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Abstract. The problem of reconstructing underground obstacles from near-field,

surface seismic measurements is investigated within the framework of a linear sampling

method. Although the latter approach has been the subject of mounting attention in

inverse acoustics dealing with far-field wave patterns in infinite domains, there have

apparently not been any attempts to apply this new method to the interpretation of

near-field elastic waveforms such as those relevant to the detection of subterranean

objects. Aimed at closing this gap, a three-dimensional inverse analysis of elastic

waves scattered by an obstacle (or a system thereof), manifest in the surface ground

motion patterns, is formulated as a linear integral equation of the first kind whose

solution becomes unbounded in the exterior of the hidden scatterer. To provide a

comprehensive theoretical foundation for this class of imaging solutions, generalization

of the linear sampling method to near-field elastodynamics and semi-infinite domains

is highlighted in terms of its key aspects. A set of numerical examples is included

to illustrate the performance of the method. On replacing the featured elastodynamic

half-space Green’s function by its free-space counterpart, the proposed study is directly

applicable to infinite media as well.

1. Introduction

Noninvasive identification of subterranean obstacles using elastic waves with frequencies

in the resonance region is a long-standing problem in mechanics and engineering

driven by its relevance to exploration seismology, nondestructive material testing,

environmental remediation, medical diagnosis, and defense applications. For this class

of inverse scattering problems, employed imaging solutions are often based on nonlinear

optimization which requires an initial approximation of the geometry and topology of

the scattering obstacle [18, 28, 35, 38].

Over the past decade, the developments in sonar and radar technologies have led to

the introduction of an alternative technique for solving inverse scattering problems in

the resonance region called the linear sampling method. Originally proposed by Colton
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et al. in a series of papers [7, 8, 12, 13] for far-field acoustics, the linear sampling method

furnishes an explicit characterization of a hidden obstacle (provided that the far-field

pattern is known for all directions of incidence and observation), and is independent on

geometry and physical properties of the scattering object. To date, this new technique

has been adapted to electromagnetics [10, 11, 25] and to far-field elastic scattering

problems [2, 3, 4, 20, 37].

Although the linear sampling method has received considerable attention in

the inverse scattering theory dealing with far-field wave patterns in the free-space,

limited attention has so far been paid to its application involving near-field elastic

waveforms, especially those arising in the half-space during active seismic imaging

of underground obstacles (e.g., defense facilities, buried waste, and land mines). In

particular, application of the former sonar and radar solutions to seismic imaging has

been impeded not only by the inherent heterogeneity of geological profiles, but also by

the fact that elastic waves, unlike their acoustic counterpart, take many different forms

(compressional, shear, Love, Rayleigh and Stoneley waves, see [1, 21]), which renders

their interpretation challenging. Aimed at bridging such gap, this investigation focuses

on establishing a rigorous theoretical framework for the identification of hidden obstacles

in a uniform elastic half-space via the linear sampling method. To this end, a three-

dimensional inverse analysis of elastic waves scattered by a buried object, manifest

in the surface ground motion patterns, is formulated as a linear integral equation

of the first kind whose solution becomes unbounded in the exterior of an unknown

scatterer. Generalization of the linear sampling method to near-field elastodynamics and

semi-infinite domains is highlighted, including the necessary existence and uniqueness

theorems. Illustrative examples with ellipsoidal cavities are included to provide an

insight into the performance of the method.

2. Direct scattering problem

With reference to the Cartesian frame {O; ξ1, ξ2, ξ3} shown in Figure 1, consider the

scattering of time-harmonic elastic waves by a bounded obstacle ΩC with boundary

Γ of class C1,α, α ∈ (0, 1], strictly embedded in a homogeneous elastic half-space

Ω = {(ξ1, ξ2, ξ3)|ξ3 > 0}. The semi-infinite “matrix” domain Ω is characterized by

the Lamé’s constants λ and µ, mass density ρ; its free surface {(ξ1, ξ2, ξ3)|ξ3 = 0} is

denoted by S. For further reference, let Ω−= Ω\ (ΩC ∪ Γ) denote the unbounded region

surrounding the obstacle, and let ω be the frequency of excitation.

With the time-harmonic factor eiωt omitted henceforth for brevity, the incident (or

free) field uFk(·, ζ) used to illuminate the scatterer is generated by a point source acting

on a planar surface Γ1⊂S of finite extent so that

uFk(ξ, ζ) = ûk(ξ, ζ), ξ 6= ζ, ξ∈Ω, ζ∈Γ1, (1)

where ûk(ξ, ζ) denotes the elastodynamic displacement Green’s function for an isotropic

homogeneous half-space at ξ∈Ω due to a unit time-harmonic point force acting at ζ∈Γ1
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Figure 1. Point source excitation of an obstacle embedded in the half-space

in the k-th coordinate direction. On denoting the total displacement field at ξ∈Ω− due

to a unit point source acting at ζ∈Γ1 in the k-th coordinate direction by uk(ξ, ζ), one

can define the scattered field uSk(ξ, ζ) through the decomposition

uSk(ξ, ζ) = uk(ξ, ζ)− uFk(ξ, ζ), ξ∈Ω−, ζ∈Γ1. (2)

With reference to any smooth surface Σ in Ω with unit normal n, it is instructive to

introduce the traction vector t(·;u) associated with a displacement vector u as

t(ξ;u) = n(ξ) ·C :∇u(ξ), ξ∈Σ, (3)

where C = λ I2 ⊗ I2 + 2µ I4, denotes the isotropic elasticity tensor and Ik (k=2, 4) is

the symmetric k-th order identity tensor.

With such definitions, the forward elastodynamic problem for an obstacle ΩC can

be formulated as a task of finding the scattered field uSk ∈C2(Ω−) ∩ C1(Ω− ∪ Γ ∪ S)

that satisfies the homogeneous Navier equation

LuSk(ξ, ζ) + ρω2uSk(ξ, ζ) = 0, ξ∈Ω−, ζ∈Γ1, (4)

with the Lamé operator L defined as

L = µ∇2 + (λ+ µ)∇∇ · , (5)

and boundary conditions

tS
k(ξ, ζ) = 0, ξ∈S, ζ∈Γ1,

uSk(ξ, ζ) = − uFk(ξ, ζ), ξ∈Γ, ζ∈Γ1 if ΩC is an immobile rigid body, (6)

tS
k(ξ, ζ) = − tFk(ξ, ζ), ξ∈Γ, ζ∈Γ1 if ΩC is a cavity.

In (4) through (6), the free field uFk is provided beforehand, while tFk and tSk are the

traction vectors associated respectively with uFk and uSk on Γ ∪ S. To maintain the
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well-posedness of the forward scattering problem, it is assumed that uSk conforms with

the generalized radiation condition

lim
R→∞

∫

ΓR

{
ûj(ξ,x) · tS

k(ξ, ζ)− t̂
j
(ξ,x) · uSk(ξ, ζ)

}
dΓξ = 0, x∈Ω−

R, j = 1, 2, 3 (7)

where t̂
j
(ξ,x) is the traction vector at ξ ∈ ΓR associated with ûj(ξ,x), namely the

half-space traction Green’s function; ΓR is a hemisphere centered at the origin O, and

Ω−
R is the subset of Ω− bounded by ΓR (see Figure 1).

A solution to (4) that satisfies (7) is called a radiating solution of the homogeneous

Navier equation in Ω−. In what follows, it is assumed that the forward scattering

problem for the semi-infinite solid Ω− given by (4), (6) and (7) admits a unique solution

uSk∈H1
loc(Ω

−), see [27].

