
A DHT-BASED FFT/IFFT PROCESSOR FOR VDSL TRANSCEIVERS

Chin-Liang Wang
†

‡ and Ching-Hsien Chang‡
†Institute of Communications Engineering, National Tsing Hua University
‡Department of Electrical Engineering, National Tsing Hua University

Hsinchu, Taiwan 300, R.O.C.
E-mail: clwang@ee.nthu.edu.tw

ABSTRACT
This paper presents a new VLSI architecture for computing the N-
point discrete Fourier transform (DFT) of real data and the
corresponding inverse (IDFT) based on the discrete Hartley
transform, where N is a power of two. The architecture includes
two real multipliers, three real adders, six memory-based buffers,
two ROM’s, and some simple logic circuits, making itself suitable
for single-chip implementation. It is capable of evaluating one
DFT sample or one IDFT sample every (log2N+1)/2 clock cycles
on average. Under 0.35 µm CMOS technology, the proposed
design can operate at a clock rate of 100 MHz to reach a
throughput of 20M transform samples per second for N=512. The
processing speed will be higher if more advanced CMOS
technology is adopted to implement the same circuit. Such low-
complexity and high-throughput feature supports that the
proposed design is well suited for use in discrete multitone based
very high-speed digital subscriber line transceivers.

1. INTRODUCTION
The discrete multitone modulation (DMT) is a famous form of
digital implementation of multicarrier modulation [1]. This
technology has been widely investigated for high-speed data
transmission on copper wires. For example, it has been selected by
the American National Standards Institute and the European
Telecommunications Standards Institute for asymmetric digital
subscriber line (ADSL) and very high-speed digital subscriber line
(VDSL) services [2]-[5] over ordinary phone lines. ADSL service
can provide a date rate of several megabits per second, while
VDSL service can provide a data rate up to 52 megabits per
second. For a DMT-based VDSL transceiver, the modulator and
demodulator need to respectively compute very long-length
inverse discrete Fourier transforms (IDFT) and DFT, where the
transform length may be as high as 4096 and the sampling rate
may be up to 44.16 MHz. Obviously, the DFT/IDFT computation
involved in VDSL applications is pretty complicated and there is a
great need to develop fast processors for it to meet the real-time
requirements.

The discrete Hartley transform (DHT) involves only real-valued
arithmetic and has an identical inverse [6]. It is closely related to
the DFT and has become an effective tool for computing the DFT
of real data; we can evaluate the corresponding DHT first and then
convert the result into the DFT. There have been a number of fast
algorithms and architectures proposed earlier for the DHT
computation (see, for example, [7]-[10]). However, they are either
too slow to meet the speed requirement of VDSL applications or
consume too many multipliers to be realized in a single chip.

In this paper, we propose a new DHT-based FFT/IFFT (fast Fourier
transform and its inverse) processor for DMT-based VDSL

This work was supported by the National Science Council of the Republic
of China under Grant NSC 89-2213-E-007-128.

applications. The proposed design involves two real multipliers,
three real adders, two ROM’s, six memory-based buffers, and some
simple logic circuits to achieve the throughput performance
required. This structure can be regarded as an improved version of
the single-chip FFT design for ADSL applications described in
[11], where the throughput is doubled (under the same
technology) with an increase of one real multiplier and two N/2-
word RAM’s. The low-complexity feature makes it well suited to
single-chip implementation.

2. DHT-BASED FFT/IFFT COMPUTATION
2.1 A Fast DHT (FHT) ALGORITHM [10]

Define the N-point DHT of a real sequence by

,1..., ,1 ,0 ,
1

0
−=∑

−

=
= NkHxy kn

N

N

n
nk

 (1)

where HN
kn=sin(2πkn/N)+cos(2πkn/N). Also let X=[x0 x1 ... xN-1]

T
denote the transform input vector and Y=[y0 y1 ... yN-1]

T represent
the transform output vector. Then we can express (1) as

XHY)(N= (2)

2)1(1

11

1

1

111

)(



















−−

−

=

N
N

N
N

N
NN

HH

HH
N

L

MOMM

L

L

H

(3)

With the assumptions that N is a power of two and Z=[z0 z1 ...
zN-1]

T is the bit-reversed version of vector Y, the following matrix
formulation can be derived for the FHT computation [10]:

XPPPZ)()2/()2(122 NNN/ L= (4)

where PN/M(M) represents the direct sum [12] of N/M P(M)’s of
size MxM given by



















=

⊕⊕⊕=

)(00

0)(0

00)(

)()()()(/

M

M

M

MMMMMN

P

P

P

PPPP

L

MOMM

L

L

L

,

(5)













⋅=
2/2/

2/2/2/

)2/(0

0
)(

MM

MMM

M
M

I-I

II

K

I
P

,
 (6)























+























=+=

−− 1

2

1

0

1

2

1

0

22

)2/()2/()2/(

MM

M

M

M

M

M

M

M

M

S

S

S

S

C

C

C

C

MMM

NO

SCK

(7)

with CM
k=cos(2πk/M) and SM

k=sin(2πk/M).

