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Abstract tral graph partitioning is a classical spectral method hase
on the Laplacian of the graph adjacency matrix [14, 4], with
This paper studies the discovery of communities from a characteristic focus on the design of cost functions for pa
communication documents produced over time, includingtitioning graphs. Hierarchical community discovery seeks
the discovery of temporal trends in community member-to merge the vertices and edges based on the “closeness” be-
ships. We first formulate static community discovery at a tween vertices measured by distances on graphs, such as the
single time period as a tripartite graph partitioning prob- length of the shortest paths or the diffusion distance [19].
lem. Then we propose to discover the temporal communitied-inally, random walk-based clustering described in [11] ap
by threading the statically derived communities in differ- plies random walks to the graphs iteratively such that the
ent time periods using a new constrained partitioning algo- edge weight between two vertices is modified based on the
rithm, which partitions graphs based on topology as well as probabilities that the random walk will circle back to one of
prior information regarding vertex membership. We evalu- the vertices through the other.
ate the proposed approach on synthetic datasets and areal- Despite the wide range of choices for partitioning ho-
world dataset prepared from the CiteSeer computer sciencemogeneous networks, research on discovering communi-
research corpus. Quantitative evaluation on syntheti@adat ties from heterogeneous social networks is rather limited
demonstrates an high discovery precision and an improve-2. Treating heterogeneous graphs the same as homogeneous
ment over the generalized normalized cut approach. Qual-ones leads to difficulty in normalization since differenged
itative evaluation on CiteSeer data shows the effectiv&nes types may be incomparable [8]. However, observations of
of the proposed approach in author community discovery real-world networks often indicate diverse network struc-
and community summarization in research documents. tures, many of which can be modeled as heterogeneous net-
works of social actors and the other node types such as doc-
uments (e.g. emalils, blogs, collaborative publications) o
1 Introduction social events. In this paper, we are particularly intekste
communication documents as these data sources represent
the most widely available sources of information regarding
social networks.
Discovering communities from documents is a recent
trend. Popular approaches are either content-based or

line. Community discovery is a classical problem in so- raph-theoretic. One pobular content-based approach is
cial network analysis, where the goal is to discover related 92PN ” = popurar col >0 approa
to mine information via probabilistic generative modeling

groups of social actors such that they are intra-group close . e .
; A . where the social actors or communities are considered as
and inter-group loose [18]. The applications of community

. . . X .7 variables in the generation of document content [15, 22].
discovery have included viral marketing [6], collaborativ ; : .

L o . Alternatively, a graph-theoretic approach can consider th
filtering,and organizational structure analysis [17].

. . documents as an additional set of vertices connected to au-
Well known graph-theoretic methods include spectral

o . ; oh thors in a bipartite [21] or tripartite [8] graph structure.
graph partitioning [14, 4], hierarchical community diseov P [21] P [8] grap
ery [19], and clusteringbased on random walks [11]. Spec- |geq interchangably unless otherwise noted.

2Here we define a heterogeneous graph as a graph where therarare
1in this paper, the term “clustering” and “community discoveare types of vertices and edges.

Social network analysis (SNA) is an established field in
sociology recently becoming popular for computer scien-
tists [1, 10], which is motivated in part by the increasing
amount of personal and social information available on-




These methods, however, work with only a static snapshotsubspace subject to the minimal partitioning cost imposed
of network data. The issues of document time and the tem-by the graph adjacency matrix. After embedding the graph
poral trends in communitiy development are generally over- into the subspace, the clustering can be performed via an ad-
looked. ditional light-weight clustering algorithm (such &sneans)

This paper addresses the community discovery problemor by recursively searching for the binary cutting pointk][2
in a temporal heterogeneous social network consisting ofon the subspace axes. One traditional cost function uses the
authors, document content, and the venues in which thesum of weights on the edges between clusters [14]; how-
documents are published, all observed over time. We pro-ever, this simple approach can bias towards unbalanced cut-
pose a new framework that addresses the two main chalting points. Recent work proposes variants to the cost func-
lenges in this new problem: (a) handling of the heteroge- tion, including ratio cut, normalized cut, and others (& sur
nous network and (b) incorporation of the temporal aspectvey can be foundin [4]). The most popular cost function for
of the data. For (a), we formulate community discovery in partitioning graphs is the Normalized cut (NCut) [16]. The
a heterogeneous social network (the social network is a netNCut cost function was originally applied to partitioning
work of authors, words, and publication venues) as a tripar-homogeneous or bipartite graphs [16, 21, 3]. Due to grow-
tite graph partitioning problem. A normalized cut (NCut) ing interest in analyzing correlated heterogeneous graphs
cost function is defined over the partitions. We show that recent work generalizes NCut to the case of star-structured
partitioning a tripartite graph is a quadratically conistea tri-partite graphs and a solution has been proposed based on
quadratic programming (QCQP) problem. For (b), we intro- semidefinite programming [8]. Another recent work intro-
duce a new method for incorporating prior knowledge, such duces prior knowledge into the cost function so the parti-
as prior community membership, into the current discovery tioning will satisfy minimal violation of prior knowledgesa
process. The discovery of temporal communities is thenwell [12].
performed by threading communities discovered at consec- Document-based community discovery:Discovering
utive time periods using the output from the previous period communities in networks based on documents is an impor-
as prior knowledge. At each time period, the constrained tant topic of social network analysis, which focuses on an-
graph partitioning method is able to capture both the ctirren alyzing the relationships between social actors in a né¢wor
graph topology and historical information regarding the ve  of inter-relations [18]. Traditional research has mosty f
tex membership. This problem is efficiently solved using a cused on topological properties of social networks. How-
proposed fractional orthogonal iteration algorithm (@ast ever, real social networks are often embedded in particular
of pursuing the semidefinite program (SDP) as in [8], which social contexts defined by specific information carriers. Fo
is computationally intractable). We evaluate the proposedexample, one of the most common information carriers in
approach on synthetic datasets with various settings ierord social networks is theommunication documentccord-
to explore the properties of the new algorithm. A great im- ingly, a recent research trend proposes the content-based
provement in clustering precision is observed. In addjtion analysis of social networks where specific goals include
we show the results of applying this method to a sample community discovery [22], information flow detection [10],
dataset obtained from CiteSeer (http://citeseer.isteuisy). and tracking group evolution [1]. These works leverage text

