Supplemental Appendix for "On Standard Inference for GMM

with Seeming Local Identification Failure"

Ji Hyung Lee * Zhipeng Liaof

December, 2014

Abstract

This supplemental appendix provides some auxiliary materials for "On Standard Inference
for GMM with Seeming Local Identification Failure" (Lee and Liao, 2014; cited as LL in this
appendix).

The notation in this appendix is consistent with that in LL. We continue to use DR to denote
Dovonon and Renault (2013). Throughout the appendix, C' denotes some generic finite positive
constant; [|-|| denotes the Euclidean norm; A’ denotes the transpose of a matrix A; p,..(A) and
Pmin(A) denote the largest and smallest eigenvalues of a matrix A, respectively; for any square
matrix A, A > 0 means that A is a positive semi-definite matrix; for any positive integers k1 and
ko, I, denotes the k1 x ki identity matrix and Oy, «k, denotes the ki X ko zero matrix; A = B
means that A is defined as B; a, = 0,(b,) means that for any constants e;,ea > 0, there is
Pr (Jan/bn| > €1) < €2 eventually; a,, = Op(b,,) means that for any e > 0, there is a finite constant
C¢ such that Pr(|a,/by| > C¢) < € eventually; for any two sequences a, and b,, we use a, < b,

”

to denote that a,, < Cb, where C is some fixed finite positive constant; “—,” and “—;” denote
convergence in probability and convergence in distribution, respectively; and w.p.a.1 abbreviates

with probability approaching 1.

1 GMM Inference in Common CH Factor Model

In this Section we investigate new GMM estimation and tests for the common CH features proposed

in LL. Following Assumption 3.5 and 3.6 in LL, we explicitly use parameter space ©* such that

0= (01, 0011~ Z: ei)' = (0.1~ Z: 91-)' — Gyl +1,.
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To observe the moment conditions in (2.4) of LL for the common CH model, note that
my (0) = Ve _ (2t = p1z) (6.Yer1Y/1164) _ (2t — 1) (0'Yi1Y/(10)
g0) | | vee(GYinYn) 2 (5 - m)) | [ 20— ) © 1) GpYinViabs |

and F [my (60)] =0
To introduce the feasible moment conditions, we replace the nuisance parameter p, by its

consistent estimator z =T"13" 2z so

e (0) = [ 3:(0) ] _ [ (1 = 2) (0.i1 Y, 16.) ] _ [ (20 — 2) (0.Y511Y7,,0.) ] |
gt (0) vee ((GyYi41Y/410.) 2 (2 — 2)) (2 (2 — 2) ® 1)) GhYiy 1Y/, 10x

Strictly speaking (@t 0),9: (6)) are triangular arrays hence (fbt (0),9: (0)) = (@t’T 0), gt (9))
However, standard CLT for these triangular arrays will hold since it is easy to show

T T
T2 g (0) = T2 (2 —2) (0LYir1Y140.)
t=1 t=1
1 T 1
= TEY (5 — ) {(OYennY{a0) — E[(0YinnY{10.)]} + 0, (T72).
t=1
Note that
L T L T ) T
T723 (5 —2) (0Ye) =772 (2 (0.Yer1)? = (2 —p) T2 (04Yen1)”,
t=1 t=1 t=1

and the last term is

(F—p,)T73 i (0.Yi1)? = (F—p)T72 fj {0550)" = B[(0020)°] + B | (07201)°] }
— (z-p)T 3 ZT: {(0*1@“)2 “E [(9;1@“)2} } YT (- ) E [(a*ml)?}
t=1
= Ti(- ) E[(0Yi))] + 0, (T7)
Therefore
L T L T
TEY S (0) = TTEY (e ) (0¥in)” = TE (= ) B |(60Yi0)’] + 0y (T72)
= Y ) {0 - B[]} 0, (1)
t=1



In an exactly same way,
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To keep notation simple, we use 1y (6) = (@Dt @), g (9)’) rather than array notation unless any

confusion arises.