2.2 FFT/IFFT Computation via the FHT Algorithm [11]

Define the N-point DFT and IDFT by

,, 12 1 0
1

0

, N-, ,, kWxf
N

n

nk
Nnk …=∑

−

=

= (8)

,12 1 0,)/1(
1

0

, N-, ,, nWfNx
N

k

kn
Nkn …== ∑

−

=

− (9)

where WN=exp(-j2π/N). With the properties of DHT given in [6],
we can compute the DFT samples as follows:
Step 1: Forming the even and odd parts of the DHT of X

Even Part: Hk
e=(yk+yN-k)/2, for k=1, 2, …, N/2 (10)

Odd Part: Hk
o=(yk - yN-k)/2, for k=1, 2, …, N/2 (11)

Step 2: Generating the DFT samples from the even and odd parts
f0=y0 (12)
fk=Hk

e-jHk
o, for k=1, 2, …, N/2 (13)

fN-k=Hk
e+jHk

o, for k=1, 2, …, N/2 (14)

It should be noted that the input vector for the IDFT is symmetric
for DMT-based VDSL applications, i.e., the input vector is in a
form as F=[f0 f1 ... fN-1]

T=[c0 c1+jd1 c2+jd2 ... cN/2-1+jdN/2-1 cN/2
cN/2-1-jdN/2-1 ... c2-jd2 c1-jd1]

T, where ci and di are real. Thus, the
IDFT definition given in (9) can be rewritten in matrix-vector
form as follows:

X=(1/N)W(N)F=(1/N)H(N)LF (15)
where



















−−−−

−−−

=
2)1()1(

)1(1

1

1

111

)(

N
N

N
N

N
NN

WW

WW
N

L

MOMM

L

L

W

,

 (16)



























+−

+−

−+

−+

=

2/)1(0002/)1(0
0000

02/)1(02/)1(00
001000

02/)1(02/)1(00
0000

2/)1(0002/)1(0
000001

jj

jj

jj

jj

LL
OMNM

MM
LL

MM
NMOM

LL
LL

L

.

 (17)

Neglecting the scaling factor 1/N, we can evaluate the N-point
IDFT by computing the N-point DHT of the input vector LF=[c0
c1-d1 c2-d2 ... cN/2-1-dN/2-1 cN/2 cN/2-1+dN/2-1 ... c2+d2 c1+d1]

T.

3. REALIZATION OF THE PROPOSED
ALGORITHMS

Based on the FHT algorithm described above, we can construct a
memory-based architecture for computing the N-point DFT/IDFT
as shown in Fig. 1. The structure is mainly composed of six two-
port RAM’s, two ROM’s, two real-valued multipliers, three real-
valued adders, and eight multiplexers. Each two-port RAM
contains N/2 addresses and five types of addressing/control signals,
which are RA (“read” address), WA (“write” address), DO (data
output), DI (data input), and CK (clock signal for triggering the
“read/write” actions). Such a special RAM is able to read-and-
then-write at the same address or to read and write independently
at different addresses in one clock cycle. The two ROM’s are used
to store all the cosine and sine coefficients for the FHT algorithm.

Initially, the first input data vector X0 of N samples enters the
system via the multiplexer MUX-1 on a sample-by-sample basis;
the first N/2 samples are loaded into RAM-1 during the first N/2
cycle periods, and the other N/2 samples are loaded into RAM-2
during the second N/2 cycle periods. Once this initial data loading
is completed, the N samples of X0 will be read out from RAM-1
and RAM-2 to perform the first-stage matrix-vector multiplication
(i.e., P1(N)X0) of the FHT algorithm on the three adders, RAM-5,
RAM-6, and two multipliers in the subsequent N cycles. The
temporary results computed at this stage are then sent back to

RAM-1 and RAM-2 via MUX-1 for use in the second-stage
matrix-vector multiplication with coefficient matrix P2(N/2). The
second-stage matrix-vector multiplication et al. will be realized in
a similar manner to the first-stage matrix-vector multiplication,
where the main difference is in the arrangement of
addressing/control sequences. Note that RAM-5 and RAM-6
respectively acts as a first-in-first-out (FIFO) buffer and a first-in-
last-out-like (FILO-like) buffer with size of N/2 each. RAM-5 can
delay an N/2-point data sequence by N/2 cycle periods and RAM-
6 is used to perform the FILO-like permutation operations of those
multiplication results with sine coefficients defined by the matrix
S(M/2) in (7). If the input sequence of the FILO-like buffer is b0,
b1, ..., bM/2-2, bM/2-1, then the required output from the FILO-like
buffer is b0, bM/2-1, bM/2-2, ..., b1.