The rest of this paper is organized as follows: Sec. 2 in- mining to interpret and understand the changes of topic dy-
troduces related work; Sec. 3 defines the problem and thenamics in documents as well as the dynamics of social ties.
typical structure of heterogenous social networks that we Despite the increasing importance of mining communica-
are interested in; Sec. 4 and Sec. 5 propose a frameworkion documents, the analysis of temporal aspects of commu-
for partitioning temporal tripartite graphs; Sec. 6 givies t  nication is in its early stage. Very often, temporal commu-
approximate solution to partitioning; Sec. 7 presents #ie e nity discovery is performed by periodically clusteringarst
perimental results and Sec. 8 concludes with comments orand examining the extracted temporal clusters [13]. There

future work. has been little work on discovering the communities of so-
cial actors and documents from temporally correlated text
2 Related Work streams, that is, explicitihreadingcommunities from dif-

Our work overlaps with two lines of research: (1) spec- ferenttime periods.

tral graph partitioning and (2) social community discovery
Spectral graph partitioning: Spectral graph partition- 3 Problem Statement

ing is a classical spectral method for partitioning grags [ This paper considers social networks of researchers in
4]. based on . Spectral methods have been applied to varthe context of their collaborations on published work. The
ious domains including image segmentations [16] and textdata in focus includes the co-occurrences of authors with
analysis[21, 5, 3, 8, 12]. The principal aim of spectral rap documents, documents with words, and documents with
partitioning is to minimize the cost of cutting graphs as a venues. All data are associated with time stamps, which
function of the Laplacian of the graph adjacency matrix. are the years of publication. The data is collapsed on doc-
The partitioning embeds a graph into a low-dimensional uments vyielding the (1) author-word co-occurrences and



(2) word-venue co-occurrences, over a certain amount of TN -
time. Thus, within each time period there are two correlated
bipartite graphsG(Vx, Vi, Wxy) andG(Vy, Vz, Wy ),
where Vx is the author set)y is the word set,Vz is

the venue setlVxy is the bipartite edge weights between
Vx and Vy, and Wy~ is the edge weights foly and

t1 t2 t3
V5. Here G(Vx, Vy, ny) and G(Vy, Vz, Wyz) share
the vertex setly. We refer toG(Vx,Vy, Wxy) and Figure 2. A dynamic social network. Three snap-
G(Vy,Vz,Wyz) as abipartite graph couplewhich can shots are included in the network with various num-

be seen as a generalized social network of authors, words, bers of authors (denoted by triangles), venues (de-
and documents. Two static communities in such a social noted by rectangles), and words (denoted by circles).
network are illustrated in Fig. 2, wherestatic community

at a specific time, is defined on the snapshot below:

Definition 1 A static community in a static social network the clustering results, one can easily see how a particular

is a composite of closely associated authors, words, andcommun?ty evolves in its members and topical inter_e_st, ex
venues. Entities within the same community are closely re_pressed in terms of words. The temporal communities are

lated while entities in different communities are loosedy a o_Ilscovered via threaqllng the d|sc9very of static communi-
sociated if at all. ties at each time period. The desired number of communi-

tiesk is assumed and given as a parameter.

4 Community Partitioning

We start from the discovery of static communities from
a static social network. Suppose there are two bipar-
tite graphs, Gxy = G’(va7 Vy, ny) and Gyz =
G(Vy,Vz,Wyz), whereVyx is the author setly is the
Figure 1. A static social network. triangles denote word set, andlz is the venue setiVyxy € RYfnxxny
the authors, circles denote the words, and rectangles is a matrix where the elements represent the number of
denote the venues. The graph between authors and co-occurrences of an author and a word; dfg; <
words is inferred from the document authorship and  R*"v*nz js a matrix whose elements are the number of
the graph between words and venues is based on the co-occurrences of a word and a venue (ny, nz are the
publication records of documents. Two static com- size of Vx, Vy, Vz). NoteG xy andGy z shareVy .
munities are separated by the dashed line. Consider a community with two types of vertices from
Vx andVy, say which is represented by two subséfs
andS}”. The weight of the community is:

Over the entire time period, the underlying social net-
work structure is dynamic. Accordingly, instead of observ- W (S5, S]Y) = Z W - (1)
ing a single static social network over the entire data set, a weSX vesY
sequence of static social networks of various structures is ' ’
generated, with consecutive snapshots showing significanfGiven k as the desired number of communities, the cost
overlap of entities. The definition of a temporal community function ofNormalized Cut (NCjs defined as [21]:
thus embodies the temporal aspects of the network:

k N -

W(S¥X,SY)+W(SX,sY

JQZZ (z z) (z 1) (2)
=1

Definition 2 A temporal community in a dynamic social W(SX,Y)+W(X,SY)
network is a threaded sequence of static communities at

each time period. In a temporal community, the structure Wheres;X, S} are the subsets 6fy andVy- in community
of a static community at a specific time depends on the pre-i; S;*, S} are the subsets dfx andVi- not in community
viousN temporal networks, wher is a parameter that  i. The sets{S}* ,, {SY}¥ | that minimize the cosf,

can be defined as thederof the temporal community. belong to the discoverddcommunities.
Now define several indicator matrices. Lé&f =

A dynamic social network is illustrated in Fig. 2. Three [Xy,..., X], whereX; is an indicator vector of whether
shapshots are included, each having different networkstru the corresponding element belongs to commuajtwith
tures. It can be seen that each static social network is a bi-1 indicating so or0 otherwise. Similarly, we hav&® =
partite graph couple. [Y1,..,Yi] andZ = [Z4, ..., Zk].