3. Inverse scattering problem

To formulate the inverse problem of elastic waves scattered by an obstacle ΩC within the

framework of near-field elastodynamics, let Û (ξ, ζ) denote the half-space displacement

Green’s tensor at ξ∈Ω\{ζ} due to a unit point source acting at ζ∈Γ1. In a Cartesian

frame, Û (ξ, ζ) can be synthesized via a 3×3 matrix as

Û (ξ, ζ) =
(
û1(ξ, ζ), û2(ξ, ζ), û3(ξ, ζ)

)
=




û 1
1 (ξ, ζ) û 2

1 (ξ, ζ) û 3
1 (ξ, ζ)

û 1
2 (ξ, ζ) û 2

2 (ξ, ζ) û 3
2 (ξ, ζ)

û 1
3 (ξ, ζ) û 2

3 (ξ, ζ) û 3
3 (ξ, ζ)


 . (8)

In what follows, the vector field u(x, z;d) = Û (x, z) · d defines the displacement at

x∈Ω\{z} due to a unit point source at z acting in the direction specified by the unit

vector d (d ∈ R3, ‖d‖ = 1). Owing to the symmetry of the half-space displacement

Green’s functions [23], one can write
[
Û (ζ, ξ)

]T

= Û (ξ, ζ), (9)

where the superscript “T” stands for matrix transpose. To aid the ensuing development,

it is also useful to establish the scattered tensor U S(ξ, ζ) at ξ∈Ω− due to a unit point

source acting at ζ∈Γ1 through

U S(ξ, ζ) =
(
uS1(ξ, ζ),uS2(ξ, ζ),uS3(ξ, ζ)

)
=




uS

1
1(ξ, ζ) uS

1
2(ξ, ζ) uS

1
3(ξ, ζ)

uS

2
1(ξ, ζ) uS

2
2(ξ, ζ) uS

2
3(ξ, ζ)

uS

3
1(ξ, ζ) uS

3
2(ξ, ζ) uS

3
3(ξ, ζ)


 (10)

in Cartesian coordinates. In what follows, U S will be used to synthesize the experimental

data collected over the observation surface Γ2 ⊂ S. In the case of incomplete

measurements of the scattered field, the corresponding columns of U S in (10) are set to

zero. For instance, if uS3 is the only quantity being monitored (i.e. only vertical point

sources are used to illuminate the scatterer), then the first and second columns of U S

in (10) are set to zero.
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With the above definitions, the inverse scattering problem of interest in this study

can be set forth as a task of reconstructing ΩC from the knowledge of the tensor of

scattered displacement field components U S(ξ, ζ) for all observation points ξ ∈Γ2⊂S

and all source points ζ∈Γ1⊂S. Inverse scattering problems of this type are inherently

nonlinear and improperly posed. In particular, unless regularization methods are used,

small perturbations of the observed (i.e. measured) data U S(ξ, ζ) in any reasonable

norm may lead to large errors in reconstruction of the scatterer [13].

4. Preliminaries

The linear sampling method, originally introduced by Colton and Kirsch [7] for far-

field inverse scattering problems in acoustics, will be used in this study to tackle the

featured inverse problem within the framework of near-field elastodynamics. To aid

such generalization, let L2(S1) be the Hilbert space of square integrable vector fields

equipped with the inner product

(g,h)L2(S1) =

∫

S1

g(x) · h(x) dsx, (11)

where overbar denotes the complex conjugation. Further, with reference to any smooth

surface Σ in Ω with unit normal n, let the half-space traction Green’s tensor T̂ (ξ, ζ) at

ξ∈Σ due to a unit point source acting at ζ∈Γ1 be denoted as

T̂ (ξ, ζ) = n(ξ) ·C :∇Û (ξ, ζ) :=




t̂ 11 (ξ, ζ) t̂ 21 (ξ, ζ) t̂ 31 (ξ, ζ)

t̂ 12 (ξ, ζ) t̂ 22 (ξ, ζ) t̂ 32 (ξ, ζ)

t̂ 13 (ξ, ζ) t̂ 23 (ξ, ζ) t̂ 33 (ξ, ζ)


 (12)

in the reference Cartesian frame.

Theorem 4.1 Let S1 be a surface of limited extent of class C1,α in Ω and g∈L2(S1).

Then a single layer potential

v(ξ) =

∫

S1

Û (ξ,x) · g(x) dsx =

∫

S1

ûk(ξ,x) gk(x) dsx, ξ∈Ω\S1 (13)

is a radiating solution to the homogeneous Navier equation in Ω \S1, i.e.

Lv(ξ) + ρω2v(ξ) = 0, ξ∈Ω\S1, (14)

and

lim
R→∞

∫

ΓR

{
ûj(ξ,x) · t(ξ;v)− t̂

j
(ξ,x) · v(ξ)

}
dΓξ = 0, x ∈ ΩR, j = 1, 2, 3 (15)

where t(ξ;v) = n(ξ) ·C :∇v(ξ) is the traction vector associated with the displacement

field v on any regular surface in Ω with unit normal n.



Elastodynamic obstacle identification in a semi-infinite solid 6

Proof. Since ξ∈Ω\S1, (13) can be differentiated under the integral sign and (14) follows

directly from the fact that ûk (k = 1, 2, 3) satisfies the homogeneous Navier equation

away from the source surface S1.

By use of (12) in (13), one can deduce that

t(ξ;v) =

∫

S1

T̂ (ξ,x) · g(x) dsx =

∫

S1

t̂
k
(ξ,x) gk(x) dsx, ξ 6= x (16)

on any regular surface in Ω with unit normal n. On employing (13) and (16) and

interchanging the order of integration, one can verify that
∫

ΓR

{
ûj(ξ,x) · t(ξ;v)− t̂

j
(ξ,x) · v(ξ)

}
dΓξ =

∫

S1

gk(x)

(∫

ΓR

{
t̂
k
(ξ,y) · ûj(ξ,x)− t̂

j
(ξ,x) · ûk(ξ,y)

}
dΓξ

)
dsx. (17)

The statement (15) immediately follows from (17) and the fact that the half-space

displacement Green’s function ûk(·, z) (k = 1, 2, 3) is a radiating solution to the

homogeneous Navier equation in Ω\{z}, see [23]. ¤

The following lemma will be very useful in establishing the linear sampling method.

Lemma 4.1 For a given density distribution g∈L2(Γ1), the solution to the scattering

problem by an obstacle ΩC in the half-space Ω due to the free field

vF(ξ) =

∫

Γ1

Û (ξ,x) · g(x) dsx, ξ∈Ω\Γ1 (18)

is given by the scattered field

vS(ξ) =

∫

Γ1

U S(ξ,x) · g(x) dsx =

∫

Γ1

uSk(ξ,x) gk(x) dsx, ξ∈Ω−, (19)

where Û and U S are defined respectively by (8) and (10).

Proof. An integral representation for the scattered field uSk (e.g. [36]) in terms of the

total displacement field uk and the total traction tk over the obstacle boundary ∂ΩC = Γ

due to a point source x∈Γ1 in the k-th coordinate direction is given by

uSk(ξ,x) =

∫

Γ

[
Û (η, ξ)

]T

· tk(η,x) dΓη −

∫

Γ

[
T̂ (η, ξ)

]T

· uk(η,x) dΓη,
ξ∈Ω−

x∈Γ1
.(20)

On using (20) in (19) and interchanging order of integration, one finds that

vS(ξ) =

∫

Γ

[
Û(η, ξ)

]T

· t(η;v) dΓη −

∫

Γ

[
T̂ (η, ξ)

]T

· v(η) dΓη, ξ∈Ω−, (21)

where

v(ξ) =

∫

Γ1

uk(ξ,x) gk(x) dsx, ξ∈Ω−, (22)
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and t(η;v) = n(η) · C :∇v(η) as examined earlier. It is seen from (21) that vS(ξ)

admits a representation similar to (20) in terms of a single-layer potential

P (ξ)=

∫

Γ

[
Û (η, ξ)

]T

· t(η;v) dΓη, ξ∈Ω−, (23)

and a double-layer potential

Q(ξ)=

∫

Γ

[
T̂ (η, ξ)

]T

· v(η) dΓη, ξ∈Ω−. (24)

Following the idea of the proof of Theorem 4.1, one can show that P andQ are radiating

solutions of the homogeneous Navier equation in Ω−. From this statement and the

linearity of (21) (i.e. vS = P−Q), one can infer that vS is also a radiating solution of

the homogeneous Navier equation in Ω−. Now, with the aid of (1) and (2) in (22), it is

seen that v = vF(ξ)+vS(ξ), ξ∈Ω− where vF and vS are given respectively by (18) and

(19). ¤

Before establishing the linear sampling method for near-field elastodynamics, one

should mention that Lemma 4.1 is a reformulation, suitable for elastic scattering

problems, of Lemma 3.16 in [9] for inverse acoustics.