During the second N cycle periods when P1(N)X0 is computed, the
second data vector X1 of N samples enters the system sample by
sample; the first N/2 samples are loaded into RAM-3 via the
multiplexer MUX-2 during the first half of this time interval; the
other N/2 samples are moved directly to the adders via the
multiplexer MUX-4 during the second half of this time interval.
Once the loading operation of the first N/2 samples of X1 is
completed, the first-stage matrix-vector multiplication of the FHT
algorithm for computing the transform of X1 will be performed on
the three adders, RAM-5, RAM-6, and two multipliers in the
subsequent N cycles. The transform operations of data vector X1
are the same as those of data vector X0 described above, except
that for X1 the temporary results computed are sent back to RAM-
3 and RAM-4 via MUX-2 (instead of RAM-1 and RAM-2 via
MUX-1) for use in the second-stage matrix-vector multiplication.

It should be noted that the transform computations of X0 and X1
are overlapped in the proposed architecture; those of X0 are N/2
cycles ahead of those of X1, and the three adders, RAM-5, RAM-6,
and two multipliers are alternately employed for these two
transform computations. After the transform computations of X0
and X1 are finished, those of X2 and X3 are overlapped in a similar
manner, and so on.

To have better understanding of the proposed architecture, let us
consider how to compute an 8-point DFT of real data and the
corresponding IDFT. For the 8-point case, (4) becomes

iiii BPAPPXPPPZ ⋅=⋅⋅=⋅⋅⋅)2()4()2()8()4()2(424124= (18)

where Tiiii xxx] [710 L=X , Tiiii zzz] [710 L=Z , and i=0, 1, 2, .… For
each RAM module shown in Fig. 1, the WA and RA signals are
both of three bits. The most significant bit (MSB) of WA will
enable or disable the “write” operation, and the two least
significant bits will be used for addressing the RAM. The three
bits of RA have similar functions to those of WA. For correct
execution, we have the following arrangements:
• When the MSB of RA of RAM-1 or RAM-2 is 0, RAM-1 or

RAM-2 is enabled for the “read” operation.
• When the MSB of RA of RAM-3 or RAM-4 is 1, RAM-3 or

RAM-4 is enabled for the “read” operation.
• When the MSB of WA of RAM-1 or RAM-3 is 0, RAM-1 or

RAM-3 is enabled for the “write” operation.
• When the MSB of WA of RAM-2 or RAM-4 is 1, RAM-2 or

RAM-4 is enabled for the “write” operation.
The operations and addressing/control sequences of this example
are shown in Table I, and they are briefly described as follows:

1) Transforms of X0, X2, X4, ..., etc.: In cycles 0 ~ 7, the input data
vector X0 is loaded into RAM-1 and RAM-2 on a sample-by-

sample basis. After this loading operation, the first-stage
matrix-vector multiplications of the FHT algorithm, i.e.,
A0=[a0

0 a1
0 ... a7

0]T=P1(8)X0, is performed during cycles 8 ~ 15,
and the second-stage matrix-vector multiplication, i.e., B0=[b0

0
b1

0 ... b7
0]T=P2(4)A0, is performed during cycles 16 ~ 23, where

the generating order of A0 and B0 are {a0
0, a1

0, a2
0, a3

0, a4
0, a5

0,
a6

0, a7
0} and {b0

0, b1
0, b4

0, b5
0, b2

0, b3
0, b6

0, b7
0} respectively. In

cycles 24 ~ 31, the third-stage matrix-vector multiplication, i.e.,
Z0=[z0

0 z1
0 ... z7

0]T= P4(2)B0, is computed to yield the transform
results of X0 in the order {z0

0, z2
0, z4

0, z6
0, z1

0, z3
0, z5

0, z7
0}.

During cycles 32 ~ 35, the processor carries out the transform
results of X0 at Output1 and Output2. The input data vector X2
begins to be loaded into RAM-1 and RAM-2 at cycle 32. Note
that the addressing/control sequences for computing the
transforms of X2, X4, ... are the same as those for computing the
transform of X0.

2) Transforms of X1, X3, X5, … , etc.: Except the loading
operations, the transform computations of X1, X3, ... are almost
the same as those described above. For example, during cycles
8 ~ 11, the first four samples of the input data vector X1, i.e.,
{x0

1, x1
1, x2

1, x3
1}, are loaded into RAM-3; then, the other four

samples of X1, i.e., {x4
1, x5

1, x6
1, x7

1}, and {x0
1, x1

1, x2
1, x3

1} just
stored on RAM-3 are used to generate the first four results of
A1=[a0

1 a1
1 ... a7

1]T=P1(8)X1.
3) Table I shows the DHT computation of an 8-point real

sequence. Note that the DHT output sequence is actually the
IDFT of the 8-point complex sequence {c0

i, c1
i+jd1

i, c2
i+jd2

i,
c3

i+jd3
i, c4

i, c3
i-jd3

i, c2
i-jd2

i, c1
i-jd1

i} when the input sequence is
{c0

i, c1
i-d1

i, c2
i-d2

i, c3
i-d3

i, c4
i, c3

i+d3
i, c2

i+d2
i, c1

i +d1
i}.