The goal of this paper is to cluster authors, words and  Define Dxy and Dy as diagonal matrices where the
venues given their changing relationships over time. In elements are the sums of rowsliriyy andWy ;. Define




Dy x andDzy as diagonal matrices where elements are the subject to
sums of columns i xy andWy . After some manipu-

S s . T o
lations, we can rewrite Eg. 2 as: X o P{l’ "'Xf]’ ){ X =L (8)
Y =[V1,.. %], YIY =1, (9)
Z =121, 2, 272 =T, (10)
J, — Z/_c X Dxy Xi+Y Dy xYi—2X WxvVi 3)
2 i=1 XTDxyXi+Y DyxY; wherel is an identity matrix.
_ E— Zk 2X " WxvY; (4) Now let us rewrite the problem in matrix form. Define
- i=1 X'DxyX;+Y ' DyxY;'

— 1 1 — 1 1
Wxy = D;%WX)/D;?( and Wy 7 :A D;%V‘{yzD;?/
The problem of searching for best solutions to the above DefineU = (U, ..., U], whereU; = [XT, Y™, Z[']"; Let
minimization problem has been shown to be NP-hard. In there be a matri®/ such that:

order to obtain a solution efficiently, prior work relaxes th

elements inX; andY; to real values instead of the discrete 0 AWxy 0

set{0,1} [21]. Extending this work, we further scalg; . = =
and{Yi tg the denominator. In particular, assumiig = M= 1 AWy 0 - (1=N)Wyz |- (1)
1 [N ST T 0 (1-MWt, o
D3 X;andY; = Dy 3V, weletX)' X, =Y, Y, = 1.
Thus,J; becomes: It is easy to verify that the cost function in Eq. 7 is
z Zle UI'MU;. The problem thus becomes to minimize
koo ) - the trace of the matrix (The trace of a square matrix is de-
Jo=k— Z XiTDE,WXyD;iYi. (5) fined as the sum of the diagonal elements):
i=1
. . max tr(U MU) (12)
Here D3 Wxy Dy % is in fact the normalized edge :
weight matrix. The minimization of cost functiaf; is car- subject to
ried out overX; andY; fori = 1, ..., k. Traditionally, the U=[XTvT, 27" (13)
different minimizers are assumed to be orthogonal to each & U 5 anti )
other [20], i.e. XTX = IandY”Y = I. We impose the XY, Z satisty Eq. 8 - Eq. 10 (14)
same constraint on our solution. Here the optimization problem is a quadratically con-

Now let us generalize the cost function for a bipartite Strained quadratic programming problem [2]. Note that
graph couple, where we have an additional set of verticesEQ. 8 - Eq. 10 is not equivalent 6" U = 1. Constraints
7 and the edge weights withi in Wy . Similarly, define  onU apply to its segments (i.€X, Y, Z) respectively.
X = [Xl,...,Xk],YZ [Yl,,Yk] andZ: [Zl,...,Zk], . .
whereXTX = YTV = 277 = 1. LetJxy bethecost 5 Partitioning Temporal Graphs
function of partitioning grapit:xy and.Jy be the cost The problem of community discovery has been formu-
function forG'y z. We introduce a parametarto balance  |ated as a graph partitioning issue. Next we present a con-

the costs on both graphs. Based on Eq. 5, we define the newrained graph partitioning method that threads community
cost function/; on the bipartite graph couple as: discovery across consecutive time periods.

5.1 Graphs with consistent vertices

Js = Mxy +(1 - Ay z ) We first focus on the case where graphs have consistent
= k=AY XTD iWxyDy2Y; vertices. For each time period, we haVE andU* as de-
(- Zk ?TDf%W D,%ZA. ©) scrlb_ed in Eq. 11and Eq. 8 -_Eq. 10, where 1_, .., T are
=14 PyzWWYZ gy 4 the time stamps antf* contains the community member-
, ship of authors, words, and venues. Assume that the graphs
where the second and third terms represent the cost func ;e consistent vertices: thus, &ll have the same dimen-
tions onGxy andGyz. L sions. Now, let us define a cost function on the difference
Thus, the minimization of cost functios; over X, Y, between/*: andU*s for an arbitrary time stamp pair, ¢,
andZ becomes a maximization of the negative ternyin denoted:(U*, U ). The discovery of community structure
at time ¢ seeks to minimize the weighted sum of the dis-
tances between the current and previous community mem-

ming y 5 J3 bership back te — ¢:
= maXnyzA /\Zle X;TD)_Q%/WXYD;/%(?; 1
ko oop el 1. min arc(U™,UY (15)
+(1—A) Zizl Yy Dy zWyzD gy Zi (1) ur T=t—3



wherea;, is the weight on the distance to the community where[X'”,0]7, [Y'T,0]7, and[Z'T,0]T respectively cor-
membership at time periods ago. The weights on different respond to the newly observed’, Y, andY?; all 0's has
historic periods are prescribed parameters. Hereafter, fo the appropriate number of rows aikdcolumns. We then
simplicity, we concern ourselves only with the first-order arrive at the new reference covariance mattix, U) as:
dependency case whefe= 1 anda,, = 1.

