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ABSTRACT
In this paper we consider the problem of inferring link-level loss
rates from end-to-end multicast measurements taken from a col-
lection of trees. We give conditions under which loss rates are
identifiable on a specified set of links. Two algorithms are pre-
sented to perform the link-level inferences for those links on which
losses can be identified. One, the minimum variance weighted av-
erage (MVWA) algorithm treats the trees separately and then aver-
ages the results. The second, based on expectation-maximization
(EM) merges all of the measurements into one computation. Simu-
lations show that EM is slightly more accurate than MVWA, most
likely due to its more efficient use of the measurements. We also
describe extensions to the inference of link-level delay, inference
from end-to-end unicast measurements, and inference when some
measurements are missing.

1. INTRODUCTION
As the Internet grows in size and diversity, its internal behavior be-
comes ever more difficult to characterize. Any one organization has
administrative access to only a small fraction of the network’s inter-
nal nodes, whereas commercial factors often prevent organizations
from sharing internal performance data. Thus it is important to
characterize internal performance from end-to-end measurements.

One promising technology that avoids these problems uses end-to-
end multicast measurements from a single tree to infer link-level
loss rates and delay statistics [1] by exploiting the inherent corre-
lation in performance observed by multicast receivers. A short-
coming of this technology is that it is usually impossible to include
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all links of interest in any one tree. Consider the network in Fig-
ure 1(a) as an example. In this network, end-hosts 0 and 1 are
sources, end-hosts 4 and 5 are receivers, and the set of links of in-
terest is {(2, 5) (3, 2)}. It is observed that both tree 1 and tree 2
are needed to cover the set of links of interest as illustrated in Fig-
ure 1(b) and 1(c). Therefore, in order to characterize the behavior
of a network (or even a portion of it), it is necessary to perform
measurements on multiple trees. Inferring link-level performance
from measurements taken from several trees poses a challenging
problem that is the focus of this paper.
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Figure 1: Single tree can not characterize a network

In this paper we address the following two problems. Given a col-
lection of multicast trees, can we infer the performance of all of
the links (or a specified subset) that are contained by the trees?
Second, when the performance of the links of interest can be iden-
tified, how do we obtain accurate estimates of their performance?
Focusing on loss rate as the performance metric, we introduce and
evaluate two algorithms. The first, the minimum variance weighted
average (MVWA) algorithm, performs inference on each tree sep-
arately and, for each link, returns a weighted average of the esti-
mates taken from the different trees. This procedure may not al-
ways be able to infer the behavior of links whose loss rates are,
nevertheless, identifiable. The loss rates for these links are ob-
tained as a solution to a set of linear equations involving the in-
ferred loss rates from individual trees. The second algorithm, the
expectation-maximization (EM) algorithm, on the other hand, ap-
plies the standard expectation-maximization technique [15] to the
measurement data taken from all of the trees. It returns estimates



of the loss rates of all identifiable links. We evaluate the two algo-
rithms through simulation studying their convergence rates and rel-
ative performance. We find that EM estimates are at least as accu-
rate than those produced by MVWA. The improvement is more pro-
nounced when either the number or measurements is small or the
distribution of measurements among the various trees is skewed.

Although the focus here is on link-level loss rates, we give exten-
sions to EM to handle link delay. In addition, we show how MVWA
and EM can be applied when end-to-end multicast measurements
are not available, or when some measurements are missing.

There is a related problem of how to choose the set of trees so as
to cover all of the links in the network (or subset of interest) in an
efficient manner. This question has been dealt with elsewhere, [2]
and is not considered here. We take as given the set of trees and
observations from which we are to draw inferences.

Network tomography from end-to-end measurements has received
considerable attention recently. In the context of multicast prob-
ing, the focus has been on loss, delay, and topology identifica-
tion. Extensions to unicast probing can be found in [6, 7, 8, 11,
13]. However, these have treated only individual trees. There are
techniques for round trip metrics such as loss rate and delay [14],
based on measurements taken from a single node. Last, linear alge-
braic methods have been proposed for estimating link-level average
round trip delays [19] and one-way delays, [12] . Neither of these
extend to other metrics. Furthermore, the latter only yields biased
estimates of average delays.

The remainder of the paper is organized as follows. Section 2
presents the model for a “multicast forest” (set of multicast trees).
In Section 3 we present necessary and sufficient conditions for
when the loss probabilities can be inferred from end-to-end multi-
cast measurements. The MVWA and EM algorithms are presented
in Section 4 along with convergence properties of the latter. Sec-
tion 5 presents the results of simulation experiments. Extensions to
delay inference, the use of unicast, and missing data are found in
Section 6. Last, Section 8 concludes the paper.

2. NETWORK AND LOSS MODEL
Let N = (V (N), E(N)) denote a network with sets of nodes
V (N) and links E(N). Here (i, j) ∈ E(N) denotes a directed
link from node i to node j in the network. Let Ψ denote a set of
multicast trees embedded in N , i.e., ∀T ∈ Ψ, V (T ) ⊆ V (N) and
E(T ) ⊆ E(N). We denote ∪T∈ΨV (T ) by V (Ψ) and ∪T∈ΨE(T )
by E(Ψ). Note that (i, j) ∈ E(Ψ) can appear in more than one
tree. For (i, j) ∈ E(N), we denote Ψi,j ⊆ Ψ the set of trees
which include link (i, j). Consider a tree T ∈ Ψ. Each node i in
T , apart from the root ρ(T ), has a parent in T , f(i, T ), such that
(f(i, T ), i) ∈ E(T ). The set of children of i in tree T is denoted
by d(i, T ). Let τi,T denote the subtree of T rooted at node i. Let
R(τi,T ) denote the receivers in subtree τi,T . We denote the path
from node i to j, i, j ∈ V (T ) in tree T by pT (i, j). Define a
segment in T to be a path between either the root and the closest
branch point, two neighboring branch points, or a branch point and
a leaf. We represent a segment by the set of links that comprises it.

