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Formal Approaches to Student Modelling

John A. Self

Computing Department, Lancaster University, Lancaster LA1 4YR, U.K.

Abstract: This paper considers student modelling from the point of view of the formal
techniques that are involved.  It attempts to provide a theoretical, computational basis for
student modelling which is psychologically neutral and independent of applications.  It is
derived mainly from various areas of theoretical artificial intelligence.  Because of the
intrinsic difficulty of the student modelling problem, these links to AI are often merely
pointed out and not pursued in depth.
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1. Introduction

Like all models, a student model is intended to provide information about the object
modelled, in this case, the individual student who is using a computer-based learning
system.  The system uses the student model to help determine actions appropriate for that
student.  Student modelling is the process of creating a student model. Student modelling
necessarily occurs mainly at run-time, when the student uses the system, since it is mainly
through the evidence provided by the student's inputs to the system that the student model
is created.  This evidence is usually scanty, making student modelling a difficult process.

The aim of this paper is to review various formal approaches to student modelling.
Before embarking on this, some words of justification are required, on why student
modelling is important and why formal approaches are necessary.  Without a student model
a computer-based learning system will perform in exactly the same way with all users,
since there is no basis for determining otherwise.  But obviously, students are different:
they have different prior knowledge, different interests, different learning aptitudes, and so
on.  An intelligent learning environment (or ILE) is primarily one which understands the
individual student well enough to be able to determine individualised actions.  A student
model does not have to be completely accurate to be useful.  Indeed, it is not the case that a
more accurate student model is necessarily better: the computational effort to improve
accuracy may not justify the extra pedagogical leverage obtained.  Computational utility,
not cognitive fidelity, is the measure for student models.  Thus, we will need to consider
how student models are used in ILEs.  For the moment, we will simply assume that the
student model is data for the instructional component of an ILE.

A number of student modelling techniques have been developed (Dillenbourg and Self,
1992).  Generally, these techniques are embedded within more-or-less complete ILEs
making it difficult to analyse them in isolation.  In order to determine the properties of such
techniques (so that we may compare them, specify when each is appropriate, develop
refinements, etc.) some formalisation of them may help.  It may not - because, as we will
see, many of the techniques skirt difficult issues in theoretical artificial intelligence and it
may be better to rely on the pragmatic approach of implementation and empirical evaluation.
Also, premature formalisation may focus on what is formalisable rather than what is
important.  However, most sciences progress through formalisation and we may hope that
student modelling will as well, in due course.  Such a formalisation should be
psychologically and educationally neutral, that is, independent of particular psychological
theories and educational discussions of student-model-based ILEs.

The remainder of this paper is organised as follows.  First, we introduce a general
foundation for formal student modelling and a simple example to illustrate it.  We then
review methods for creating student models, by initialising them and subsequently revising
them in the light of system-student interactions.  We first imagine an ‘ideal student’, that is,
one who holds no misconceptions and who reasons and learns rationally.  We then
consider ‘real students’ who are naturally less considerate and who therefore present
considerably more problems to the formalisation effort.  The different kinds of content of
student models are described.  Finally, we re-consider the potential uses of student models
in ILEs, in order to re-emphasise that student models are not independent, autonomous
components of ILEs but must be fully integrated with other components.

2. Foundations

Our starting point of view is that an ILE is intended to support productive interactions
between the belief systems of the student and the system (‘productive’ in this case meaning
that they lead to an ‘improvement’ in these belief systems, especially that of the student, of
course).  We will use Bap to denote that an agent a believes proposition p (we will omit the



subscript when the agent is irrelevant).  The belief-set Ba of the agent a is the set of
propositions believed by a: Ba = {  p | Bap } .  We will consider the expression Bap to be
itself a proposition and thus that such expressions can be nested: BbBap denotes that agent b
believes agent a believes proposition p.

Our basic framework is shown in Figure 1 - we emphasise that this is only a starting
point, with the concepts of belief, proposition, etc. to be elaborated in the following.  We
have three components:

Bs denotes the student’s belief-set;

Bc denotes the computer system’s belief-set;

LM denotes that subset of the system’s belief-set which are beliefs that the system
has about the student.  The set of propositions which the system believes are
believed by the student will be denoted by Bcs , i.e. Bcs  = {  p | BcBsp } .      The set
{  Bsp | BcBsp }  is a subset of LM.

The computer system has no direct access to Bs : all its reasoning about the student has to
be through the analysis of LM.

B LM   
     

Bcs

Figure 1.  The basic framework

This is intended to be an abstract foundation so general that it can encompass any view
of student modelling.  It will be made more concrete through examples later.  But first we
have to say something about the basic concepts of belief and proposition.  Philosophers
have laboured for millenia over the meaning of such terms, and associated concepts such as
knowledge and truth.  We will just summarise the main points of relevance to student
modelling.

Regarding belief, we can make the following points:

1. We can distinguish between the belief itself and the object of the belief, here called the
proposition.  Thus, we can say “The student’s belief that momentum depends only on
velocity is reasonable given the examples she1 has seen”, where we are commenting on the
belief, not on the proposition itself, that “momentum depends only on velocity”.

2. A belief, unlike other attitudes such as regret, wish, etc., can be assessed as true or
false, i.e. (to keep it simple!) in accordance with the facts.  (We will not consider the
everyday use of “belief” in phrases such as “I believe in democracy” - the extent to which
such non-propositional beliefs can be reduced to beliefs that certain propositions are true is
a matter of controversy.)

3. Beliefs are held (usually) for reasons, and often changes in beliefs are a function of
an analysis of the reasons that they are held.  Thus, our student models will rarely be an
unstructured set of beliefs as suggested above but may maintain, for each derived belief,
some justification for it.

1For simplicity we will use ‘she’ to refer to the learner and ‘it’ to refer to an agent in general.



4. Beliefs are related to behaviour: if an agent believes p then it is disposed to act as if p
were true.  Of course, there is no guaranteed mapping between belief and behaviour (and
vice versa): if there were, student modelling would be straightforward.  However, some
beliefs (e.g. that Neptune is cold) do not appear to have much influence on behaviour
(except to enable us to respond “yes” to the question “Is Neptune cold?”).  Also, a belief
may be ‘quiescent’, i.e. even though we may consider it to be possessed by an agent
(because of previous behaviour perhaps) it may not be manifested in behaviour when one
might expect it, perhaps because the agent has for some reason not considered it relevant to
the situation at hand.

5. It does not matter whether or not beliefs have any kind of real existence in the mind
(whatever that may mean): it is sufficient that agents find it is useful to attribute beliefs to
others in order to understand and predict what they do.

Knowledge is usually described in terms of belief - an agent a knows p, Kap, under the
following conditions:

 Kap ≡ (1) Bap, (2) p is true, and (3) there is an account for p.

As usual, there is much philosophical debate about this definition, but it will serve our
purposes.  The third condition is necessary because we would not want to consider that,
for example, “I know it is snowing in Moscow” just because I believe it is and it happens
to be true, unless I can give a convincing account of why I believe it (e.g. that I have just
seen a live television broadcast from the Red Square).  This raises the question of when an
account is to be considered convincing and thus the belief to be justified.  Empiricists claim
that all knowledge is acquired through the use of the senses, and hence that no empirical
proposition is ever certain, and therefore that we cannot properly claim to know the truth of
such propositions.  Rationalists, however, consider that it is possible to acquire knowledge
by means independent of empirical investigation.  In student modelling, part of the
computer system’s belief set Bc is often considered to represent knowledge, although the
fact that it is true is only implicit and the justifications may be absent.  The system may
consider the student to possess knowledge if parts of Bcs  correspond to entries in Bc:

Kcp & B cBsp ->  BcKsp

although this axiom overlooks the role of the account of p, mentioned above.

Computationalists will be happy with the concept of a proposition.  Clearly, if an
Englishman were to assert “I believe that Neptune is cold” and a Frenchman that “Je crois
que Neptune est froide” then we would prefer to say that they believe not the sentences
“Neptune is cold” and “Neptune est froide” but some language-independent, mind-
independent, abstract, symbolic representation of the meaning of the sentences.  (We will
continue to use sentences to represent propositions where the representation is irrelevant.)
Knowledge representation (really, belief representation) in AI is concerned with devising
just such representations.  There is no assumption that a proposition is an expression in
propositional logic or even predicate logic, e.g. Cold(neptune) .  We will be very liberal
in considering what may count as a proposition - we will include procedures (“I believe that
the way to do subtraction is ...”), goals (“I believe that I want to ...”), plans (“I believe that
I will ...”), maybe even attributes (“I believe that I am reliable”).  (Note that these sentences
in brackets are not meant to imply that agents only possess beliefs if they assert that they
do!)  Naturally, the representation and processing of these more complex propositions is
difficult.

We can usefully distinguish between object-level propositions and what for the moment
we will simply call non-object-level propositions.  Any given ILE is concerned with some
domain, say, elementary physics: true propositions contained in Bc about that domain (e.g.
“momentum = mass x velocity”), which it is intended that the student acquire, are object-



level propositions.  In general, Bc contains a set of object-level propositions Oc, plus non-
object-level propositions of various kinds, for example

: further propositions about the domain (e.g. “momentum is often confused with
impetus”) - the union of these propositions and Oc  we will call the system's domain
knowledge Dc;

: 'meta-level' propositions which are to some extent domain-independent (e.g. “it is
best to vary one variable at a time”);

: propositions in the student model LM (e.g. “the student has fallen asleep”, “the
student knows what velocity is”, etc.).

Unless the ILE’s objectives are very precisely specified, the borderline between object-
level propositions and domain-related non-object-level propositons is not clear-cut.  For
example, if an ILE decides to help the student learn that “it is best to vary one variable at a
time” then that proposition becomes an object-level one.  Usually, the student model
focusses on domain-related propositions - of course, this is a simplification: the student
will believe non-domain-related propositions, too.

Few ILEs explicitly represent their beliefs as beliefs, that is, they do not use
representations such as Believe(computer,author(macbeth,shakespeare)) .  There is
no need to if the beliefs are not to be processed as beliefs - and if all expressions begin with
Bc, as they have so far, then that part may be left implicit.  However, we include it in our
formalisation as a constant reminder of the empiricist's scepticism about the nature of
knowledge and to retain the impression of a 'symmetrical' interaction between two belief-
holding agents.

3. An example

Rather than present the various formal approaches in a dry, domain-independent
fashion, we will use various example ILEs in order to help describe and illustrate ideas
more concretely.  This first ILE is as simple as possible: we have no commitment to this
particular ILE or the models presented to describe it.  We imagine a student using a
simulation of two colliding balls.  She can vary the masses and velocities of the two balls.
Her aim is to predict the resultant velocity (or velocities, for elastic collisions) and thus to
develop some understanding of the concept of momentum (and energy).

The student modelling problem is to build a representation of the student which may be
useful for instructional interventions.  (Whether such interventions are desirable is a
separate issue, but few students have no difficulty even with this simple problem.)
Building a student model on the basis of a student’s inputs alone is difficult, as an empirical
study soon indicates.  The ILE may, of course, initiate interactions specifically to clarify the
content of the student model, and in general this is to be recommended - however, there are
difficulties:

1. An appropriate language for such interactions needs to be devised (natural language
being too vague and verbose).

2. Such interactions need to be non-intrusive.  To avoid a lengthy interrogation about all
possible beliefs, system questions need to be maximally informative: a student model is
needed to determine such questions.

3. Students’ assertions about their beliefs are not wholly reliable.  They may not fully
understand the terms used (“I know what momentum is”) or may be mistaken.



Some illustrative entries in the belief-sets might be:

Bc = { “momentum = mass * velocity”,
“momentum is conserved”,
“mass cannot be negative”,
“students often think the velocity is the average of the previous velocities”,
“if you increase the masses, the velocity will decrease”, ... }

LM = { “the student believes that mass cannot be negative”,
“the student believes that if you halve one mass, the velocity will double”,
“the student is a novice physicist”,
“the student believes that velocity cannot be negative”, ... }

Bcs  = { “mass cannot be negative”,
“if you halve one mass, the velocity will double”,
“velocity cannot be negative”, ... }

Bs = { “mass cannot be negative”,
“velocity can be negative”,
“energy has got something to do with where the ball is on the screen”, ... }

Where we are not concerned with the content of the propositions, we may write, e.g.

Bs  = {p 1, p2, p3, ... } .

We can, of course, express relations between propositions, thus:

p6 = Bl p3,
p12 = Bl ∼p14.

4. Initialising the student model

When a student first uses the ILE LM is empty. It can be initialised in two ways: by explicit
questioning or by default assumptions.

4.1  Explicit questioning

If there is a finite set of independent propositions {p 1, p2, p3, ... }  such that Bspi  may be
true, we may ask the student “Do you believe p1?” etc.  Clearly this is tedious in the
extreme.  If the propositions are not independent, then some optimum sequence of
questions may be determined.  For example, if we use KaC  to denote that an agent a knows
a concept C if it believes all the relevant true propositions concerning that concept, then we
may express a prerequisite structure in terms of a set of rules of inference (where we use
italics to denote a concept):

BcKsmomentum −> BcKsvelocity
BcKsvelocity −> BcKsspeed, etc.

Given such a set of inference rules, an optimum (or at least sensible) order of questions
can be determined.  In general, concepts in the middle of the structure should be asked
first, since if a student says she knows that concept, the rules say she knows all the
prerequisites, whereas if she doesn't then she also does not know all the concepts of which
it is a prerequisite, assuming we also have the rules of the form:

Bc∼Ksvelocity −> Bc∼Ksmomentum

In addition to asking the student about object-level propositions, we may also ask about
certain non-object-level propositions.  For example, we may ask the user to assign herself



to one of a set of classes (usually called stereotypes): "Do you believe yourself to be an
expert, novice or beginner?"  Associated with each such class may be a set of inferences:

Bc"student is a novice" -> B cKsvelocity & B c∼Ksmomentum, etc.

4.2  Default assumptions

Normally, the stereotypes are arranged into a hierarchical structure (e.g. Figure 2), which
permits some ordering of such questions to be determined and the inheritance of inferences.
However, because the stereotypes are broad, the inferences they provide for the student
model are generally considered to be default assumptions, liable to be over-ridden by later
evidence.  A set of propositions is associated with each node, representing a stereotype,
such that if the student is (believed to be) a member of that stereotype then the system
believes that she believes those propositions, together with those propositions attached to
any encompassing stereotypes. We might also assume that a student does not believe those
propositions attached to sub-stereotypes.  In general, a student may be assigned to
stereotypes along several dimensions, leading to the possibility of inconsistencies in the
default assumptions (considered later).

any fool

investor

stock
novice

stock
expert

bond
expert 

investment
expert

computer
user

applications
user

applications
developer

systems
programmer

ILE
designer

spreadsheet
designer

C
expert

Unix
expert

Figure 2.  A stereotype hierarchy.

