Verifiable Agreement: Limits of Non-Repudiation
in Mobile Peer-to-Peer Ad Hoc Networks

(Extended Abstract)

Zinaida Benenson', Felix C. Freiling?, Birgit Pfitzmann?®, Christian Rohner!, and
Michael Waidner?3

! Uppsala University, Department of Information Technology
{zina,chrohner}@it.uu.se
2 University of Mannheim, Informatik 1
freiling@informatik.uni-mannheim.de
3 IBM Research, Zurich Research Lab
{bpf ,wmi}@zurich.ibm.com

Abstract. We introduce verifiable agreement as a fundamental service for
securing mobile peer-to-peer ad hoc networks, and investigate its solvability.
Verifiability of a protocol result means that the participants can prove that
the protocol reached a particular result to any third party (the verifier)
which was not present in the network at the time of the protocol execution.

1 Introduction

1.1 Motivation

The envisioned applications of ad hoc networks often follow the scenario where
a group of nodes meets for a short time, conducts some transaction, such as a
collaborative document editing session, a decision to take some coordinated action,
or dissemination of information to all group members, and then breaks apart,
perhaps forever. We call this type of the network mobile peer-to-peer ad hoc network.

In this scenario, there is no centralized logging of the transaction, no transaction
witnesses, apart from the participants themselves. Thus, to make the result of the
transaction binding, it should be made wverifiable. That is, after the transaction
is finished, each participant should be able to prove to some third party which
was not present in the network at the time of the transaction that this particular
transaction (1) happened, (2) was conducted by the certain group of participants,
and (3) reached a particular outcome. We call this problem Verifiable Agreement
on the transaction result. Requiring that each participant be able to carry out the
proof without the help of any other participant seems to be the most safe decision,
as there is no guarantee that any other participant would be reachable at the time
when the proof is conducted.

Verifiable Agreement is a crucial problem for securing mobile peer-to-peer ad
hoc networks. Indeed, especially if such networks are set up in emergency situ-
ations, with participants from different organizations or different countries, the

participants may distrust each other. Unfortunately, as we show below, the non-
repudiation of the decisions made in this situation can only be reached if the ma-
jority of participants can be trusted. This puts a strict restriction on the usage of
this network type for trust-critical applications.

1.2 Agreement and Contract Signing

We denote by Agreement a class of problems where a set of n parties P :=
{P,...,P,} start with initial inputs z1,...,2,. Some parties might be dishon-
est and arbitrary deviate from their programs. All honest parties must eventually,
or with some high probability, terminate and agree on a common result, ¥, which
is “valid”. Validity defines a particular agreement problem:

— In Interactive Consistency [19], the parties must agree on a vector y, where the
ith element must be x; for all honest parties P;, otherwise it can be any value.

— In Consensus [8], if there is a value x such that z; = z for all honest parties
P;, then y = z.

Other agreement problems include Byzantine Generals Problem (also called
Byzantine Agreement) [16], Weak Byzantine Agreement [15], Atomic Commitment
[21], Strong Consensus [9], Validated Byzantine Agreement [14].

In contrast to Secure Multi-Party Computation [11], the inputs of the parties
do not need to be secret or independent.

Contract signing [6] can be considered as an agreement problem where the
parties must agree either on a contract text or on a special value failed, which means
that no contract was signed. The signed contract can be an outcome of the contract
signing protocol only if all honest parties want to sign the same contract text.
The signed contract must be wverifiable. Informally, verifiability can be described as
follows:

— Each honest party can convince a verifier V, which knows nothing about a
particular protocol run, that this protocol run yielded the result .

— If some protocol run yielded the result y, no party can convince V' that the
protocol yielded some result 3" # y.

The result failed is usually left non-verifiable. This reflects the real-world situ-
ation where no proof of the fact that a contract was not signed is required.