For T ∈ Ψ, we identify the root ρ(T ) with the source of probes,
and the set of leaves R(T ) with the set of receivers. For a tree T ,
a probe is sent down the tree starting at the root. If it reaches node
j ∈ V (T ), a copy of the probe is produced and sent down the tree
toward each child of j. As a packet traverses link (i, j), it is lost

with probability 1−αi,j and arrives at j with probability αi,j . We
denote 1 − αi,j by αi,j . Let α = (αi,j)(i,j)∈E(Ψ). We assume
losses of the same probe on different links and of different probes
on the same link are independent, and that losses of probes sent
from the different sources ρ(T ), T ∈ Ψ are independent.

We describe the passage of probes down each tree T by a stochas-
tic process XT = (Xk,T )k∈V (T ) where Xk,T = 1 if the probe
reaches node k, 0 if does not. By definition Xρ(T ),T = 1. If
Xi,T = 0 then Xj,T = 0 for all j ∈ d(i, T ). If Xi,T = 1 then for
j ∈ d(i, T ), Xj,T = 1 with probability αi,j and Xj,T = 0 with
probability αi,j . We assume that the collection of trees is in canon-
ical form, namely that 0 < αi,j < 1, ∀(i, j) ∈ E(Ψ). An arbitrary
collection of trees can be transformed into one with canonical form.

In an experiment, a set of probes is sent from the multicast tree
sources ρ(T ), T ∈ Ψ. For each T ∈ Ψ, we can think of each
probe as a trial, the outcome of which is a record of whether or
not the probe was received at each receiver in R(T ). In terms of
the random process XT , the outcome is a configuration XR(T ) =
(Xi,T )i∈R(T ) of zeros and ones at the receivers. Notice that only
the values of XT at the receivers are observable; the values at
the internal nodes are unknown. Each outcome is thus an ele-
ment of the space ΩR(T ) = {0, 1}#R(T ). For a given set of link
probabilities α the distribution of XR(T ) on ΩR(T ) will be de-
noted Pα,T . The probability of a single outcome x ∈ ΩR(T ) is
p(x; α) = Pα,T [XR(T ) = x].

3. IDENTIFIABILITY
In order to perform tomography from measurements on the tree set
Ψ, we require that the link probabilities are determined from the
set leaf probabilities that are measured directly. We phrase this in
terms identifiability, which captures the property that link proba-
bilities can be distinguished by measurements from an infinite se-
quence of probes. We say that {Pα,T }T∈Ψ identifies α if for any
α′, {Pα,T }T∈Ψ = {Pα′,T }T∈Ψ implies α = α′. In this section,
we establish necessary and sufficient conditions for identifiability.

We are given a set of canonical trees Ψ with an associated link
success probability vector α = (αi,j)(i,j)∈E(Ψ). Let S be the set
of all segments within the trees contained in Ψ. Define βs to be
the logarithm of the probability that a packet successfully traverses
segment s ∈ S given that it reached the start of that segment,
βs = log(

∏
(i,j)∈s αi,j) =

∑
(i,j)∈s log αi,j . We introduce the

#S × #E(Ψ) matrix A where As,(i,j) = 1 if link (i, j) belongs
to segment s and 0 otherwise. Using the sets of trees in Figure 1
as an example, if we order the links as (0, 2) (2, 4) (2, 5) (1, 3)
(3, 5) (3, 2) and the segment as {(0, 2)} {(2, 4)} {(2, 5)} {(1, 3)}
{(3, 5)} {(3, 2), (2, 4)}, the matrix A is

A =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 1




If we define z(i,j) = log αi,j , ∀(i, j) ∈ E(Ψ), we then have the
following equation

Az = β (1)

Here the components of z are z(i,j) and the components of β are
βs. Note that A needs not be a square matrix in general.



Before stating and proving results on identifiability, we note that for
a given set of link probabilities α, there exists at least one solution,
namely z = log α, to (1). Let AT denote the matrix transpose of
A.

THEOREM 1. Let Ψ be a set of canonical loss trees. Then the
following are equivalent:

(i) For some α, {Pα,T }T∈Ψ identifies α.

(ii) Equation (1) has a unique solution z = (AT A)−1AT β.

(iii) Az = 0 iff z = 0.

(iv) For all α, {Pα,T }T∈Ψ identifies α.

Proof. (i)⇔(ii). First, we note that β is identifiable from {Pα,T }T∈Ψ

(Theorem 3 in [4]). Suppose that {Pα,T }T∈Ψ cannot identify α,
i.e., there are at least two sets of link probabilities, α and α′ that
are consistent with {Pα,T }T∈Ψ. Based on the derivation of (1)
there cannot exist an unique solution to (1). Similarly, if α is iden-
tifiable, it is obtained by solving (1). Suppose that (1) does not have
a unique solution. Then, from the derivation of (1) it follows that
there exist multiple values of α that can give rise to {Pα,T }T∈Ψ.
Suppose that there exists a unique solution to (1). It is easy to show
by contradiction that necessarily there is only one value of α that
can give rise to {Pα,T }T∈Ψ. For (ii) ⇔(iii), observe that (1) has
a unique solution if and only if the nullspace of A is in {0}. In
this case AT A is invertible, and the expression for z then follows
on pre-multiplying (1) by AT . (AT A)−1AT is the generalized in-
verse of A; see [16]. Furthermore, solutions of (1) must be unique
for all α, and hence (ii)⇔(iv).