In the absence of information about the student, she might be assigned to the 'any fool'
stereotype, such that she is assumed to believe only those things which any fool believes,
that is, so-called common knowledge.  Some subset of Bc  might be distinguished as
common knowledge and hence assigned to Bcs .  We might also attempt to make some a-
priori ascriptions of beliefs to the student.  For example, the system might assume that she
knows nothing of what she is to learn:

∀p ( p ε Oc -> B c∼Bsp )

Wilks and Ballim (1987) suggest a general default belief ascription axiom:

Bap & ∼∃q (B aq & q -> B a∼Bbp) -> B aBbp

i.e. if an agent believes a proposition p and believes there is no reason q why a second
agent should not believe it then assume that it does.  However, they also point out that there
are several 'special cases' (e.g. secrets) where almost the opposite applies, i.e. the default
is to assume that the second agent does not believe it.  An ILE is an intermediate case: some
but not all (otherwise the learning interaction would be redundant) of the system's beliefs
are to be ascribed to the student (but we cannot know which ones).

Stereotypes are useful for initialising user models generally, especially for systems
which do not anticipate much subsequent change in the content of the model (which is the
case in most other user modelling contexts).  But, for student modelling, where the focus is
on the subsequent dynamic tracking of changes in the user (i.e. student), stereotypes are
not of much use beyond the initialisation stage because they do not permit the necessary
fine-grained analysis.



5. Updating the student model

5.1  Diagnosis

If the ILE encounters evidence that the current student model is inaccurate, for example, by
observing that the student acts differently (e.g. when solving problems) to the way the
student model would predict, then the system may try to diagnose the student model, that
is, find and alter those components necessary to enable the model to correspond to
observed behaviour.

5.1.1  Reconstruction

After the student model has been initialised there are two further sources of information on
the basis of which the student model may be updated: (1) the student's inputs to the ILE,
and (2) the current contents of the student model.  In general terms, our problem is to map
the inputs into a set of propositions:

Interpret({i 1, i 2, i 3, ..., i n}) -> {p 1, p 2, p 3, ..., p m}

such that we can assert  BcBsp j for j  = 1  to m.  An answer to a direct question is the
simplest such interpretation:

Interpret({ "yes, I know that force = mass x acceleration"})
-> {"force = mass x acceleration"} .

Usually, the interpretation is much more complex, for example:

Interpret({ student sets m 1 to 3 and v 1 to 6,
student sets m 1 to 2 and v 1 to 9 })

-> {"the product m x v is a useful concept"}

Interpret  has to do much more than just identify the propositions explicit in the student's
inputs: it must reason about what the inputs mean in terms of the student's beliefs.  Kass
(1989) gives a set of 'acquisition rules' which makes default interpretations of students'
inputs.  Two such rules, for example, state (adapting to the student modelling context):

Tells(s,c,p) -> B cBsp & ∀q (Component(q,p) -> B cBsq)

i.e. if the student states a proposition then the system believes that she believes it and all
components of it;

Problem(c,p) & Subproblem(q,p) & ∼Do(s,q)
  -> B c( ∼Bs(Problem(c,p)) v ∼Bs(Subproblem(q,p)) v B s( ∼Can-do(q)))

i.e. if the computer sets a problem p for which a subproblem q must be solved but the
student does not attempt to solve the subproblem then the computer believes that either the
student does not believe that p is the problem or she does not believe that q is a subproblem
or she believes that she cannot solve the subproblem.  If (as is likely) the system cannot
resolve this indeterminacy it might form the basis for the subsequent dialogue with the
student.

Often the set of inputs is the student's solution to a problem posed by the ILE.  Let us
consider first the case where the solution is just the answer A to the problem (with no
intermediate steps).  The process of inferring the student’s derivation of A is called
reconstruction.  If A is correct, according to Dc, we might assume that

{p 1, p 2, p 3, ..., p m}   -> A and p i  ∈ Dc  for i = 1 to m

-> B cBspi  for i = 1 to m



provided that there is a unique such set {p i} .  Of course, this is only an assumption
because the student may have used beliefs not in Dc.  Normally, however, there is no such
unique set.

If there are several such sets serving as potential explanations of the student's answer
we may attempt to disambiguate them by using intermediate steps and the technique of
model tracing.  If we have some intermediate steps, our problem is to

Interpret({step 1, step 2, step 3, ..., A})

given that we have several ordered sets {p i }  such that

{p 1, p 2, p 3, ..., p m}   -> A

Usually here each p i is a rule in a production system - the application of the rules
transforms the problem P into the answer A. The sequence of applications yields a sequence
of sub-problems  P1, P2, P3, ...  For each of the candidate sets {p i }  we can compare the
system-derived sequence  {P i }  with the student-input sequence {step i } .  In general, there
will be no exact match - for one thing, the lengths of the two sequences may not be equal.
The lengths can be forced to be equal (as in GREATERP (Reiser, Anderson and Farrell,
1985)) by:

1. Ensuring that the grain of each rule is such that it corresponds to a single problem-
solving step, e.g. in GREATERP a rule determines the next Lisp symbol to be input, and

2. Requiring the student to specify the corresponding step (which raises pedagogical
issues of no concern here).

It is not necessary to wait for the complete input sequence to be available before
beginning this analysis.  At each intermediate stage, the ILE may determine the potentially
relevant rules and hence the potential next steps.  These predicted steps can be compared to
the student’s input step: non-corresponding steps can be eliminated from the search (ideally
there should be only one step, and hence only one rule, left).  This ‘model tracing’ process
yields no computational benefit unless the student makes mistakes, as considered below.
(Here we are not comparing with the attempted analysis of solutions where the sequence
information has been lost, such as a completed Lisp program.)

The outcome of this process, if it is successful, is the addition to the student model of a
set of propositions of the form BcBspi  where each pi  ∈ Dc.  If:

∀i (B cBspi  -> (p i  ∈ Dc))

the student model is called an overlay .

In an overlay the propositions p i  act as the unjustified basic beliefs of a foundation
theory of knowledge (Pollack, 1986).  Indeed, in an overlay there are only such basic
beliefs.  For example, if

Dc = { a->b, b->c, c->d, ... }
then

Interpret({“a->d”})

might yield {a ->b, b->c , c ->d}  but it would not, by the process as described, result in
BcBs (a->d), or indeed BcBs (a->c)  or BcBs (b->d) , being added to the student model.
Thus the student model would contain no derived beliefs and hence, of course, no
derivations of them.  However, if we were to consider Dc  to contain not only the explicitly
mentioned propositions but also any proposition derivable from them, then we could
extend the interpretation to yield also any derived propositions (and their derivations).  The
implicit axiom



Bap & B a(p->q)  -> B aq

may be safe for the system, which we may desire to be a rational agent, but perhaps not for
the student, as we consider further below.

So far, we have assumed that a proposition p  which the system now believes the
student believes previously existed only in Dc.  But if the student model is not empty, then
we may already have BcBsp.  Reasserting the same proposition does no harm, but the
question arises as to whether the system should attempt to reconstruct the student’s
derivation of A from the student model or from its own domain knowledge.  Let us define
the student’s domain knowledge Ds by:

Ds = {  p | B cBsp & p ∈ Dc }

If the system is able to reconstruct A using Ds then the system may believe that the student
already believes the necessary propositions (but of course the student may have been
guessing) and hence that there is no need to update the student model.

5.1.2  Cognitive diagnosis

However, if the student’s answer is incorrect, i.e. A cannot be derived from Dc, and if the
student model is an overlay then one or more of the propositions necessary (according to
Dc) to solve the problem posed by the ILE must be missing from Ds.  The general problem
of reconciling the student’s answer As  with the computer system’s (correct) answer Ac ,
derived from Dc using propositions p1, p2, p3, ..., pm, is an instance of diagnosis.  Indeed,
some authors use the term ‘cognitive diagnosis’ interchangeably with ‘student modelling’.

Reiter (1987) has developed a general theory of diagnosis from first principles, that is,
by reasoning not dependent on domain-dependent heuristics representing compiled
experience.  The system (e.g. an electrical circuit, or a medical patient) to be diagnosed is
described by means of a set SD of axioms defining the behaviour of the components of the
system if they are not faulty, e.g.

and-gate(x) & ∼faulty(x) -> out(x) = in1(x) and in2(x)

i.e. if an and-gate is not faulty its output is the conjunction of its inputs.  If all the
components are not faulty the axioms determine the expected behaviour of the system, i.e.

SD & ∼faulty(c 1) & ∼faulty(c 2) ... -> expected behaviour

where c 1, c 2, .. are the components of the system.  Diagnosis begins if the observed
behaviour OBS differs from the expected behaviour.

Diagnosis involves retracting one or more assumptions that a component is not faulty to
restore the consistency between expected and observed behaviour.  Clearly we would tend
to prefer a diagnosis which conjectures that some minimal set of components is faulty.
Thus, a diagnosis D is a minimal set such that

D ˜ {c 1, c 2, ..} &

SD  ∪ OBS ∪ (faulty(c) | c ∈ D) ∪ ( ∼faulty(c) | c ∈ {c 1, c 2, ..} - D)

is consistent.  Re-expressing this in our previous notation, we have a cognitive diagnosis D
being a minimal set such that

D ˜ {p 1, p 2, ..} &

Dc   ∪ A s   ∪ (faulty(p) | p ∈ D) ∪ ( ∼faulty(p) | p ∈ {p 1, p 2, ..} - D)

is consistent, where



Dc  & ∼faulty(p 1) & ∼faulty(p 2) ... -> A c

As a result of such a diagnosis, the ILE may assert Bc∼Bsp for each p ∈ D.

To determine a diagnosis we may systematically postulate that each component
(proposition or rule) in turn is faulty, and then that each pair of components is faulty, and
so on.  Obviously, this method is too inefficient for systems with large numbers of
components when a number of them may be faulty.  Reiter (1987) gives a more efficient
algorithm, later modified by Greiner, Smith and Wilkerson (1990), for computing
diagnoses.  In the student modelling context, however, we may have little confidence in a
diagnosis that postulated that several components were faulty, and hence a simple generate-
and-test algorithm may be adequate.  Huang, McCalla, Greer and Neufeld (1991) describe
an application of Reiter’s diagnosis procedure to student modelling.

In fact, a rather similar procedure to Reiter’s had been proposed by Young and O’Shea
(1981) in their production system analysis of subtraction.  The postulate faulty(c i )
effectively disables the definition of the component c i  from SD: similarly, Young and
O’Shea suggested that an ILE could diagnose many of a student’s subtraction mistakes by
removing one or more rules from the system describing the component sub-procedures of a
correct subtraction algorithm.  Thus, the rules of their production system:

CM: processcolumn  -> compare, finddiff, nextcolumn.

B2a: S>M  -> borrow.

etc.

can be re-expressed as ‘component axioms’ in Prolog, e.g.

rule(cm):- not faulty(cm), processcolumn, compare, finddiff, nextcolumn.

rule(b2a):- not faulty(b2a), gr(S,M), borrow.

etc.

Running the rules (using an interpreter with the required conflict resolution strategies) with
no assertions that a rule is faulty gives the expected (correct) output, because of Prolog's
closed-world assumption.  But if we assert, for example, faulty(b2a) , then the output is
not as expected because rule(b2a)  no longer fires.

Deleting a rule (for example, the one which decrements the preceding digit when
borrowing) from a production system does sometimes produce output behaviour which
corresponds to standard students’ mistakes. But sometimes it is known that when a
component is faulty then it doesn’t merely not work at all but it often works in some other
predictable way.  So in addition to deleting a rule by assuming it faulty we may add further
rules which may correspond to the faulty behaviour (as suggested by Young and O’Shea).
For example, we might add the rule:

rule(cm):- faulty(cm), processcolumn, finddiff, nextcolumn.

which says that a faulty version of the cm rule omits to carry out the compare  operation
(leading to the common mistake that 46 - 29 = 23).  We could add a number of such rules
to correspond to known faulty versions of the ‘correct’ rule.

The status of such faulty rules (or, more generally, beliefs) in the ILE needs to be
carefully described.  If f  is such a rule, we cannot say Bc f  (since the computer system does
not believe it to be true) nor BcBsf  (since the system cannot assume that the student believes
it).  Rather, we can assert Bc∼f , and, more usefully, that the system believes that a typical
hypothetical student may believe it, which we will denote by BcBhf .  We will define a fault
to be a proposition f  such that  Bc∼f &  BcBhf .  Faults are sometimes called bugs or mal-
rules (if the proposition is expressed as a production rule).  A set of faults {f 1, f 2, ..}  is
sometimes called a bug catalogue.  It is common to extend the definition of the student's



domain knowledge Ds to include propositions f  such that BcBs f & f  ∈ bug-catalogue ,
although strictly 'knowledge' here is a misnomer.

A fault-diagnosis F is a minimal set of paired terms {<p,f>}  such that

p ∈ {p 1, p 2, ..} &

f ∈ {f 1, f 2, ..} &

Dc   ∪ A s   ∪ (faulty(p i ) & f i | p i  ∈ D) ∪

( ∼faulty(p) | p ε {p 1, p 2, ..} - D)

is consistent, where

Dc  & ∼faulty(p 1) & ∼faulty(p 2) ... -> A c

that is, a fault-diagnosis is a minimal set such that if the description of a component pi  is
replaced by that of an associated faulty component f i , then the system may derive the
student's answer.  It is conjectured that a fault-diagnosis (which describes how a
component is faulty) provides more pedagogical leverage than a diagnosis (which says that
a component is faulty) - this conjecture is considered below.

A revised diagnostic procedure for an ILE might be as follows: first, attempt to derive
As  using Dc  and Ds  - if this is successful, then the system may postulate that the student
believes those propositions used in the derivation; if it fails, then use a diagnosis procedure
(such as Reiter's algorithm) to isolate missing or faulty components; then, for those
components isolated, use a fault-diagnosis procedure to determine associated faults.  An
exhaustive fault-diagnosis procedure, in which each faulty component is systematically
replaced by a member of the set of faults, is clearly not feasible in general.  Instead, all
ILEs which make use of a set of faults contain explicit pre-determined links between a
component and its  associated faults.  Thus, identifying the faulty component leads directly
to a small set of potential faults which can be exhaustively searched.  In the case of
GREATERP's model tracing algorithm these steps are combined: the propositions (or
rules) such that Bcp or BcBhf  are merged and this merged set is used to make predictions
about the student's next step - some correct, corresponding to the Bcp propositions, some
faulty, corresponding to the  BcBhf propositions.

5.1.3  Generative mechanisms

Prespecifying a set of faults is a laborious process (there are hundreds of such faults in
GREATERP).  Moreover, most of the faults are irrelevant for any particular student.  It
may be more efficient to generate them as needed, if it is possible.  A few such generative
techniques have been proposed:

1. Syntactic transformations of a ‘correct’ proposition, e.g. by removing parts of a
production rule (so that it sometimes applies when it should not, or sometimes does not do
all that it should), or by replacing constants by variables (or vice versa) to make the
proposition more general or more specific.  The number of such transformations is clearly
very large.

2. The use of ‘meta-rules’, i.e. rules which define likely faulty transformations of other
rules, for example, in language learning a meta-rule which says that it is common to
overlook gender agreement permits the generation of a number of specific faults.