A key issue is the design of the cost functie(i/, 7). C=U0"U", (21)
Here we let the cost function be the negative cosine dis-
tance between two subspaces. Suppos¥, andZ are the
reference subspaces &f, Y, Z. We know that|| X ||> =
|[Y]? = ||Z||*> = 1. Thus, the square of cosine distances
between the desired subspace and the reference subspace
are respectively X7 X |2, |[YTY |2, and||ZT Z|2. In ad-
dition, we know that the cosine distances are witfin].

We thus seek to maximize the cosine distances to minimize
the cost imposed by the distance from the reference sub-
spaces. In particular, define the cost functi¢ti, U7):

which leads to the new cost functiefl/, ') onU and ref-
erencel/ defined as—c(U,U) = tr((UTCU), whereC is
givenin Eq. 19 - Eq. 21.

Note the handling of new vertices here. Since the refer-
éncel/” still has values in the rows corresponding to the old
vertices, these previously observed vertices will be made
consistent with the previous period. On the other hand, the
new vertices will not be affected by such prior knowledge of
the previous time period because of the zeros in the rest of
U". To see this, note that thg&f” CU) has zero diagonals
in the indices of those newly observed vertices regardliess o

—e(U,U) = o|| XTX|? + BIVTY |2 + 1|27 Z)? (16) the yalues ot/ in the corresponding rows. o
—atr(RTXXTR) 4 A(VTYYTY) 427227 2) (7) Given the aboye, the.cor_nbm_ed communlty discovery
problem at each time period is written as:
=t(UTUUTU), (18)

whereU = [yaXT, Y™, AZT]", a, § andy are min J = min J; + ¢(U,U)

the weight parameters of the membership differences in au- U U

thors, words, and venues. Here, notice tiat” is essen- = maxtr(U"MU) + tr(UCU)

tially the covariance matrix between the vertices in the ref v r )

erence time period. Since we have assumed consistent ver- = maxtr(U” (M + C)U) (22)

tices in the graphs across different time periods, we essen-
tially minimize the conflicts between the discovef@éénd  subject to
the referenced covariance.

U=[X"y" z"" (23)
5.2 Graphs with evolving vertices X,V, 7 satisfy Eq. 8 - Eq. 10 (24)
Now we generalize the previous section to graphs with M is givenin Eq. 11 (25)
evolving vertices. In practice, some vertices may disappea U= [\/aXT7 \/BYT7 \/TYZT]T (26)
and other new ones may show up, thuslthebtained from C'is given by Eq. 19 - Eq. 21 27)

previous period can disagree with the dimensionality of the

U in the current time period. We introduce an additional \yhereq, /3 and~ are the weight parameters for the mem-
step to adapt/ to address this issue. bership differences in authors, words, and veniieis the
First, some vertices from previous time period may dis- reference membership matrix. We arrive at a quadratically

appear. Since each vertex correspondsto ardWine can  constrained quadratic programming problem.
delete these rows froil, forming a matrix with the same

number of columns but a smaller number of rows, We 6 Efficient Approximate Solutions

call the first step shrink(). Thus we have: . . ) o )
This section gives an efficient algorithm to solve the

problem formulated in Eq. 22 - Eq. 27. It can be seen that
Eqg. 22 has a quadratic cost function of the matfixHere

wherel’” is the adapted subspace with disappeared verticed=d- 22 can be rewritten as:

removed.X’, Y, andZ’ still correspond to the remaining . .

X,Y,andZ. Second, some new vertices may appear in the max Y UM+ Oy (28)

current time period. In this case, we have no prior knowl- v

edge about their membership. Therefore, we require zerowhere thedJ;’s are column vectorsity. We can see that this

co-variances of them with others, corresponding to zeros inis a sum of a sequence of quadratic functions each corre-

the corresponding rows. Name this second step expand(): sponding to a subset of constraints in Eq. 23 - Eq. 27. Thus

we have a sequence of quadratically constrained quadratic

U" =expandU’) = [X'T,0,Y'",0,2'7, 0", (20)  programming (QCQP) sub-problems. Note these QCQP

U’ = shrinkU) = [X'T,v'T, /7T (19)



problems are not isolated because their solution veéfprs - step 11 produce the normalizéf, Y andZ as specified

are required to be orthogonal. in the constraints. Step 8 performs the power iteration as
For each QCQP sub-problem alone, there exists a stanin the originalorthogonal iterationmethod for calculating

dard solution using semidefinite programming (SDP) [2]. eigenvectors. Up to step 15, the algorithm has projected

For example, a related work [8] studied the binary clus- the original bipartite graph couple into an approximéate

tering case and proposed an approximate solution using arflimensional eigenspace. The distribution of the points in

interior-point method. However, we note that our optimizer the new space preserves the distribution of objects at the

here is a matrixl( = [XT,Y7, ZT]T) instead of a single

vector. Thus, to apply SDP on each column vector and com-

bine them together is overly complex. Nevertheless, one
might construct a very high-dimensional vector by columns
of U and still translate the problem into SDP, but difficulty
still arises from the exploding dimensionality of the prob-
lem. Recall that/ e R(nx+ny+nz)xk whereny, ny,
andnz are the numbers of authors, words, and venues. Th
translated SDP problem will haveldnx + ny + nz)-
dimensional vector as the minimizer (wittk@nx + ny +
nz) X k(nx +ny +nz) semidefinite matrix of constraints),

which can easily surpass the capacity of most SDP solvers.
Instead, we propose an efficient algorithm that searches

for approximate solutions. The new algorithm is based on
algorithms for eigenvectors. First we are aware that the
Eq. 22, without constraints, reaches the maximum when
U contains the first eigenvectors of the symmetric ma-
trix A = M + UUT. This is a standard result from ma-
trix theory [9]. In addition, we haveU € {U|UTU =