5. Linear sampling method

On the basis of the foregoing developments, one is now in position to formulate the

linear sampling method for elastic-wave reconstruction of the scatterer ΩC hidden in a

semi-infinite solid from the knowledge of scattered field along the observation surface

Γ2 synthesized via the tensor U S(ξ,x), ξ ∈ Γ2, x ∈ Γ1 (see (10) and Figure 1). The

underlying idea is to find a free field vF with density g over the source surface Γ1 so

that the corresponding scattered field vS (see Lemma 4.1) coincides with a prescribed

radiating solution to the homogeneous Navier equation in Ω− which, in particular, is

chosen as the displacement Û (·, z) · d, ‖d‖ = 1, due to a point source acting at z∈Ω

in the direction d.

In mathematical terms, let z ∈ Ω be fixed. The objective is to find the vector

density gz,d(·) ≡ g(·; z,d)∈L2(Γ1) as a solution to the near-field integral equation of

the first kind∫

Γ1

U S(ξ,x) · gz,d(x) dsx = Û (ξ, z) · d, ξ∈Ω−, z∈Ω, d∈R3, ‖d‖ = 1. (25)

Let z∈ΩC. On employing (19) and taking the limit as ξ → y∈Γ in (25), one can write

vS(y) = Û (y, z) · d, y∈Γ, z∈ΩC, d∈R3, ‖d‖ = 1. (26)

Letting z → y ∈ Γ in (26), one finds that vS(y) becomes unbounded, and, since U S

is bounded on Γ, one must have limz→y∈Γ ‖g(·; z,d)‖L2(Γ1) = ∞ where ‖g‖L2(Γ1) =√
(g, g)L2(Γ1). For completeness, it will also be shown in this study that ‖g(·; z,d)‖L2(Γ1)

becomes unbounded whenever z ∈ Ω−. As a result, the unboundedness property of

g(·; z,d) can be used to reconstruct the unknown scatterer ΩC. The key idea is to



Elastodynamic obstacle identification in a semi-infinite solid 8

sample a region of interest in the half-space Ω by varying the probing (i.e. sampling)

point z, and to identify ΩC (if any) through a location of those sampling points z where

‖g(·; z,d)‖L2(Γ1) is bounded.

1 2 ReceiversξSources o
x Γ Γ

z

ξ3

Ωc

ξ1

Figure 2. Probing grid of sample points

In practical terms, the scattered tensor U S is assumed to be measured on a bounded

planar subdomain Γ2 of the surface of the half-space S (see Figure 2) so that the following

specialization of (25)
∫

Γ1

U S(ξ,x) · gz,d(x) dsx = Û (ξ, z) · d, ξ∈Γ2, z∈Ω, d∈R3, ‖d‖ = 1 (27)

needs to be solved for the density gz,d.

The above formulation of the linear sampling method for solving inverse scattering

problems is, despite its elegance, fraught with difficulties. One should mention

that equation (27) constitutes a Fredholm integral equation of the first kind with

a smooth kernel given by the scattered tensor field U S synthesizing experimental

observations. Since solving Fredholm integral equations of this type is an improperly

posed mathematical problem in the sense of Hadamard [26], it is not clear whether

a solution gz,d to (27) exists and, if such solution does exist, whether gz,d depends

continuously on the measured data U S in any reasonable norm. Thus, a mathematical

justification of the linear sampling method is necessary to consistently deal with these

impediments.

6. Theoretical foundation

To extend the linear sampling method to near-field inverse elastic scattering problems,

one is to analyze the near-field Fredholm integral equation of the first kind (27) in

order to justify the method. The case where z ∈ ΩC is first considered wherein the

necessary existence and uniqueness theorems in terms of density gz,d that characterizes

the scatterer ΩC are established. As mentioned in Section 2, it is assumed that a unique

solution uSk ∈ H1
loc(Ω

−) to the direct scattering problem (4) to (7) exists.
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The following basic identities of the mathematical theory of linear elasticity will be

of great importance in the subsequent development. Let D be a bounded elastic domain

(characterized by an isotropic elastic tensor C) with boundary ∂D of class C1,α, and let

n denote the unit outward normal to ∂D. Then, for vector fields u,v∈C2(D)∩C1(D),

the Betti’s first formula, obtained by the integration by parts, takes the form∫

D

v(ξ) ·Lu(ξ) dVξ =

∫

∂D

v(ξ) · t(ξ;u) dsξ −

∫

D

∇v(ξ) : C :∇u(ξ) dVξ, (28)

where the Lamé operator L is given by (5) and t(ξ;u) = n(ξ) ·C :∇u(ξ) as elucidated

earlier. By setting v = u in (28), the Betti’s second formula can be expressed as∫

D

u(ξ) ·Lu(ξ) dVξ =

∫

∂D

u(ξ) · t(ξ;u) dsξ −

∫

D

∇u(ξ) : C :∇u(ξ) dVξ. (29)

On interchanging the role of u and v in (28) and subtracting the latter from (28), one

can write the Betti’s third formula as∫

D

[v(ξ) ·Lu(ξ)− u(ξ) ·Lv(ξ)] dVξ =

∫

∂D

[v(ξ) · t(ξ;u)− u(ξ) · t(ξ;v)] dsξ. (30)

To aid the ensuing development, the following near-field operator F : L2(Γ1) →

L2(Γ2) defined as

(Fg)(ξ) :=

∫

Γ1

U S(ξ,x) · g(x) dsx, ξ∈Γ2 (31)

is also introduced where Γ1 and Γ2 are respectively the surfaces of source and observation

points, while U S is the scattered tensor given by (10). One should note that for

U S ∈ L2(Γ2 × Γ1), the operator F is well-defined, linear, and bounded from L2(Γ1)

into L2(Γ2). The latter property can be seen from the inequality

‖Fg‖2L2(Γ2)
≤ ‖g‖2L2(Γ1)

(
3∑

k=1

3∑

j=1

∫

Γ2

∫

Γ1

∣∣∣uS

j
k(ξ,x)

∣∣∣
2

dsx dsξ

)
(32)

obtained using the Cauchy-Schwarz inequality [29] where | · | is the complex modulus. It

can also be shown [29] that the linear integral operator F is compact from L2(Γ1) into

L2(Γ2), thus rendering the linear equation (27) ill-posed.

In what follows, the solvability condition for the integral equation of the first kind

(27) when z ∈ΩC is given in terms of the following theorem, derived by analogy to its

acoustic counterpart (Theorem 3.19 in [9]).

Theorem 6.1 Let z∈ΩC be fixed. Then the integral equation of the first kind∫

Γ1

U S(ξ,x) · gz,d(x) dsx = Û(ξ, z) · d, ξ∈Γ2, z∈ΩC, d∈R3, ‖d‖ = 1 (33)

possesses a solution gz,d∈L2(Γ1) if and only if there exists a solution vF to the interior

boundary value problem given by

LvF(ξ) + ρω2vF(ξ) = 0, ξ∈ΩC, (34)

vF(ξ) + Û (ξ, z) · d = 0, ξ∈Γ, (35)
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for the scattering by an immovable rigid inclusion (Dirichlet problem), and by

LvF(ξ) + ρω2vF(ξ) = 0, ξ∈ΩC, (36)

t(ξ;vF) + T̂ (ξ, z) · d = 0, ξ∈Γ, (37)

for the scattering by a cavity (Neumann problem), that is expressible in the form of (18)

where t(·;vF) denotes the traction vector associated with vF.