3. The use of ‘repairs’ to overcome impasses during problem-solving.  If when using
LM to model the student’s attempt to solve a problem, the interpreter cannot proceed
(because no rules apply), then a simple, local patch may be attempted, e.g. to skip a step,
back up to a previous point, or find an analogous operation.  The cognitive issues involved
in such repairs are thoroughly discussed in van Lehn (1989).  Technically, two



complications may be pointed out.  First, the interpreter needs to be able to detect an
impasse - a non-trivial problem - and enter a repair-generating phase, and is thus not the
normal problem-solving interpreter.  Secondly, when an impasse is enountered it is rarely
clear where the repair should be attempted.  When parsing a typical incorrect foreign
language sentence literally hundreds of apparent impasses are met, where a parser will back
up to try to find alternatives - any one of these impasses may indicate the real reason for the
eventual unsuccessful parse.

4. The inference of a fault to bridge the gap in an analysis of a problem solution.  If
when using LM the system can reason from the problem to a point q and from the answer
backwards to a point q'  and the gap between q and q'  is small, then the system may
hypothesise a rule to transform q into q' .  In general, however, there will be a large search
tree and hence a large number of such gaps - it will not be obvious which gap should be
filled.

It is somewhat strange that researchers have emphasised the use of generative
procedures to generate faults without emphasising that these procedures do not just
generate faults.  Occasionally they generate correct beliefs.  Indeed, they all correspond to
perfectly reasonable learning procedures, which inevitably (because of the complexity of
what is to be learned) lead to faults from time to time.

Thus, in order to formalise procedures for generating beliefs (whether faulty or not) we
may look to the large body of machine learning research.  For the moment, we will
consider the implications for student modelling.

Instead of labelling a belief as categorically correct or faulty (as we have so far), we
may begin to recognise that what is considered faulty depends on the context.  In a certain
context, a belief may be considered 'applicable', that is, correct for the purposes of this
context but perhaps faulty in another one.  Thus, instead of implicitly viewing the situation
as one in which the ILE aims to move a student from a 'faulty' context to a 'correct' one,
we may consider that there is a sequence of contexts and that the applicable rules in one
context may form the 'faulty' rules of another context.  For example, in learning French,
we might have the following rules:

1. the possessive pronoun agrees with the gender of the possessor -> “son table” (for
“his table”): this rule may have been acquired by transfer from English.

2. the possessive pronoun agrees with the gender of the thing possessed -> “sa table”,
“sa adresse” (for “his/her table”, etc.).

3. as above except when the following noun begins with a vowel -> “son adresse”
(for “her address”).

4. as 2 except when the following noun begins with a vowel or a mute “h” -> “son
horloge” (for “her clock”), and, in principle, so on.

In any context, a faulty rule may be accepted as correct, at least temporarily.  While
teachers often give students 'rules' of language they are rarely strictly correct.  In most
domains, in fact, there are degrees of correctness rather than the clear-cut correct-incorrect
division of typical ILE domains (subtraction, Lisp programming, etc.), and in some
domains (e.g. economics) there may be considerable disagreement about what the 'correct'
rules are.

Of course, the previous view may be regarded as just one snapshot from the new view:
at any instant the student is in context i and the system is in context (i+1), and indeed many
ILEs function by helping a student move through increasingly complex contexts.
However, several refinements to our view of ILE student modelling are now possible:



1. There may be more than one sequence of contexts which leads to the 'target context'.
Maybe these sequences can be dynamically generated rather than pre-ordained by the
system.

2. There may be no 'target context', that is, the system may seek to help a student move
from a given context but not necessarily towards a target known to the system  The
building and use of a student model in such a situation is obviously a more subtle process.

3. Even if there is a target context, we are reminded that most knowledge is not
categorically correct or not but appropriate or not for a context - this may be reflected in the
style of interaction adopted by the ILE.

4. The same representation may not be appropriate for beliefs in different contexts, for
example, in one context beliefs may be semi-qualitative, in other quantitative.  Therefore,
there is a potential problem in relating beliefs in different contexts.

5.2  Revising beliefs

If we now regard an ILE as seeking to cause a student to revise her beliefs (possibly
toward some target beliefs), rather than aiming to replace a faulty belief by a correct one,
then we need to consider when and how a student revises her belief-set, because the
student model will need to be revised similarly.  In general terms, a student may revise her
belief-set if she perceives it to lead to inconsistencies, or if it appears to be inefficient or
inadequate in some respect.  The former situation tends to lead to the discarding of beliefs,
the latter to the creation of new beliefs.

5.2.1 Discarding beliefs

Imagine that Ds contains the following propositions:

p1 "Fire rises."
p2 "The higher regions of the universe are more fiery than lower ones."
p3 "Fire produces light."
p4 "The sun produces more light than the stars."
p5 "The sun is more fiery than the stars."
p6 "The sun is higher than the stars."

and the student is made aware of a new piece of evidence:

p7 "The stars are higher than the sun."

If the new proposition were simply added to Ds then the student modelling process would
be complicated by the contradiction between p6 and p7, which under normal inference rules
would enable any proposition at all to be inferred.  One solution is to discard one or more
propositions from the set {p 1, .., p 7} .

There are two different bases for deciding which proposition(s) to discard.  First, we
must recall that Ds  is derived from the system's beliefs about the student's beliefs.  The
system may be mistaken in its beliefs about the student.  Therefore the system may analyse
its reasons for asserting BcBspi and decide, for example, to discard the 'weakest' default
assumption.

Secondly, the system may consider Ds  to be an accurate description of the student's
beliefs and must then concern itself with how the student would actually resolve the
conflict.  There are several possibilities:



1. The student may continue to believe all seven propositions (as Anaximander (550
BC) apparently did in this situation).  She may be able to reason with inconsistent belief-
sets using methods different to those of classical logic, as considered below.

2. She may disbelieve the new proposition: there is a natural reluctance to overthrow an
existing belief-set on scanty evidence, especially if no simple modification of the existing
belief-set overcomes the problem.

3. She may discard one or more old propositions.  In order to determine which
propositions to discard, she (and the system) may analyse the reasons why they are held.
To permit this, we distinguish between basic beliefs (or premises or assumptions or
hypotheses) and derived beliefs.  In the above example, p1, p3, p4 and p7 may be basic
beliefs and p2, p5 and p6 derived beliefs.  Those beliefs from which a derived belief is
derived constitute a justification for that belief.  For example, {p 2 , p5 }  may be a
justification of p6.  In general (but not here), there may be several justifications for the
same derived belief.  We denote the justifications j 1, j 2, j 3, ..  for a proposition p as
follows:

p: {j 1, j 2, j 3, ..}

For example: p6: {{p 2, p 5}}

p5: {{p 3, p 4}}

p2: {{p 1}}

For completeness, we may consider a basic belief to be its own justification, e.g.:

p1: {{p 1}}

A justification is thus in terms of the propositions from which a belief is immediately
derived.  In assumption-based approaches to belief revision, the system maintains a list of
the basic beliefs upon which the belief ultimately depends - in this case, we would have:

p6: {{p 1, p 3, p 4}}

p5: {{p 3, p 4}} , etc.

Discarding a derived belief (e.g. p6) may overcome the immediate problem but if the
basic beliefs from which it was derived remain then the discarded belief may be re-derived.
To prevent this, we must discard one or more basic beliefs from its justification (in this
case, one or more members of the set {p 1,  p3,  p4} ).  In general, when there is a set J  of
justifications, we must find a hitting set, that is, a set of propositions that contains at least
one element of each set in J.  If we then discard the propositions in the hitting set then no
justifications for the original belief remain.  In general, there will be a number of such
hitting sets and we would aim to select that which is in some sense minimal, i.e. causes the
least disruption to the existing belief-set.

Once a basic belief is discarded, we may also discard any derived belief which is
justified only by that basic belief.  With a foundation theory of knowledge, beliefs no
longer justified are abandoned; with a coherence theory, beliefs are retained in the absence
of any challenge to them.  Work on this and associated problems in AI goes under the name
of belief revision (although really it is belief-sets that are revised, beliefs being merely
discarded).  Psychological studies are relevant only to the second of the two bases
mentioned above for discarding beliefs, modelling belief revision by the student.  In a
student modelling context (as in fact in most belief revision work), it may not be possible
or necessary for the system alone to select which proposition(s) to discard: rather, the set of
potential amendments may be used to focus subsequent clarification dialogues with the
student.



As we have seen, the basic requirement for any belief-discarding scheme is that
whenever a new belief is added to a belief-set the system records how that belief depends
upon other beliefs.  Various refinements to the basic scheme have been investigated (and
some of them will be discussed in later sections):

1. The use of non-classical logics - it is not essential that the dependencies between
beliefs correspond to standard logical implication.

2. The recording of a set of basic beliefs as inconsistent once they have been found to be
so - to avoid subsequent consideration or to permit the system to be aware that the set is
inconsistent, if it is considered later.

3. The use of non-monotonic reasoning, by recording with each proposition not only the
justifications for believing it but also any propositions that have to be disbelieved in order
for the proposition to be believed.

4. The use of labels to mark a proposition as disbelieved rather than the erasing of it -
this improves efficiency if the system subsequently wishes to re-consider its disbeliefs, and
also enables the system to work within limited contexts.

5.2.2 Creating beliefs through reasoning

An agent may derive further beliefs by reasoning about the propositions in a belief-set.  The
reasoning processes are described or defined by a logic L, expressed as a set of axiom
schemata.  (The word ‘logic’ is not meant to imply that reasoning is necessarily sound or
complete.)  Student modelling is difficult partly because a number of different kinds of
logic are potentially relevant.  Here are a few illustrations:

L1 = { B(p v q) & B( ∼p v r) -> B(q v r)  }

This logic, with a single axiom schema (the rule of inference called resolution, which is
known to be sound and complete in predicate logic), might be used by the system to reason
about its domain knowledge, for example, to determine whether the student’s answer
accords with the system’s knowledge.  A standard theorem-prover or a language such as
Prolog could be used for this purpose.

L2 = { B(p & q) -> Bp ,
B(p -> q) & Bp -> Bq ,
B(p -> q) & B(q -> p) -> B(p = q) , ...  }

This might be intended to define a logic of ‘natural deduction’.  L2 might be more useful
than L1 when the system is carrying out the process of reconstruction (section 5.1.1), since
the intermediate steps passed through when using L2 might correspond better with the steps
which a rational student might pass through.  L1 is a computationally oriented logic; L2 is
intended to have some psychological validity.

L3 = { B(p->q) & Bq -> Bp ,

B(p->q) & B ∼p -> B ∼q , ... } ∪  L2

Whereas L2 might be intended to describe the reasoning of an ideal rational student, L3
might be intended to describe that of an actual student, since it contains some ‘irrational’
schemata in addition to the axiom schemata of L2.  Since real students may have faulty
reasoning schemata, the process of reconstruction may perhaps be better carried out with L3
than with L2.  Also, of course, the student may be lacking some of the ‘ideal rational
student’s’ schemata.  In other words, the same kinds of issue as discussed in section 5.1
with respect to object-level propositions arise also at the level of reasoning schemata.  If it



is necessary for the system to handle students’ difficulties at the reasoning level, then
explicit axiom schemata need to be provided.

L4 = { B(p, α) & B(q, α) -> B(p & q, α) ,

B(p, α) & B(q, α ∪ β) -> B(p->q, β) , ... }

This example illustrates that the logic of our axiom schemata does not have to be classical
logic with its standard notion of validity.  This particular case (relevance logic (Anderson
and Belnap (1975)) denies the so-called paradoxes of implication: p->(q->p)  and (p &
∼p)->q .  Instead, in relevance logic, one proposition entails another only if there is an
element of causality that relevantly connects them.  Each wff p is associated with an origin
set α containing all the basic beliefs used in its derivation.  This is written p, α.  The first
axiom schema in L4 says that if p and q are wffs with the same origin set, then we can
deduce p & q  and associate it with the same origin set.  Relevance logic has been used in
work on belief revision (Martins and Shapiro, 1988) and is presumably partly motivated by
a feeling that human reasoning follows such schemata rather than those of classical logic.

L5 = { B(goal(x)) & B(precondition(x,y))
-> B(must-satisfy(y)) ,

B(goal(x)) & B(precondition(x,y)) & B(can't-satisfy(y))
-> B(can't-do(x)) , ... }

L5 indicates that our logics may include 'pragmatic reasoning schemata' (Holland,
Holyoak, Nisbett and Thagard, 1989).  Such schemata are intermediate between domain-
specific rules and the abstract rules of standard formal logic (as illustrated above).
Pragmatic reasoning schemata are abstract rules in that they apply to a wide range of
content domains but they are constrained by particular inferential goals and event
relationships. The extent to which students use such pragmatic schemata is a matter of
debate.

L6 = { K cp & Tells(c,s,p) -> B cBsp ,
p ∈ Oc ->  Bc∼Bsp ,
...
BcBs(p->q) & B cBs∼p -> B cBs∼q ,
BcBs(p->q) & B cBsq -> B cBsp , ... }

The logics L1 to L5 all considered the case of a single agent deriving new beliefs.  In
student modelling, however, we are deriving nested beliefs of the form Bc Bs p.  The
appropriate axiom schemata here will be of two forms: one defining how the system
reasons about instructional events and its own beliefs and the other defining how the
system believes the student reasons about her beliefs.  Thus, in L6 the earlier schemata are
of the first form and the later schemata of the second form.  For example, the first schema
says that if the system knows a proposition and tells it to the student then the system
believes the student believes that proposition.  The last schema given in L6 denotes that the
system believes the student reasons using an axiom schema from L3 (of course, we could
also use schemata from L4, L5 and other logics).

It is clearly difficult to define a satisfactory set of such schemata for student modelling
purposes and indeed no existing ILEs make use of explicit schemata of this kind.
However, they do use ad-hoc, implicit schemata, for otherwise the student model would
never be updated.  Advantages that might follow from making them explicit include:

1. As with any formalisation, it might be easier to understand and analyse the processes
being formalised.

2. As we have seen, belief revision is facilitated by recording the justifications for
beliefs.  But merely listing the justifications, as in p6: {{p 1, p 3, p 4}} , does not enable the



system to reason about the validity of the justifications.  If we also recorded the axiom
schemata which enabled the belief to be derived the system could, for example, take
account of faulty derivations.

3. With explicit reasoning schemata, the system may be able to discuss the reasoning
processes themselves, and thus move beyond domain-related issues, as advocated by many
educationalists.

4. We may customise the reasoning process, i.e. we may adopt different logics for
different students, or for the same student at different times.  Thus, we have additional
scope for individualising instructional interactions.

5. By identifying distinct reasoning schemata appropriate for different aspects of the
student modelling problem, we may be able to separate computational and cognitive issues
which are currently inter-mingled.  Student modelling may be “unabashedly psychological”
(Clancey, 1986) but, as stated earlier, the primary aim is computational utility, not
cognitive validity.  By isolating where cognitive issues are important, we may develop
computational frameworks which are independent of them.

5.2.3 Limited reasoning

Defining a set of schemata does not define how those schemata will be interpreted by the
system.  For example, for L1, the standard rule of resolution, a large number of theorem-
proving strategies have been devised.  The simplest mechanism - that all axiom schemata
are repeatedly applied until no further conclusions can be drawn - is inadequate
computationally (in general, it would take much too long), psychologically (human agents
do not normally draw all possible conclusions from their beliefs) and philosophically (it
seems strange to say that an agent believes a proposition if it takes it ten minutes of intense
reasoning before it avers that it does).  Therefore, the system’s interpreter of axiom
schemata will carry out some ‘limited reasoning’ process.  However, we ought not to bury
those limitations in the interpreter but to make them explicit so that they too may become a
possible focus for student modelling.