4) If the selection signal I5 of MUX-5 is {1, 0, 0, 0, 2, 0, 0, 0}
from cycle 32 to cycle 39, the processor will evaluate the DFT
samples of Xi, i.e., f0

i=y0
i=z0

i, f1
i*=f7

i=(y1
i+y7

i)/2+j(y1
i-y7

i)/2=
(z4

i+z7
i)/2 +j(z4

i-z7
i)/2, f2

i*=f6
i=(y2

i+y6
i)/2+j(y2

i-y6
i)/2=(z2

i+z3
i)/2+

j(z2
i-z3

i)/2, f3
i*= f5

i=(y3
i+y5

i)/2+j(y3
i-y5

i)/2=(z6
i+z5

i)/2+j(z6
i-z5

i)/2,
and f4

i=y4
i=z1

i will be computed. Table II presents the required
addressing/control sequences for this case.

We can see from Table I that the proposed architecture realizes the
N-point FFT/IFFT algorithm in N(log2N+1)/2 cycle periods.
Moreover, the addressing/control sequences can easily be derived
from a log2N-bit counter. For N=8, the output bits of a 3-bit
counter can be used as the RA sequences of RAM-1 to RAM-4.
The control sequences of multiplexers and the WA sequences of
RAM-1 to RAM-4 can also be derived from the output bits of a 3-
bit counter.

4. CONCLUSION
A new VLSI architecture has been proposed for the N-point
DFT/IDFT computation of real data based on the FHT, where N is
a power of two. It consumes only two real multipliers, six N/2-
word two-port RAM’s, three real adders, two ROM’s, and some
simple logic circuits, and is pretty suitable for single-chip
implementation. As compared to a similar approach presented in
[11] with throughput performance of one transform sample per
log2N+1 cycles, the proposed one provides a double throughput
with an increase of one multiplier and two N/2-word RAM’s.
Based on 0.35 µm CMOS technology, the estimated gate count of
the proposed design is around 60 000 for the case of N=512, and
the allowable clock rate is as high as 100 MHz, meaning a
throughput of 20M transform samples per second. The processing

speed will be higher if more advanced CMOS technology is
adopted to implement the same circuit. The low-complexity and
high-throughput feature makes the proposed architecture attractive
for use in DMT-based VDSL applications.

5. REFERENCES
[1] J. A. C. Bingham, “Multicarrier modulation for data transmission:

An idea whose time has come,” IEEE Commun. Mag., pp. 5-14,
May 1990.

[2] ANSI Standard T1.413-1995, Asymmetric Digital Subscriber
Line (ADSL) Metallic Interface, New York, NY, 1995.

[3] J. M. Cioffi, “Asymmetric digital subscriber lines,” Chapter 34,
The Communications Handbook, J. D. Gibson Ed., CRC Press,
1997.

[4] Very-high-speed Digital Subscriber Lines: System Requirements
(T1E1.4/98-043R2), Draft Technical Document – Revision 14A,
ANSI T1E1.4, May 1998.

[5] VDSL Alliance SDMT VDSL Draft Standard Proposal, ETSI
STC/TM6, April 1998.

[6] R. N. Bracewell, “Discrete Hartley transform,” J. Opt. Soc. Amer.,
vol. 73, pp. 1832-1835, Dec. 1983.

[7] H. V. Sorensen, D. L. Jones, C. S. Burrus, and M. T. Heideman,
“On computing the discrete Hartley transform,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-33, pp. 1231-
1238, Oct. 1985.

[8] H. S. Hou, “The fast Hartley transform algorithm,” IEEE Trans.
Comput., vol. C-36, pp. 147-156, Feb. 1987.

[9] L. -W. Chang and S. -W. Lee, “Systolic arrays for the discrete
Hartley transform,” IEEE Trans. Signal Processing, vol. 39, pp.
2411-2418, Nov. 1991.

[10] C. -L. Wang, C. -T. Ho, and Y. -T. Chang, “A novel systolic
design for fast computation of the discrete Hartley transform,” in
Proc. IEEE Thirtieth Asilomar Conf. Signals, Systems &
Computers, pp. 1067-1071, Nov. 1996.

[11] C. -L. Wang and C. -H Chang, “A novel DHT-based FFT/ IFFT
processor for ADSL transceivers,” in Proc. 1999 IEEE Int. Symp.
Circuits Syst., Orlando, FL, May 30 - June 2, 1999, pp. 51-55.