Proof. Let gz,d∈L2(Γ1) be a solution to (33) and define vF according to (18) by

vF(ξ) =

∫

Γ1

Û(ξ,x) · gz,d(x) dsx, ξ∈Ω\Γ1. (38)

Then, from Lemma 4.1,

vS(ξ) =

∫

Γ1

U S(ξ,x) · gz,d(x) dsx, ξ∈Ω− (39)

is a radiating solution to the homogeneous Navier equation in Ω−. Since z is held

fixed in ΩC, one can infer that Û(ξ, z) · d, ξ ∈ Ω− is also a radiating solution to the

homogeneous Navier equation in Ω− (see Theorem 2.2.1 in [34]), and by use of (33),

that vS(ξ) = Û (ξ, z) · d on Γ2. With the aid of the latter result and the Holmgren’s

uniqueness theorem [6, 17], one can conclude that, in fact

vS(ξ) = Û (ξ, z) · d, ξ∈Ω−. (40)

For the scattering by an immobile rigid obstacle, one has

vF(ξ) + vS(ξ)=0, ξ∈Γ. (41)

On substituting the limit of (40) as ξ → y ∈ Γ into (41), one obtains (35). For the

scattering by a cavity, on the other hand,

t(ξ;vF) + t(ξ;vS)=0, ξ∈Γ. (42)

From (40), the traction vector t(ξ;vS) (associated with vS) on any surface strictly inside

Ω− with unit normal n is given by T̂ (ξ, z) · d, which, in the limit as ξ → y ∈Γ, (42)

yields (37). Further, since the source surface Γ1 is away from the scatterer ΩC, (34) (or

(36)) directly follows from Theorem 4.1.

Conversely, let vF(ξ) be a solution of (34) and (35) (or (36) and (37)). Then vF(ξ)

can be taken as a free field for the scattering by an obstacle ΩC and, from Lemma 4.1, the

unique radiating solution, uS, to this scattering problem is given by (39) with boundary

condition (41) (or (42)). Comparison of (35) and (41) (or (37) and (42)) yields

vS(ξ) = Û (ξ, z) · d,
(
or t(ξ;vS) = T̂ (ξ, z) · d

)
, ξ∈Γ. (43)

Holmgren’s uniqueness theorem can again be used to obtain (40) and the proof follows

by taking the limit as ξ → y∈Γ2. ¤
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6.1. Approximation property of single-layer potentials

One of the key issues in establishing the validity of the linear sampling method for

inverse scattering problems dealing with far-field observations is concerned with the

approximation property of Herglotz wave functions (see, e.g., [14] for acoustics and [16]

for elastodynamics). To facilitate the ensuing development, it is instructive to mention

that the single-layer potential defining the free field vF(ξ) in (18) plays the same role

in this investigation as the Herglotz wave function does for the sampling method in

far-field inverse acoustic or elastic scattering problems. Accordingly, the next step in

this study is to establish the denseness property of single-layer potentials such as those

characterizing vF.

With the above settings, let D⊂Ω be a bounded domain with boundary ∂D of class

C1,α and let H(D) be the set of classical solutions to the homogeneous Navier equation

in D, i.e.

H(D) =
{
u∈C2(D) ∩ C1(D) : Lu+ ρω2u = 0 in D

}
.

From the above definition, it is readily shown that for any u ∈ H(D), its complex

conjugate belongs to the same space, i.e. u∈H(D) and thus

t(·;u) = t(·;u), u∈H(D). (44)

For further reference, let L2(D) be the Hilbert space of square integrable vector fields

equipped with the usual inner product

(v,u)L2(D) =

∫

D

v(ξ) · u(ξ) dVξ, (45)

and H1(D) = {u∈L2(D),∇u∈L2(D)} be the Hilbert space equipped with the

Hermitian product

(v,u)H1(D) = θ

∫

D

v(ξ) · u(ξ) dVξ +

∫

D

∇v(ξ) : C :∇u(ξ) dVξ, R3θ>0, (46)

and denote by H(D) the closure of H(D) with the norm of H1(D) given by

‖u‖H1(D) =
√

(u,u)H1(D). (47)

Now, consider the single-layer integral operator S : L2(Γ1)→ H(D) defined by

(Sg)(ξ) :=

∫

Γ1

Û (ξ,x) · g(x) dsx, ξ∈D. (48)

The operator S given by (48) is well-defined. It is important first to mention that Γ1
lies outside D, i.e. Γ1∩D = ∅, and for that reason, Sg ∈ C∞

(
D
)
⊂ C2(D) ∩ C1(D).

But from Theorem 4.1, the field Sg satisfies the homogeneous Navier equation in D

and therefore Sg∈H(D).
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Lemma 6.1 For all g∈L2(Γ1) and u∈H(D), the following identity holds

(Sg,u)L2(D) = (g,S∗
Du)L2(Γ1), (49)

where S∗
D : H(D)→ L2(Γ1) is given by

(S∗
Du)(x) :=

∫

D

Û (x, ξ) · u(ξ) dVξ, x∈Γ1.

Proof. For g∈L2(Γ1) and u∈H(D),

(Sg,u)L2(D) =

∫

D

u(ξ) ·

(∫

Γ1

Û (ξ,x) · g(x) dsx

)
dVξ. (50)

On interchanging order of integration in (50) and employing the symmetry of Û in (9),

it is seen that

(Sg,u)L2(D) =

∫

Γ1

g(x) ·

(∫

D

Û (x, ξ) · u(ξ) dVξ

)
dsx = (g,S∗

Du)L2(Γ1). (51)

The statement of the lemma follows from the fact that H(D) is dense in H(D). ¤

Lemma 6.2 For all g∈L2(Γ1) and u∈H(D), the following identity holds

(Sg,u)H1(D) = (g,S∗u)L2(Γ1), (52)

where S∗ : H(D)→ L2(Γ1) is given by

(S∗u)(x) :=
(
θ + ρω2

)∫

D

Û (x, ξ) · u(ξ) dVξ +

∫

∂D

Û(x, ξ) · t(ξ;u) dsξ, x∈Γ1 (53)

with the traction vector t(·;u) ∈ H−1/2(∂D) understood in the sense of the trace of

u∈H1(D), see [33].

Proof. Let g∈L2(Γ1); on the basis of the comment made right after the definition of S

in (48), it follows that Sg∈H(D). Now let u∈H(D). By use of the Betti’s first formula

(28), the homogeneous Navier equation for the vector field u in D, and the sesquilinear

form (46), one can write

(Sg,u)H1(D) =
(
θ + ρω2

)
(Sg,u)L2(D) + (Sg, t(·;u))L2(∂D). (54)

Similar to the proof of Lemma 6.1, one can derive the relationship (52) from (54) and

the identity (49). The statement of the lemma again follows by the denseness argument.

¤

For u∈H(D), the adjoint operator S∗, defined through (53) as a linear combination

of volume and surface potentials, can be used to introduce the vector field

v(x) := (S∗u)(x)

=
(
θ + ρω2

)∫

D

Û (x, ξ) · u(ξ) dVξ +

∫

∂D

Û (x, ξ) · t(ξ;u) dsξ, x∈Ω\∂D. (55)

By use of the Lax’s theorem [29], it can be shown that the volume potential in (55) is

a bounded linear operator from L2(D) into H2
loc(Ω) (see also [9]). Accordingly, since
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the single-layer potential in (55) is a bounded linear operator from H−1/2(∂D) into

H1
loc(Ω\D) (see [31]), one can conclude that the mapping u 7−→ v given by (55) defines

a bounded linear operator from H1(D) into H1
loc(Ω \D). Since elastic potentials behave

near boundaries much like ordinary harmonic potentials, it can be shown that

v(x) = v+(x) = v−(x), t+(x;v)− t−(x;v) = −t(x;u), x∈∂D, (56)

where the subscripts “+” and “-” stand for the limiting values of the corresponding

quantity at the boundary ∂D when approached respectively from the exterior domain

Ω \D and from the interior domain D (see Figure 3).