The starting point for discussions of limited reasoning mechanisms for knowledge and
belief is the possible world semantics of modal logic (Hintikka, 1962).  The intuitive idea is
that besides the true state of affairs there are a number of other possible states of affair, or
possible worlds.  The worlds are connected by an accessibility relation R which may be
defined to satisfy various constraints, e.g. it may be transitive, i.e. uRv and vRw implies
uRw, where u, v  and w are worlds.  In each world, a proposition is given a truth value.  An
agent in a world w is said to believe a proposition if it is true in all worlds accessible to w.

The modal logic based on a transitive accessibility relation (called weak S4) can be
given a sound and complete proof theory comprising the following rules of inference and
axioms:

R1 Necessity p => Bp
R2 Modus ponens p & p->q => q
A1 Tautologies p, where p is valid in propositional logic
A2 Distribution Bp & B(p->q) -> Bq
A3 Positive introspection Bp -> BBp

Other logics, perhaps less suitable for representing belief, have different accessibility
relations and use one or more of the following axioms:

A4 Knowledge Bp -> p
A5 Negative introspection ∼Bp -> B( ∼Bp)
A6 Consistency Bp -> ∼B∼p



Any modal logic which includes A1 and A2 (as does every modal logic using the
possible worlds approach) suffers from the problem of logical omniscience, that is, the
agent believes all tautologies and all implications of its beliefs.  This is considered a
problem for the reasons given above - that it is computationally intractable and
psychologically implausible.  There are basically two ways in which the problem may be
overcome and hence some element of limited reasoning introduced: we may adopt a
‘semantic approach’ in which we use a modified notion of truth compared to the classical
one used in possible world semantics; or we may follow a ‘syntactic approach’ in which
beliefs are sentences in some syntactically specified set and sentences are distinguished by
syntax (thus, for example, we may have B(p v q)  and yet not necessarily B(q v p) ).

Levesque (1984) adopted the former approach in developing the distinction between
explicit belief and implicit belief.  We use Ip  to denote that an agent implicitly believes a
proposition - i.e., that it is a logical consequence of its explicit beliefs - and Ep to denote
that it explicitly believes it.  Informally, the explicit beliefs are intended to be that subset of
the implicit beliefs which the agent considers relevant or which have been 'activated' within
the agent.  Formally, implicit belief may be modelled by classical possible world semantics
but explicit belief requires a modified version.  Levesque used the idea of a situation, in
which a proposition may be true, false, both or neither.  A complete, coherent situation -
i.e. one in which propositions are true or false - corresponds to the standard possible
world, but we may also have a ‘partial world’ in which a proposition may be neither true
nor false and an ‘incoherent world’ in which it may be both.

By specifying a semantics similar to that for relevance logic, Levesque showed that,
while implicit belief retains the properties of belief in possible world semantics, explicit
belief does not suffer from the problem of logical omniscience.  For example, all the
following formulas are satisfiable:

1. Ep & E(p->q) & ∼Eq
2. Ep & ∼E(p & (q v ∼q))
3. ∼E(p v ∼p)
4. Ep & E ∼p
5. E(p & ∼p)

The properties of explicit belief follow from the incoherence and incompleteness introduced
in situations - the former leads to the possibility of believing unsatisfiable propositions
(e.g. 5 above), the latter to the possible lack of belief of valid propositions (e.g. 3 above).

Thus, it is possible to define formal logics to express some aspects of the
inconsistencies and incompletenesses which students display.  However, many subtle
issues remain.  For example, if reasoning is considered to be carried out with respect to the
situations thought possible by the agent, is it reasonable to allow incoherent situations as
being possible?  Also, the effect of imperfect reasoning in a classical logic is achieved by
assuming perfect reasoning in a non-classical logic (relevance logic).  Moreover, the formal
logic of explicit belief does not cover the expression of nested, multi-agent beliefs which
we have seen that we need for student modelling.

The syntactic approach to overcoming the limitations of possible world modal logics
emphasises the role of syntactic form in determining the truth of a belief.  However, the
semantics of belief logics must differ from those of classical logic because, unlike the
ordinary logical operators,  the modal operators of belief are referentially opaque, i.e. if p is
equivalent to q then we cannot substitute q for p in any expression within the scope of B
(for example, if largest-planet  = neptune , then we cannot infer B(Cold(largest-
planet))  from B(Cold(neptune)) ).  Instead, we may define a sentential semantics in
which, for each agent i , we associate a belief-set Bi  and a logic (a set of inference rules)
Li .  The theory formed by the closure of Bi  under Li  is denoted by Ti .  A proposition p ∈
Ti if and only if p is provable in i 's theory using i 's inference rules.  Then Bi p has the
value true if and only if p is in the theory associated with i .  (This semantics is referentially



opaque, as desired, because an equivalent (in our theory) expression may not be in the
agent’s theory.)

Fagin and Halpern (1987) attempted to isolate the advantages given by Levesque’s
notion of incomplete situations by defining a syntactic awareness function.  The intuition is
that an agent cannot believe a proposition if it is not aware of it, and that we might say that
an agent is aware of p if it explicitly believes p or its negation:

Ap ≡ E(p v ∼p)

Instead of using incoherent or partial worlds, Fagin and Halpern use standard possible
worlds with the awareness function to filter out those formulae of which the agent is
unaware.  A world w supports the truth of Ep if all the worlds the agent considers possible
in  w support the truth of p relative to the set of primitive propositions of which the agent is
aware in world w.  Implicit belief is as before and explicit belief is similar to Levesque’s
except that (1) an agent’s set of explicit beliefs is closed under implication and (2) an agent
cannot hold inconsistent beliefs, e.g. E(p & ∼p)  is not satisfiable.

Consider the following belief-set:

Ec(Foreigner(s))
Ec(Foreigner(x) -> ∼Ax(sconce))
Ec(Prerequisite(sconce,college-etiquette))
Ec( ∼As(c) & Prerequisite(c,g) -> ∼Infer(s,g))

i.e. the system believes the student to be a foreigner, that all foreigners are unaware of the
concept of a sconce (a fine imposed at Oxbridge), which is a prerequisite for understanding
Oxbridge college dining etiquette, and that a student cannot infer propositions if she is
unaware of a prerequisite concept.  In such a case the system cannot show (for example)
that the student can infer  (college-etiquette v ∼college-etiquette)  even though
the tautology follows from the system’s facts (indeed, from any facts) because s , a
foreigner, is unaware of a prerequisite concept (this example is considered further below).

A major benefit, for student modelling purposes, offered by this logic of awareness is
that, as we see above, it allows nested beliefs, which Levesque's logic of implicit belief
does not.  From the definitions, we can derive various relationships between implicit belief,
explicit belief and awareness, e.g.

EcEs(p v q) ≡ (A cp & I c(A sp & I sp))

Nested multi-agent beliefs enable us to describe the system’s reasoning about the student’s
beliefs, and nested single-agent beliefs provide us with a basic notation for discussing self-
reflection and metacognitive processes (as pursued in section 5.3.4).

Fagin and Halpern’s logic of general awareness goes further in defining an essentially
syntactic operator Ai  (for ‘agent i  is aware of’) in addition to Ei  and I i  which is not limited
to primitive propositions, as the previous logic of awareness is.  Since an agent explicitly
believes a proposition if it implicitly believes it and it is aware of it, we have:

Ei p ≡ I i p & A i p

Thus, explicit belief retains many of the properties of implicit belief, relativised to
awareness.  For example, the rules and axioms R1, A2 and A3  in the weak S4 logic become:

R1 Necessity p => (Ap->Ep)
A2 Distribution Ep & E(p->q) & Aq -> Eq
A3 Positive introspection Ep & AEp -> EEp



To these general axioms, we might wish to add restrictions to provide desired properties of
the logic - for example, we might specify that an agent i  is unaware of (any proposition
that mentioned) agent j , or that an agent is aware only of a certain subset of primitive
propositions.

This last restriction can be elaborated to provide a logic of local reasoning which differs
from the logic of general awareness in that it enables an agent to hold inconsistent beliefs.
The idea is that an agent’s belief-set may be partitioned into a set of non-interacting clusters
such that any cluster is internally consistent but may contradict a different one.  In this logic
we use Ei p to denote that agent i  explicitly locally believes p, i.e. believes p in some
‘frame of mind’, and I i p to denote that agent i  implicitly believes p, i.e. believes p if all its
frames of mind are pooled.

This version of implicit belief satisfies axioms A1 and A2 of weak S4 but not axiom A3,
and the version of explicit belief is not closed under implication and hence not subject to the
problem of logical omniscience.  The formula Ei p & E i (p->q) -> E i q is satisfiable
because i  might believe p in one frame of mind and p->q  in another but never be in a frame
of mind where it puts these facts together.  Moreover, an agent may hold inconsistent
beliefs, i.e. Ei p & E i ∼p, because it might believe p and ∼p in different frames of mind.
However, agents do not believe in incoherent worlds, i.e. Ei (p & ∼p)  is impossible.  As
with the logic of general awareness, we may impose conditions to capture various
properties.  For example, Fagin and Halpern define a narrow-minded agent to be one who
when in one frame of mind refuses to admit it may occasionally be another.  For such an
agent Ei ( ∼(E i p & E i ∼p))  is valid even though Ei p & E i ∼p is consistent.  In addition,
although the logic of local reasoning assumes an agent can do perfect reasoning within each
cluster, we can add an awareness function to the structure for local reasoning to provide a
model of belief which is not closed under valid implication.

It should be emphasised at this stage that it is not the aim to develop from among this
great variety of limited reasoning mechanisms one which is ‘correct’.  This is an
unattainable aim: some philosophical or computational objection can assuredly be raised
against any proposed scheme.  Rather, the aim is to develop a general framework within
which any such scheme can be explicitly defined and theoretically analysed.  The problems
of student modelling, involving a limited agent (the computer system) reasoning about the
beliefs of another limited agent (the student), are complex but it is no long-term solution to
bury techniques within opaque algorithms.

5.2.4 Meta-reasoning

In section 5.2.2, we pointed out that an agent may use different logics (sets of axiom
schemata) for reasoning about beliefs and that there are potential benefits in making those
logics explicit.  In section 5.2.3, it was described how different interpretations of the logics
can lead to different kinds of limited reasoning.  Similarly, we may expect there to be
benefits from making such interpretations explicit.  In other words, we are suggesting an
explicit meta-logic M which interprets a logic L with respect to a belief-set B to derive new
propositions.   (In this section, we will ignore the considerations of explicitness,
implicitness and awareness, discussed in the previous section.)

For example, consider:

B  = { Cold(neptune) ,
Cold(pluto) ,
∀x Cold(x) -> Lifeless(x) ,
∼Lifeless(mars) ,
∼Lifeless(earth) }

L  = { B(p & q) -> Bp ,
B(p -> q) & Bp -> Bq ,



B( ∼q) & B(p -> q) -> B( ∼p) }

M  = { Difficult('B( ∼q) & B(p -> q) -> B( ∼p)') ,
∀s ∼Difficult(s) -> Easy(s) ,
∀s Difficult(s) -> Apply-at-most(s,1) ,
∀s Easy(s) -> Apply-at-most(s,3) }

Ignoring for the moment the considerable technical problems, the intention is that the meta-
logic express that the third schema in the logic is a difficult one, that all schemata that aren’t
difficult are easy, and that difficult schemata are only applied once at most and easy
schemata three times at most.  Applying M to L and B, we obtain the derived beliefs:

Lifeless(neptune)
Lifeless(pluto)
∼Cold(mars)

but not ∼Cold(earth) , assuming that the schemata are applied from the beginning of the
belief-set.

We will refer to M as the meta-level and L and B as the base-level.  The general idea,
then, is that the meta-level specifies properties of the base-level logic which determine how
it is interpreted with respect to a belief-set.  The aim, for student modelling purposes, is to
enable the system to explicitly model and reason about different aspects of the student’s
competence.  Unless these components are declaratively specified, they cannot be
dynamically changed by the system (to model changes in the student or to adapt the general
framework to an individual student) and they cannot form the focus of instructional
interactions.

The above example is in terms of a single agent, and thus could correspond to the
system (or the student) reasoning about its (or her) own beliefs, but as we have seen (e.g.
in L6) student modelling is already at a meta-level, since it concerns the system reasoning
about the student’s beliefs.  This ‘level-shift’ is one of the things that makes student
modelling formally complex.

The idea of a metalanguage has been much studied in AI and in mathematics (for
example, to overcome logical paradoxes).  At first in AI, meta-reasoning was used to
shorten proofs obtained using simple, uniform deduction strategies such as those based on
resolution (our L1 above), by for example looking at syntactic structure rather than
repeatedly applying inference rules.  Meta-reasoning has since been applied to many areas
of AI.  We will illustrate the method by two examples related to student modelling,
addressing the two different kinds of axiom schemata given in L6, i.e. those related to the
system interpreting instructional events in terms of student beliefs and those related to the
system reasoning about the student's reasoning.

The first example is adapted from Cialdea et al (1990), who describe a system called
SEDAF to help students learn how to graph mathematical functions by solving for
characteristics of the function.  They describe a system belief-set:

Bc   = { Stationary(x,f) & Decreasing-left(x,f) &
Increasing-right(x,f) -> Minimum(x,f) ,

Denominator-zero(x,f) -> Pole(x,f) , ... }

and a system mal-rule belief-set

Bh  = { Decreasing-left(x,f) & Increasing-right(x,f)
 -> Minimum(x,f) ,

Numerator-one(x,f) -> Singular(x,f) , ... }



The system's logic of schemata is not stated explicitly but is in fact equivalent to resolution
(i.e. our L1).

In order to link a meta-level with the logic, a meta-level predicate Proof( B, L,p,d)  is
defined which asserts that d is a derivation or proof of proposition p using logic L on
belief-set B. It is assumed that Proof  is defined by a suitable set of meta-axioms, so that if
Proof( B, L,'p','d')  is a theorem of the meta-theory then d is a derivation of p using L
and B, where 'p'  and 'd'  are the representations of p and d at the meta-level (Weyhrauch,
1980).  Cialdea et al then provide the following five meta-level axioms (adapted slightly):

M  = { Answers(p,dontknow) & Proof( Bc , L1,p,d) & q  ∈ d -> B c∼Bsq ,

Answers(p,dontknow) & Proof( Bc , L1,not(p),d) & q  ∈ d
-> B c∼Bsq ,

Answers(p,yes) & Proof( Bc , L1,not(p),d) & q  ∈ d -> B c∼Bsq ,

Answers(p,yes) & Proof( Bc  ∪ Bh, L1,p,d) & q  ∈ d
& Acceptable-proof(d) -> B cBsq ,

Answers(p,yes) & Proof( Bc , L1,p,d) & q  ∈ d -> B cBsq }

The first axiom specifies that if the student does not know the answer to a problem which
the system can solve (using Bc and L1) then the system believes the student does not know
propositions used in the derivation of the answer.  (In general, of course, she would not
know one or more of those propositions - as discussed with reference to reconstruction in
section 5.1.1 - and the system might begin some dialogue to work out which.)  The
predicate Acceptable-proof  verifies whether it is plausible to believe that the student has
constructed the derivation d (either by interrogating the student or by analysing the current
student model).  Note that the same logic L1 is used throughout, which is not necessary
formally.