[12] H. Frieddberg, A. J. Insel, and L. J. Spence, Linear Algebra.
Englewood Cliffs, NJ: Prentice-Hall, 1989.

WA

RA DO DI

CK
RAM-1

+
-

+
+

0 1 2
MUX-4

1 0
 MUX-3

 0

0 1
 MUX-3

 1

0

 1

M
U

X
-2

0

 1

M
U

X
-1

WA’s for
RAM’s

RA’s for
RAM’s

Input
Data

0

1
 2

M
U

X
-5

1

WA

RA DO DI

CK
RAM-2

WA

RA DO DI

CK
RAM-3

WA

RA DO DI

CK
RAM-4

+

I1 I2

I3

I4

I5

+X

WA

RA DO DI

CK
RAM-5

WA

RA DO DI

CK
RAM-6

X
+
+

+

RW for
RAM-6

RW for
RAM-5

0
 1

2

M
U

X
-5

0

X

X

½

0 1
 MUX-3

 2

O
u

tp
u

t2
O

u
tp

u
t1

Cosine
ROM

Sine
ROM

Fig. 1. A memory-based FFT/IFFT processor architecture.

TABLE I Arrangement of the Control/Addressing Sequences for the 8-Point FHT Algorithm (- : means “neglected”)
RAM -1 or -3 RAM -2 or -4 RAM-1 or -2 RAM-3 or -4 RAM-5 RAM-6 Output

Cy. I1 I2 I3 I4 I5 RA DO RA DO WA DI WA DI RW DI DO RW DI DO Output 2 Output 1
0 0 1 0 0 1 000 - 000 - 000 x0