Ω\D

ξ3

ξ1

D

o

n

Figure 3. Interior and exterior domains

For x ∈D, formula (55) can be differentiated under the integral sign. By taking

into account that the support of the half-space displacement Green’s function ûk(x, ξ)

is resting in D, i.e.

Lûk(x, ξ) + ρω2ûk(x, ξ) + δki δ(x− ξ)ei = 0, x∈D, (57)

where δki is the Kronecker delta, δ(x − ξ) is the Dirac delta function and ei is a unit

vector in the i-th coordinate direction, it can be shown that

Lv(x) + ρω2v(x) = −
(
θ + ρω2

)
u(x), x∈D. (58)

In what follows, it is assumed that u ∈H(D). By use of the Navier equation for the

field u in D and the Betti’s second formula (29) in (47), one can write

‖u‖2H1(D) =
(
θ + ρω2

) ∫

D

u(ξ) · u(ξ) dVξ +

∫

∂D

u(ξ) · t(ξ;u) dsξ. (59)

With the aid of (44), (56) and (58), (59) can be expressed as

‖u‖2H1(D)=−

∫

D

u(ξ) ·
[
Lv(ξ) + ρω2v(ξ)

]
dVξ −

∫

∂D

u(ξ) · [t+(ξ;v)− t−(ξ;v)] dsξ. (60)

By use of the Betti’s third formula (30), the Navier equation for the field u in D and

(44), it can be shown that (60) admits the following representation

‖u‖2H1(D)=

∫

∂D

[v(ξ) · t(ξ;u)− u(ξ) · t+(ξ;v)] dsξ. (61)

With the above settings, one is now in position to formulate the following result.
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Lemma 6.3 For all u∈H(D),

‖u‖2H1(D)=

∫

∂D

[v(ξ) · t(ξ;u)− u(ξ) · t+(ξ;v)] dsξ, (62)

where v∈H1
loc(Ω \D) is given by (55).

Proof. The statement of the lemma readily follows from (61) for u ∈H(D), and the

denseness argument. ¤

Theorem 6.2 The space of single layer potentials {Sg, g ∈ L2(Γ1)} given by (48)

is dense in the space of classical solutions to the homogeneous Navier equation:

Lu + ρω2u = 0 in D with respect to the H1(D) norm, i.e. S (L2(Γ1)) is dense with

respect to the H1(D) norm in H(D).

Proof. Let u ∈ H(D) and assume that (Sg,u)H1(D) = 0 for all g ∈ L2(Γ1). Then,

by Lemma 6.2, one can write (g,S∗u)L2(Γ1) = 0 for all g ∈ L2(Γ1) and consequently

S∗u = 0 (see (53)). Now, by making use of the Holmgren’s uniqueness theorem, one

can conclude that v = 0 in Ω−. Finally it follows from Lemma 6.3 that ‖u‖H1(D) = 0,

hence u = 0 in D. ¤

6.2. Mathematical validation

As mentioned in Section 3, the linear sampling method for solving inverse scattering

problems is based on the integral equation of the first kind (33) which, in general,

does not possess a solution. In fact, (33) constitutes an improperly-posed mathematical

problem in the sense of Hadamard [26]. To examine the problem further, let F be the

near-field operator as defined by (31). With the results of the preceding section, the

fact that (33) is in general not solvable can be overcome with the following result.

Theorem 6.3 (Existence) Let z ∈ΩC be fixed, d∈R3 with ‖d‖= 1, and let Γ be of

class C1,α. Then, for every ε > 0, there exists g(·; z,d)∈L2(Γ1) such that

‖Fg(·; z,d)− Û (·, z) · d‖L2(Γ2) < ε, (63)

where

lim
z→y∈Γ

‖g(·; z,d)‖L2(Γ1) =∞, (64)

and the single-layer potential Sg(x; z,d) defined by (48) becomes unbounded as z →

x∈Γ.

Proof. Consider the interior boundary value problem given by

Lw(x) + ρω2w(x) = 0, x∈ΩC, (65)

w(x) + Û(x, z) · d = 0, x∈Γ, z∈ΩC, (66)
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for the scattering by an immovable rigid inclusion (Dirichlet problem), and by

Lw(x) + ρω2w(x) = 0, x∈ΩC, (67)

t(x;w) + T̂ (x, z) · d = 0, x∈Γ, z∈ΩC, (68)

for the scattering by a cavity (Neumann problem) in terms of w. It follows from

Theorem 6.2 that the solution, w, to the Navier equation (65) (or 67) can be

approximated arbitrarily well by a single-layer potential Sg with respect to the H 1(ΩC)

norm, i.e. for every ε > 0, there exists g(·; z,d)∈L2(Γ1) such that

‖w − Sg(·; z,d)‖H1(ΩC) < c0ε, R3c0>0. (69)

Now, by virtue of the continuity of the norm, boundary conditions (66) and (68), and

the trace theorem [33], there exist positive constants c1 and c2 such that

‖Û (·, z) · d+ Sg(·; z,d)‖H1/2(Γ) < c1ε,

for the scattering by an immobile rigid inclusion (Dirichlet problem), and

‖T̂ (·, z) · d+ t(·;Sg(·; z,d))‖H−1/2(Γ) < c2ε,

for the scattering by a cavity (Neumann problem). The proof of (63) now follows by

virtue of Theorem 6.1.

With the above approximation property of the single-layer potential Sg and the

trace theorem, there exist positive constants c and c′ such that

‖Û (·, z) · d‖H1/2(Γ) ≤ c ‖w‖H1(ΩC) ≤ c
(
c0ε+ ‖Sg(·; z,d)‖H1(ΩC)

)
, (70)

‖T̂ (·, z) · d‖H−1/2(Γ) ≤ c′
(
c0ε+ ‖Sg(·; z,d)‖H1(ΩC)

)
. (71)

Since the single-layer integral operator S is bounded [34] from L2(Γ1) → H1(ΩC) for

g(·; z,d)∈L2(Γ1), there exists a constant c′′ > 0 such that

‖Sg(·; z,d)‖H1(ΩC) ≤ c′′‖g(·; z,d)‖L2(Γ1). (72)

With (70) to (72) and the limiting properties of the half-space Green’s functions

lim
z→y∈Γ

‖Û (·, z) · d‖H1/2(Γ) =∞, lim
z→y∈Γ

‖T̂ (·, z) · d‖H−1/2(Γ) =∞, (73)

the second claim of the theorem (given by (64)) and the unboundedness of Sg

immediately follow. ¤

Remark: One may note that (73) is a consequence of the following reasoning: As

ΩC3z → y∈Γ, the radiating field v(x, z) = Û (x, z) ·d that satisfies the homogeneous

Navier equation outside any ball containing z exhibits the singular behavior

v(y, z) = O

(
1

‖y − z‖

)
, as ‖y − z‖ → 0 (74)
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owing to the singularity of the half-space displacement Green’s functions as ‖y−z‖ → 0

(see [22]). In what follows, v(·, z) /∈H1
loc(Ω

−) since

∇v(y, z) = O

(
1

‖y − z‖2

)
, as ‖y − z‖ → 0.

Hence, the restrictions of v(x, z) on Γ given by Û (y, z) · d and T̂ (y, z)·d, y∈Γ are

so that Û (·, z) · d /∈H1/2(Γ) and T̂ (·, z) · d /∈H−1/2(Γ).

Theorem 6.4 (Uniqueness) The near-field operator F : L2(Γ1) → L2(Γ2) given by

(31) is injective (one-to-one) if and only if there does not exists neither a Dirichlet nor

a Neumann eigenfunction for the obstacle ΩC that is a single-layer potential Sg defined

by (48).