I}, UTAU < M\ + ... + M\, Where)q, ...\, are the
first k largest eigenvalues od. Second, we seek to pre-

serve the constraints as much as possible while maximizing

J. We modify theorthogonal iterationmethod which is
used to calculate the eigenvector space without constraint
The idea is to incorporate the constraints into the claksica
method. The new algorithnfractional orthogonal itera-
tion, is presented below:

Algorithm 1 fractional orthogonal iteration
LU= [Vax”, vBy", 721"

1 U’ — shrink(U) asin Eq. 19

1 U” — expendU’) as in Eq. 20

¢ —uvrun”

A=M+C

1 [U, D] « eig(A, k)

: for 4 =1,2,3,... do

5 {X

Y
9.  QxRx < X /I QR factorization

— AxU

A

10: Qv Ry < Y I/ QR factorization
11: Qz Rz «— Z Il QR factorization
Qx
12: U «— Qy
Qz
13: end for

14: U «— M x U
15: run k-means orU to obtain the desired partitioning, where each rovirde-
notes the original data object of the same index.

Here eid A, k) calculates thé-dimensional eigenvector
space ofA without constraints. This is the initial value for
the subsequent orthogonal iteration. In the algorithnp, 8te

current time period, in addition to imposing the community
membership from the last period. Then we imeans to
cluster the heterogeneous objects as current communities.
7 Experiments

A synthetic data generator was created to test the pro-

eposed method in various conditions, including different

edge density-to-noise ratio, various proportionXgfy/Z,
different settings oA\, and different numbers of clusters)(

Two connected graph&xy and Gy z are generated for
the prescribed< and sizes ofX, Y, andZ. All clusters
contain the same number of entities with specified propor-
tions of X, Y, andZ. The densities of all the clusters are
the same, but the edge weights vary randomly. Random
noise is added to the graph and density is determined by the
given noise-signal ratio parameters{). Settingnsr = 1
yields a random graph without cluster structures. Presum-
ably, the community structures in the gralgh” diminish as

the noise-signal ration(sr) grows. Lownsr indicates that
graph partitioning will be easier. The table below includes

a complete list of parameters and their meanings.

abbr. usages
fsi fractional subspace iteration
par partitioning static graphs usinfys:
t-par partitioning temporal graphs usintsi
k number of clusters
density | the edge density of the graph clusters
nsr noise-signal ratio, noise density / cluster density
x/z the size of X / the size of Z
A the weight parameter in Eq. 11

7.1 Precision w.r.t. graph conditions

First, we focus on the clustering precision w.r.t. diffdren
densities anchsr for £ = 2. As illustrated in Fig. 4 we
present four values atsr, indicating increasing difficulty
for partitioning. In general, we observe that the precision
decreases assr grows. In each subfigure, we can see that
the clustering precision grows quickly as the graph clgster
become denser. On graphs with less noise, the precision
grows faster than on the highly noisy graphs. Compara-
tively, the proposed si algorithm outperforms the tradi-
tional subspace iteratiomlgorithm (without consideration
of constraints) for differentsr. We are able to see that
the special scaling introduced fiyi improves thesubspace
iteration. The fsi usually outperformsubspace iteration
by a greater amount in the more difficult situations (large
nsr). All precisions are measured usihgmeans with ran-
dom initial medians. For each case, theneans is repeated
for 10 times and the averages are presented.

Second, we perfornfisi on different settings of/z ra-



tios for a fixed setting oh. In real world datasets, the sizes can substitutefsi by recursively performing:-means us-

X and Z are usually not balanced. We compdie with ing k = 2 for bi-partitioning the graph, similar to [21].
subspace iteratiofor imbalanced data againgti: by vary-

ing thex/z ratio. Fig. 5 shows different settings of = for . 1/

different densities. Recall that a largg: indicates that the g oo

size of X is much greater than that ¢f. Without loss of S5 ois o2 0% o ok oes o

S — ——— —

generality, we assume/z > 1. We can see that for sparse
graphs (small density) thgsi outperformssubspace itera- ‘ ‘ ‘ ‘ ‘ ‘
tion greatly (illustrated in the subfigure on the bottom). In goe bp tE op bR OF P OF
simple cases (large density), tliei generally outperforms
subspace iteratioffior small z/z; however, fsi underper-

forms subspace iteratiorslightly for smallz/z on dense

graphs. Note that real-world graphs are usually very sparse -
thus, f si could be favored on many real-world datasets. %8 o1 0% 0% o4 ok ok o7

Precision w.r.t. graph edge densities

0.3

nsr=

=0.4

nsr

7.2 Precision w.r.t. parameter settings _ i .
Figure 4. The clustering precision w.r.t. edge

Here we test different settings of parameters and their ~densities at different levels of noise-signal ra-
impact on community discovery precision. A set of experi-  tio (nsr). Here k = 2.
ments were run with different settings dfin differentx/z
ratios. The results illustrated in Fig. 6 show that the favor
able\ are different when:/ = varies. When the& outnum-
bersZ by a large margin, a greater value Anis favored;
similarly, smallX performs better when there are féven-
tities compared witt¥ . This suggests that graphs with more o
edges deserve a larger weight in the cost evaluation.