1.3 Related Work

Apart from contract signing, which has been an active research area for several
decades, the only approach to make an agreement problem verifiable, as far as we
know, is undertaken in [21]. There, a specification for verifiable atomic commitment
for electronic payment protocols is presented, but no explicit definition of verifiabil-
ity is given. A different notion of verifiable agreement was introduced in [14]: each
honest protocol participant F; can convince any other honest participant P; of its
result, but not necessarily any outsider. Multi-party contract signing protocols are
presented, e.g., in [2,5,10]. For an overview of recent work, see also [22].

1.4 Outline and Contribution

After presenting the system model in Section 2, we give a unifying definition of
agreement problems which facilitates rigorous proofs, and define verifiable agree-
ment (Section 3).

We show that in case of dishonest majorities, verifiable agreement cannot be
solved (Section 4.1). This puts a fundamental limit on non-repudiation of transac-
tions in mobile peer-to-peer ad hoc networks. In contrast, some agreement prob-
lems, such as Interactive Consistency, can be solved for any number of dishonest
parties. We present a verifiable agreement protocol for honest majorities, in Section
4.2.

Finally, in Section 5, we discuss our system assumptions and the applications
of verifiable agreement.

2 System Model and Preliminaries

2.1 System Model

Let P = {Py,..., P,} denote the set of participats of an agreement protocol, and V'
denote a verifier.

Let |X| > 2 and |Y| > 2 be two finite sets representing the inputs and the
outputs of individual participants P;. We assume (w.l.o.g.) that Y contains a dis-
tinguished element failed. For a subset of parties H C P we denote by X H the set
of all |H|-dimensional vectors with elements from X.

The parties P; can digitally sign messages, and all parties can verify their signa-
tures. The signature on message m associated with party P; is denoted by sign,(m).

The adversary can a priori choose to corrupt a certain subset of parties. It
has full control over the behavior and knowledge of dishonest parties (Byzantine
failures). We assume that the adversary cannot forge signatures.

We consider both synchronous and asynchronous networks with reliable com-
munication channels.

2.2 Preliminary Definitions

Honesty structure formalizes for which sets of honest parties the problem should
be solved?.

Definition 1. An honesty structure H for a set of parties P is a set of subsets of
P such that if H € H and H C H' C P then H € H.

The definition reflects the intuition that any protocol that works given a certain
set H of honest parties should also work in case there are more honest parties.

An honesty structure H satisfies condition Q5 if HyNHy # () for all Hy, Hy € H,
and it satisfies condition Q3 if H; N He N Hy # 0 for all Hy, Hy, Hy € H [12].

4 The corresponding notion from the area of secret sharing is access structure. An ad-
versary structure [12], which consists of all sets of dishonest parties a protocol can
withstand, is the complement of it.

A threshold honesty structure Hy for a threshold t < n is a set of subsets of P
such that H; = {H C P : |H| > n —t}. A threshold honesty structure satisfies Q2
or Q3 if and only if £ < 5 or t < 7, respectively. Thus, the condition Q2 generalizes
the notion of honest majority.

We now define validity functions, which we use in the following to describe
validity conditions of agreement problems.

Definition 2. Let 'H be an honesty structure. A validity function for the sets X,Y,
and H is a function F that maps pairs (H,xz) € H X XH to subsets of Y, the allowed
outputs. It must satisfy the Non-triviality condition:

— Yy # failed 3z € X* : y & F(P,2) and
— Jzr e X F(P z) # {failed}.

Non-triviality excludes all consensus problems which can be solved by the trivial
protocol which always outputs a constant result y, or always fails. We do not exclude
problems that allow the output failed for all initial inputs, because the result failed
is sometimes unavoidable. In the following, we give examples of validity functions
for some well-known problems.

Consensus with Y = X is described by:

{m}lfxl:mVPleH
X otherwise.

Fc(H, x) = {
Interactive Consistency with Y = X is described by:
Fre(H,z) :={ye X |y =z;V P, € H, y' € X otherwise.},

where 3¢ denotes the ith element of the vector y € XT.

3 Definition of Verifiable Agreement

We first define agreement problems.