Assumption 3.4 in LL and CLT for martingale difference sequences {HB’KHYAAHE‘), .7:75} 1 based
on the common feature 6y essentially deliver the following limit theory.
Corollary 1.1 Under Assumptions 3.1-6 in LL,
T T 7 5
0
753 i 0) =T Y| PO v (0.0, (1)
t=1 t=1 gt (90

where the long-run variance Q,, = limr_,o Var [T_% Zthl My (00)} can be partitioned as

Q= ( fy Sy > . (1.2)

Qgy Qg
Moreover,
07, 9 Odg; (0
Z gt 0) _ [ 91;9(90)] +0p(1) = H+ 0,(1) (1.3)

Corollary 1.1 with notation of ((1.1)), (1.2) will be used throughout this Sectiorﬂ Note that
H (0y) is free of 6y so H (6g) = H

1.1 GMM Estimation and Limit Theory

In this subsection, the weight matrix W;r for j = m,g or g* are random weight matrix with

probability limits W; for j = m, g or g*, respectively, hence Wy, 7 = Wy, 4+ 0,(1) and so on.

"Under the common feature 6o, it is clear that Qy = Qu(00) = E[(z — ) (ze — p.) {(06Yir1)” —
E[(05Yi41)%]}?] as given in Corollary 3.1 of DR. Similar expressions for Q,, and Q, can be easily obtained.



Using all the moment conditions my (0) = (12); (0),4;(0))', we define the stacked/full GMM

estimator.

Definition 1.1 The Full GMM estimator is defined as

5 T = arg min
m’ & jeer

T /
T i (9)] Wit
t=1

T
T i (9)] (1.4)
t=1

where Wy, 1 is now H (p+ 1) x H (p + 1) weight matriz.

We next consider using the Jacobian-based moment restrictions only, hence (3.9) in LL.
Definition 1.2 The Jacobian GMM estimator is defined as
T

7! th(a)] W,

t=1

~

0, = arg min
9 & jeor

T
Ty gtw)] (1.5)
t=1

where Wy r is now Hp x Hp positive definite weight matriz.
Finally, the modified GMM estimator gg*,T based on the modified moment functions is defined.

Definition 1.3 The Modified GMM estimator is defined as

0 « 7 = arg min
g 8 jeor

T / T
! Z’g‘w,t(e)] Wy | T Z@M(e)] (1.6)
t=1 t=1

where @p,t(ﬂ) = gt(ﬁ) — ﬁg’/’yTﬁql,lth(/égvT) and Wg*7T = ﬁgﬂ“ — ﬁngﬁ;’lTﬁwg,T.

We present the limit theory of the newly suggested estimators.

1.1.1 Consistency

For consistency of 0,, 1, denote

T T / T
Qr(0) = —|T7") i (0) =— |77 i (@] Wy |71 g <9>]
t=1 Wr t=1 t=1
and Q (0) = —|[|E [my (0)]lly = — [ma (60)]' W [my (60)]

by random and nonstochastic criterion function as in standard Extremum Estimators, respectively.
Thanks to the polynomial structure of the moment restrictions in common CH factor model, uniform
consistency of T1 Zthl 1y (0) over © directly follows (as pointed out by DR as well). Together
with the identification condition given in Section 2, the standard consistency results of extremum
estimators (see e.g., Hayashi (2000, SectionT7)) hold so we have 5m,T = 0p+o0,(1). Similar arguments

hold for the other two estimators, thus consistency for all three estimators is obtained.



Proposition 1.1 Under Assumptions 3.1-6 in LL, gm’T,/G\g,T and gg*j all converge to By in prob-
ability.

1.1.2 Rates of Convergence

We now discuss how to recover a regular v/T-consistent estimator for 6y in our methods.
For simplicity, let us consider n = 2, p = 1 (two assets with one common feature) with the
normalization so (fg, 1 — 6p) is a unique common feature. Assume we use one instrument (H = 1).

Then Corollary 1.1 provides

_1 d o _1 d i’t (90)
T 2) iy (fo) =T 2) 00,(60) .+ = N (0,Q,) (1.7)
t=1 t=1 00 =9t (6 ) 2x1
and
T 8wt(é’o) o. (T3 0
8mt (00 = Z [ 929, 90) _ 931(00) ] - p< 2> o +op(1),  (1.8)
t=1 =1 L "o 20 H + 0,(1)
and a mt 00 1 T 62wt(290) agtg(gg()) H
— o0 —
Z a0> Z i) _g | o | (1) (19)
903
where 83%;(390) = 0 comes from the fact that @t is the second order polynomial.

