1); (1.8)

and
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= 0

#
=

"
H
0

#
+ op(1); (1.9)

where @3 ̂t(�0)

@�3
= 0 comes from the fact that  ̂t is the second order polynomial.

With any given consistent estimator �̂, let v = aT

�
�̂ � �0

�
where the normalizing sequence

aT ! 1 will be speci�ed below. The stabilizing order of magnitude aT under the given limit

theory will enable us to �nd the rate of convergence of the given consistent estimator �̂.

GMM estimation in DR corresponds to the method of moments (one parameter with one mo-

ment restriction) based on T�1
PT

t=1  ̂t (�) with the �rst order condition

1p
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t=1

 ̂t
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�̂T
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From the second order Taylor expansion with a mean value ��T between �0 and �̂T ;
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�
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and from (1.7) and (1.8), T�
1
2
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t=1
@ ̂t
@� (�0) = Op(1) and T�1
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@2 ̂t
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�
��T
�
= Op(1) so aT = T 1=4

is the correct order. In this case

op(1) =
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 ̂t (�0) +
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1
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��T
�)

v2

5



and

v2 =
T 1=4 ��̂T � �0�2 = 2H�1 1p

T

TX
t=1

 ̂t (�0)

!
+ op(1) =) N

�
0; 4H�1
��

�
giving

�̂T � �0 = Op
�
T�1=4

�
as given in Proposition 3.1 of DR.

Full GMM based on T�1
PT

t=1 m̂t (�) is over-identi�ed (one parameter with two moment re-

strictions) in this case. The rigorous �rst order condition and derivation will be given in (1.10) and

proof of Theorem 1.2 below. To present the idea, we symbolically use the following analogy:
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1p
T

TX
t=1

m̂t
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1
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v
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TX
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m̂t (�0)+
1

aT
p
T

TX
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1

a2T
p
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�
��T
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v2:

From (1.7), (1.8) and (1.9), T�1
PT

t=1
@m̂t
@� (�0) = Op(1) and T�1

PT
t=1

@2m̂t
@�2

�
��T
�
= Op(1) so aT =

T 1=2 is the correct order. In this case

op(1) =
1p
T

TX
t=1

m̂t (�0) +
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@ĝt(�0)
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v

and
�̂T � �0 = Op

�
T�1=2

�
giving

p
T -consistency.

In sum, by using T�1
PT

t=1

�
 ̂t (�) ;

@ ̂t(�)
@�

�0
instead of T�1

PT
t=1  ̂t (�) ; the term of degree 1

(Jacobian term) in Taylor expansion becomes Op(T ) rather than Op(T 1=2) so T 1=2-rate of conver-

gence is achieved rather than T 1=4-rate. The Jacobian-GMM estimator uses T�1
PT

t=1
@ ̂t(�)
@� so the

term of degree 1 has the same order of magnitude as Full-GMM (T�1
PT

t=1
@2 ̂t(�0)

@�2
= Op(1) from

(1.8). By construction, the term of degree 1 of the Modi�ed GMM estimator is same as that of the

Jacobian GMM so they share the same
p
T -rate of convergence. Generalization to any p = n � 1

with H � p is straightforward with vectorization, so the following rate of convergence is obtained

for all three estimators.

Proposition 1.2 Under Assumptions 3.1-6 in LL, b�m;T ;b�g;T and b�g�;T are pT -consistent estima-
tors for �0.

1.1.3 Asymptotic Normality

We present asymptotic distributions of all three estimators in this subsection. Thanks to the rank

condition proved in Lemma 3.2 in LL and
p
T -consistency, all proofs for asymptotic distributions

become standard.

The Jacobian-GMM estimator has a closed from solution as given in (3.9) in LL. To see this,

using �� = G2� + ln:

 ̂t (�) = (zt � �z)
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0
t+1��
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hence
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It is now easy to see that
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We have the following closed form expression after some straightforward algebra:

T 1=2
�b�g;T � �0� = � �H0TWg;THT

��1H0TWg;T

"
T�1=2

TX
t=1
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Note that from Law of Large Number under Assumption 3.4 in LL,
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#
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The following theorem is proved using the Slutsky Theorem.