Proof. The equation

Fg = 0 (75)

is solvable (see Theorem 6.1) if and only if the following interior boundary value problem

Lw(x) + ρω2w(x) = 0, x∈ΩC, (76)

with

w(x) = 0, x∈Γ, (77)

for the Dirichlet problem and

t(x;w) = 0, x∈Γ, (78)

for the Neumann problem, admits a solution. But (76) and (77) constitute the Dirichlet

eigenvalue problem for −L in ΩC, while (76) and (78) are the Neumann eigenvalue

problem for −L in ΩC. ¿From Theorem 6.2, w can be approximated arbitrarily well by

a single-layer potential Sg with respect to the H1(ΩC) norm. Thus, the statement that

(75) holds with g 6= 0 is equivalent to the existence of a Dirichlet (problem (76) and (77))

or Neumann ((76) and (78)) eigenfunction w = Sg for ΩC, which is in contradiction

with the statement of the theorem and completes the proof. ¤

Remark: One can infer from the result of the above theorem that the

unboundedness property of g (see Theorem 6.3) is not due to elements of the nullspace

of F herein denoted by kerF .

6.3. Reconstruction of an infinitesimal cavity

To investigate the performance of the linear sampling method for an obstacle of vanishing

size, consider the elastic-wave reconstruction of a “small” cavity hidden in the half-

space Ω. Without loss of generality, it is assumed that the cavity, denoted as Bτ (z), is

a ball of radius τ >0 centered at a fixed sampling point z∈Ω. In this setting, one is to

solve the equation

(F τgτ
z,d)(ξ) :=

∫

Γ1

U S

τ (ξ,x) · gτ
z,d(x) dsx = Û(ξ, z) · d, ξ∈Γ2, d∈R3, ‖d‖ = 1, (79)
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where U S

τ (ξ,x) is the scattered tensor induced by Bτ (z)⊂ Ω at ξ ∈ Γ2 due to a unit

point source at x∈Γ1. For a vanishing cavity size, it can be shown [24] that U S

τ admits

the representation

U S

τ (ξ,x) = −
4πτ 3

3

(
ρω2

[
Û (z, ξ)

]T

· Û(z,x)−M(ξ,x)
)
+ o(τ 3), as τ → 0, (80)

where M(ξ,x) is a 3×3 matrix with components Mi
k(ξ,x) = σ̂i(z, ξ) : A : σ̂k(z,x)

constructed from the elastodynamic stress Green’s tensor σ̂k = C :∇ûk, and

A =
3(λ+ 2µ)

2µ(9λ+ 14µ)

[
5I4 −

7λ+ 2µ

2(3λ+ 2µ)
I2 ⊗ I2

]
.

On employing (9) and neglecting higher-order terms in (80), one can write

(F τg)(ξ) = −
4πτ 3

3


ρω2Û (ξ, z) ·α−



σ̂1(z, ξ) : A : β

σ̂2(z, ξ) : A : β

σ̂3(z, ξ) : A : β





 , ξ∈ Γ2, (81)

where ∫

Γ1

û1(z,x) g1(x) + û2(z,x) g2(x) + û3(z,x) g3(x) dsx = α,

∫

Γ1

σ̂1(z,x) g1(x) + σ̂2(z,x) g2(x) + σ̂3(z,x) g3(x) dsx = β. (82)

As can be seen from (81), Û(ξ, z) ·d, ξ∈ Γ2 is in the range of F τ , and one can conclude

that (79) is solvable. By use of (81), (82), and a 9×3 stress matrix

Σ̂(z,x) =
(
σ̂1(z,x), σ̂2(z,x), σ̂3(z,x)

)
,

(79) can be rewritten as
∫

Γ1

Û(z,x) · gτ
z,d(x) dsx = −

3

4πτ 3
1

ρω2
d,

∫

Γ1

Σ̂(z,x) · gτ
z,d(x) dsx = 0. (83)

In view of (80) which demonstrates that the kernel of F τ is degenerate (see [29]), (83)

is not uniquely solvable. As a result, a bounded solution of (83) can be specified, e.g.,

as

gτ
z,d(x) = −

3

4πτ 3
1

ρω2

([
Û (z,x)

]T

· az,d +

[
Σ̂(z,x)

]T

· bz,d

)
, (84)

where az,d and bz,d are the solution of the linear algebraic system
(∫

Γ1

Û (z,x) ·

[
Û(z,x)

]T

dsx

)
· az,d +

(∫

Γ1

Û(z,x) ·

[
Σ̂(z,x)

]T

dsx

)
· bz,d = d,

(∫

Γ1

Σ̂(z,x) ·

[
Û (z,x)

]T

dsx

)
· az,d +

(∫

Γ1

Σ̂(z,x) ·

[
Σ̂(z,x)

]T

dsx

)
· bz,d = 0,

characterized by a positive definite coefficient matrix. Now, one can formulate the

following result.
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Theorem 6.5 The inverse problem for the elastic-wave reconstruction of a “small”

obstacle Bτ (z) ⊂ Ω with characteristic size τ > 0 is solvable by the linear sampling

method. Its solution, gτ (·; z,d)∈L2(Γ1), behaves so that

lim
τ→0

‖gτ (·; z,d)‖L2(Γ1) =∞.

Proof. The assertion of the theorem readily follows from (84) by taking τ → 0. ¤

Remark: It was previously shown (see Theorem 6.3) that if the sampling point

z is inside the scatterer, i.e. z ∈ Bτ (z), there exists gτ (·; z,d) ∈ L2(Γ1) such that

lim
z→y∈∂Bτ (z)

‖gτ (·; z,d)‖L2(Γ1) = ∞. On the other hand, Theorem 6.5 states that the

norm ‖gτ (·; z,d)‖L2(Γ1) becomes unbounded as the boundary ∂Bτ (z) approaches the

sampling point z, i.e. as τ = min
y∈∂Bτ (z)

‖z − y‖ → 0. Accordingly, Theorems 6.3 and 6.5

illustrate the fact that the respective limits are interchangeable.

6.4. Behavior of the solution in the exterior domain

To provide a comprehensive mathematical basis for the linear sampling method dealing

with inverse scattering problems in elastodynamics, the behavior of the solution to the

near-field integral equation (27) when the sampling point lies outside of the scatterer

(z ∈ Ω−) is the focus of this section. In other words, one is to examine the integral

equation

(Fgz,d)(ξ) = Û (ξ, z) · d, ξ∈Γ2, z∈Ω−, d∈R3, ‖d‖ = 1. (85)

With the assumption that gz,d ∈ L2(Γ1) and that z ∈ Ω− is fixed, it is easy to show

that Û (ξ, z) · d, ξ∈Γ2 is not in the range of F . In particular, the opposite claim that

Û (ξ, z) · d, ξ∈Γ2 is in the range of F contradicts the analyticity of

vS(ξ) =

∫

Γ1

U S(ξ,x) · gz,d(x) dsx, ξ∈Ω−.

In what follows, an approximation of (85) that is solvable in the L2-sense will be

considered instead.

To this end, let z∈Ω−. With reference to Figure 4, consider the perturbed scatterer

domain Ω̃C,τ = ΩC∪Hτ∪B
+
τ (z), where B+

τ is a semi-ball of radius τ >0 centered at z, and

Hτ is a cylinder-like domain of radius τ >0 smoothly connecting ΩC and B+
τ (z). Further,

let Γ and Γ̃τ denote the respective boundaries of ΩC and Ω̃C,τ , so that Γτ = Γ̃τ \ (Γ∩ Γ̃τ )

is the “exposed” boundary of the appendage in Figure 4. With these definitions, one

may analyze the integral equation
∫

Γ1

Ũ
S

τ (ξ,x) · g̃
τ
z,d(x) dsx = Û (ξ, z) · d, ξ∈Γ2, z∈ Ω̃C,τ⊂Ω, d∈R3, ‖d‖ = 1,

introduced as a perturbation of (85), where Ũ
S

τ is the scattered tensor induced by

Ω̃C,τ⊂Ω at ξ∈ Γ2 due to a unit point source at x∈Γ1. On denoting

Ũ
S

τ (ξ,x) = U S(ξ,x) + V S

τ (ξ,x), (86)
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Figure 4. Sampling point in the exterior domain

where U S is the original (i.e. unperturbed) scattered tensor, one can formulate the

following claim.