It should be clear from this theorem that identifiability is a topo-
logical property, i.e., not dependent on the values α. We can use
this fact to select β at our convenience. Suppose we are interested
in identifying a set of links a set of links C ⊂ E(Ψ). Choosing
αi,j = e−1, ∀(i, j) ∈ E(Ψ) results in βs = #s. Hence we have:

THEOREM 2. Let Ψ be a set of canonical loss trees. {Pα,T }T∈Ψ

identifies (αi,j)(i,j)∈C iff there is a unique value of {z(i,j) : (i, j) ∈
C} that satisfies equation (1) for βs = #s, ∀s ∈ S.

4. LOSS INFERENCE
In this section, we describe two algorithms for loss inference in a
collection of multicast trees. In the first algorithm we perform in-
ference on each tree separately, and then we take the weighted aver-
age of the different estimates so obtained. In the second algorithm
we perform inference on the entire set of measurement from all of
the trees using the Expectation-Maximization (EM) algorithm.

4.1 Measurement Experiment
A measurement experiment for a collection of multicast trees Ψ
consists of sending nT probes from ρ(T ), T ∈ Ψ. For each T ∈
Ψ, we denote by xR(T ) = (x1

R(T ), . . . , x
nT
R(T )), (with xm

R(T ) =

(xm
k,T )k∈R(T )) the set measured of end-to-end loss down T . xR =

(xR(T ))T∈Ψ will denote the complete set of measurements.

4.2 Minimum Variance Weighted Average
A technique for loss inference for a single tree has been proposed in
[4]. For a given set of trees Ψ, we can proceed as follows: (1) con-
sider each tree T ∈ Ψ separately, by using the algorithm provided
in [4] on the measurements xR(T ); this yields estimates for all seg-
ments in T ; (2) combine the estimates from the different trees.

We first consider the problem of combining estimators of segment
transmission probabilities. Let s be a segment, and Ψs ∈ Ψ the
maximal set of topologies that include s as segment. Inference on
each logical topology T ∈ Ψs provides us with an estimate q̂s,T of
the transmission probability qs = eβs across the segment s. How
should the q̂s,T be combined to form a single estimate of qs?

We consider convex combinations of the form

q̂s =
∑

T∈Ψs

λT q̂s,T , λT ∈ [0, 1];
∑

T∈Ψs)

λT = 1. (2)

We propose to select the minimum variance combination as the sin-
gle estimator. By assumption, the q̂s,T are independent, and so

Var(q̂s) =
∑

T∈Ψs

λ2
T Var(q̂s,T ). (3)

Var(q̂s,T ) is clearly jointly convex in the (λT )T∈Ψs , and by ex-
plicit differentiation under the constraint

∑
T∈Ψs

λT = 1, the min-
imum for Var(q̂s) occurs when

λT =
Var(q̂s,T )−1∑

T ′∈Ψs
Var(q̂s,T ′)−1

(4)

Now, in general, Var(q̂s,T ) depends on the topology T . But it fol-
lows from Theorem 5 in [4] that the asymptotic variance nT Var(q̂s,T )
converges to qs + O(‖α‖2) as nT → ∞. Thus, for small loss
probabilities, we can use the approximation Var(q̂s,T ) ≈ n−1

T qs.
In this approximation, the coefficients λT ≈ nT /

∑
T ′∈Ψ(T ) nT ′ .

We will use this approximation in (2) as our minimum variance
weighted average algorithm (MVWA) algorithm, i.e.,

q̂s =

∑
T∈Ψs

nT q̂s,T∑
T∈Ψs

nT
(5)

We note two special cases: (i) s comprises a single link (i, j), in
which case the estimate is for the link rate αi,j ; (ii) only one tree
contains s, in which case the sums in (5) trivially have one term.

It remains to recover link probabilities from the q̂s. Following The-
orem 1, identifiable link probabilities αi,j are estimated by

log α̂i,j =
∑

s

A∗
(i,j),s log q̂s (6)

A simple example is when two segments s, s′ are such that s is
obtained by appending the link (i, j) to s′. Clearly A∗

(i,j),s = 1 −
A∗

(i,j),s′ with (6) reducing to taking quotients: α̂i,j = q̂s/q̂s′ .

4.3 EM Algorithm
Here we turn to a more direct approach to inference, namely, we
use the Maximum Likelihood Estimator to estimate α from the set
of measurements xR, i.e., we estimate α by the value α̂ which
maximizes the probability of observing xR.