These two meta-level predicates (Proof  and Acceptable-proof ) just ask questions
about derivations in the base-level.  In general, M can also impose restrictions (such as
those discussed in the previous section) on what can be derived from L and B.  The meta-
level could, for example, assume that  the base-level will draw the inferences it is capable
of, unless the meta-level knows of constraints which prevent them being drawn.  This
approach is independent of the underlying base-level reasoning procedure - but to actually
design such a meta-level we have to commit ourselves to a particular underlying procedure.

Van Arragon (1991) describes a system called LNT in which the underlying reasoning
is based upon linear resolution, for which we need the meta-level predicate

Infer( Ba,b->g)

as used in the 'foreigner' example of section 5.2.3, where b->g  is a fact in Ba, where b is a
conjunction of literals.  (For clarity, we omit the quotes which are strictly necessary for the
meta-level.)  To reason about limitations in the base-level, the meta-level includes
propositions of the form

... -> ∼Infer( Ba, La,b->g)

where the ... defines the conditions under which the inference b->g  cannot be made, and
where we include the logic La to make it clear that different such logics may be defined.

For example, the following M specifies that the student can infer no more than three
steps:



M  = { Infer( Bs , Ls ,b1->g1) &
Infer( Bs , Ls ,b2->g2) &
Infer( Bs , Ls ,b3->g3) &
g≠g1 & ... & g2 ≠g3  -> ∼Infer( Bs , Ls ,b->g) }

Given the following belief-set:

Bs   = { true->p 1, p 1->p 2,  p2->p 3,  p3->p 4 }

the system will determine that the student can infer p1, p2 and p3, but not p4 (since
although  p4 follows from Bs  it requires four instances of Infer( Bs , Ls ,b->g) ).  Thus,
the system may handle Bss which are potentially inconsistent - for example, if we had:

Bs   = { true->p 1, p 1->p 2,  p2->p 3,  p3->p 4, ∼p4 }

then the system could, using M, consider that the student's reasoning is too limited to
realize the inconsistency.

This was the basic idea used in the foreigner example to handle a more interesting case
of limited reasoning, that of lack of awareness.  Other types of limitation can be similarly
expressed.  For example, a particular reasoning step may be too difficult for novices to
carry out:

M  = { Difficult(b->g) & Novice(student) -> ∼Infer( Bs , Ls ,b->g) }

Both SEDAF and LNT have been implemented in Prolog, in which it is relatively easy to
write a meta-interpreter to define meta-level predicates such as Proof  and Infer .  Such
implementations demonstrate both the methodological advantages of having a formal
specification and the practical advantages of concise, rapid prototyping.  However, the
extra layer of interpretation may lead to inefficiency although techniques are being
developed to help overcome this (Donini et al, 1990).

5.2.5 Non-monotonic reasoning

Non-monotonic reasoning and limited reasoning present orthogonal dimensions of
complexity of the student modelling problem - they are orthogonal in the sense that it is
possible to have either without the other.  Usually they are considered together since
reasoning that is limited often leads to non-monotonicity.  Non-monotonic reasoning refers
to reasoning in which a conclusion made at one time may no longer be valid at a later time
because of information acquired in the interim.

Non-monotonic reasoning is usually discussed with respect to a single agent, and we
need to consider that aspect too.  But student modelling itself, involving two agents, is
deeply and unavoidably non-monotonic, for three reasons:

1. The system’s beliefs about the student’s beliefs can never be confirmed as correct and
must therefore always be considered subject to revision.  Even apparently objective facts
such as students’ assertions about what they know or descriptions of students’ actions need
to be regarded as provisional (because they may not fully understand terms they use, or
they may make slips in performing tasks, for example).

2. Because of the ‘bandwidth problem’ systems will rarely have access to sufficient data
to permit reliable inferences about students’ beliefs, and consequently will have to make
default assumptions which may later have to be withdrawn.

3. Students do occasionally learn (and forget) and therefore what the system believes of
the student at one time will not necessarily hold at a later time.



Within AI generally, the field of non-monotonic reasoning is vast and active, but there
has been little explicit linking to the student modelling problem.  In this section, we will
just summarise the main approaches and point out the potential relevance to student
modelling.  Of course, the effect of non-monotonic reasoning may be achieved through
computational techniques (such as semantic networks) which are efficient but not
completely understood, rather than through the use of formal systems which are generally
intractable.  However, formal approaches to non-monotonic reasoning may yield benefits
in terms of clarity and correctness, and provide useful tools for specifying and describing
non-monotonic systems, in particular for that limited class which are actually covered by
relatively ad-hoc techniques (Etherington, 1987).

There are two basic approaches to non-monotonic reasoning: model-theoretic and
proof-theoretic.  Model-theoretic approaches are based on the idea that anything that does
not follow is assumed to be false ('model' here is used in the mathematical sense: a model
of a theory T is any structure M such that T is true in M).  Proof-theoretic approaches use
non-standard (non-monotonic) logics to derive conclusions through inference rules.

The closed-world assumption (as used in Prolog) is the simplest example of a model-
theoretic approach and the various formalisations of circumscription the most
comprehensive.  The basic idea of circumscription is that one considers not all models of T
but only those which are minimal with respect to a specific property P.  For example, if we
have:

Bs   = { Prime-minister(Thatcher) &
Prime-minister(Major) &
Female(Thatcher) &
Prime-minister(x)) & ∼Female(x)) -> Public-school(x) }

which says that a student believes the three facts indicated and believes that prime-ministers
who are not female went to a public-school, then we cannot logically conclude from Bs that
Public-school(Major) , since we do not have ∼Female(Major)  or, more generally, that
the student believes that all prime-ministers except Thatcher are not female.  Assuming the
equality axioms, applying circumscription to minimize the predicate Female  we obtain:

Circum( Bs ,Female)   =  Bs  & (Female(x) -> (x = Thatcher))

from which the conclusion Public-school(Major)  now follows.

Circumscription is achieved by means of a second-order axiom schema:

Circum(T,P)  :  T( Φ) & ∀x( Φ(x)->P(x)) -> ∀x(P(x) -> Φ(x))

where T( Φ)  is the result of replacing all occurrences of P in T by the predicate expression
Φ, P is an n-ary relation and x  abbreviates x 1, ... x n.  Informally, this states that if Φ
satisfies the conditions satisfied by P and every n-tuple that satisfies Φ also satisfies P, then
the only n-tuples which satisfy P are those which satisfy Φ.  For the simple example above,
the outcome is the same as for the closed-world assumption.  More complex forms of
circumscription have been defined, for example, prioritised circumscription allows the
predicates which are to be minimised to be placed in an order of relative importance: this,
for example, could be used to allow us to conclude ∼Public-school(Thatcher) , which
does not follow from Circum( Bs ,Female)  as above.  The precise relationships between
these forms of circumscription and other forms of the closed-world assumption have been
the subject of many studies.

Any student model which purports to represent what a student believes is bound to
make implicit use of some circumscription-like scheme since it would be unreasonable to
require the student model to represent explicitly all that which the student does not believe.
However, formally, the matter is more complex than even circumscription can handle.



For, if there is no proposition of the form BcBsp then is the missing default assumption
∼Bc Bs p  or Bc ∼Bs p  or Bc Bs ∼p , all of which mean subtly different things?  The four
possibilities almost correspond to the values 'yes' (Bc Bs p), 'no' (Bc Bs ∼p), 'unknown'
(Bc∼Bsp, although these last two should probably include the ∼p case as well) and 'fail'
(∼BcBsp) of the four-valued logic for student modelling suggested by Mizoguchi et al
(1988).

The use of second-order axioms as in circumscription obviously allows the first-order
mechanisms to stay unchanged.  Proof-theoretic approaches to non-monotonic reasoning,
on the other hand, include within the first-order logic extra rules which allow non-
monotonic inferences to be drawn. For such logics, a new semantics must be defined.
These non-monotonic logics focus on the notion of normality, i.e. on rules which tend to
apply unless there are exceptions.

For example, default logic allows a theory to contain ordinary first-order formulas plus
defaults, i.e. expressions of the form

p : q    -> r

which may be read as "if p is derivable and the formula q is consistent (i.e. its negation is
not provable) with the theory, then the default rule is applicable and the conclusion r  may
be drawn."  This is non-monotonic because a formula q, previously consistent with a
theory, may become inconsistent if new formulas are added to the theory.  The two most
common forms of default are where q = r  or q = r  & s, for example:

Bc(Physics-graduate(s)) : B c(Knows-about-momentum(s))
-> B c(Knows-about-momentum(s))

Prime-minister(x) : Male(x) & ∼Eq(x = Thatcher)    -> Male(x)

Such defaults act as rules of 'conjecture', allowing inferences which would not be
possible under ordinary first-order logic rules.  The conclusion has the status of a belief
which may need to be withdrawn (as discussed in section 5.2.1) if the assumption
becomes inconsistent.  The potential circularity (arising from the fact that what is provable
in a default logic both determines and is determined by what is not provable) is avoided by
requiring that an extension of a particular theory (1) contain all the known facts, (2) be
closed under the implication rules, and (3) contain the consequents of all defaults which
apply within that extension.  In general, there are many possible extensions for a given
default theory.  Informally, an extension describes an acceptable set of beliefs that an agent
may have about an incompletely specified world and thus is similar to the concept of a
possible world.  Since determining whether a formula is within an extension is
undecidable, the implementation of default logic seems problematic, although for most
practical cases (e.g. the kinds of default illustrated above) implementations are possible, for
example, the LNT system discussed above has an underlying default logic written in
Prolog (Poole, 1988).

Default logic involves an agent reflecting upon its own knowledge, in particular, in
considering whether a proposition is consistent with what it believes.  The notion of
consistency is, however, outside the language of default logic.  We could instead attempt to
capture the notion within the logic, as is done in an autoepistemic logic.  For example, we
could rephrase:

p : q    -> r

by the sentence:

Bap & ∼Ba∼q   -> r



i.e. "if p  belongs to the agent's belief-set and ∼q  does not, then r  is true."  Not
surprisingly, given this translation, various formal equivalences between variations of
default logic and autoepistemic logic can be established.  The main point here, however, is
that we have a link through belief logics to other aspects of the student modelling problem,
such as limited reasoning, as discussed above, and thus a prospect of being able to tie
together all the threads of student modelling, in due course.

Unfortunately, as discussed by Levesque (1990), this link is weakened by the fact that
work on autoepistemic logics and default logics has defined different semantics for the
notion of belief to that used in belief logics.  Levesque attempts to overcome this by
defining a second modal operator, in addition to B, namely O, such that Oap is to be read as
"p is all that is believed" or perhaps "only p is believed", and then by developing a
semantics for a language with two such operators.  Subsequently, this operator is modified
to Oa[n]p  for "only p is believed about n", just as circumscription takes place with respect
to a predicate and not the whole belief-set.

Clearly, difficult technical issues remain and most work in this area continues to focus
on the detailed properties of different formalisations rather than on considering possible
applications to areas such as student modelling.  However, some general implications for
student modelling may be listed:

1. Although some formalisations are theoretically intractable, practical implementations
for realistic applications are possible and are beginning to be developed (Donini et al,
1990).

2. Since non-monotonicity often arises through an agent reasoning about its (or other's)
beliefs, the meaning of the belief operator depends on the context (i.e. the other beliefs).
Thus, B functions as an indexical and expressions in the student model should ideally be
indexed.  Formally, this is an aspect which has not been considered.

3. Non-monotonicity is intimately related with other aspects of the student modelling
problem: for example, determining which belief(s) to withdraw (section 5.2.1) is likely to
depend to some extent on which beliefs were derived by ordinary inferences and which by
defaults; similarly, limited reasoning may be achieved by not reflecting too deeply about a
set of beliefs and hence leading to the derivation of default assumptions.

4. We can use logical notations to describe non-monotonic reasoning without making
any psychological claims, or, as Levesque (1990) puts it, we can use logics objectively
rather than subjectively.

5. To repeat a general point, formal characterisations of non-monotonic reasoning begin
to provide us with a way of precisely describing and analysing aspects of student modelling
which at present are proposed, described and implemented in an ad-hoc manner.

5.2.6 Creating beliefs through learning

In so far as they may be distinguished, reasoning leads (through deductive processes) to
the creation of relatively temporary beliefs for solving a particular problem, whereas
learning leads (through inductive processes) to the creation of relatively permanent beliefs
for solving problems in general.  If reasoning leads straightforwardly to a problem
solution, then learning may well not occur since the agent may re-generate the temporary
beliefs by the same deductive processes.  If the reasoning process is inadequate in some
way then learning processes may be activated to analyse the results of reasoning.

As with reasoning, work on machine learning is relevant to student modelling in two
ways: (a) to enable the system to learn about aspects of the student modelling problem, and
(b) to model how the student learns.  Again as with reasoning, the aim in the latter case is
not to seek the unattainable, that is, fully reliable predictions about the student’s learning



processes, but to develop a theoretical framework within which such processes may be
described and to hope that particular instantiations lead to useful analyses which can form
the basis for instructional interactions.  In fact, we can repeat with respect to learning many
of the points made in the previous sections about reasoning:

: the potential benefits of developing explicit representations of learning processes;

: the recognition that, for both human and system agents, learning processes will be
limited;

: the need to distinguish situations were psychological validity is important from those
where it is not;

: the fact that the computational intractability of many techniques imposes limitations on
what may be possible as far as dynamic student modelling is concerned; and so on.

There is a rich machine learning literature from which to elaborate these points, and
there has been considerable work within student modelling which applies machine learning
ideas: for example, Langley and Ohlsson (1984) describe a system which aims to induce a
student's problem-solving procedure from observations of her solutions by using
psychological heuristics to guide hypothesis formation; van Lehn (1987) develops a theory
of inductive learning which is intended to model the process whereby students learn from
examples, the theory relying heavily on ‘felicity conditions’, that is, tacit conventions about
the teaching-learning process; Costa et al (1988) describe an application of explanation-
based learning to the problem of reconstruction, using the technique to disambiguate
between possible contexts which a student may have adopted to solve problems.

All these examples, and almost all others from machine learning, are concerned with
learning by a single agent (be it system or human student).  Rather than expand on these
examples, we will discuss one which illustrates the potential of machine learning research
to support the view that learning may occur through an interaction between two agents
(system and human student, or two human students).  Imagine we have two agents, a and
b, who are both trying to learn the same concept but do so by studying different examples
and by describing the examples in different ways.  How can the two agents make sense of
what the other agent learns, in order perhaps to integrate the two different learned concepts
(in order to develop a richer joint one) or to be able to discuss the differences between the
learned concepts?

Brazdil (1991) gives the following illustration.  Each agent has a vocabulary V (a list of
predicates used to describe the world), a set of observed examples E, and a knowledge base
K describing what the agent knows about the examples in terms of its vocabulary V.  For
example,

Agent a Agent b

Va = { father,mother } Vb = { parent,male,female }

Ea = { gfather(oscar,steve), Eb = { gfather(william,steve),
gfather(paul,louis), gfather(oscar,peter) }
gfather(oscar,andrew) }

Ka = { father(paul,oscar), Kb = { parent(william,sylvia),
father(oscar,louis), parent(sylvia,steve),
father(louis,steve), parent(oscar,helen),
father(louis,andrew) } parent(helen,peter),

male(william), male(oscar),
male(steve), female(sylvia),
male(peter), female(helen) }



Applying an inductive procedure (e.g. GOLEM (Muggleton and Feng, 1990)), here
assumed the same for both agents,  to Ei  and Ki  the agents might induce, in Prolog
notation:

gfather(X,Y):- gfather(X,Y):-
father(X,Z),father(Z,Y). parent(X,Z),male(X),

female(Z),parent(Z,Y).