Theorem 6.6 Let z ∈ Ω− be fixed, and d ∈ R3 with ‖d‖ = 1. Then, for every ε > 0,

there exists g̃τ
z,d∈L2(Γ1), τ >0, such that
∥∥∥∥
∫

Γ1

[U S(·,x) + V S

τ (·,x)] · g̃
τ
z,d(x) dsx − Û (·, z) · d

∥∥∥∥
L2(Γ2)

<ε, (87)

where

lim
τ→0

V S

τ (·,x) = 0, and lim
τ→0

‖g̃τ
z,d‖L2(Γ1) =∞. (88)

Proof. With the assumption that z ∈ Ω̃C,τ ⊂ Ω is fixed and decomposition (86), one

can infer from Theorem 6.3 that there exists a solution g̃τ
z,d ∈L2(Γ1) that satisfies the

inequality (87). Further, on employing the interchangeability of the limits z → y∈ Γ̃τ

and τ → 0 as examined in Section 6.3, it follows from (64) that

lim
τ→0

‖g̃τ
z,d‖L2(Γ1) =∞.

To show that limτ→0 V
S

τ (·,x) = 0, it is useful to employ an integral representation of

the perturbed scattered field Ũ
S

τ (ξ,x), ξ∈Γ2, x∈Γ1 corresponding to Ω̃C,τ , i.e.

Ũ
S

τ (ξ,x) =

∫

Γ̃τ

{[
Û (η, ξ)

]T

· T̃
S

τ (η,x) dΓη −
[
T̂ (η, ξ)

]T

· Ũ
S

τ (η,x)
}
dΓη. (89)

Likewise, one may write

U S(ξ,x) =

∫

Γ̃τ

{[
Û (η, ξ)

]T

· T S(η,x) dΓη −
[
T̂ (η, ξ)

]T

·U S(η,x)
}
dΓη, (90)

for the unperturbed scattered field on the same (perturbed) boundary Γ̃τ .
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For scattering problems where ΩC (and thus Ω̃C,τ ) is a cavity, T S(η,x) =

−T̂ (η,x), η ∈ Γ, x ∈ Γ1, and T̃
S

τ (η,x) = −T̂ (η,x), η ∈ Γ̃τ , x ∈ Γ1. On the basis

of this result and (89) to (90), one finds that

U S(ξ,x)− Ũ
S

τ (ξ,x) = −

∫

Γ̃τ

[
T̂ (η, ξ)

]T

·
(
U S(η,x)− Ũ

S

τ (η,x)
)
dΓη +W S

τ (ξ,x), (91)

where

W S

τ (ξ,x) =

∫

Γτ

[
Û (η, ξ)

]T

·
(
T S(η,x) + T̂ (η,x)

)
dΓη = O(τ q),

as τ → 0, ξ ∈ Γ2, x∈ Γ1, and q≥ 1. Although the exact value of q is not relevant in

this study, it can be shown using the divergence theorem that q=2 for the problem of

interest (see also [24]). To examine the behavior of the residual integral in (91), it is

useful to note that the boundary distribution of the perturbed scattered field Ũ
S

τ (η,x)

solves the regularized integral equation

Ũ
S

τ (y,x) +

∫

Γ̃τ

[
T̂ (η,y)

]T

1
·
(
Ũ

S

τ (η,x)− Ũ
S

τ (y,x)
)
dΓη +

∫

Γ̃τ

[
T̂ (η,y)

]T

2
· Ũ

S

τ (η,x) dΓη

= −

∫

Γ̃τ

[
Û(η,y)

]T

· T̂ (η,x) dΓη, y∈ Γ̃τ , (92)

where the traction Green’s tensor, T̂ (η,y) = [T̂ (η,y)]1 + [T̂ (η,y)]2, is decomposed

into its singular [T̂ (η,y)]1 and regular [T̂ (η,y)]2 parts (see [36]). With reference to Γ̃τ ,

boundary integral equation for the unperturbed scattered field U S(η,x) can be written

as

U S(y,x) +

∫

Γ̃τ

[
T̂ (η,y)

]T

1
· (U S(η,x)−U S(y,x)) dΓη +

∫

Γ̃τ

[
T̂ (η,y)

]T

2
·U S(η,x) dΓη

= −

∫

Γ̃τ

[
Û(η,y)

]T

· T̂ (η,x) dΓη

+

∫

Γτ

[
Û (η,y)

]T

·
(
T̂ (η,x) + T S(η,x)

)
dΓη, y∈ Γ̃τ . (93)

Here it should be noted that i) both (elastodynamic) integral equations are by definition

well-posed, and ii) all integrands in (92) and (93) are at most weakly singular owing to

the assumption that Ũ
S

τ and U S are Hölder continuous. On subtracting (93) from (92),

integral equation for the perturbed scattered field can be recast as

V S

τ (y,x) +

∫

Γ̃τ

[
T̂ (η,y)

]T

1
· (V S

τ (η,x)− V
S

τ (y,x)) dΓη +

∫

Γ̃τ

[
T̂ (η,y)

]T

2
· V S

τ (η,x) dΓη

= −

∫

Γτ

[
Û(η,y)

]T

·
(
T̂ (η,x) + T S(η,x)

)
dΓη, y∈ Γ̃τ , (94)

where U S is assumed to be known beforehand. By virtue of the divergence theorem, it

can be shown that the right-hand side of (94) behaves as O(τ 2) as τ → 0. As a result,

solution of the linear integral equation (94) (which, in view of (92) and (93), constitutes

a well-posed problem for any τ >0) exhibits the behavior

V S

τ (y,x) = O(τ 2), as τ → 0, y∈ Γ̃τ , x∈Γ1.



Elastodynamic obstacle identification in a semi-infinite solid 21

By virtue of (91), this result concludes the proof of (88).

For scattering problems where ΩC is an immobile rigid obstacle, (88) can be

established using an approach similar to that presented above. For brevity reasons,

however, this proof will be omitted. ¤

Remark: To provide further insight into the behavior of gz,d when z∈Ω−, it can

also be shown using Tikhonov regularization (see [5] for problems in acoustics) that for

every ε>0 and δ>0 there exists gε,δ
z,d∈L2(Γ1), such that

∥∥∥∥
∫

Γ1

U S(·,x) · g
ε,δ
z,d(x) dsx − Û(·, z) · d

∥∥∥∥
L2(Γ2)

<ε+ δ,

where

lim
δ→0

‖gε,δ
z,d‖L2(Γ1) =∞.

With the result of Theorems 6.3, 6.4, and 6.6, it is seen that the function

‖g(·; z,d)‖L2(Γ1), z ∈ Ω, can be used as an efficient tool for exposing the support of

the hidden scatterer ΩC through the region of its bounded values. However, since

‖g(·; z,d)‖L2(Γ1) exhibits an unbounded behavior in Ω−, it is more convenient to employ

1/‖g(·; z,d)‖L2(Γ1), z ∈ Ω, as an indicator (i.e. characteristic function) of the hidden

scatterer.

Although herein formulated and analyzed for near-field elastic waves in a half-

space, the linear sampling method derived in this study is also valid for near-field elastic

scattering problems in a free-space. This can be achieved by replacing the elastodynamic

half-space Green’s function ûk by the corresponding free-space fundamental solution

[30].

7. Results

As elucidated earlier, identification of the support of an obstacle ΩC hidden in a semi-

infinite solid Ω, can be effected by solving the near-field linear integral equation of the

first kind (27) in a sampling region D⊂Ω containing the scatterer. In particular, this

process is done by exciting the half-space with a “fictitious” point source at a sampling

point z∈D acting in the direction given by a unit vector d, solving (27) for g(·; z,d), and

plotting 1/‖g(·; z,d)‖L2(Γ1) for all z∈D. More precisely, it was shown via Theorems 6.3

through 6.6 that the norm of the density gz,d = g(·; z,d) becomes unbounded whenever

z /∈ΩC. In what follows, the support of ΩC can be identified by resolving the operator

equation

Fgz,d = bz,d (95)

where F is the linear compact operator defined by (31), and bz,d = Û(·, z)·d. To obtain

a stable solution to the ill-posed equation (95), the Tikhonov regularization method [26]

is employed in this study wherein the regularized solution of (95) can be found by

minimizing the Tikhonov functional

Jα(gz,d) = ‖Fgz,d − bz,d‖
2
L2(Γ2)

+ α‖gz,d‖
2
L2(Γ1)

, R3α>0 (96)
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where the regularization parameter α is chosen according to the Morozov’s discrepancy

principle [32].