0 100 - 00 - - 00 - - - -
1 0 1 0 0 1 001 - 001 - 001 x1

0 101 - 01 - - 01 - - - -
2 0 1 0 0 1 010 - 010 - 010 x2

0 110 - 10 - - 10 - - - -
3 0 1 0 0 1 011 - 011 - 011 x3

0 111 - 11 - - 11 - - - -
4 0 1 1 1 2 100 - 100 - 100 x4

0 000 - 00 - - 00 - - - -
5 0 1 1 1 2 101 - 101 - 101 x5

0 001 - 01 - - 01 - - - -
6 0 1 1 1 2 110 - 110 - 110 x6

0 010 - 10 - - 10 - - - -
7 0 1 1 1 2 111 - 111 - 111 x7

0 011 - 11 - - 11 - - - -
8 1 0 0 0 - 000 x0

0 000 x4
0 000 x0

0+x4
0=a0

0 000 x0
1 00 (x0

0-x4
0)⋅C8

0 - 00 (x0
0-x4

0)⋅S8
0 - - -

9 1 0 0 0 - 001 x1
0 001 x5

0 001 x1
0+x5

0=a1
0 001 x1

1 01 (x1
0-x5

0)⋅C8
1 - 01 (x1

0-x5
0)⋅S8

3 - - -
10 1 0 0 0 - 010 x2

0 010 x6
0 100 x2

0+x6
0=a2

0 010 x2
1 10 (x2

0-x6
0)⋅C8

2 - 10 (x2
0-x6

0)⋅S8
2 - - -

11 1 0 0 0 - 011 x3
0 011 x7

0 101 x3
0+x7

0=a3
0 011 x3

1 11 (x3
0-x7

0)⋅C8
3 - 11 (x3

0-x7
0)⋅S8

1 - - -
12 1 1 1 2 - 100 x0

1 100 - 010 (x0
0-x4

0)⋅C8
0+(x0

0-x4
0)⋅S8

0=a4
0 000 x0

1+x4
1=a0

1 00 (x0
1-x4

1)⋅C8
0 (x0

0-x4
0)⋅C8

0 00 (x0
1-x4

1)⋅S8
0 (x0

0-x4
0)⋅S8

0 - -
13 1 1 1 2 - 101 x1

1 101 - 011 (x1
0-x5

0)⋅C8
1+(x3

0-x7
0)⋅S8

1=a5
0 001 x1

1+x5
1=a1

1 01 (x1
1-x5

1)⋅C8
1 (x1

0-x5
0)⋅C8

1 11 (x1
1-x5

1)⋅S8
3 (x3

0-x7
0)⋅S8

1 - -
14 1 1 1 2 - 110 x2

1 110 - 110 (x2
0-x6

0)⋅C8
2+(x2

0-x6
0)⋅S8

2=a6
0 100 x2

1+x6
1=a2

1 10 (x2
1-x6

1)⋅C8
2 (x2

0-x6
0)⋅C8

2 10 (x2
1-x6

1)⋅S8
2 (x2

0-x6
0)⋅S8

2 - -
15 1 1 1 2 - 111 x3

1 111 - 111 (x3
0-x7

0)⋅C8
3+(x1

0-x5
0)⋅S8

3=a7
0 101 x3

1+x7
1=a3

1 11 (x3
1-x7

1)⋅C8
3 (x3

0-x7
0)⋅C8

3 01 (x3
1-x7

1)⋅S8
1 (x1

0-x5
0)⋅S8

3 - -
16 1 1 0 0 - 000 a0

0 000 a2
0 000 a0

0+a2
0=b0

0 010 (x0
1-x4

1)⋅C8
0+(x0

1-x4
1)⋅S8

0=a4
1 00 (a0

0-a2
0)⋅C4

0 (x0
1-x4

1)⋅C8
0 00 (a0

0-a2
0)⋅S4

0 (x0
1-x4

1)⋅S8
0 - -

17 1 1 0 0 - 001 a1
0 001 a3

0 100 a1
0+a3

0=b1
0 011 (x1

1-x5
1)⋅C8

1+(x3
1-x7

1)⋅S8
1=a5

1 01 (a1
0-a3

0)⋅C4
1 (x1

1-x5
1)⋅C8

1 01 (a1
0-a3

0)⋅S4
1 (x3

1-x7
1)⋅S8

1 - -
18 1 1 0 0 - 010 a4

0 010 a6
0 010 a4

0+a6
0=b4

0 110 (x2
1-x6

1)⋅C8
2+(x2

1-x6
1)⋅S8

2=a6
1 10 (a4

0-a6
0)⋅C4

0 (x2
1-x6

1)⋅C8
2 10 (a4

0-a6
0)⋅S4

0 (x2
1-x6

1)⋅S8
2 - -

19 1 1 0 0 - 011 a5
0 011 a7

0 110 a5
0+a7

0=b5
0 111 (x3

1-x7
1)⋅C8

3+(x1
1-x5

1)⋅S8
3=a7

1 11 (a5
0-a7

0)⋅C4
1 (x3

1-x7
1)⋅C8

3 11 (a5
0-a7

0)⋅S4
1 (x1

1-x5
1)⋅S8

3 - -
20 1 1 1 1 - 100 a0

1 100 a2
1 001 (a0

0-a2
0)⋅C4

0+(a0
0-a2

0)⋅S4
0=b2

0 000 a0
1+a2

1=b0
1 00 (a0

1-a2
1)⋅C4

0 (a0
0-a2

0)⋅C4
0 00 (a0

1-a2
1)⋅S4

0 (a0
0-a2

0)⋅S4
0 - -

21 1 1 1 1 - 101 a1
1 101 a3

1 101 (a1
0-a3

0)⋅C4
1+(a1

0-a3
0)⋅S4

1=b3
0 100 a1

1+a3
1=b1