With any given consistent estimator @, let v = ap (é — 00) where the normalizing sequence
ar — oo will be specified below. The stabilizing order of magnitude a7 under the given limit
theory will enable us to find the rate of convergence of the given consistent estimator 6.

GMM estimation in DR corresponds to the method of moments (one parameter with one mo-
ment restriction) based on 71 Zf:l ¥, (0) with the first order condition

> (i) =0

ﬂ\

From the second order Taylor expansion with a mean value 67 between 6y and @T,

1 & 1 — . — L1
Oz—TZ% <90+U> g?ﬁ (60)+ T;aet(%)m'{ZaQTﬁZ 39; (0r) pv?

t=1

and from 1} and lb Tz I aa—%t (o) = Op(1) and T~ ST 8;;%’5 (07) = O,(1) so ap = T4

is the correct order. In this case




and .
’U = HT1/4 <9T — 00) H = QH_ (\/7 Z ) + Op( ) — N (074H_IQPP)
giving H@T — 6’0H =0, (T_1/4) as given in Proposition 3.1 of DR.
Full GMM based on T~} ZtT:1 my (0) is over-identified (one parameter with two moment re-

strictions) in this case. The rigorous first order condition and derivation will be given in ([1.10) and

proof of Theorem 1.2 below. To present the idea, we symbolically use the following analogy:
T T
1 1 1 Bmt 9
= — me| o+ —v ) =— my (0 .
Y t<o aT> DTN SLUTNI FPRes phe YOS
From . and ( i Ty 8(;? 0) = Op(1) and T~ 07, 8;52” (67) = Op(1) so ar =

T1/2 is the correct order. In this case
o, (67)
90 v
93¢ (00)
00

1 & 1 &

and H@T — 90H =0, (T_l/z) giving v/T-consistency.

R 5 / -

In sum, by using 71 Zthl <wt 9), 81%”) instead of T—! ZtT:l ¥, (0), the term of degree 1
(Jacobian term) in Taylor expansion becomes O,(T) rather than O,(T'/2) so T'/?-rate of conver-
gence is achieved rather than T%/4-rate. The Jacobian-GMM estimator uses 7! ZtT 1 Wt( ) 50 the
term of degree 1 has the same order of magnitude as FullGMM (7T~ ZT A gg (90) _ Op( ) from
(1.8). By construction, the term of degree 1 of the Modified GMM estimator is same as that of the

Jacobian GMM so they share the same /T-rate of convergence. Generalization to any p =n — 1

with H > p is straightforward with vectorization, so the following rate of convergence is obtained

for all three estimators.

Proposition 1.2 Under Assumptions 3.1-6 in LL, gm,T,/Q\%T and gg*,T are \/T-consistent estima-
tors for 0.

1.1.3 Asymptotic Normality

We present asymptotic distributions of all three estimators in this subsection. Thanks to the rank
condition proved in Lemma 3.2 in LL and v/T-consistency, all proofs for asymptotic distributions
become standard.

The Jacobian-GMM estimator has a closed from solution as given in (3.9) in LL. To see this,
using 0, = G20 + l,:
5e(0) = (21 — 2) (0.Yi1 Y 10,)



hence

09, (6)

2 (2 — 2) (0.Yi+1Y/41Ga) , and

9:(0) = Vec <<6%9€9)> ) =2 —-2)®I,) G’QEQHYt'_,_le*

= (2(z = 2) ® L) GyYi1 Y1 G20 + (2 (2 — 2) © 1) GoYer1 Yl

SO
T

T " §u(0) = Hy + Sy
t=1

as in (3.8) of LL. Moreover,

B (60) = =F | 13 0)| = B[~ 9@ 1) G5¥in 1G]

It is now easy to see that

)

>

! T
o = argmln T" th ]Wg,T T_lzgt(e)]

t=1 t=1
= arg GHEI}%}’ [HT9 + ST], ng [HT9 + ST}

= Ogr = — (HpWyrHr) ™ HyW, 7St

We have the following closed form expression after some straightforward algebra:

T
T-1/2 th (00)] )

t=1

T2 (847 00) = - B Wy, rHr) ™ Hy Wy

Note that from Law of Large Number under Assumption 3.4 in LL,
Hp =T"" Z (2 — 2) ® 1) GyYi 1Y/ 1Ga = E [(2(z — 2) ® 1)) G5Yy 1Y/ 1 Ga]40,(1) = H+op(1).‘
Moreover, from (|1.1),

T
Tfl/Qth (g) = N (0,9y), where Q4 := lim Var

T—o0
t=1

T
Y ).
The following theorem is proved using the Slutsky Theorem.