In order to better visualize the effect afwith different
x/z, we present the subspace scatter plots for diffekent
Note that heréX|/|Y|/|Z| = 50 : 200 : 5. The X out- 08
numberZ, indicated by a great/- ratio. In Fig. 3, we !
show precisions foh = 0.5,0.8. Herek = 2 so we have
2-D subspaces. In this case, a laigeetter scales the edges S e
in Y Z and thus better embedsinto the subspace. 2 w0 P

=0.5

0.951

density:

density=0.3

density=0.1
o
©
©

Figure 5. The precision w.r.t. different x/z
ratio, at different edge density levels. Here
nsr =0.1, k=2, A\ = 0.5.

=0.2

@\ =0.5 () A =08

Xz

Figure 3. Subspace plots for different A when
|X|/|Y|/|Z| = 50:200:5. Different clusters are
colored differently. Entities of different types
have different markers (circles, dots, stars for
X,Y, Z). Here k = 2.

=1

X/z:

=2

x/z:

Finally, we compard's: with subspace iteratioon dif- o1 03 p,ecis.(?ifwm o7 09
ferent numbers of clusters, at differesutbspace iteration
We can see that, for large densify; still outperformssub- Figure 6. The precision w.r.t. ), at different

space iteratiorfor large numbers of clusters. However, the x/z ratio. Here d = 0.3, nsr = 0.3, k = 2.
subspace iteratiorseems to work better thafisi for the
case of many clusters on sparse graphs. In practice, we



7.3 Higher precision using prior knowl-

edge os} n_
\\\ N ﬂ"l:jfffjiy =048
The fsi algorithm uses the discovery results from the 08f SO\ O
previous time period as prior knowledge for analyzing tem- o \ —

poral graphs. This knowledge is then used as an addi-
tional constraint while discovering communities in the-cur
rent time period. We simulate a 2-period temporal graph
where communities in the first time period are clearly de-
fined and then the community structure becomes vague in
the second time period. The community membership from ‘ ‘ ‘
the first time period is used as the prior knowledge in the Number of lusers: k
second time period.

density = 0.25 \ °

Precision

o
>

o
[

density = 0.05

o
'Y

Figure 7. The precision w.rt. £k, at differ-

methods precisions methods precisions ent densities: density = 0.05. density = 0.25
par ong; 0.9193 par ongi o 0.8212 ) ) Y T Yy o
par onga 0.2123 || t-parongi» | 0.9169 density = 0.45.

average of the above  0.5658

Table 1. Different methods on temoral graphs.

Parallel Computing

s 88¢8

In Table 1, we illustrate the precisions of clustering on [ =i EENE o

the snapshots from each time period and the average preci

sion. It can be seen that the static partitioning precisson i
very high ong; (0.9193) and very low ory, (0.2123): the

s EEE

average of the two is abo01t5658. In addition, we perform e e
clustering on the graph over the complete time periods, ob- (&) Publication number (b) Community size
taining a precision 00.8212. Then we perform the con-
strained partitioning t-par on the temporal graph, yieidin Figure 8. Amount of publications and com-
the precisior).9169. The precision is much higherthan per- ~ Munity size over time. Two different grouping
forming clustering periodically or on the complete graph. methods are shown, one by uniform group-
A natural question is whether the community structure N9 Of_ years and the other by proportional
from previous time periods ialwaysmore reliable and in- grouping.

formative than the current period. We would like to first
point out that the reference community membership does

not only encode the information from the immediate previ- o, qeq at least 2000 distinct author names and at least ten

ous period but a combination of information from all previ- years of significant coverage. All documents contained in
ous periods. This is due to the recursive applicatiogﬁm’f CiteSeer from each venue were obtained and the top 100
onthe snaps_hot Sequence. Therefore, one.m|g.ht assu'ﬁne'[h%yphrases were extracted from each document using the
the community discovered based on all historical data cany g a keyphrase extraction algorithm [7]. The KEA al-
be more reliable compared with the discovery on the cur- gorithm was trained on the CSTR corpus provided with
rent single snapshot. In practice, we can also allow manualKEA containing 320 manually labeled abstracts from the
manipulation of entity membership to be input as the prior computer science domain, and keyphrases were allowed to
knc_)vyledge fpr theirst time periodin order to increase the range from one to three words in length. Author names were
validity of this assumption. normalized such that only the initials of the first and mid-
dle names were kept along with the full last name. The
correlated bipartite graphs were then generated for each
A real-world data set for further experimentation was year of data by linking authors with specific keyphrases and
generated by sampling documents from CiteSeer usingkeyphrases with the venues in which they appeared. The fi-
combined document metadata from CiteSeer, the ACM nal dataset contained 12,677 authors and 45,295 keyphrases
Guide (http://portal.acm.org/guide.cfm), and the DBLP from 30 distinct venues ranging over the years 1969 to 2004.
(http://www.informatik.uni-trier.de/ ley/db) for enheed The total number of documents used was 13,310.
data accuracy and coverage. A set of venues was cho- Experiments on this data set began by empirically deter-
sen from five fields in computer science (software engi- mining the appropriate number of clusters. While it is an
neering, data mining, artificial intelligence, databases] open problem to determine the dimension of a subspace for
distributed computing), such that data from each field in- embedding a graph, we used simple heuristics. We ran the