Let nT (xR(T )) denote the number of probes for which the outcome
xR(T ) ∈ ΩR(T ) is obtained, T ∈ Ψ. The probability of the nT



independent observations xR(T ) is then

p(xR(T ); α) =

nT∏
m=1

p(xm
R(T ); α)

=
∏

xR(T )∈ΩR(T )

p(xR(T ); α)nT (xR(T ))

and the probability of the complete set of measurement xR at the
receivers is

p(xR; α) =
∏

T∈Ψ

p(xR(T ); α). (7)

Our goal is to estimate α by the maximizer of (7), namely,

α̂ = arg max p(xR; α). (8)

In [4], a direct expression for α̂ are obtained for the case of a sin-
gle tree, i.e., when #Ψ = 1. For the general case, unfortunately,
we have been unable to obtain a direct expression for α̂. Instead,
we follow the approach in [7, 8], and employ the EM algorithm to
obtain an iterative approximation α̂(�), � = 0, 1, . . . , to α̂. To un-
derstand the idea behind the EM algorithm, assume that we can ob-
serve the entire loss process at each node, i.e., assume knowledge of
the values xT = (x1

T , . . . , xm
T ), (with each xm

T = (xm
k,T )k∈V (T )),

T ∈ Ψ. In this case estimation of α becomes trivial: with complete
data knowledge it is easy to realize that the MLE estimate of the
success probability αi,j along link (i, j), α̂i,j , is just the fraction
of probes successfully transmitted along (i, j), (i, j) ∈ E(Ψ), i.e.,

α̂i,j =

∑
T∈Ψi,j

nj,T∑
T∈Ψi,j

ni,T
(i, j) ∈ E(Ψ), (9)

where nk,T =
∑nT

m=1 xm
k,T is the number of probes sent from ρ(T )

which arrived to node k ∈ V (T ), T ∈ Ψ.

The EM algorithm assumes complete knowledge of the loss process
such that the resulting likelihood has a simple form. Since the com-
plete data, and thus the counts nk,T (except for the leaves nodes)
are not known, the EM algorithm proceeds iteratively to augment
the actual observations with the unobserved observation at the inte-
rior links. Below we briefly describe the algorithm and the intuition
behind it. We spell out the detail in Section7.

• Step 1. Select an initial link loss rate α̂(0). The simulation
study suggests the values that the algorithm converges to are
independent of α̂(0).

• Step 2. Estimate the (unknown) counts nk,T by n̂k,T =
Eα̂(�) [nk,T |xR]. In other words, we estimate the counts by
their conditional expectation given the observed data xR un-
der the probability law induced by α̂(�).

• Step 3. Compute the new estimate α(�+1) via (9), using the
estimated counts n̂k,T computed in the previous step in place
of the actual (unknown) counts nk,T . In other words, we set

α̂
(�+1)
i,j =

∑
T∈Ψi,j

n̂j,T∑
T∈Ψi,j

n̂i,T
(i, j) ∈ E(Ψ). (10)

• Step 4. Iterate steps 2 and 3 until some termination criterion
is satisfied. Set α̂ = α̂(�), where � is the terminal number of
iterations.

Tree Source Receivers
1 0 12 13 14 15 16 17 18 19
2 1 12 13 14 15 16 17 18 19
3 2 12 13 14 15
4 25 16 17 18 19

Table 1: Tree layout for model simulation

As shown in Section7, the EM iterates converges to a local (but
not necessarily) global maximizer of (7). However, our simulation
results suggests it always converge to the global maximizer α̂ and
the convergence does not depend on the initial values.

5. SIMULATION EVALUATION
We evaluate our loss inference algorithms using the ns [18] sim-
ulator. This work has two parts: model simulation and network
simulation. In the model simulation, losses are determined by time-
invariant Bernoulli processes. In the network simulation, losses are
due to congestion as probes compete with other background traffic.
The majority of the background traffic in the network simulation
is produced by TCP flows. However, we do include some on-off
flows where the on and off periods have either a Pareto or an ex-
ponential distribution. We chose such a mix because TCP is the
dominant transport protocol on the Internet.
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Figure 2: Model simulation topology: Nodes are of three types;
bold ellipse: potential sender, ellipse: potential receivers, and
box: internal nodes.

5.1 Comparing loss probability
Our approach for comparing two sets of loss probabilities was first
introduced in [5]. Assume that we want to compare two loss prob-
abilities p and q. For example p could be an inferred probability
on a link, q the corresponding actual probability. For some error
margin ε > 0 we define the error factor

Fε(p, q) = max

{
p(ε)

q(ε)
,
q(ε)

p(ε)

}
(11)

where p(ε) = max{ε, p} and q(ε) = max{ε, q}. Thus, we treat p
and q as being not less than ε, and having done this, the error factor
is the maximum ratio, upwards or downwards, by which they differ.
Unless otherwise stated, we used the default value ε = 10−3 in this
paper. This choice of metric is motivated by the desire to estimate
the relative magnitude of loss ratios on different links in order to
distinguish those which suffer higher loss.

5.2 Model simulation



The topology for model simulation is presented in Figure 2. A total
of four trees are embedded in the topology as described in Table 1.
A time-invariant Bernoulli loss processes is associated with each
link. In the simulation, uniform loss rates are assigned to all links.

We use loss rates of 2% and 4% on each link and let each source
send equal numbers of probes down to the trees. For each loss rate,
we vary the total number of probes sent by all sources from 50 to
1600. Each setting is simulated ten times with different random
seeds. For each simulation, we use both the MVWA and EM to es-
timate loss rates and compare with the actual simulation loss rates.

Figure 3 shows box-plots1 of error factors between inferred loss and
simulated loss over all links and all runs. In the figure, error factors
are displayed as a function of number of probes and one graph is for
each loss rate. (Note that the total number of probes increase ex-
ponentially). In each graph, we plot error factors for both MVWA
(abbreviated as WA) algorithm and EM algorithm. Observed from
graph that the estimates produced by EM algorithm show greater
accuracy and less variability than these produced by MVWA algo-
rithm under both loss rates we simulate when the number of probes
are small. However, as the number of probes increases, the esti-
mates yielded by both algorithm become more accurate, the dif-
ference between two algorithm become less, and their variability
reduces. The same set of simulations were done when the numbers
of probes in each tree are different. The results are very close to the
case where the numbers of probes are equal.