7.1. Reconstruction of a single cavity using triaxial seismic excitation

To illustrate the performance of the linear sampling method for near-field elastodynamic

inverse problems, the next example deals with the elastic-wave imaging of an ellipsoidal

void (Neumann problem) buried in a semi-infinite solid as depicted in Figure 5. With

reference to the Cartesian frame, {O; ξ1, ξ2, ξ3}, the cavity is centered at (0, 0, 4a)T; its

semi-axes lengths, aligned with the global coordinate system, are taken as (1.8a, a, 0.6a)T

where a represents the semi-axis in the ξ2-direction.

P P

P

Π

ξ1 /a

ξ3 a/

ξ2 /a

Figure 5. Ellipsoidal cavity and testing configuration in the half-space ξ3> 0

On assuming that the source surface Γ1 and the observation surface Γ2 coincide

(i.e. Γ1=Γ2= Π), the numerical example employs noise-free synthetic data U S(ξ,x),

computed using the regularized boundary integral equation [35]. The elastic properties

of the half-space and the frequency of excitation are chosen as

C =
3

2
µ I2 ⊗ I2 + 2µ I4, ω̄ = 3.6a

ω√
µ/ρ

= 1.8, µ>0. (97)

In the simulation, the cavity is exposed sequentially using forty source points

according to the testing grid shown in Figure 5. From each point of the grid, the void is

illuminated in sequence using vibratory forces acting in three perpendicular directions

(ξ1, ξ2 and ξ3) with respective magnitude P1 = P2 = P3 = P = 0.2µa2. For each point

source x∈Π, the noise-free synthetic scattered tensor, U S(ξ,x), ξ,x∈Π, is generated

at the same (forty) grid points covering the test area 14a × 14a as illustrated in the

Figure.

With the above problem parameters, the near-field equation (95) is used to compute

the density gz,d where the probing point z runs through a rectangular parallelepiped
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(12a × 12a × 7a), a priori known to contain the scatterer. In the computation of gz,d,

the right-hand side of (95) is specified according to a “virtual” point source z with

magnitude P = 0.2µa2, vibrating with frequency ω in the direction given by the unit

vector d=(1, 0, 0)T.
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0.006

ξ1 /a ξ2 a/

a2 ||||g
1

Figure 6. Plot of 1/(a2‖g(·; z,d)‖L2(Π)) exposing the “true” ellipsoidal cavity from

triaxial seismic excitation (ξ3=4a, ω̄ = 1.8, d=(1, 0, 0)T)

Figure 6 shows the plot of 1/(a2‖g(·; z,d)‖L2(Π)) as a function of the probing point

z in the horizontal plane ξ3 = 4a (covering an area of 12a × 12a), where g(·; z,d) is

computed over a 20× 20 grid of uniformly spaced sampling points. As can be seen from

the Figure, the distribution indicates the support of the hidden scatterer.
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Figure 7. Contour plot of 1/(a2‖g(·; z,d)‖L2(Π)) for the identification of an ellipsoidal

void using triaxial point source (ω̄ = 1.8, d= (1, 0, 0)T): a) horizontal plane, ξ3=4a

and b) vertical plane, ξ1=0

Figures 7a and 7b depict respectively the contour plots of 1/‖(a2g(·; z,d)‖L2(Π)) as
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a function of the probing point z in the horizontal plane ξ3 = 4a, and in the vertical

plane ξ1=0. In both horizontal (12a×12a) and vertical (12a×7a) planes, a 20×20 grid

of uniformly spaced sampling points was used in the numerical evaluation of the density

g(·; z,d). As can be seen from the Figure, the region of interest (i.e. containing the

scatterer) is identified by the regularized sampling method. It should be noted, however,

that while the presence of an elliptically-shaped object is clearly visible in the horizontal

plane from Figure 7a, the reconstruction of the support of the scatterer is somewhat

smeared on the vertical plane shown on Figure 7b. This difficulty in the reconstruction

on the vertical plane can be associated with (i) the limited aperture effect (the surface

patch Π subtends a solid angle of only 3.42 sr at the center of the ellipsoidal cavity),

and (ii) the choice of the direction, d, (in this case, d=(1, 0, 0)T) of the point source at

the sampling point z (see also [3]).

ξ1 a/

ξ3 a/

ξ2 a/

Figure 8. Level surface of 1/(a2‖g(·; z,d)‖L2(Π)) in the rectangular box (12a× 12a×

7a) with level value 10−3 (ω̄ = 1.8, d=(1, 0, 0)T)

To provide further insight into the performance of the method, Figure 8 illustrates

the reconstructed cavity as level set of 1/(a2‖g(·; z,d)‖L2(Π)) in the rectangular

parallelepiped (12a×12a×7a) with the level value 10−3 chosen in accordance to Figure 6.

In the Figure, the true ellipsoidal cavity is also shown inside the level surface.

7.2. Reconstruction of two cavities using triaxial seismic excitation

Motivated by the fact that the near-field equation (95) does not directly involve the

boundary of the scatterer, an attempt to identify two isolated ellipsoidal cavities buried

in the elastic half-space is undertaken to examine the generality of the linear sampling

method. With reference to the Cartesian frame, {O; ξ1, ξ2, ξ3}, the cavities are centered

respectively at (−4a,−2a, 4a)T and (4a, 2a, 4a)T as shown in Figure 9. Their semi-

axes lengths, aligned with the global coordinate system, are taken respectively as

(1.8a, a, 0.6a)T and (a, 1.8a, 0.6a)T.
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Π

P P

P

3ξ a/

ξ /a1
ξ /a2

Figure 9. Ellipsoidal cavities and testing configuration in the half-space ξ3>0

As in the previous example, the cavities are exposed using forty point sources

with magnitude P = 0.2µa2 according to the testing grid depicted in Figure 9. The

constitutive parameters of the half-space and the frequency of excitation are again

chosen according to (97). For every point source x ∈ Π, the noise-free scatterer field

U S(ξ,x), ξ,x∈Π is evaluated at the same (forty) grid points over the test area 14a×14a

using the regularized boundary integral formulation [35]. With such synthetic data, (95)

is solved for the density gz,d at a 20× 20 grid of sampling points, uniformly spaced over

a 12a × 12a square area in the equatorial plane ξ3=4a. In the simulation, a fictitious

point source with magnitude P = 0.2µa2 and polarization d= (0, 1, 0)T, is specified at

every sampling point z.
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Figure 10. Contour plot of 1/(a2‖g(·; z,d)‖L2(Π)) for the reconstruction of an two

ellipsoidal cavities using triaxial point source (ω̄ = 1.8, d=(0, 1, 0)T): horizontal plane,

ξ3=4a
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Figure 10 illustrates the contour plot of 1/(a2‖g(·; z,d)‖L2(Π)). The presence of two

isolated cavities should be again apparent from the display.

8. Conclusions

In this study, the problem of reconstructing three-dimensional obstacles buried in a semi-

infinite solid from near-field, surface seismic measurements is investigated by means of

the linear sampling method that is rooted in far-field acoustics. To this end, a three-

dimensional inverse analysis of elastic waves scattered by an obstacle in a semi-infinite

solid is formulated as a linear integral equation of the first kind whose solution becomes

unbounded in the exterior of the hidden scatterer. This unboundedness property of the

solution is used to determine the support of the unknown scatterer. For a rigorous

approach to the problem, theoretical foundation of the linear sampling method is

systematically extended to near-field elastodynamics in semi-infinite solids, including

the necessary existence and uniqueness theorems. Numerical examples indicate that the

new technique is capable of effectively identifying subterranean obstacles, both in terms

of their location, topology, and approximate geometry.
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