Definition 3. An agreement problem for a validity function F is to devise a pro-
tocol consensus|] for parties Py, ..., P,. In order to start the protocol, a party P;
recetves the input x;. Upon termination, the protocol produces an output y; € Y for
each P;. The following requirements must be satisfied for all sets H € H of actually
honest parties and input vectors x € X1 :

— Agreement: There is a y € Y such that y; =y for all P; € H.

— Validity: y; € F(H,x) for all P, € H.

Correct Execution: If all parties are honest, then for all input vectors v € XT

with F(P,x) # {failed}, the parties will never agree on y = failed.

— Termination: Fventually each P; € H terminates and produces an output y; €
Y.

Correct Execution excludes protocols that always output failed.

We now formalize the verifiability of an agreement.

Definition 4. A verifiable agreement problem for a validity function F is to devise,
in addition to the protocol consensus||, the protocol verify[] which involves only one
party P; and a verifier V' which does not have any knowledge about the execution
of consensus|] or about possible previous runs of verify|].

Party P; starts verify[] with thse input (tid,y) where tid is the transaction iden-
tifier of an execution of consensus|] and y is the result obtained from this execution.
The verifier decides accepted or verify failed for (tid,y). The following requirements
must be satisfied in addition to those from Definition 3 for an honest V and all
sets H € H of actually honest parties:

— Verifiability of Correct Result: If P; € H obtained the output y for some tid for

y # failed from consensus|], then V will obtain the result accepted for (tid,y).

Non-verifiability of failed: The verifier V' never accepts failed for any tid.

— No Surprises: If some P; € H obtained y for some tid from consensus[], then V
never decides accepted for any party P;, tid, and any y' # y.

— Termination of verify[]: Fach V' and each P, € H eventually terminate.

%
We now show how to define the contract signing problem within our framework.

Definition 5. Contract signing is a verifiable consensus problem described by the
following validity function:

X = C U {reject}, where C is a finite set of contract texts that can be signed,
Y = C U {failed}, and H is the power set of P. Then:

Fos(H,) = {contr,failed} if 3 contr € C such that x; = contr ¥ P, € H
oS\ T) = {failed} otherwise.

O

In the full version of this paper, we show that the above definition and the
“usual” definition from, e.g., [2] are equivalent.

4 Solvability of Verifiable Agreement

4.1 Impossibility of Verifiable Agreement for Dishonest Majorities

We show that if Q2 (which generalizes the notion of honest majority) is not satis-
fied, then the Verifiable Agreement problem cannot be solved even in synchronous
networks. In contrast, some agreement problems, e.g., Interactive Consistency, can
be solved deterministically in this setting for any honesty structure [19]. As the
synchronous network is the most strong network model, this result implies non-
solvability for all other network classes.

Theorem 1. No synchronous deterministic protocol can solve Verifiable Agree-
ment if condition Q)2 is not satisfied.

The error probability of any probabilistic synchronous verifiable agreement pro-
tocol in case Qo is not satisfied is unacceptable large, i.e., at least inversely linear
in the number of protocol rounds.

Due to space limit, we omit the proofs from this extended abstract.

4.2 Verifiable Agreement for Honest Majorities

We show how to extend any agreement protocol for honesty structures satisfying
the condition @5 to a verifiable agreement protocol.

Protocol 1. Let 7 be an agreement protocol (Definition 3) for an honesty struc-
ture H, input and output sets X and Y and a validity function F.

— consensus|]:
1. The parties first run the protocol 7 on their inputs x; for the identifier tid.

As soon as a party P; obtains output y; # failed, it sends m; := sign;(tid, y;)
to all participants.
2. We call any set M = {sign; (tid,y),...,sign;, (tid,y)} where {P},,...,P;, } €
H a proof set for (tid,y). P; waits until it has received a proof set for
— verify[]: The verifier V' accepts the result y for some tid if and only if it receives
a proof set for (tid, y) where y # failed.