Note that every link in the topology described in Figure 2 is a seg-
ment in at least one of the trees. We also simulated a network em-
bedded by a collection of trees where some links are not a segment
in any trees even they are identifiable. The error factors we ob-
served are very similar to those presented in Figure 3.

Since the EM algorithm is more accurate and of less variability
than MVWA algorithm, we focus on evaluating EM algorithm in
next subsection.
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Figure 4: Small network simulation topology: Nodes are of
three types; bold ellipse: potential sender, ellipse: potential re-
ceivers, and box: internal nodes.

5.3 Network simulation
In this section, we simulate two topologies, a small network in Fig-
ure 4 and a multicast topology based on the Abilene network. In
both topologies, background traffic is generated by infinite TCP
and on-off UDP flows. All the routers in the network are config-

1In a box-plot, the box has lines at the lower quartile, median, and
upper quartile values. The whiskers are lines extending from each
end of the box to show the extent of the rest of the data. Outliers
are data with values beyond the ends of the whiskers.

Tree Source Receivers
1 0 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
2 1 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
3 2 20 21 22 23 24 25 26 27
4 5 28 29 30 31 32 33 34 35

Table 2: Tree layout for small network simulation

ured to be droptail routers since the droptail routers are prevalent in
the Internet.

Small network. The tree layout of the small network is described
in Table 2. We use constant bit rate probes and the interval between
probes is 100ms. We conducted a total of 7 simulations which dif-
fer according to the duration of the measurement. We start with an
initial duration of 2 seconds and double it each time until reaching
128 seconds. Each of these simulations is run 10 times with differ-
ent random seeds. For each simulation, we calculate the loss rates
using the EM algorithm.

The link losses in the set of simulations are due to all flows com-
peting for bandwidth. Since different types of flows may exhibit
different behavior, the probe flow does not necessarily suffer the
same loss rate as the background flows do. Therefore, the error of
using inferred loss to estimate the link loss may due to one of the
two possibilities. Either probe traffic loss rate differ from all traffic
loss rate or the estimates yielded by the EM algorithm do not agree
with the probe loss rate. In order to distinguish them, we compare
the inferred results to both probe loss rate and all traffic loss rate.

Figure 5 illustrates box plots of error factors for all links and all
simulation runs. The error factors are plotted as a function of mea-
surement time. On the left we show the error factor between in-
ferred and simulated all traffic loss; on the right between inferred
and simulated probe loss. We observe from both graphs in the fig-
ure that both the error factors and their variabilities decrease as the
number of probes increase. The improvements are more significant
for short measurements.

We present scatter plots for the all traffic loss vs. inferred loss
on the left and probe traffic loss vs. inferred loss on the right in
Figure 6 when the measurement duration is 128 seconds. We make
two observations. First, the inferred loss rate almost always over-
estimates the link loss rate. Second, the inferred loss rate provides
a very good estimate of the probe traffic loss rate. The difference
between the inferred loss rates and all traffic loss rates is due to that
the probe traffic endures a higher loss rate than the rest of traffic.
We conjecture that this is because the majority of the background
traffic come from infinite TCP flows. TCP reduces its sending rate
when the losses are detected. Therefore, fewer TCP packets will
suffer loss. However, the CBR source sends probes at a constant
rate which is not affected by congestion. We expect the algorithm
to be more accurate in the Internet since the Internet contains many
short lived TCP flows and many of them complete transmission
before they respond to losses.

Abilene network. Abilene [21] is an advanced backbone network
that supports the work of Internet2 universities as they develop ad-
vanced Internet applications. One major goal of Abilene is to pro-
vide a separate network to enable the testing of advanced network
capabilities prior to their introduction into the application develop-
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Figure 3: Accuracy of MVWA(WA) algorithm vs. EM: Box-plot of error factors over all links and all runs for loss rate 2%(left) and
4%(right).
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Figure 6: Small network scatter plot: inferred loss vs. all loss, inferred loss vs. probe loss



ment network. Multicast is one among all such services. Abilene
supports native and sparse mode multicast. As of October 01, 2001,
Multicast protocols, PIM-sparse, MBGP and MSDP have been de-
ployed in the backbone. The Abilene multicast logical topology is
illustrated in [22]. It consists of 159 nodes and 165 edges. Each
node in the graph represents a physical location and each link rep-
resents a physical interconnection between some two routers from
different locations. Because the more detailed topology within each
physical location is not available to us, we treat each node as a
router and focus on the logical topology in our experiments. There
are three types of links in Abilene backbone, OC3 (155M), OC12
(622M) and OC48 (2.5G). The type of the links that connect par-
ticipants to backbone are not labeled and we assume they are T3
(45M). Since the ns simulator does not allow us to simulate enough
number of flows to fill up such high bandwidth links and generate
losses, we scale down the bandwidth proportionally by 108 times.
Last, we assume that only the leaves in the topology (i.e., node of
degree one) are senders or receivers.