Neither agent’s rule applies to the other’s knowledge base, since the vocabularies are
different.  Moreover, even if an agent comes to know both rules (say b tells a its rule), then
the combined rule

gfather(X,Y):-
father(X,Z),father(Z,Y);
parent(X,Z),male(X),female(Z),parent(Z,Y).

is of no use unless an agent has access to the other agent’s description of its world.  For
example, if a describes using its vocabulary the world from which b derived Kb, we have

Ka’  = { father(william,sylvia),
mother(sylvia,steve),
father(oscar,helen),
mother(helen,peter) }

for which the combined rule fails.  In order to fully integrate b's knowledge, a needs to
learn b's vocabulary as well, i.e. the concepts parent,male,female .  This is possible if
b conveys its description to a, so that a can compare the two descriptions Kb and Ka’ .
Since Kb contains examples of the concepts to be learned, a could apply an inductive
procedure to Kb and Ka’ , to learn:

parent(X,Y):- father(X,Y).
male(X):- father(X,_).
female(X):- mother(X,_).

Thus, using standard machine learning techniques, we can enable an agent to understand
another agent’s theory.  If we regard one of the agents to be the system, then we could
imagine such a procedure being applied to handle situations where the student has a
different viewpoint about the domain to that of the system.  If we imagine both agents to be
human students, then the above kind of analysis might be adapted to enable a system to
help the students work collaboratively to come up with an agreed integrated theory of the
domain.

5.3  Beyond belief

So far we have adhered to the original definition of the student model in terms of a belief-
set, i.e. an unstructured set of beliefs held by the system about the student (including her
beliefs), where the object of a belief was taken to be a simple proposition.  However, this
adherence has been strained in several ways, for example, in the need to associate links
between beliefs to facilitate belief revision, and in the need to consider a production rule as
a kind of proposition.  In this section, we will review several extensions to the simple
belief-set.  Again, this is related to the broad area of knowledge representation research in
AI and we will only discuss aspects particularly relevant to student modelling.

5.3.1  Belief structures

A belief-set may become structured, and hence a 'belief-structure' rather than a belief-set,
in basically two ways: by specifying relationships between pairs of elements and by



partitioning the elements into subsets.  The former is needed, for example, to indicate that
one belief is derived from or is a generalisation of another one; the latter, for example, to
deal with local reasoning (section 5.2.3).

Two of the most useful relationships to specify are those of abstraction (isa ) and
aggregation, i.e. part-whole relationships (partof ).  Greer and McCalla (1989) structure
their belief space as a lattice based on these two relationships.  One dimension specifies
abstractions - for example, in their domain of Lisp programming strategies:

{ function-definition isa lisp-program,
recursion isa function-definition,
cdr-recursion isa recursion,
car-recursion isa recursion, ... }

The other dimension specifies part-whole relationships, for example:

{ null-base-case partof cdr-recursion,
recursive-cdr-reduction-case partof cdr-recursion,
some-test-default partof recursive-cdr-reduction-case, ... }

Those elements which are not partof  of any other element may be shown in a 'principal
abstraction hierarchy'.  If there are no abstraction relationships between elements not in the
principal abstraction hierarchy then one can picture 'slicing' the space into objects at
different 'grain sizes'.

Such a structuring is useful for student modelling because it enables diagnosis to be
carried out at an appropriate level of detail.  For example, given a particular student
solution, such as

(defun findb (lst)
(cond ((null lst) nil)

((atom 'b) t)
(t (cons nil (findb (cdr lst))))))

then it may be difficult to identify specific mal-rules, if any, but we may be able to at least
recognise the solution as an example of cdr-recursion .  We can imagine searching the
abstraction hierarchy from the root (lisp-program ) seeking the lowest node (cdr-
recursion ) for which the specified parts are present (here we have a null-base-case
and a recursive-cdr-reduction-case ).  Pedagogically useful information may be
determined by analysing why the solution is not recognised as an instance of lower nodes
(e.g. cdr-tail-end-recursion ) in the abstraction hierarchy on the path from the
recognised node to the 'preferred solution' node.  Thus, it may be possible to limit some of
the problems discussed in section 5.2 (such as belief revision) which may arise because of
a premature commitment to a default assumption, for example.  Instead, the system may
maintain an appropriately vague student model, which is refined only when it is possible to
do so.  In this sense, Greer and McCalla's granularity scheme is similar to the bounded
model approach of Elsom-Cook (1988) where a version space maintains upper and lower
bounds on the possible states of the student.

A student-model oriented structuring of the domain concepts is not necessarily the same
as a curriculum-oriented one.  For example, Greer and McCalla's abstraction hierarchy may
not carry pedagogical implications, such as that the general concept of recursion  should
be taught before the more specific concept of cdr-recursion , or vice versa.  While the
actual structures may turn out to be quite similar, their purposes are very different.  Here
we are concerned only with the aim of enabling 'imprecise' student modelling.  The
progression of causal models from qualitative to quantitative developed by White and
Frederiksen (1990) appears similar to Greer and McCalla's abstraction hierarchy, but the
former's aim is to eliminate most student modelling problems by building systems which
enable students to build their own models.  Student modelling then becomes a matter of the



system identifying which of the pre-specified sequence of causal models the student has
acquired, and thus is a version of overlay modelling - "the students are assumed to have the
current model when they can correctly solve problems that the current model can solve but
the previous model could not" (White and Frederiksen, 1990, p150).

5.3.2  Viewpoints

Specifying relationships between elements of a belief-set is useful when the student
modelling component needs to adjust its focus on the student: partitioning the elements into
subsets is useful when a different pair of spectacles is needed altogether.  For example,
imagine (from Costa, Duchènoy and Kodratoff (1988)) that:

Bcs   = { Man(x) & Noble(x) & Live(x,17th-century) -> Wig(x),
Man(Louis-XIV) ,
Lived(Louis-XIV,17th-century),
Wig(Louis-XIV), ... }

and the system asks the student why Louis-XIV wore a wig, expecting the answer
"because he was a noble" since this may be derived from the student model.  If instead the
student answers "because he liked having fun" then the system may seek a context different
to the 'Louis-XIV as a 17th-century noble' context to make sense of this answer.  It may,
for example, replace the first proposition above by one or more axioms in the system's
belief-set defining alternative contexts:

Bc   = { { Man(x) & Criminal(x) -> Disguise(x),
Disguise(x) -> Wig(x) }, ...

{ Man(x) & Bald(x) -> Wig(x) }, ...
{ Man(x) & Farceur(x) -> Have-fun(x),

Have-fun(x) -> Wig(x) }, ... }

Finding a context, e.g. 'Louis-XIV as a farceur', from which Wig(Louis-XIV)  may be
derived enables the student model to be revised and an appropriate response to be
generated.

We provisionally define a viewpoint Va to be a triple <Ba,La,Ma>, where each element
is a subset of the agent's complete belief, logic and meta-logic space, respectively.  The
above example is just concerned with the belief-set but in general we might imagine
different viewpoints to involve different reasoning processes.  If the agent is the system
then we are emphasising the fact that there may be many different ways of looking at one
domain, rather than just one definitively correct one: if the agent is the student then we are
recognising that students may well have different views about the domain to the system.
Both aspects have been emphasised recently in attempts to move intelligent tutoring
systems beyond straightforward knowledge commmunication systems.  Wenger (1987)
identifies 'viewpoints' as a topic ripe for more research and as a means of shifting from
"what is wrong to what is right".

However, the notion of a viewpoint is rather diffuse despite, or perhaps because of,
being studied under various guises within many branches of AI and computer science
(Self, 1991a).  In distributed AI, for example, there are discussions of different agents (or
nodes in a network) holding different views about some problem and the need to divide a
problem between agents and to coordinate the behaviour of them. They emphasise the role
of negotiation to reconcile potentially conflicting views (section 6.3).  Similarly, in ITS
research, we find an increasing emphasis on the student's ability to negotiate both about the
concepts to be discussed and about the meaning of the concepts themselves (Moyse and
Elsom-Cook, 1991).

To illustrate the potential relevance of viewpoints to student modelling we may adapt an
example from Wilks and Ballim (1987), who consider a 'viewpoint' to be an agent's set of



beliefs about some topic.  The example emphasises that such viewpoints need to be nested.
Imagine the system is mediating an interaction between two medical students a and b.  We
might have:

Bc   = { Type(thalassemia,genetic-disorder),
Medically-informed(x)

-> B x(Type(thalassemia,genetic-disorder)),
Average-person(x)

-> B x(Type(thalassemia,disease)),
Type(x,genetic-disorder) & Suffers(a1,x)

& Suffers(a2,x) & Child(a1,a2,a3)
-> Suffers(a3,x), ... }

The system's might have the following two student models:

LMa  = { B a(Suffers(fred,thalassemia)),
Ba(Suffers(mary,thalassemia)),
Medically-informed(a), ... }

LMb  = { B b(Suffers(fred,thalassemia)),
Bb(Suffers(mary,thalassemia)), ... }

i.e. the system believes a to be medically-informed but not b.  From such student models,
the system might reason that

LMa  = { ...,
Ba(Type(thalassemia,genetic-disorder)),
Ba(Child(fred,mary,a3) -> Suffers(a3,thalassemia)),
... }

LMb  = { ...,
Bb(Type(thalassemia,disease)), ... }

i.e. that a will reason that a child of Fred and Mary will suffer from thalassemia but that b
will not (on the default assumption that b is an average person).  The system could then
carry out independent dialogues with the two students but neither such dialogue would be
of much interest to the other student.  Instead, the system could take account of what one
student believes the other student believes.  For example, the system might consider that  a
believes b is also medically-informed (making the default assumption that b is the same as a
unless a has evidence otherwise) and thus that

Bcab   = { ...,
Type(thalassemia,genetic-disorder),
Child(fred,mary,a3) -> Suffers(a3,thalassemia), .. }

Then, for example, the system might engage a in discussing with b why b's conclusions
differ from those expected by a of b.  In general, the point is that in any interaction between
two or more agents it may help for an agent to hold beliefs about what may be believed by
the other agent(s).

There are many theoretical and practical difficulties to be overcome before the idea of
viewpoints can be fully used in student modelling.  For example, it is clear that viewpoints
are not entirely independent but that some beliefs may be shared between even radically
different viewpoints, although perhaps some core set of beliefs may be unique to one
viewpoint.  Practically feasible ways of handling multiply-overlapping belief sets need to
be developed.  Also, we need efficient ways of identifying the student's working viewpoint
- will it suffice to work systematically through potential viewpoints (as implied in the 'wig
example') since there may not be many of them, or will we need to reason about



mismatches with the previously assumed viewpoint?  And, do all the potential viewpoints
need to be anticipated or may they be generated, as needed, by the system?

5.3.3  Plans

In section 5.1.1 we defined reconstruction as the interpretation of a set of student inputs in
terms of the propositions which the student may be held to believe.  Often, however, the
system is concerned to interpret the inputs in terms of what the student is doing rather than
what she believes or knows, because the system may intend to discuss plans and goals
directly or because by re-directing the student's plans the system may lead her more
effectively to the desired beliefs.  The problem of identifying the student's plans is
unfortunately complex for the following reasons:

1. Unlike planning itself, plan recognition is inherently a multi-agent process since it
involves one agent (the system) reasoning about the plans of another (the student) - except
in those situations where an agent is trying to reconstruct its own planning.

2. It invariably involves uncertain reasoning since a set of observed actions rarely
uniquely identifies a plan (yet definite conclusions may still be drawn even after uncertain
reasoning).

3. Students are particularly prone to leave out actions, insert faulty actions, interleave
actions from some other plan, and often to have no plan anyway!

Many approaches to plan recognition transform it into a parsing problem.  A grammar
specifies how plans are decomposed into actions and sub-actions, and a particular sequence
of observations is regarded as a sentence to be parsed with respect to this grammar.
Formally, this is no doubt a sufficient characterisation of the problem, but we will instead
describe a method developed by Kautz and Allen (1986) which is closer to our view of
student modelling.

The method requires the specification of three kinds of information:

1. The observations, e.g.

Occurs(e9,make-pasta)
∃e Occurs(e,make-noodles) & T(e)=17

i.e. event e9  is an instance of type make-pasta , and an event of type make-noodles
occurred at time 17.  Such a description is based on a general theory of action and time
(Allen, 1984) and inherits from it axioms such as

∀e,i During(T(S(i,e)),T(e))

i.e. the time of the i -th subaction of event e occurs during the time of event e.  (We might
imagine a student using a simulation to learn how to cook or to perform some similar
activity.)

2. An action hierarchy, i.e. an exhaustive description of the ways in which an action can
be performed and of the ways in which an action can be used as a step of a more complex
action.  These are specified as axioms of specialisation and decomposition (which are just
the inverses of Greer and McCalla's abstraction and aggregation):

∀e Occurs(e,make-pasta) -> Occurs(e,prepare-meal)
∀e Occurs(e,make-fettucini) -> Occurs(e,make-noodles)
∀e Occurs(e,make-spaghetti) -> Occurs(e,make-noodles)
...
∀e Occurs(e,make-pasta) ->



∃t Occurs(S(1,e),make-noodles) &
Occurs(S(2,e),boil) & Occurs(S(3,e),make-sauce) &
Object(S(2,e))=Result(S(1,e)) &
Hold(Noodle(Result(S(1,e)),t) &
Overlap(T(S(1,e)),t) & During(T(S(2,e)),t)

...

The decomposition axioms specify the subactions, their preconditions and effects, and
constraints on temporal relationships.  Of course, subactions may also be decomposed.  In
addition, the system needs a set of disjointedness axioms, e.g.

∀e Occurs(e,make-fettucini-alfredo) not-and
 Occurs(e,make-fettucini-marinara)

3. A set of 'simplicity constraints' to choose between interpretations, e.g. "minimise the
number of top-level actions".  These are represented as second-order logical formulae,
which are instantiated to first-order formulae for any particular case.

Before recognising a plan, the action hierarchy is supplemented by axioms derived by
applying circumscription to make the assumptions that (a) the known ways of performing
an action are the only ways and that (b) all the possible reasons for performing an action are
known:

∀e Occurs(e,prepare-meal) ->
Occurs(e,make-pasta) exc-or Occurs(e,make-meat)

...
∀e Occurs(e,make-noodles) ->

∃a Occurs(a,make-pasta) & e=S(1,a)
∀e Occurs(e,make-marinara) ->

∃a (Occurs(a,make-fettucini-marinara) & e=S(3,a)) v
(Occurs(a,make-chicken-marinara) & e=S(3,a))

Although there is no general method for carrying out circumscription, these axioms are
easily derivable by special-purpose algorithms which retain the benefits of having a formal
semantics for the process.

Now, given an observation, e.g.