Theorem 1.1 Under Assumptions 3.1-6 in LL, the Jacobian-GMM estimator b�g;T satis�es
T 1=2

�b�g;T � �0�!d N (0;��;g) :
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where ��;g� (H0WgH)�1H0Wg
gWgH (H0WgH)�1. With the choice of Wg;T = 
̂
�1
g;T = 


�1
g + op(1);

we have

��;g =
�
H0
�1g H

��1
:

To derive the asymptotic distributions of the full GMM estimators, note that b�m;T satis�es the
�rst order condition:24T�1 TX
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350Wm;T

"
T�1

TX
t=1

m̂t

�b�m;T�# = 0: (1.10)
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"
0

H

#
:

Theorem 1.2 Under Assumptions 3.1-6 in LL, the full GMM estimator b�m;T satis�es
T

1
2 (b�m;T � �0)!d N (0;��;m) :

where ��;m� (H0Wm;22H)�1M 0
�Wm
mWmM� (H0Wm;22H)�1, and Wm;22 denotes the last Hp�Hp
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̂
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�
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:

Proof. By the consistency of b�m;T and the mean value theorem,
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where �̂1m;T denotes values between b�m;T and �0. Combined with the �rst order condition of (1.10),

0 =

24T�1 TX
t=1

@m̂t

�b�m;T�
@�0

350Wm;T

"
T�1

TX
t=1
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+

24T�1 TX
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�
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Using the consistency of b�m;T and LLN, we get24T�1 TX
t=1

@m̂t

�b�m;T�
@�0

350Wm;T

"
T�1

TX
t=1

m̂t (�0)

#
(1.12)

= M 0
�Wm

"
T�1

TX
t=1

m̂t (�0)

#
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� 1
2 )

w.p.a.1.

Similarly, we have 24T�1 TX
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�
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t=1
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�
�̂1;T

�
@�0

35
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where the last equality uses

M� =
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@�0
=

"
g (�0)

H (�0)

#
=

"
0

H

#
;

and Wm;22 denotes the last Hp �Hp submatrix of Wm. As H has full column rank and Wm;22 is

positive de�nite, we see that H0Wm;22H is invertible. Hence w.p.a.1, we can combine the results in
(1.11), (1.12) and (1.13) to get

T
1
2 (b�m;T � �0) = �H0Wm;22H+op(1)

��1
M 0
�Wm

"
T�

1
2

TX
t=1
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#
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which together with (1.1) and the Slutsky Theorem implies the claimed result.
From Theorem 1.2, it is clear that the choice of the optimal weight matrix Wm;T is such that

Wm;T = 
̂
�1
m = 
�1m + op(1), hence

T
1
2

�b�m;T � �0�!d N
�
0;
�
H0
�

�1m

�
22
H
��1�

where
�

�1m

�
22
is the last Hp�Hp submatrix of 
�1m :

To compare the relative e¢ ciency gain of full GMM estimator b�m;T to b�g;T , �rst note that
��;g =

�
H0
�1g H

��1
and �


�1m
�
22
= (
g � 
g 
�1 
 g)

�1;

9



so
�

�1m

�
22
� 
�1g hence H0

�

�1m

�
22
H � H0
�1g H, or equivalently,�

H0
�

�1m

�
22
H
��1 � �H0
�1g H��1 :

Using more valid moment conditions improves e¢ ciency in spite of its �rst order degeneracy. From

the above discussion, we see that the full GMM estimator b�m;T is more e¢ cient than b�g;T . In many
applications, however, b�g;T will be computationally attractive.

This observation motivates the introduction of Modi�ed GMM �̂g�;T in De�ntion 1.3, whose

asymptotic distribution is given below. It combines the advantages of the both estimators b�m;T
and b�g;T as explained in LL. The solution using the closed form expression is analogous to that

of b�g;T , so it is omitted. We provide a proof that can be used in the case of modi�ed moment
conditions.

Theorem 1.3 Under Assumptions 3.1-6 in LL, the modi�ed GMM estimator �̂g�;T satis�es

T 1=2
�
�̂g�;T � �0

�
!d N

�
0;
�
H0
�

�1m

�
22
H
��1�

:

with the choice of WT =
\�
�1m �22.

Proof. From the �rst order condition24T�1 TX
t=1

@ĝt

�
�̂g�;T

�
@�0

350Wg�;T

"
T�1

TX
t=1

ĝt

�
�̂g�;T

�
� b
g ;T b
�1 ;T

 
T�1

TX
t=1

 ̂t

�b�g;T�!# = 0
and the mean value theorem gives24T�1 TX

t=1

@ĝt

�
�̂g�;T

�
@�0

350Wg�;T

24T�1 TX
t=1

@ĝt

�
�̂1g�;T

�
@�0

35��̂g�;T � �0�

= �

24T�1 TX
t=1

@ĝt

�
�̂g�;T

�
@�0

350Wg�;T

"
T�1

TX
t=1

ĝt (�0)� b
g ;T b
�1 ;T
 
T�1

TX
t=1

 ̂t

�b�g;T�!#

where �̂1g�;T denotes values between �̂g�;T and �0. From the proof of Theorem 1.1 and 1.2,

T 1=2
�
�̂g�;T � �0

�
= �

�
H0
�

�1m

�
22
H
��1H0 �
�1m �22

"
T�1=2

TX
t=1

h
ĝt (�0)� b
g ;T b
�1 ;T  ̂t �b�g;T�i

#
+ op(1)

= �
�
H0
�

�1m

�
22
H
��1H0 �
�1m �22

"
T�1=2

TX
t=1

h
ĝt (�0)� b
g ;T b
�1 ;T  ̂t (�0)i+ op(1)