7.4 Real-world dataset and experiments



proposed community discovery algorithfs¢) with differ- membership over time. The problem is formulated as a
entk and chose thé corresponding to the smallegt(or tripartite graph partitioning problem with prior knowleglg
the greatesty = tr(U” (M + C)U)) as in Eq. 22. We ob-  available of entity covariances. Temporal communities are
served that the initially grows dramatically ag increases,  discovered by threading the partitioning of graphs in dif-
but grows at a much lower rate Adecomes large. Thuswe ferent time periods, using a new constrained partitioning
chose the smalledt that gave the near maximum This algorithm. Evaluation of the new algorithm is carried out
gave usk = 4. on several synthetic datasets and a real-world dataset pre-

Then we ran the temporal community discovery (t-par) pared from CiteSeer. Experiments on synthetic data reveal
algorithm withk = 4 with various settings ok. For screen-  the properties of the new algorithm in various graph condi-
ing the results, we judge the quality of discovery by examin- tions. Experiments on CiteSeer data show the effectiveness
ing the grouping of venues since their number is small. We of the proposed approach in author community discovery
observed that the quality is better for greatesupporting and community summarization. Future work will seek to
the results from synthetic datasets that suggestould be  track the community membership of individuals over time
set proportionally td X | /| Z|. Here we sef = 0.6. and investigate the applicability of the proposed methods t

We observe that the resulting communities of authors, different domains such as viral marketing or recommenda-
venues, and words are well grouped. Four communities aretion services. Additionally, topical trends over time wik
discovered foatrtificial intelligence and machine learning  further investigated to track changing interests and event
database and data miningarallel and distributed comput-  within communities.
ing, andsoftware engineeringWe present two discovered
communities and their authors in Table 2 and Table 3. In References
our experiments, we used the discovered venue set to man-) L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lagroup formation
ually produce community labels. The keyphrases (ranked [l Soes febiris nembersh, vt st 00 0
by frequency) were considered as the summarization of @  discovery and data miningrages 44-54, New York, NY, USA, 2006. ACM
community. Press.

Table 2 includes a subset of authors discovered imthe [2] S. Boyd and L. VandenbergheConvex Optimizatian Cambridge University
tificial intelligence and machine learningpmmunity over Press, 2004.
six time periods. For presentation, we rank the authors by (3] 1. s. Dhillon, S. Mallela, and D. S. Modha. Informatioheoretic co-clustering.
their number of papers within the corresponding periods. 500 6%, roceednos o e it ACU SIGKOD it onartrerce
We can observe that the community memberships of au-  2003. ACM Press.
thors are relatively stable but Change over time. In the ex- [4] C. Ding. A tutorial on spectral clustering. Iroc. of the 25th International
periments, we observed that the top authors remained as the ~ Conference on Machine Learninguly 2004.
“core” members of the corresponding community and there [5] C.Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cigarithm
were many more authors who had joined and left from the for graph partitioning and data clustering. IBDM '01: Proceedings of Inter-
communities during these six time periods. The leftmost ~ Mational Conference on Data Miningages 107-114, 2001.
column shows the top venues. Similarly, authors from the [6] P. Domingos and M. Richardson. Mining the network valfieustomers. In
database and data minirgpmmunity ae presented in Ta- {08 0L EE N R L G R SR

e 3.

We used the discovered clusters of words as the descrp-! 5,7 &, W paymer | witen, o cuin and ¢ cotaming
tion for the corresponding communities. Summarizations Joint Conference on Artificial Intelligencpages 668673, 1999.
of two communities are presented in Table 4 and Table 5. [8] B. Gao, T-Y. Liu, X. Zheng, Q.-S. Cheng, and W.-Y. Ma. Gistent bipar-
Words are ranked by their frequency of occurrence within tite graph co—partitiz?ning for star-structured high-artieterogeneous data co-
the data. Those words that did not occur in the previous pe- fona;corierence on Knowtedge discovery n dea mirgages 4150, New-
riod are highlighted. Over the six time periods, we can see  York NY, USA, 2005. ACM Press.
the emergence of new words, which presumably indicate [9] G. H. Golub and C. F. V. Loan.Matrix Computations The Johns Hopkins
the evolution of interests of the community. University Press, 1996.

Fina”y: we show the changes in communities’ sizes over [10] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins. Imfoation diffusion
time in Fig_ 8(b). The size of a Community is measured by through blogspace. IWWW '04: Proceedings of the 13th international con-

.. . - . ference on World Wide Wepages 491-501, 2004.

the number of distinct authors discovered within a parécul

time period. The sizes of the four communities are scaled[t1] D. Harel and Y. Koren. Clustering spatial data usingd@m walks. InPro-
ceedings of the seventh ACM SIGKDD international confexemcKnowledge

to sum up to one. discovery and data miningages 281-286, 2001.

. [12] X. Jiand W. Xu. Document clustering with prior knowlezlgin SIGIR '06:
8 COﬂClUSlon Proceedings of the 29th annual international ACM SIGIR ecerice on Re-
i X search and development in information retrievahges 405-412, New York,
This paper addresses an emerging problem of temporal Ny, usa, 2006. ACM Press.
Commumty dISCOVGI’y from communication documents' by [13] J. Kubica, A. Moore, J. Schneider, and Y. Yang. Stodhdstk and group

which one can observe the temporal trends in community detection. IrProceedings of the 2002 AAAI Conferengages 798-804, 2002.