Theorem 1.1 Under Assumptions 3.1-6 in LL, the Jacobian-GMM estimator gg;r satisfies
T2 (By0 = 09) —a N (0, Z0)

7



where Yg 4= (H'WyH) ™" H'WyQ,W,H (H'W,H) ™. With the choice of Wy = Q1 = Q5" +0p(1),
we have
So, = (HQ'H) ™
To derive the asymptotic distributions of the full GMM estimators, note that gm,T satisfies the
first order condition:

. '~ /
71 zT: Oriy (gz:”T>

t=1

Wt

7! ZT:mt (@m,T)] —0. (1.10)
t=1

We continue with the following notations

M) = Efm(0) and M9<9>=E[amt<9)},

a6’

M(Qg) = OandMg((gg):Mg: []I(:I]

Theorem 1.2 Under Assumptions 8.1-6 in LL, the full GMM estimator E’\m’T satisfies
T3 (B — 00) —a N (0,Zg.m)

where Xg = (H' W 20H) ™ M)W Qs Wy, M (H/' Wi 09H) ™", and W22 denotes the last Hp x Hp
submatriz of W,,. With the choice of Wy, 1 = Q;RIT = Q1+ 0,(1), we have

S = (B (051), 1) .

Proof. By the consistency of §m7T and the mean value theorem,

T 0Ony (91mT> .

T
T3 i (Br) =T 1th @) + T3 g O —00)
t=1

where 91m7T denotes values between gm,T and 6y. Combined with the first order condition of | ,

. T—liamt ()]

T
T iy (00)]
t=1

—~ o
~ /
L om T omy (O1m R
o lz t(ge’ ) IZ t(&; T> (Om,r —6o).  (1.11)



Using the consistency of /e\m,T and LLN, we get

-1 = Iy @mT) -1 o
T o7 Wiz [T 1 (60) (1.12)
t=1 t=1
T
= MW, |T71Y iy (60) | + 0p(T72)
t=1

w.p.a.l.

Similarly, we have

/N /s
leT: 8m; gleT) . TIZT:amt (9(;1,T)

t=1 t=1
= MW My + 0p(1) = H' Wiy 2oH+0,(1) (1.13)

where the last equality uses

_OM(6) | g(6o) | | O
=25 ] <[ 2]

and W,, 2o denotes the last Hp x Hp submatrix of W,,. As H has full column rank and W, 22 is
positive definite, we see that H'W, 2H is invertible. Hence w.p.a.l, we can combine the results in
(L.11), (1.12) and (1.13) to get

o~

T
T3 (O, — 00) = [H'Win22H+0,(1)] " MW, |T72 3 124 (60) | + 0p(1)
t=1

which together with (1.1)) and the Slutsky Theorem implies the claimed result. m
From Theorem 1.2, it is clear that the choice of the optimal weight matrix Wy, 7 is such that
Wt = Q50 = Q-1+ 0,(1), hence

T3 (/émT — 90) —q N (0, (H, (9%1)22 H)_l)

where (97711)22 is the last Hp x Hp submatrix of Q1.

To compare the relative efficiency gain of full GMM estimator amj to 597T, first note that
_ 1—1 -1
Y09 = (H Qg H)

and
(Q;nl)gz =(Qy — ngQilﬁwg)ilv



s0 (1), = Q1 hence H' ('), H > H'Q, 'H, or equivalently,

(' () B

»H) < (HO'H)
Using more valid moment conditions improves efficiency in spite of its first order degeneracy. From
the above discussion, we see that the full GMM estimator Em,T is more efficient than @gj_ In many
applications, however, Eg,T will be computationally attractive.