1 01 (a1
1-a3

1)⋅C4
1 (a1

0-a3
0)⋅C4

1 01 (a1
1-a3

1)⋅S4
1 (a1

0-a3
0)⋅S4

1 - -
22 1 1 1 1 - 110 a4

1 110 a6
1 011 (a4

0-a6
0)⋅C4

0+(a4
0-a6

0)⋅S4
0=b6

0 010 a4
1+a6

1=b4
1 10 (a4

1-a6
1)⋅C4

0 (a4
0-a6

0)⋅C4
0 10 (a4

1-a6
1)⋅S4

0 (a4
0-a6

0)⋅S4
0 - -

23 1 1 1 1 - 111 a5
1 111 a7

1 111 (a5
0-a7

0)⋅C4
1+(a5

0-a7
0)⋅S4

1=b7
0 110 a5

1+a7
1=b5

1 11 (a5
1-a7

1)⋅C4
1 (a5

0-a7
0)⋅C4

1 11 (a5
1-a7

1)⋅S4
1 (a5

0-a7
0)⋅S4

1 - -
24 1 1 0 0 - 000 b0

0 000 b1
0 000 b0

0+b1
0=z0

0 001 (a0
1-a2

1)⋅C4
0+(a0

1-a2
1)⋅S4

0=b2
1 00 (b0

0-b1
0)⋅C2

0 (a0
1-a2

1)⋅C4
0 00 (b0

0-b1
0)⋅S2

0 (a0
1-a2

1)⋅S4
0 - -

26 1 1 0 0 - 001 b2
0 001 b3

0 001 b2
0+b3

0=z2
0 101 (a1

1-a3
1)⋅C4

1+(a1
1-a3

1)⋅S4
1=b3

1 01 (b2
0-b3

0)⋅C2
0 (a1

1-a3
1)⋅C4

1 01 (b2
0-b3

0)⋅S2
0 (a1

1-a3
1)⋅S4

1 - -
28 1 1 0 0 - 010 b4

0 010 b5
0 010 b4

0+b5
0=z4

0 011 (a4
1-a6

1)⋅C4
0+(a4

1-a6
1)⋅S4

0=b6
1 10 (b4

0-b5
0)⋅C2

0 (a4
1-a6

1)⋅C4
0 10 (b4

0-b5
0)⋅S2

0 (a4
1-a6

1)⋅S4
0 - -

30 1 1 0 0 - 011 b6
0 011 b7

0 011 b6
0+b7

0=z6
0 111 (a5

1-a7
1)⋅C4

1+(a5
1-a7

1)⋅S4
1=b7

1 11 (b6
0-b7

0)⋅C2
0 (a5

1-a7
1)⋅C4

1 11 (b6
0-b7

0)⋅S2
0 (a5

1-a7
1)⋅S4

1 - -
25 1 1 1 1 - 100 b0

1 100 b1
1 100 (b0

0-b1
0)⋅C2

0+(b0
0-b1

0)⋅S2
0=z1

0 000 b0
1+b1

1=z0
1 00 (b0

1-b1
1)⋅C2

0 (b0
0-b1

0)⋅C2
0 00 (b0

1-b1
1)⋅S2

0 (b0
0-b1

0)⋅S2
0 - -

27 1 1 1 1 - 101 b2
1 101 b3

1 101 (b2
0-b3

0)⋅C2
0+(b2

0-b3
0)⋅S2

0=z3
0 001 b2

1+b3
1=z2

1 01 (b2
1-b3

1)⋅C2
0 (b2

0-b3
0)⋅C2

0 01 (b2
1-b3

1)⋅S2
0 (b2

0-b3
0)⋅S2

0 - -
29 1 1 1 1 - 110 b4

1 110 b5
1 110 (b4

0-b5
0)⋅C2

0+(b4
0-b5

0)⋅S2
0=z5

0 010 b4
1+b5

1=z4
1 10 (b4

1-b5
1)⋅C2

0 (b4
0-b5

0)⋅C2
0 10 (b4

1-b5
1)⋅S2

0 (b4
0-b5

0)⋅S2
0 - -

31 1 1 1 1 - 111 b6
1 111 b7

1 111 (b6
0-b7

0)⋅C2
0+(b6

0-b7
0)⋅S2

0=z7
0 011 b6

1+b7
1=z6

1 11 (b6
1-b7

1)⋅C2
0 (b6

0-b7
0)⋅C2

0 11 (b6
1-b7

1)⋅S2
0 (b6

0-b7
0)⋅S2

0 - -
32 0 1 0 0 1 000 z0

0 000 z1
0 000 x0

2 100 (b0
1-b1

1)⋅C2
0+(b0

1-b1
1)⋅S2

0=z1
1 00 - (b0

1-b1
1)⋅C2

0 00 - (b0
1-b1

1)⋅S2
0 z0

0 z1
0

34 0 1 0 0 1 001 z2
0 001 z3

0 001 x1
2 101 (b2

1-b3
1)⋅C2

0+(b2
1-b3

1)⋅S2
0=z3

1 01 - (b2
1-b3

1)⋅C2
0 01 - (b2

1-b3
1)⋅S2

0 z2
0 z3

0
33 0 1 0 0 1 010 z4

0 010 z5
0 010 x2

2 110 (b4
1-b5

1)⋅C2
0+(b4

1-b5
1)⋅S2

0=z5
1 10 - (b4

1-b5
1)⋅C2

0 10 - (b4
1-b5

1)⋅S2
0 z4

0 z5
0

35 0 1 0 0 1 011 z6
0 011 z7

0 011 x3
2 111 (b6

1-b7
1)⋅C2

0+(b6
1-b7

1)⋅S2
0=z7

1 11 - (b6
1-b7

1)⋅C2
0 11 - (b6

1-b7
1)⋅S2

0 z6
0 z7

0
36 0 1 1 1 2 100 z0

1 100 z1
1 100 x4

2 000 - 00 - - 00 - - z0
1 z1

1
37 0 1 1 1 2 101 z2

1 101 z3
1 101 x5