Venues 1969-94 1994-96 1996-98 1998-2000 2000-02 2002-04
M1 Jordan M I Jordan W L Johnson S Thrun D Koller A Blum
JMLR L P Kaelbling L P Kaelbling N Friedman C Boutilier A W Moore S Thrun
JY Halpern Z Ghahramani D Koller T Sandholm M | Jordan S Zilberstein
S P Singh S P Singh R E Schapire D Koller M L Littman P Stone
PAMI Z Ghahramani M K Warmuth Y Singer N Friedman S Thrun J Langford
M K Warmuth T G Dietterich R Dechter Y Singer D Schuurmans T Eiter
T G Dietterich T Dean T J Sejnowski | A Mccallum J Shawe-taylor| P Domingos
ICML T Dean Y Bengio H S Seung L P Kaelbling S P Singh A K Jain
Y Bengio P Smets D Poole S P Singh N Friedman S Baker
P Smets W Maass M I Jordan P R Cohen N Cristianini S Chawla
AAAI/IAAI W Maass V Tresp N Tishby R Khardon A Mccallum R Dechter
V Tresp D Weinshall R Greiner M J Kearns P Domingos C Guestrin
D Weinshall D Geiger Y Mansour K Nigam Y Bengio C Boutilier
UAI D Geiger S Kambhampati| M K Warmuth N Cristianini D Freitag M J Kearns
D Poole A Saffiotti Y Freund J Shawe-taylor AY Ng T Lukasiewicz
R E Schapire R E Schapire | D P Helmbold C Baral M K Warmuth A Demiriz
IJCAI S Kambhampati D S Nau C Boutilier A W Moore G E Hinton S P Singh
C Baumlckstroumim H A Simon M L Littman D Fox N Tishby D Koller
JAIR F Bacchus F Bacchus P Dayan D Roth A J Smola D Schuurmans
A Saffiotti D Poole AJ Grove M P Wellman G Raumltsch S Prabhakar

Table 2. Machine learning community during 1969-2004 in a CiteSeer sample.

Venues 1969-94 1994-96 1996-98 1998-2000 2000-02 2002-04
M Yannakakis M Yannakakis R Hull A Mendelson G Gottlob S Abiteboul
PODS V Vianu V Vianu A Mendelzon J Pareda_erjs \Y Vjanu ) L Popa
A Gupta JY Halpern Z M Zsoyoglu C Papadimitriou H Garcia-molina T Milo
Garciacute Garciacute H Garcia-molina | H Garcia-molina J Widom P G Kolaitis
J Widom J Widom D Suciu S Abiteboul AY Halevy PSYu
SIGMOD JF Ngughtqn H Garcia-molina A Silberschatz D Florescu C Falou‘tsos F Neven
H Garcia-molina J F Naughton AY Levy AY Levy D Suciu C Beeri
C Faloutsos C Faloutsos L Libkin R Motwani D Gunopulos R Rastogi
A Kemper J Hammer G Moerkotte LV S Lakshmanan S Lee JHan
VLDB K Ramamritham A BiIiri; S Sgshadri T Milo JHan D Srivastaval
G Moerkotte K Ramamritham S Abiteboul S Cluet W Fan M N Garofalakis
I'S Mumick A Kemper J Widom J Han R Rastogi J Widom
A Biliris C Baumlckstroumim R Agrawal D Suciu C S Jensen A'Y Halevy
SIGMOD Record J Hammer G Moerk_otte R Ramakrishnan JS Vitter_ H V Jagadish CLi
M Chen I S Mumick S Sudarshan R Rastogi D Kossmann J Madhavan
PSYu K Lin K Ramamritham G D Giacomo D Srivastava W Fan
T Milo S Berson A Kemper C S Jensen K Chakrabarti B Babcock
ICDM D Suciu D Suciu D FIorest_:u D Srivastava S Muthukrishnan CY Chan
JHan D Kossmann P Atzeni O Shehory D S Weld C Koch
K'Lin C A Knoblock M Benedikt M Lenzerini G D Giacomo J Gehrke
Table 3. Database community during 1969-2004 in a CiteSeer sample.
years words
learning model training probability value image set actiguut points output variables goal point values searckcgoli
1994-96 . X M e N L .
agent function selection examples error units distancevl@dge classification representation recognition regési t
1996-98 learningstate model image value training probabilihetwork set values variableslasserror points input point action
vector representatiosequenceagent searcHistribution recognition unitgandom output classification case robot
1998-00 learning model state value training set image probabiktiyes action points policy error search point sequetiens
noise function knowledge distribution classification roparameters estimatext optimal estimation accuracy representation
2000-02 learning model training set error image probabilitatrix point sequence distributidrernel classificatiomrandom features state
estimation function representatiorput accuracystrategy vectortextprediction parameters bounapproach selection
2002-04 learning model set probabilifyolicy points training sequence imagariables optimalalgorithm function matrixsearch

point errordistance erentrandom bound classification masbot estimate representation casgecteddistribution vector

Table 4. Frequent words in the machine learning community during 1994-2004 in a CiteSeer sample.

years words

1094-9¢ | Auery data database queries objeg:t path event cost typexesmirtion objects table class transaction local rulesesetient
join name formula update rule attribute attributes viewgsaglan read

1096-0g | Auery de_xta queries tjatabase opject tes information viev_v user attribute_s pages ok?jects rules join plan tabletgd
transaction type attributeonstraints page access server digquests real-time labelclient

109800 | Auery data queries_user information database pages r_uiegaimts_ plampath attribute_s attrit_)ute_ view join formula table
sources update objeasqueststrategydocuments level instance itemsule web spatialapplication

2000-02 data query queriepoints information pathcostxml database attlributealuespagestreg constraints table join plan
type objects pagelistance management example documeitttribute update labeled items documents web

2002-04 data quenynode queries xml path values tree database attributes tablex@atijoin name plaservice cache

objectsreturn selection constraints typ@atterns label mapping attribute tuples index itemo®t

Table 5. Most frequent words in the database community during 1994-2004 in a CiteSeer sample.
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