O

Theorem 2. Protocol 1 solves Verifiable Agreement under the condition Qs in both
synchronous and asynchronous networks.

Proof. (sketch)

We only show the less obvious requirements in this extended abstract.

Termination of consensus|] (Definition 3): Let H € H be the actual set of honest
parties. Then all honest parties P; € H start 7, terminate with the agreement on
some result y and send the signed result (message m;) to all parties (we assume
that P; sends m; to itself as well). Thus, eventually each honest party P; receives
a proof set and terminates, as we assume reliable communication.

No Surprises (Definition 4): Let H be the actual set of honest parties, and
assume that the verifier V receives a proof set for some y € Y with H' € H as
the set of all signatories of y. Since H N H' # (), there is at least one honest party
P, € H', and as P, signed y, it must be the correct result.

O

Remark 1. If a protocol solves some agreement problem in asynchronous net-
works, the corresponding honesty structure must satisfy Q3 [7]. If Q3 is satisfied,
then ()5 is also satisfied. Therefore, in asynchronous networks, any agreement prob-
lem can be solved with verifiability, if it can be solved at all.

5 Discussion

5.1 System Assumptions

Most debatable assumption in our system model is reliable communication. In
fact, many cryptographic protocols for peer-to-peer ad hoc networks, most notably,
group key agreement protocols [3,4,20], also make this assumption. This can be
justified by relying on reliable group communication services, such as [17,18].

Another assumption is the ability of the parties to digitally sign their messages.
This requires a public-key infrastructure, such as described, e.g., in [13]. For an
overview of authentication mechanisms in ad hoc networks, including issues related
to the public key infrastructure, see [1].

5.2 Applications

Verifiable Agreement applies to situations where the result of a transaction should
be used in the future. One class of such situations arises when a distributed database
is implemented in the ad hoc network and is replicated across some specified nodes,
the servers. In this case, transactions conducted in the absence of the servers,
should be communicated to them as soon as possible. Consider, for example, the
distributed public-key infrastructure in [23]. Using verifiable agreement of the client
nodes on the exclusion of “bad” nodes form the network, each agreement partici-
pant can submit the exclusion decision to the service for the purpose of certificate
revocation.

Another important scenario arises when the transaction conducted by the node
in the peer-to-peer group should be used in another context. Consider a meeting
which is set up in ad hoc manner, perhaps in an emergency situation, where several
organizations from different organizations or countries do not trust each other.
They collaboratively edit an important document which they should present in
their organizations after the meeting. This document may be, e.g., the minutes of
the meeting. It is important to fix the current document state, such that no single
party is able to change the local copy of the document undetected. Usually, this can
be done using a transaction logging by a trusted site. In the absence of a trusted
site, the participants may sign the commitments to the document using a contract
signing protocol. To do this, however, as we showed earlier, more than the half of
the participants should be trusted not to cheat. In the full version of this paper,
we present a contract signing protocol for honest majorities which can be used in
the above situations.

5.3 Conclusion

We introduced the notion of Verifiable Agreement, and showed its applicability in
mobile peer-to-peer ad hoc networks. Limits on the solvability of Verifiable Agree-
ment show that the non-repudiation of any action without relying on an infrastruc-
ture requires placing trust into the majority of the participants.

References

1. N. Aboudagga, M. T. Refaei, M. Eltoweissy, L. A. DaSilva, and J.-J. Quisquater.
Authentication protocols for ad hoc networks: taxonomy and research issues. In
Q25Winet ’05: Proceedings of the 1st ACM international workshop on Quality of
service & security in wireless and mobile networks, pages 96-104, New York, NY,
USA, 2005. ACM Press.

2. N. Asokan, B. Baum-Waidner, M. Schunter, and M. Waidner. Optimistic synchronous
multi-party contract signing. Technical Report Research Report RZ 3089, IBM Zurich
Research Laboratory, 1998.