This observation motivates the introduction of Modified GMM 9g*,T in Defintion 1.3, whose
asymptotic distribution is given below. It combines the advantages of the both estimators gm,T
and gg,T as explained in LL. The solution using the closed form expression is analogous to that
of 5g7T, so it is omitted. We provide a proof that can be used in the case of modified moment

conditions.
Theorem 1.3 Under Assumptions 3.1-6 in LL, the modified GMM estimator 9g*,T satisfies

T2 (00— 00) —a N (0, (B (25,1) , 1) ') .

—

with the choice of Wp = (anl)ﬂ.

Proof. From the first order condition

T 891&(

/
- Z 90 ) Wy r

and the mean value theorem gives

~ p / ~ p

Til i agt <6099/*7T> Wg*,T Til i 8gt (019*’T> <ég*,T - 90)
=1 t=1

~1 = g1 (ég*’T) /

= T

t=1

where élg*,T denotes values between ég*,T and 6y. From the proof of Theorem 1.1 and 1.2,
T1/2 (ég*,T - 90)

(), ) (o, T‘WZ[% (00) = 20y 103} (D7)

T_l/2 Z [gt (6o) — gw Tgw th (90)} + 0p(1)

22 +0p(1)

= — (B (%)), ) H (2, +0p(1)

where the last equality holds because 1} v/ T-consistency of @QI and the mean value theorem

10



provide the following result

It is clear that

T_I/QZ {gt (6o) — g¢ TQ¢ T@Dt (‘90)] —a N <0 {( )22} )

therefore the claimed result follows. m

1.2 Overidentification Tests and Limit Theory

Three over-identification tests are considered in this paper. The first test is based on the J-test

122:
/ mt mT

T_l/Qth mT)] , (1.14)

t=1

which tests the validity of the stacked moment conditions in as in (2.7) of LL. The second test is
based on the J-test

1/2th gT

g,T =

T
L|r-1/2 th(ag,T)] , (1.15)
t=1

which tests the validity of the Jacobian moment conditions as in (2.8) of LL. The test based on

T ’
T-1/2 th(gg,T)] Q;l
t=1

T
T-1/2 th@j)] , (1.16)
t=1

can be considered as given in (2.9) of LL. Notation "hat" signifies consistent estimator of the
corresponding long-run variances.

We confirm the asymptotic distributions of the above J tests. Recall the number of restrictions
n is H(p+1), while the estimated parameter is p-dimensional. Therefore, the following limit
theory holds.

Theorem 1.4 Under Assumptions 3.1-6 in LL,

Iy —a X (H(p+1) —p).

11



Proof. From consistency of Q;ll,

Jm,T =

-/

T
7-1/2 Z "~ (ng) 0L
t=1

T-1/2 ZT: tie (Omr)
t=1

7—1/2 ET: T <§mT> Q;ll
t=1 |

Using the earlier result of Theorem 1.2,

thus

=T33 1 (60) — My [MQ, M)~ My,

!

t=1

T-1/2 ET: e (Omr)
t=1

~

+ 0p(1)

(EWT) T3 ZT: i (60) + My [T%(GWT - 90)] +0,(T73).

t=1

0,127 ZT: tie (Omr)

T
_ _1 N _ _ —1 _
= QT2 g (00) — Q1AM [MpQ M) T M2,

t=1

t=1

T
T3 th (00)

t=1

T

t=1

T2y 1 (6o)

+0,(T2)

+0,(T2)

T
= (1= 0120 [0 Mg) T M) QRPTE S iy (80) + O,(T75).

t=1

Define B := Q,,"/*7~2 Z?:l 1y (6p) then we know B = N (0, IH(p+1)) . Thus

Note that

hence

Jm,T

B (T — 02 My M, Mo) ™ My, 2)

x (T = Q2 My [MpQ5 Mo) ™ Mp12) B + 0,(1)

B (IH(pH) — Q20 [MyQ M) Mngrllm) B.

m

rank (Q,;l/?Mg (M M) Mgsz—l/?)

= rank ([Mp$, My] ™ Mz My )

= rank(l,) =p

I —a x* (H(p+1) = p).

12



Except for the different degrees of freedom (Hp — p), the proof for (1.15)) is analogous, so it is

omitted.
Theorem 1.5 Under Assumptions 3.1-6 in LL,
Jor —a X° (Hp = p).

Asymptotic distribution of Jj, r and its proof is given in LL.
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