We lay out a total of eight trees that can identify 41 links. An equal
number of probes is sent by each source and the interval between
probes is 200ms. We conducted a simulation of duration 256 sec-
onds and ran it ten times with different random seeds. For each
simulation, we estimate the loss rates using the EM algorithm and
compare them to the simulated loss rates. Figure 7 illustrates scat-
ter plots for inferred loss vs. all loss (left) and inferred loss vs.
probe loss (right). Similar to what we observed in small network
simulation, the EM algorithm provides accurate estimates of probe
loss rates. However, the inferred loss rates are almost always higher
than the simulated all traffic loss rates.

6. EXTENSIONS
In this section, we first extend the EM algorithm to infer the dis-
tribution of links delay. Second, since multicast is not supported
everywhere in the Internet and internal performance observed by
multicast packets may differ from that observed by unicast packets,
it is important to show our algorithms for inferring a set of multicast
trees can be applied to unicast measurements. Last, the algorithms
we presented so far rely on the availability of complete informa-
tion from the receivers. However, this may pose a serious problem
in their deployment. We demonstrate the use of our algorithms to
handle incomplete observations from receivers.

6.1 Delay inference
We now illustrate the use of end-to-end measurements from a col-
lection of multicast trees Ψ to estimate the delay characteristics of
internal links.

We associate with each link (i, j) a random variable Di,j which
represents the queueing delay that would be encountered by pack-
ets traversing link (i, j). For the analysis, we quantize the queueing
delay to a finite set of values Q = {0, q, 2q, . . . , Bq,∞}, where q
is a suitable fixed bin size. A queueing delay equal to ∞ indicates
that the packet is lost on the link. We define the bin associated
to iq ∈ Q to be the interval [iq − q/2, iq + q/2), i = 1, . . . , B,
and [Bq + q/2,∞) the one associated to the value ∞. Because
delay is non-negative, we associate with 0 the bin [0, q/2). We
thus model the link queueing delay by a nonparametric discrete
distribution that we can regard as a discretized version of the actual
delay distribution. We denote the distribution of Di,j by αi,j =
(αi,j(d))d∈Q, where αi,j(d) = P [Di,j = d], d ∈ Q. We will
denote α = (αi,j)(i,j)∈E(Ψ). We assume that queueing delays
are independent between different packets, and for the same pack-

ets on different links. Thus the progress of each probe down the
tree T is described by an independent copy of a stochastic process
YT = (Yk,T )k∈V (T ) which represents the accrued queueing delay
of packets. The queueing delay experienced by a packet from ρ(T )
to node i is Yi,T =

∑
(m,n)∈pT (ρ(T ),i) Dm,n where pT (ρ(T ), i)

denote the path on tree T from source to node i.

In an experiment, a set of probes is sent from the multicast tree
sources ρ(T ), T ∈ Ψ. For each T ∈ Ψ, we can think of each
probe as a trial, the outcome of which is a configuration of source
to receivers queueing delays YR(T ) = (Yk,T )k∈R(T ) we also dis-
cretize to the set Q. Each outcome is thus an element of the space
ΩR(T ) = Q#R(T ).

As with loss estimation, we use maximum likelihood estimation
based on measurements across the multicast tress T ∈ Ψ. Let us
dispatch nT probes from ρ(T ), T ∈ Ψ, and let nT (yR(T )) de-
note the number of probes for which the outcome yR(T ) ∈ ΩR(T )

is obtained. The probability of the nT independent observations
yR(T ) = (y1

R(T ), . . . , y
nT
R(T )), (with each ym

R(T ) = (ym
k,T )k∈R(T )),

is then

p(yR(T ); α) =

nT∏
m=1

p(ym
R(T ); α)

=
∏

yR(T )∈ΩR(T )

p(yR(T ); α)nT (yR(T ))

where p(y; α) = Pα[YT = yT ]. The probability of the complete
set of measurements yR = (yR(T ))T∈Ψ at the receivers is

p(yR; α) =
∏

T∈Ψ

p(yR(T ); α). (12)

Our goal is to estimate α by the maximizer of (12), namely,

α̂ = arg max p(yR; α). (13)

As with loss inference, we resort to the EM algorithm to obtain
an iterative solution α̂(�), � = 0, 1, . . . , to a (local) maximizer
of the likelihood (12). Assume complete knowledge of the delay
process at each link, namely the values yT = (y1

T , . . . , ym
T ), (with

each ym
T = (ym

k,T )k∈V (T )), T ∈ Ψ. Denote by ni,j,T (d) the total
number of packets sent by ρ(T ) that experienced a delay equal to
d along link (i, j). It is easy to verify that with complete data, the
MLE estimate of αi,j(d) is

α̂i,j(d) =

∑
T∈Ψi,j

ni,j,T (d)∑
T∈Ψi,j

∑
d∈Q ni,j,T (d)

∀(i, j) ∈ E(Ψ). (14)

Thus, with complete knowledge, the MLE estimate of αi,j(d) is
simply the fraction of the probes traversing link (i, j) which en-
countered a delay equal to d.

For delay inference the EM algorithm proceeds as for the loss case.
Below we briefly describe the algorithm and intuition behind it.
Details can be found in [3].

1. Step 1. Select the initial link delay distribution α̂(0).

2. Step 2. Given the current estimate α̂(�), Estimate the (un-
known) counts ni,j,T (d) by n̂i,j,T (d) = Eα̂(�) [ni,j,T (d)|yR].
In other words, we estimate the counts by their conditional
expectation given the observed data yR under the probability
law induced by α̂(�).
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Figure 7: Abilene scatter plot: inferred loss vs. all loss, inferred loss vs. probe loss

3. Step 3. Compute the new estimate α(�+1) via (14), using the
estimated counts n̂i,j,T (d) computed in the previous step in
place of the actual (unknown) counts ni,j,T (d).