#
+ op(1)

where the last equality holds because (1.1),
p
T -consistency of b�g;T and the mean value theorem
10



provide the following result

T�1=2
TX
t=1

h
 ̂t (�0)�  ̂t

�b�g;T�i

= T�1
TX
t=1

24@ ̂t
�b�1g;T�
@�0

35T 1=2 �b�g;T � �0� = op(1):

It is clear that

T�1=2
TX
t=1

h
ĝt (�0)� b
g ;T b
�1 ;T  ̂t (�0)i!d N

�
0;
��

�1m

�
22

	�1�
;

therefore the claimed result follows.

1.2 Overidenti�cation Tests and Limit Theory

Three over-identi�cation tests are considered in this paper. The �rst test is based on the J-test

Jm;T =

"
T�1=2

TX
t=1

mt(b�m;T )#0 
̂�1m
"
T�1=2

TX
t=1

mt(b�m;T )# ; (1.14)

which tests the validity of the stacked moment conditions in as in (2.7) of LL. The second test is

based on the J-test

Jg;T =

"
T�1=2

TX
t=1

gt(b�g;T )#0 
̂�1g
"
T�1=2

TX
t=1

gt(b�g;T )# ; (1.15)

which tests the validity of the Jacobian moment conditions as in (2.8) of LL. The test based on

Jh;T =

"
T�1=2

TX
t=1

mt(b�g;T )#0 
̂�1g
"
T�1=2

TX
t=1

mt(b�g;T )# ; (1.16)

can be considered as given in (2.9) of LL. Notation "hat" signi�es consistent estimator of the

corresponding long-run variances.

We con�rm the asymptotic distributions of the above J tests. Recall the number of restrictions

in (1.14) is H(p+1), while the estimated parameter is p-dimensional. Therefore, the following limit

theory holds.

Theorem 1.4 Under Assumptions 3.1-6 in LL,

Jm;T !d �
2 (H(p+ 1)� p) :

11



Proof. From consistency of 
̂�1m ,

Jm;T =

"
T�1=2

TX
t=1

m̂t

�b�m;T�#0 
̂�1m
"
T�1=2

TX
t=1

m̂t

�b�m;T�#

=

"
T�1=2

TX
t=1

m̂t

�b�m;T�#0
�1m
"
T�1=2

TX
t=1

m̂t

�b�m;T�#+ op(1)
Using the earlier result of Theorem 1.2,

T�
1
2

TX
t=1

m̂t

�b�m;T� = T�
1
2

TX
t=1

m̂t (�0) +M�

h
T

1
2 (b�m;T � �0)i+Op(T� 1

2 ):

= T�
1
2

TX
t=1

m̂t (�0)�M�

�
M 0
�


�1
m M�

��1
M�


�1
m

"
T�

1
2

TX
t=1

m̂t (�0)

#
+Op(T

� 1
2 )

thus


�1=2m T�
1
2

TX
t=1

m̂t

�b�m;T�
= 
�1=2m T�

1
2

TX
t=1

m̂t (�0)� 
�1=2m M�

�
M 0
�


�1
m M�

��1
M�


�1
m

"
T�

1
2

TX
t=1

m̂t (�0)

#
+Op(T

� 1
2 )

=
�
I � 
�1=2m M�

�
M 0
�


�1
m M�

��1
M�


�1=2
m

�

�1=2m T�

1
2

TX
t=1

m̂t (�0) +Op(T
� 1
2 ):

De�ne B := 
�1=2m T�
1
2
PT

t=1 m̂t (�0) then we know B =) N
�
0; IH(p+1)

�
: Thus

Jm;T = B0
�
IH(p+1) � 
�1=2m M�

�
M 0
�


�1
m M�

��1
M�


�1=2
m

�0
�
�
IH(p+1) � 
�1=2m M�

�
M 0
�


�1
m M�

��1
M�


�1=2
m

�
B + op(1)

= B0
�
IH(p+1) � 
�1=2m M�

�
M 0
�


�1
m M�

��1
M�


�1=2
m

�
B:

Note that

rank
�

�1=2m M�

�
M 0
�


�1
m M�

��1
M 0
�


�1=2
m

�
= rank

��
M 0
�


�1
m M�

��1
M 0
�


�1M�

�
= rank (Ip) = p

hence

Jm;T !d �
2 (H(p+ 1)� p) :

12



Except for the di¤erent degrees of freedom (Hp� p) ; the proof for (1.15) is analogous, so it is
omitted.

Theorem 1.5 Under Assumptions 3.1-6 in LL,

Jg;T !d �
2 (Hp� p) :

Asymptotic distribution of Jh;T and its proof is given in LL.
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