Occurs(e1,make-fettucini) v Occurs(e1,make-spaghetti)

i.e. that the student is making fettucini or spaghetti (but we're not such which), we may
infer

∃e Occurs(e,make-pasta) ..(1)

and hence that, for example,

∃e Occurs(S(2,e),boil)

So, even though particular actions and plans may not be identified, specific predictions may
be made.  If we now observe:

Occurs(e2,make-marinara)

then the system can infer, from the specialisation axioms, that

∃e Occurs(e,make-pasta) v Occurs(e,make-meat)

Given the previous inference (1), the simplicity constraint mentioned above would
eliminate the second disjunct of this inference.



Thus, the system may monitor the student's actions and attempt to derive the student's
plans.  The virtues of this approach are that it provides a formal theory with a precise
semantics for the plan recognition process by specifying axioms (supplemented by
circumscription) from which conclusions are derived deductively and it thus integrates plan
recognition with other aspects of student modelling discussed previously (instead of
regarding plan recognition as a rather specialist sub-problem for which different techniques
are needed).

5.3.4  Meta-beliefs

Planning is but one of a set of "mysterious mechanisms" (Brown, 1987) denoted by the
terms metacognition and metaknowledge.  We might distinguish, for example, between
problem-solving itself and reasoning before, during and after problem-solving (planning,
monitoring and reflecting, perhaps).  The issues are complex and no attempt will be made
here to solve any mysteries - simply, some links to student modelling will be discussed.

Whatever they are precisely, metacognitive abilities are considered important in both
education and AI.  Dewey, Vygotsky and Piaget all emphasised various aspects of
metacognition, and more recently Schoenfeld (1987) has stressed their role in mathematics
education.  In AI, metaknowledge, metareasoning and meta-level architectures have been
extensively discussed (e.g. Maes and Nardi (1988), Genesereth and Nilsson (1987)), and,
although there has been no explicit link to such AI research, ILE design has increasingly
emphasised metacognitive aspects (e.g. Collins and Brown (1988), Shute and Glaser
(1990)).

However, metacognition is not an unqualified benefit.  Its alleged importance derives
from a view that it is necessary for an agent not only to know more than a set of facts
(namely, how to apply them to solve problems) but also to be able to reason rationally
about the problem-solving process itself.  This, it is assumed, will enable the agent to
improve problem-solving performance (i.e. to learn), to develop transferrable
metacognitive skills, and to engage in discussions (e.g. tutorial interactions) about such
processes.  These may sound like platitudes but they are questioned by those who doubt
that activity derives, or should derive, from a rational reasoning process: instead, it might
follow in response to the situation in which the agent finds itself.  Others may even
question the implicit educational aim of fostering rationality.  We cannot resolve such
issues, but we can concede that metacognitive mechanisms must be applied with caution: an
agent that spent too much time at the meta-level might accomplish less at the object-level.

Some computational mechanisms for addressing metacognitive issues have already
been introduced, for example, axioms of introspection in modal logics (section 5.2.3)
meta-level reasoning (section 5.2.4), and autoepistemic logics (section 5.2.5).  As usual,
our aim is not to develop such mechanisms per se but to apply them to student modelling.
For example, the axioms of positive and negative introspection and their inverses (and
corresponding axioms for knowledge):

Bap -> B aBap
∼Bap -> B a( ∼Bap)
BaBap -> B ap , etc.

are clearly inadequate as a basis for deriving reliable conclusions concerning a student's
beliefs about her own beliefs but rather than embark on a probably futile attempt to 'correct'
them we may seek to indicate how they may be used to build student models adequate to
support instructional interactions.  For example, imagine a student attempting to solve
fraction problems (f 1-f 2=f 3) who asserts that she believes that it is always the case that
f 1>f 3.  From an axiom such as

Asserts s(p) -> B sBsp



and the third rule above, the system might infer Bs (f 1>f 3) .  If however her problem-
solving performance leads to BcBsq, where q->(f 1<f 3)  - for example, the student may
appear to believe the mal-rule that one subtracts both numerators and denominators and
thus obtains 7/8 - 3/4 = 4/4 - then the system might initiate a dialogue about the apparent
contradiction, but in terms of general beliefs about the problem domain not the specific
problem.

In general terms, an intelligent agent should be able to reason about its own problem-
solving performance, for example, to consider the merits of alternatives, and should be able
to use the results of such deliberations in subsequent problem-solving.  This requires a
metalanguage in which to formalise the process of problem-solving.  Genesereth and
Nilsson (1987) show how predicate logic, extended with a quoting mechanism to
overcome quantification problems, can be used to formalise the process of resolution
theorem-proving.  The same method can be used (as we assumed in section 5.2.4) to
describe other inference procedures, such as limited or even unsound ones.  We might in
fact define what it means for an agent to believe a proposition in terms of a meta-level
predicate Provable , defined as appropriate:

∀a∀p B ap <=> Provable( Ba,p)

In AI there are (at least) two kinds of metaknowledge - knowledge about how to use
knowledge, and knowledge about the contents of one's own knowledge.  The former has
been thoroughly studied in the form of expert system meta-rules, which generally help
determine rule selection, but we will look instead at the more subtle issue of reflection.  The
latter kind of metaknowledge, which has been less studied, is concerned with issues of
introspection, which is clearly of relevance to student modelling and will be considered
below.

Dewey (1938) defined reflection as the "active, persistent and careful consideration of
any belief or supposed form of knowledge in the light of the grounds that support it".
Genesereth and Nilsson (1987) are more specific - reflection is "the process of suspending
the process of reasoning, reasoning about that process, and using the results to control
subsequent reasoning" - and they also provide a computational realisation of the definition.
The basic idea is to include within the meta-level a specification of the conditions under
which a 'reflection phase' is entered.  For example, we might have

M  = { Infer( B,{p 1,p 2,...,p n}) & n < d -> {p 1,p 2,...,p n} ,
Infer( B,{p 1,p 2,...,p n}) & n >= d -> Reflect( B) }

to indicate that if the number of inferences which could be made from a belief-set is less
than some threshold d then they are made, otherwise some reflection process is begun.
Obviously, Reflect( B)  is intended to lead to some change in B and hence to changes in
subsequent processing.  Various other conditions which promote reflection could also be
defined, for example, a  'compulsively reflective' agent might be one who reflects during
every inference step.  (We are glossing over many subtle technical and philosophical
issues.  For example, on what basis are the steps of Reflect  separated from those of
Infer  and considered to be at a different level? - exactly the same result could be achieved
by redefining Infer  if we wished.)

Such a mechanism could be used to lend precision to attempts at the cognitive
modelling of reflective processes.  For example, Foss (1987) tried to specify conditions
under which students abandoned a solution path when using the AlgebraLand system -
conditions such as 'the result of an operation is longer than the previous expression' or 'an
unreasonably complicated piece of arithmetic is required'.  At the moment, however, as
Genesereth and Nilsson (1987) admit "little is known about when a procedure should
reflect", nor indeed about what the results of reflection should be.  Nonetheless, we may
anticipate that research on computational reflection will lead to some much-needed precision
in discussions of such metacognitive aspects and eventually enable ILEs to make some



predictions about which kinds of instructional event may promote reflection and about
when to intervene to suggest that the student might reflect (i.e. pause from problem-solving
and reason about her progress).

It is sometimes argued that what a student knows is less important than what she
knows she knows (or does not know) - which is what the work on introspection is
attempting to formalise.  Knowledge of one's own limitations can be a reason for acting, to
acquire knowledge, and for not acting, to avoid contemplated actions outside one's
competence.  We would like to be able to handle common situations such as a student
asserting that she believes she knows nothing about art:

∀p About(p,art) -> B s∼Ksp

and to make reasonable inferences from such expressions, e.g.

∀p B s∼Ksp -> B s(Not-worth-knowing-about(p))

and to use more general axioms, such as those of 'arrogance' and 'coherence' (Davis,
1990):

Ba(B ap -> p)
Ba∼Bap -> ∼Bap

The last of these is logically equivalent to

∼Ba(p & ∼Bap)

which holds, according to Davis, for any agent who is not "seriously confused" -
unfortunately, our students often are.  These kinds of axiom, over-simple though they are,
are closely related to methods developed for non-monotonic reasoning, as discussed by
Konolige (1988).  For example, the closed-world assumption may be re-expressed as

Ba∼Kap -> B a∼p

(anything that is not known is believed to be false), and default logic can be represented in
autoepistemic terms, as we saw in section 5.2.5.

But we must pause to reflect on what this research may contribute to student modelling.
If reflection "is the transferral of argumentation to an internal level" (Vygotsky, 1978) then
there is little chance that an ILE would be able to monitor or reconstruct a student's
reflective processes in the way that we have imagined for problem-solving processes
(which is difficult enough).  'Internal reflection' is not an activity for which moment-to-
moment student modelling is possible or appropriate - rather like reading from a hypertext
system, where we found that minutes of apparent inactivity separated flurries of activity
(Taylor and Self, 1990).  ILE interruptions to "tell me what you are thinking" may well be
counter-productive, since they will interfere with on-going cognitive activity.

However, in some situations, it may be beneficial to make the reflection 'external'.  The
ILE's role might then be to determine when it is appropriate to externalise reflection and
other meta-level processes and to share in its execution.  For example, if the student model
indicates that BcBsp and BcBs∼p, then it may be more rational for the ILE to conclude
nothing (let alone embark on a risky reason maintenance exercise) except perhaps that one
or both is wrong and to discuss the issue with the student.  Similarly, if the student model
indicates that in the current problem-solving situation one of a number of rules could have
been applied, rather than attempting to second-guess which (if any) has in fact been
applied, an ILE might do better to enter a meta-level where it is discussed explicitly.  Often,
such a discussion may bring into the open issues of which a student is only implicitly
aware.  For example, in algebra problem-solving, performance might lead to BcBs f , i.e. to
the system believing that the student 'believes' a particular fault.  Whether or not the
student 'really believes' such a fault is debatable: perhaps it should be debated with the



student.  Payne and Squibb (1990) show that students do have sufficient metacognitive
awareness that they are able reliably to assign levels of confidence to their answers: in some
cases, a wrong answer (which is actually believed to be wrong by the student) is evidence
that the student believes that she does not know something (Bs ( ∃p∼Bsp) ), not that she
genuinely believes something which is in fact incorrect.  Different pedagogic interactions
are surely needed for such different situations.

5.3.5  Attributes

The idea of using student attributes, i.e. properties or qualities which can be predicated of
the student, in student modelling is intuitively appealing but has proved to be of limited
practicality, possibly because the exorbitant effort required to build an ILE capable of
dealing with a single content in a single way has precluded attempts to build systems
capable of dynamically varying content and teaching strategy, for which student attributes
may be more relevant.  Our aim in this section is not to argue the case for or against the use
of student attributes but to consider how they might be encompassed within our theoretical
framework.

Our general approach is to associate an 'attribute' with a meta-level description of a
component of a student model, although our comments are necessarily speculative.  As we
have seen, some components of a student model are domain-dependent and some are not
(and some are intermediate): attributes tend to be associated with domain-independent
components.

We are naturally only concerned with attributes (sometimes referred to as aptitudes)
which have some bearing on learning.  Corno and Snow (1986) identify three kinds of
aptitude:

1. Cognitive, e.g. (prior) knowledge and intellectual abilities.  ILE design has tended to
emphasise the role of knowledge, implicitly agreeing with Chi, Glaser and Rees (1982) that
students' difficulties "can be attributed mainly to inadequacies of their knowledge base and
not to limitations in either the architecture of their cognitive systems or processing
capabilities".  This kind of attribute is similar to that of a stereotype (section 4.2): to say
that a student is a 'Unix-expert', for example, is to say that she knows a certain set of
propositions.  Attributes referring to intellectual abilities describe the reasoning and learning
components of the student model.  For example, a student with good 'visual analogic
intelligence' would be modelled by including a component good at visual analogy.

2. Conative, i.e. concerned with wants, intentions, etc. and, in the educational context,
cognitive and learning styles.  Many such styles have been studied, usually in terms of
contrasts: holist v. serialist, reflective v. impulsive, convergent v. divergent, etc.  These
attributes seem to refer to global properties (rather than the performance properties, as with
cognitive attributes) of the meta-level of a student model.  Thus a 'holist' style refers to the
general strategy of the learning component.  Similarly, 'reflective' refers to the number and
type of meta-level interruptions on the base-level problem-solving.

3. Affective, i.e. concerned with values.  This includes the difficult issue of
'motivation', for which many attributes such as anxiety, autonomy, self-concept, etc.
remain to be disentangled.  It is hard to imagine how such attributes may be modelled other
than by simple labels but  'self-concept', for example, is presumably concerned with what
a student believes about the model she has of herself.

The permanence or otherwise of such attributes is also a concern.  Some attributes (e.g.
knowledge of a particular law of physics) are transient and it may be the ILE's aim to
change them, some (e.g. blindness) may be permanent but nonetheless of pedagogic
concern if not focus, but many (e.g. anxiety) may be situation-dependent.  The value of
relatively permanent attributes may be determined off-line, through psychological tests
which are outside the scope of this review.  On-line interrogation concerning attributes is of



little use since the technical terms used in educational research are rarely used by students in
the same sense.  The on-line assignment of a particular event (or series of events) to student
attributes can be problematic: for example, a student may neglect to try to disconfirm her
hypotheses - is this evidence for certain cognitive, conative or affective attributes?

The use of a simple label for attributes ("student is a Unix-expert", "student is
reflective") may not be theoretically insightful but may be practically adequate, if that is all
the instructional component needs to know.  Ideally, however, such attributes should be
defined in terms of other contents of the student model:

"student is a Unix-expert" <-> K s{p 1,p 2,...,p n}

Perhaps, in general, we could say that the system believes the student possesses an
attribute As  iff the student model possesses certain properties {p 1,p 2,...,p n} , to be
defined (which is difficult, of course):

BcAs  <-> {p 1,p 2,...,p n}( LM)

For the attribute to be more than a shorthand summary, however, the set {p 1,p 2,...,p n}
needs to be partitionable into two subsets: those properties which enable the attribute to be
recognised and those which follow from its recognition.  If either subset is empty then the
attribute serves no student modelling purpose.

Maybe, as has happened with learning processes, the necessary formal precision will
evolve from computational descriptions rather than through attempted analyses of informal
educational and psychological literature.  Previously, we have seen formal definitions of
terms such as 'narrow-minded', 'compulsively reflective', and 'arrogant', and other
definitions, for example, of 'persistent' and 'cooperative', exist in the AI literature.  Such
terms are used without necessarily any psychological claims (and perhaps even semi-
seriously), but at least they provide a benchmark against which educational psychologists
can try to define the terms when they use them.

6.  Using the student model

Describing student modelling, as we have, virtually independently of other ILE activities
creates the impression that that is how student modelling should actually be carried out.  In
fact, only if student modelling is tightly coupled with, in particular, the instructional
component of the ILE is the task likely to prove tractable.  Analysing the current event
becomes much more feasible if it is not done in ignorance of the instructional context and of
previous analyses of the agents' plans and goals.  Unfortunately, this coupling has not
been addressed in any formal way.  In this section, we will not attempt a thorough review
of instructional activities but just describe some that impinge upon student modelling.