4. Iteration. Iterate steps 2 and 3 until some termination cri-
terion is satisfied. Set α̂ = α̂(�), where � is the terminal
number of iterations.

Complexity
The complexity of the algorithm is dominated by the computation
the conditional expectations which can be accomplished in time lin-
ear with #V (T ) × #Q, T ∈ Ψ. The computation can be done by
extending the approach for computing loss conditional probability
and is described in [3].

Convergence
The conditions for convergence can be established similarly as for
loss inference.

6.2 Inference with unicast measurement
So far we have presented inference algorithms for a collection of
trees based on end-to-end multicast measurements. These tech-
niques can be extended to work with unicast measurements from
multiple sources as well.

The rationale behind unicast based inference is that: (1) measure-
ment domain is limited because large portions of the Internet do
not support network-level multicast, and that (2) the internal per-
formance observed by multicast packets may differs from that ob-
served by unicast packets. Techniques for unicast measurements
and inference have been recently proposed in [6, 11] for the in-
ference of loss rates and [7, 8, 9] for delay distributions. However,
these works only handle the inference of a single source with multi-
ple pairs of receivers and thus may pose severe limitations in scope.

The key idea behind unicast inference is to design unicast mea-
surement whose correlation properties closely resemble those of
multicast traffic, so that it becomes possible to use the inference
techniques developed for multicast inference; the closer the corre-
lation properties are to that of multicast traffic, the more accurate
the results.

A basic approach for unicast inference is to dispatch two back-to-
back packets (a packet pair) from a probe source to a pair of dis-
tinct receivers. For each such packet pair, the two packets traverse
a common set of links down a node where their paths diverge to the
two receivers. By choosing multiple sources and pairs of receivers,
it is possible to cover a more significant portion of a network than
with a single source. The inference for the link loss probability and
link delay distribution from a set of packet pair measurements is
formulated as a maximum likelihood estimation problem which is
then solved using the algorithms we presented earlier in the paper.
The idea, is that treat the unicast packet pair measurements as sta-
tistically equivalent to a notion multicast packet that descends the
same tree. The entire set of measurements is thus considered equiv-
alent to a set of multicast measurements down a collection of 2 leaf
trees. The analysis then follows the same approach for a collection
of trees detailed in Sections 4 and 6.1.

6.3 Inference with missing data
The algorithms presented in the paper so far rely on the availability
of complete information from the receivers. However, as described
in [10], this may pose a serious problem in their deployment. For
example, the loss reports from receives may be delivered unreli-
ably and there may be bandwidth constraints for transmitting loss
reports. Therefore, it is important to extend the algorithms to han-
dle incomplete data sets. An algorithm has been proposed in [10] to
handle incomplete data for a single tree. The goal of this section is
to extend the algorithms we proposed earlier in the paper to handle
incomplete data for a collection of trees.

The basic idea is first to convert each tree T ∈ Ψ with incomplete
observations to multiple sub-trees sharing the same source but with
complete observations. For tree T with incomplete data in a col-
lection of tree Ψ, assume that the outcomes of the kth probe sent
by ρ(T ) are only observable by Rk(T ) ⊆ R(T ). With probe k,
we associate the multicast tree Tk that spans the root ρ(T ) and
Rk(T ). This is obtained by finding the spanning tree of ρ(T ) and
Rk(T ) in T . Therefore, the tree T with incomplete observation can
be treated as a set of trees {Tk}k=1,...,nT , each of which is with
complete observation. Note that the same tree may appear many
times in {Tk}k=1,...,nT and can be merged as one tree with multi-
ple probes. For each tree with incomplete data in Ψ, we replace it
with the set of its subtrees with complete data and add these trees



to Ψ. We then have a set of trees each of which has complete data
and the algorithms described in Sections 4 and 6.1 can be applied
to the inference of loss rate and delay distribution.

7. EM ALGORITHM FOR LOSS INFERENCE
We find convenient to work with the log-likelihood function

Linc(xR; α) =
∑
T∈Ψ

Linc
T (xR(T ); α) (15)

where
Linc

T (xR(T ); α) =
∑

xR(T )∈ΩR(T )
(nT (xR(T )) log p(xR(T ); α))

is the log-likelihood of the the measurement down the tree T ∈ Ψ.
We estimate α by the maximizer of the likelihood (15), namely
α̂ = arg maxLinc

T (xR(T ); α). We follow the approach in [7, 8]
and employ the EM algorithm to obtain an iterative approximation
to the maximizer of (15). The basic idea is that rather than perform-
ing a complicated maximization, we “augment” the observed data
with unobserved or latent data so that the resulting log-likelihood
has a simpler form. Following [8], we augment the actual obser-
vations with the unobserved observations at the interior links. In
other words, we assume complete knowledge of the loss process.
The log-likelihood for the complete data x = (xT )T∈Ψ is

L(x; α) =
∑
T∈Ψ

L(xT ; α) (16)

where L(xT ; α) = log p(xT ; α) is the log-likelihood of the com-
plete set data for T . It is easy to realize that p(x1

T , . . . , xnT
T ; α) =∏

(i,j)∈E(T ) α
nj,T

i,j α
ni,T −nj,T

i,j and that

L(x; α) =
∑

(i,j)∈E(Ψ)

(
∑

T∈Ψi,j

nj,T log αi,j (17)

+ (
∑

T∈Ψi,j

ni,T −
∑

T∈Ψi,j

nj,T ) log αi,j).