2 001 - 01 - - 01 - - z2
1 z3

1
38 0 1 1 1 2 110 z4

1 110 z5
1 110 x6

2 010 - 10 - - 10 - - z4
1 z5

1
39 0 1 1 1 2 111 z6

1 111 z7
1 111 x7

2 011 - 11 - - 11 - - z6
1 z 7

1
40 1 0 0 0 - 000 x0

2 000 x4
2 000 x0

2+x4
2=a0

2 000 x0
3 00 (x0

2-x4
2)⋅C8

0 - 00 (x0
2-x4

2)⋅S8
0 - - -

41 1 0 0 0 - 001 x1
2 001 x5

2 001 x1
2+x5

2=a1
2 001 x1

3 01 (x1
2-x5

2)⋅C8
1 - 01 (x1

2-x5
2)⋅S8

3 - - -
42 1 0 0 0 - 010 x2

2 010 x6
2 100 x2

2+x6
2=a2

2 010 x2
3 10 (x2

2-x6
2)⋅C8

2 - 10 (x2
2-x6

2)⋅S8
2 - - -

43 1 0 0 0 - 011 x3
2 011 x7

2 101 x3
2+x7

2=a3
2 011 x3

3 11 (x3
2-x7

2)⋅C8
3 - 11 (x3

2-x7
2)⋅S8

1 - - -
44 1 1 1 2 - 100 x0

3 100 - 010 (x0
2-x4

2)⋅C8
0+(x0

2-x4
2)⋅S8

0=a4
2 000 x0

3+x4
3=a0

3 00 (x0
3-x4

3)⋅C8
0 (x0

2-x4
2)⋅C8

0 00 (x0
3-x4

3)⋅S8
0 (x0

2-x4
2)⋅S8

0 - -
45 1 1 1 2 - 101 x1

3 101 - 011 (x1
2-x5

2)⋅C8
1+(x3

2-x7
2)⋅S8

1=a5
2 001 x1

3+x5
3=a1

3 01 (x1
3-x5

3)⋅C8
1 (x1

2-x5
2)⋅C8

1 11 (x1
3-x5

3)⋅S8
3 (x3

2-x7
2)⋅S8

1 - -
46 1 1 1 2 - 110 x2

3 110 - 110 (x2
2-x6

2)⋅C8
2+(x2

2-x6
2)⋅S8

2=a6
2 100 x2

3+x6
3=a2

3 10 (x2
3-x6

3)⋅C8
2 (x2

2-x6
2)⋅C8

2 10 (x2
3-x6

3)⋅S8
2 (x2

2-x6
2)⋅S8

2 - -
47 1 1 1 2 - 111 x3

3 111 - 111 (x3
2-x7

2)⋅C8
3+(x1

2-x5
2)⋅S8

3=a7
2 101 x3

3+x7
3=a3

3 11 (x3
3-x7

3)⋅C8
3 (x3

2-x7
2)⋅C8

3 01 (x3
3-x7

3)⋅S8
1 (x1

2-x5
2)⋅S8

3 - -
:

TABLE II Arrangement of the Control/Addressing Sequences in Cycles 32 ~ 39 of Table I to Generate the FFT’s of X0 and X1

RAM -1 or -3 RAM -2 or -4 RAM-1 or -2 RAM-3 or -4 RAM-5 RAM-6 Output
Cy. I1 I2 I3 I4 I5 RA DO RA DO WA DI WA DI RW DI DO RW DI DO Output 2 Output 1
32 0 1 0 0 1 000 z0

0 000 z1
0 000 x0

2 100 (b0
1-b1

1)⋅C2
0+(b0

1-b1
1)⋅S2

0=z1
1 00 - (b0

0-b1
0)⋅C2

0 00 - (b0
0-b1

0)⋅S2
0 z0

0 z1
0

34 0 1 0 0 0 001 z2
0 001 z3

0 001 x1
2 101 (b2

1-b3
1)⋅C2

0+(b2
1-b3

1)⋅S2
0=z3

1 01 - (b2
0-b3

0)⋅C2
0 01 - (b2

0-b3
0)⋅S2

0 (z2
0+z3

0)/2 (z2
0-z3

0)/2
33 0 1 0 0 0 010 z4

0 011 z7
0 010 x2

2 110 (b4
1-b5

1)⋅C2
0+(b4

1-b5
1)⋅S2

0=z5
1 10 - (b4

0-b5
0)⋅C2

0 10 - (b4
0-b5

0)⋅S2
0 (z4

0+z7
0)/2 (z4

0-z7
0)/2

35 0 1 0 0 0 011 z6
0 010 z5

0 011 x3
2 111 (b6

1-b7
1)⋅C2

0+(b6
1-b7

1)⋅S2
0=z7

1 11 - (b6
0-b7

0)⋅C2
0 11 - (b6

0-b7
0)⋅S2

0 (z6
0+z5

0)/2 (z6
0-z5

0)/2
36 0 1 1 1 2 100 z0

1 100 z1
1 100 x4

2 000 - 00 - - 00 - - z0
1 z1

1
37 0 1 1 1 0 101 z2

1 101 z3
1 101 x5

2 001 - 01 - - 01 - - (z2
1+z3

1)/2 (z2
1-z3

1)/2
38 0 1 1 1 0 110 z4

1 111 z7
1 110 x6

2 010 - 10 - - 10 - - (z4
1+z7

1)/2 (z4
1-z7

1)/2
39 0 1 1 1 0 111 z6

1 110 z5
1 111 x7

2 011 - 11 - - 11 - - (z6
1+z5

1)/2 (z6
1-z5

1)/2