3. N. Asokan and P. Ginzboorg. Key-agreement in ad-hoc networks. Computer Com-
munications, 23(17):1627-1637, 2000.

4. D. Augot, R. Bhaskar, V. Issarny, and D. Sacchetti. An efficient group key agreement
protocol for ad hoc networks. In First International IEEE WoWMoM Workshop on
Trust, Security and Privacy for Ubiquitous Computing, 2005.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23

B. Baum-Waidner and M. Waidner. Round-optimal and abuse-free multi-party con-
tract signing. In International Colloguium on Automata, Languages and Program-
ming, LNCS 1853, 2000.

M. Blum. Three applications of the oblivious transfer. Technical report, Department
of EECS, University of California, Berkeley, CA, 1981.

G. Bracha and S. Toueg. Asynchronous consensus and broadcast protocols. J. ACM,
32(4), 1985.

M. J. Fischer. The consensus problem in unreliable distributed systems (a brief
survey). In Proceedings of the 1983 International FCT-Conference on Fundamentals
of Computation Theory, pages 127-140, London, UK, 1983. Springer-Verlag.

M. Fitzi and J. A. Garay. Efficient player-optimal protocols for strong and differential
consensus. In PODC ’03: Proceedings of the twenty-second annual symposium on
Principles of distributed computing, pages 211-220, New York, NY, USA, 2003. ACM
Press.

J. A. Garay and P. D. MacKenzie. Abuse-free multi-party contract signing. In Proceed-
ings of the 13th International Symposium on Distributed Computing, pages 151-165,
London, UK, 1999. Springer-Verlag.

S. Goldwasser. Multi party computations: past and present. In PODC °97: Proceedings
of the sixteenth annual ACM symposium on Principles of distributed computing, pages
1-6, New York, NY, USA, 1997. ACM Press.

M. Hirt and U. Maurer. Complete characterization of adversaries tolerable in secure
multi-party computation (extended abstract). In PODC ’97: Proceedings of the siz-
teenth annual ACM symposium on Principles of distributed computing, pages 25-34,
New York, NY, USA, 1997. ACM Press.

J.-P. Hubaux, L. Buttyan, and S. Capkun. The quest for security in mobile ad hoc
networks. In MobiHoc ’01: Proceedings of the 2nd ACM international symposium on
Mobile ad hoc networking € computing, pages 146-155, New York, NY, USA, 2001.
ACM Press.

K. Kursawe. Distributed Trust. PhD thesis, Department of Computer Science, Saar-
land University, 2001.

L. Lamport. The weak byzantine generals problem. J. ACM, 30(3):668-676, 1983.
L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Trans.
Program. Lang. Syst., 4(3):382-401, 1982.

J. Liu, D. Sacchetti, F. Sailhan, and V. Issarny. Group management for mobile ad hoc
networks: design, implementation and experiment. In MDM ’05: Proceedings of the
6th international conference on Mobile data management, pages 192-199, New York,
NY, USA, 2005. ACM Press.

J. Luo, P. T. Eugster, and J.-P. Hubaux. Pilot: Probabilistic lightweight group com-
munication system for ad hoc networks. IEEE Transactions on Mobile Computing,
3(2):164-179, 2004.

M. Pease, R. Shostak, and L. Lamport. Reaching agreement in presense of faults.
Journal of the ACM, 27(2):228-234, April 1980.

M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynamic peer groups.
IEEE Trans. Parallel Distrib. Syst., 11(8):769-780, 2000.

L. Tang. Verifiable transaction atomicity for electronic payment protocols. In ICDCS
’96: Proceedings of the 16th International Conference on Distributed Computing Sys-
tems (ICDCS ’96), Washington, DC, USA, 1996. IEEE Computer Society.

J. Zhou, J. Onieva, and J. Lopez. A synchronous multi-party contract signing protocol
improving lower bound of steps. In SEC 2006: 21st IFIP International Information
Security Conference, May 2006.

. L. Zhou and Z. J. Haas. Securing ad hoc networks. IEEE Network, 13(6):24-30, 1999.