Maximization of (17) is trivial, as the stationary point conditions

∂L(x; α)

∂αi,j
= 0 (i, j) ∈ E(Ψ) (18)

immediately yield

α̂i,j =

∑
T∈Ψi,j

nj,T∑
T∈Ψi,j

ni,T
(i, j) ∈ E(Ψ). (19)

Since x and thus the counts except for leaves are not known, the EM
algorithm uses the complete log-likelihood L(x; α) to iteratively
find α̂ as follows:

1. Initialization. Select the initial link loss rate α̂(0). The simu-
lation study suggests the values that the algorithm converges
to are independent of initial values.

2. Expectation. Given the current estimate α̂(�), compute the
conditional expectation of the log-likelihood given the ob-
served data x under the probability law induced by α̂(�),

Q(α′; α̂(�)) = Eα̂(�) [L(x; α′)|xR] (20)

=
∑

(i,j)∈E(Ψ)




∑
T∈Ψi,j

n̂j,T log α′
i,j

+ (
∑

T∈Ψi,j

n̂i,T −
∑

T∈Ψi,j

n̂j,T ) log α′
i,j)




where n̂k,T = Eα̂(�) [nk,T |xR]. Q(α′; α̂(�)) has the same
expression as L(x; α′) but with the actual unobserved counts
nk,T replaced by their conditional expectations n̂k,T . To
compute n̂k,T , remember that nk,T =

∑nT
m=1 xm

k,T . Thus,
we have

n̂k,T =

nT∑
m=1

Pα̂(�) [Xk,T = 1|XR(T ) = xm
R(T )] (21)

=
∑

xR(T )∈ΩR(T )

nT (xR(T ))Pα̂(�) [Xk,T = 1|XR(T ) = xR(T )]

3. Maximization. Find the maximizer of the conditional expec-
tation α(�+1) = arg maxα′ Q(α′, α̂(�)). The maximizer is
given by (19) with the conditional expectation n̂k,T in place
of nk,T .

4. Iteration. Iterate steps 2 and 3 until some termination cri-
terion is satisfied. Set α̂ = α̂(�), where � is the terminal
number of iterations.

Complexity
The complexity of the algorithm is dominated by computation of
the conditional expectation n̂k,T . This can be accomplished in lin-
ear time with #V (T ), T ∈ Ψ. The algorithm is described in [3].

Convergence
We establish conditions for convergence of estimated parameters
and likelihood under the EM algorithm for loss inference. Observe
that the complete data log-likelihood function (17) can be written

L(x; α) =
∑
T∈Ψ

∑
i∈V (T )\{ρ(T )}

ni,T φi,T (α) (22)

where

eφi,T (α) =
αf(i,T ),i

αf(i,T ),i

∏
j∈d(i,T )

αi,j (23)

(Here the empty product when d(i, T ) = ∅ is taken as 1). Thus
the log likelihood comes from an exponential family with suffi-
cient statistics (ni,T )T∈Ψ, i∈V (T ) and parameters α. The expo-
nential family is regular, since we take α in the convex set A =
(0, 1)×T∈ΨV (T ). Note that the map α 
→ φ is invertible: eφi,T =
αf(i,T ),i/αf(i,T ),i for a receiver i in R(T ). Invertibility then fol-
lows by induction: if we know all the (αi,j)j∈d(i,T ) then we can
recover αf(i,T ),i from φi. It follows that the exponential family is
curved: the φi,T are constrained to some #V -dimensional smooth
submanifold of R

×T∈ΨV (T )\{ρ(T )} through the constraint that the
link probabilities α calculated from φT on different trees T must
agree on common links.

The following convergence results for the sequence of EM iterates
α̂(�) follow from the regular exponential family property; see The-
orem 6 in [20].

THEOREM 3. (i) Linc(xR; α̂(�)) converges to some limit L.

(ii) If {α ∈ A | Linc(xR; α) = L} is discrete, α̂(�) converges
to some α∗ that is a stationary point of Linc(xR; α).

(iii) If Ļi(xR; α) is unimodal, α̂(�) converges to the incomplete
data MLE, namely, α̂ = arg maxαLinc(xR; α)



The theorem implies that when there are multiple stationary points,
e.g. local maxima, the EM iterates may not converge to the global
maximizer. Unfortunately, we were not able to establish whether
there is a unique stationary point or conditions under which unicity
holds.

8. SUMMARY
In this paper, we focused on inferring network internal link-level
performance from end-to-end multicast measurements taken from
a collection of trees. We addressed two questions:

• Given a collection of multicast trees, whether all of the links
(or a specified subset) are identifiable.

• If a set of links of interest are identifiable, how do we obtain
accurate estimates of their performance.

With loss rates as performance metrics, we established necessary
and sufficient conditions for identifiability; and proposed two al-
gorithms, MVWA algorithm and EM algorithm for inferring a set
of links of interests. The algorithms are evaluated through model
simulation and network simulation. The model simulation suggests
that the EM algorithm is more accurate and of less variability. In
the network simulation, we observe that EM algorithm can provide
accurate estimate to the probe traffic loss whereas over-estimate all
traffic loss slightly. Moreover, we extend the EM algorithm in-
fer link delays, and demonstrate how to use our algorithms when
only unicast measurement are available or some of the observations
made at end-hosts are missing.
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