6.1  Prediction and planning

An ILE needs to be capable of dynamic planning, that is, the on-line creation and revision
of instructional plans, since for any significant learning context the pre-specification of a
plan to be strictly followed is not possible.  In order to plan, an agent needs to be able to
evaluate the states which it predicts that it could reach.  In our case, since the ILE's goals
concern what the student learns, the evaluation is determined by a function of LM.  This
function could be defined in many ways, with respect to pre-specified objectives or
intrinsic properties of the student model.

This evaluation is not of the current student model but of ones which might exist after a
sequence of instructional events.  These hypothesised student models need to be predicted
by the reasoning and learning components of the student model (section 5).  Thus



components of the current student model map the student model and the sequence of events
onto a new student model:

LM × {o 1,i 1,o 2,i 2,...,o n,i n} -> LM'

where {o 1,i 1,o 2,i 2,...,o n,i n}  is a sequence of system outputs and student inputs.
Because of the indeterminacy and cost of the mapping and the large number of potential
events, n is usually kept small (giving the opportunism often considered characteristic of
instructional planning).  Of course, the actual student inputs are not known at the time
when the plan needs to be created: but they are to some extent predictable by the student
model, otherwise the mapping would need to take account of all possible student inputs.  In
general, for any contemplated system output oj  one of a small number of student inputs
may be anticipated.  This small set of anticipated inputs greatly eases the reconstruction
problem (section 5.1.1), since often the desired analysis has been 'preconstructed'.

The plan created depends on more than the student model. For example, it may depend
on any curricular organisation of the subject matter and on any resource constraints, which
are outside our scope.  But the plan itself is to be regarded not as a recipe for system action
but as a context to support interpretation by the student modelling process.  Clearly, an ILE
that merely reacts to (as opposed to interacts with) a student does not need to predict or
plan, but any ILE that takes any kind of instructional initiative must base its decision
concerning the initiative to take on some kind of instructional plan, possibly implicit.

Since no plan can be created in a vacuum, plans are 'dynamic' only to a degree.  Most
current ILEs plan only to the extent of dynamically choosing between pre-specified skeletal
plans (e.g. Meno-Tutor (Woolf, 1987)) or between pre-specified problem sets (e.g.
GREATERP (Reiser, Anderson and Farrell, 1985)).  ILEs which come closer to planning
as the term is understood in AI - that is, constructing an explicit plan representation, subject
to constraints, which is interpreted, monitored and revised - include those of Murray
(1989) and Peachey and McCalla (1986), the latter explicitly representing expected changes
to the student model.

6.2  Diagnosis and remediation

The phases of planning and diagnosis need to be interleaved in order to minimise the
problems of both, but how precisely this may be done is not known.  The results of
diagnosis are represented by the contents of the student model and thus are in general terms
the system's understanding of the student.  More narrowly, diagnosis is often construed as
the process of finding faults (as in section 5.1.2), which may then be subject to
remediation.

Remediation may take many forms (it is for educational psychology to determine which
form is appropriate when - our task here is to relate the forms to student modelling):

1. Reteaching.  If we have that Bc∼Bsp then the system may reteach the proposition p (in
the same or a different fashion to previously).  More generally, if

Bc( ∃p p ∈ {p 1, p 2, ..., p n} & ∼Bsp)

i.e. the system believes the student does not know one of a set of propositions but cannot
determine which, the system may reteach the whole set.  A priori, we might expect
reteaching to be more effective if the student model enables it to focus on specific gaps in
knowledge.  But, in general, reteaching is an option whenever the student model indicates
that the student has some difficulty but the system cannot identify it.  For example, Ikeda,
Mizoguchi and Kakusho (1988), rather despairingly, consider that when a student has a
"nonlogical belief structure" then "the task of constructing a model is not only difficult but
futile ... in such cases ... the only possible instruction ... is to give elementary explanation
of the teaching material".



2. Emendation.  If the system is able to carry out a fault-diagnosis (section 5.1.2) and
has identified one or more paired terms <p,f> , where f  is a faulty version of a proposition
p, then the system may seek to emend the fault.  For example, McCoy (1989) suggests that
misconceptions (of expert system users rather than students) may be emended by a three-
part system output: (i) a denial of f , (ii) an assertion of p, and (iii) a 'justification', often
based on a refutation of the user's support for f .  She also emphasises the role of the user's
viewpoint or domain perspective in determining the user's support for a misconception.
Various frames are specified for addressing certain kinds of misconception - for example,
for a 'misattribution':

BcBs(f: x has attribute y with value v) &
Bc(p: x has attribute y with value w) &
∃z B c(z has attribute y with value v) & B c(Similar(x,z))

-> Deny(f) & Assert(p) &
Comment("have you confused x and z, etc")

It should also be pointed out that emendation may also address difficulties not at the object
level.  If the student model has a sufficiently explicit representation of the student's
reasoning, meta-reasoning and learning abilities then shortcomings here may also be
focussed upon.  For example, if the student is developing mal-rules through some impasse-
repair mechanism then it may well be more productive to address this mechanism rather
than some specific mal-rule that results, that is, to point out that 'syntactic patches' to
overcome local difficulties is not always a productive strategy..

3. Counter-examples.  A counter-example is a problem p such that

Dc(p)->A c   &  Ds(p)->A s   &  not(A c=As) ,

where the domain knowledge is represented procedurally, for example, as a production
system.  Evertsz (1989) describes techniques for generating counter-examples, given two
production systems (representing the system's and the student's knowledge).  Of the set of
potential counter-examples, the system might prefer one that generates an As which violates
any beliefs the student may have about answers in general (for example, a fraction problem
for which As=0).  Different instructional interactions may then ensue depending on whether
or not the student realises that the example is in fact a counter-example.

4. Garden-path problems.  Among many more subtle remediations, we briefly mention
just one, the use of 'garden-path problems', that is, problems which (according to the
student model) the student can solve but only in such a tortuous fashion that she may
realise that her current knowledge, while not actually incorrect, is inadequate.  Methods for
the automatic generation of such problems have yet to be developed.  Formally, it would
appear to be related to the conditions which promote reflection and to the results of any
reflective process.

When discussing diagnosis, we should distinguish carefully between situations in
which the system attempts to lead the student to diagnose her own (mis)understanding -
such as the above - and those in which the system attempts to diagnose its own
(mis)understanding about the student.  The former case may be characterised as the student
resolving Bc Bs (p v q) ; the latter as the system resolving Bc (B s p v B s q) .  Similar
techniques (e.g. the generation of counter-examples) may be used in both cases, although
the aims and instructional interactions are different.  Work on formal theories of diagnosis
(e.g. Reiter (1987)) has considered the general problem of automatically determining which
'measurements' to take when attempting to differentiate between multiple potential
diagnoses of a faulty system.

ILE diagnosis is a rather richer concept than the diagnosis of formal AI theories.  The
former is more concerned with understanding the student than with identifying her
difficulties.  Moreover, the student is considered to be an active participant in the diagnostic
process (and not just a system to be observed), with the consequence that the diagnostic



process itself may change the student being diagnosed.  Such aspects have not been
incorporated in formal theories of diagnosis.

6.3  Negotiation and collaboration

The role of a student model in a dogmatic intelligent tutoring system seems clearcut: it is
mainly to identify misunderstandings which the system may remediate.  In other styles of
ILE, however, where the student may have greater scope for following her own goals and
developing her own understanding, the role of the student model is more subtle (but not
non-existent).  No longer is the emphasis on developing detailed object-level models,
defined with respect to specified domain knowledge, but on representing the student's
beliefs and goals on their intrinsic merits, in order that the system may offer (fallible)
comment and advice in the role of a cooperative partner rather than a knowledgeable tutor.

Such a role may be achieved by a disingenuous concealment of its domain knowledge
by the system - but the role is likely to be more appropriate in situations where
computational representations of domain knowledge are unattainable or controversial.  If
the system's domain knowledge is not complete or necessarily correct, then the system may
need reasoning and learning capabilities commensurate with those of the student.  With
such capabilities, the system may maintain a student model, which together with the
system's model, represents some joint understanding of the domain.  Naturally, in such a
context, the student model is less an internal component of the ILE but becomes an
'external' focus of discussion, as indeed does the system's model of the domain.  Thus the
student model may be built by a more direct interaction with the student rather than through
some internal analysis by the system.

The view that a system-student interaction is just one instance of the class of multi-
agent interactions leads us to consider distributed AI, where concepts such as negotiation
and cooperation have been much studied but have yet to take clear formal shape.  Durfee
and Lesser (1989) consider that there is "confusion and misunderstanding among
researchers who are studying different aspects of the same phenomenon".  They urge that
we distinguish carefully between negotiations which are about the shared construction of
meaning and those which are about task-sharing or planning.  Both are of course central to
the philosophy of ILEs, the former being concerned with the nature of knowledge and the
latter with the issue of student control, and both being the subject of preliminary
investigations in the ILE context by, respectively, Dillenbourg and Self (1991) and Baker
(1991).  Baker ventures a definition of negotiation as "a sequence of dialogue exchanges
during which the mental states of the interlocutors are changed from the postures of
indifference or conflict with respect to one or more propositions to one of cooperation, and
where one or more interlocutor possesses the goal that this posture should be achieved".
An agent x is said to cooperate with y 's goal that p be eventually true, Coop(x,y,p) , if

Bx(Goal(y,possibly(p)) & Prefer(x,p, ∼p)
 -> Persistent-goal(x,p,Goal(y,possibly(p)))

i.e. if x 's recognition of y 's goal that p be true and x 's preference of p over ∼p results in the
generation of a persistent goal for p, relative to y 's possession of the goal.

6.4  Interaction and communication

In order to handle interactions beyond the straightforward single-question-single-answer
format we need some theory of dialogue.  This again is a research field in its own right and
one which is of more concern to the instructional component of ILEs than to student
modelling.  However, such theories have implications for student modelling, as we
illustrate here with two examples.

Dialogue game theory is a formal device for generating well-formed sequences of
locutionary acts.  It is semi-empirical in that it is based partly on analyses of discourse and



partly on abstract specifications of valid processes of reasoning, discussion and
argumentation.  The theory has three components:

1. A set of 'issue spaces' (Reichman, 1985) or 'commitment stores' describing what
each participant believes or is committed to at any given stage of the dialogue;

2. A definition of the set of locutionary events (moves in the dialogue game), with a
definition of the changes to the issue spaces when such an event occurs;

3. A set of constraints on the sequence of events, from which is intended to emerge the
coherent episodic structure of rational dialogue.

Thus, in an ILE context, dialogue game theory posits a central role for the student model
(or issue space) and considers that student model updating occurs as an on-going part of
the instructional dialogue, not as a result of some separate diagnostic process.  The goals of
the 'dialogue game' must of course be generated by the student or the instructional
component, which is not of concern here.

Dialogue game theory goes same way - maybe far enough to manage ILE interactions -
towards showing how Gricean maxims of conversation "fall out from a general
characterisation of the aims and means of linguistic exchanges together with obvious
assumptions of rationality of the participants" (Carlson, 1983).  We may also attempt to
make these "obvious assumptions" explicit, to provide a deeper theory of communication
and, in an ILE context, to confirm the need for detailed student models.  For example,
Cohen and Levesque (1990) present a four-stage derivation of the basis of a theory of
communication.  The four stages define:

1. Primitives: a set of modal operators intended to define the mental states of the
participants.  These operators are expressed in a modal logic based on a possible world
semantics of knowledge and a situation calculus model of action.  The four operators
defined are:

Bel(x,p) - p follows from x 's beliefs (this is thus an implicit belief);
Goal(x,p) - p follows from x 's goals;
Bmb(x,y,p) - p follows from x 's beliefs about what is mutually believed by x and y;
After(a,p) - p is true in all courses of events that obtain from act a's happening.

These operators are defined through a set of propositions and lemmas, for example, that of
'shared recognition':

Bmb(y,x,Goal(x,p)) & Bmb(y,x,Bel(x,Always(p->q)))
-> Bmb(y,x,Goal(x,q))

2. A theory of rational action: a set of propositions defining the properties of ideally
rational individual agents with persistent goals, for example, to specify that agents do not
knowingly and deliberately make their persistent goals impossible for them to achieve.
Theorems may then be derived from such propositions, e.g.

∀p Persistent-goal(y,p) & Always(Competent(y,p))
-> Eventually(p v Bel(y,Always(y, ∼p))

i.e. if an agent has a persistent goal that it is able to bring about then eventually p becomes
true or it believes that nothing can be done to achieve it.

3. A theory of rational interaction: a set of definitions and propositions intended to
characterise interactions between agents.  For example, an agent x may be said to be sincere
or expert with respect to y and a proposition p under the following conditions:

Sincere(x,y,p): Goal(x,Bel(y,p)) -> Goal(x,Know(y,p))



Expert(x,y,p): Bel(y,Bel(x,p)) -> Bel(y,p))

Such definitions of cooperative agents provide formal descriptions of the kinds of
behaviour summarised by conversational maxims.  No doubt, similar definitions for
uncooperative agents could be ventured.

4. A theory of communication: descriptions of communicative acts such as questioning,
requesting, etc. derived from general principles of belief and goal adoption between agents.
These descriptions enable a distinction between, for example, real questions, rhetorical
questions and teacher-student questions.  In principle, multi-act utterances and multi-
utterance acts can be handled in the same scheme.

Thus, the derivation of communicative acts could be based ultimately upon the kinds of
representation of agents' beliefs that we have adopted for student models.  Of course, the
definition of the content of the various levels is complex, but the intention is that each level
be independently motivated, that is, for example, that the notion of a cooperative agent be
developed independent of that of communication, and that of rational action be independent
of that of interaction.   The extent to which such a deep analysis is necessary to support
adequate ILE-student interactions in practice remains to be seen.

7.  Conclusions

We have reviewed a substantial body of techniques and theories from computer science and
AI which may be applied to and adapted for student modelling.  We have tried to indicate
what particular techniques and theories may contribute by developing a view of student
modelling within ILEs seen as systems to support and promote interactions between the
belief systems of the agents involved.

We have not considered student modelling to be just a special case of cognitive
modelling, emphasising instead that computational utility not cognitive validity provides the
main motivation for student modelling.  Of course, the techniques and theories considered
are justified to some extent by cognitive concerns but they can be developed and analysed
independently of their cognitive content - just as a computational linguist may analyse
grammars without commitment to their content or any view of human language use: an
analogy which led to the coining of the term 'computational mathetics' for the kind of study
presented here (Self, 1991b).

Implicit in this analysis is a bias towards 'traditional' symbolic AI as the appropriate
basis for student modelling (as opposed to, say, connectionist or situationist approaches).
This results from an emphasis on the meta-aspects of ILE interactions, deriving from an
assumption that students should not just be able to use knowledge but also be able to reflect
upon it, to discuss it, to explain it, etc.  For an ILE to participate in such an interaction it
would seem to need explicit symbolic representations of that knowledge.

As we have seen, student modelling calls upon many active areas of modern AI.  In
many cases, student modelling imposes currently unsatisfiable demands on formal AI - for
example, to describe the non-monotonic reasoning of the system about the non-monotonic
reasoning of the student, to take just one case.  Nonetheless, the attempt to clarify what
student modelling involves may lead to theoretical and practical benefits in due course.
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