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Abstract—When files are striped in a parallel I/O system,
requests to the files are decomposed into a number of sub-
requests that are distributed over multiple servers. If a request
is not aligned with the striping pattern such decomposition can
make the first and last sub-requests much smaller than the
striping unit. Because hard-disk-based servers can be much less
efficient in serving small requests than large ones, the system
exhibits heterogeneity in serving sub-requests of different sizes,
and the net throughput of the entire system can be severely
degraded by the inefficiency of serving the smaller requests,
or fragments. Because a request is not considered complete
until its slowest sub-request is, the penalty is yet greater for
synchronous requests. To make the situation even worse, the
larger the request, or the more data servers the requested data
is striped over, the larger the detrimental performance effect of
serving fragments can be. This effect can become the Achilles’
heel of a parallel I/O system performance seeking scalability
with large sequential accesses.

In this paper we propose iBridge, a scheme that uses solid-
state drives to serve request fragments and thereby bridge the
performance gap between serving fragments and serving large
sub-requests. We have implemented iBridge in the PVFS file
system. Our experimental results with representative MPI-IO
benchmarks show that iBridge can significantly improve the
I/O throughput of storage systems, especially for large requests
with fragments.
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I. INTRODUCTION

To meet the demand for high-throughput data access on

storage systems by highly parallel scientific and engineer-

ing applications, parallel file systems such as GPFS [11],

Lustre [16], and PVFS2 [22] have been widely adopted to

manage large data files such as checkpoint/restart files and

the inputs and outputs of data-intensive applications. In these

file systems the files are striped over multiple data servers to

take advantage of aggregate I/O capacity, such as network

bandwidth and hard disk bandwidth, while programmers are

presented with a convenient linear logical file address space.

With file striping a request for a segment of logically

contiguous file space is divided into sub-requests that are

distributed over multiple data servers. While the striping

unit size is usually reasonably large, such as 64KB by

default in PVFS2, so that sub-requests are sufficiently large
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Apps Unaligned (%) Random (%) Total (%)

ALEGRA-2744 35.2 7.3 42.5

ALEGRA-5832 35.7 6.9 42.6

CTH 24.3 30.1 54.4

S3D 62.8 5.8 68.6

Table I
PERCENTAGES OF UNALIGNED AND RANDOM DATA ACCESSES IN

DIFFERENT I/O TRACES WITH A 64KB STRIPING UNIT. UNALIGNED

REFERS TO REQUESTS THAT ARE LARGER THAN A STRIPING UNIT

(64KB) BUT ARE NOT ALIGNED TO THE STRIPING UNIT BOUNDARIES.
REQUESTS SMALLER THAN 20KB ARE CATEGORIZED AS RANDOM.

to obtain high disk efficiency at each server, the first and/or

last sub-requests can be much smaller than the striping unit

if the request pattern does not match the striping pattern,

i.e., data access is unaligned. These smaller sub-requests,

which we call fragments, are effectively random accesses

on their respective servers. Because a hard disk can be

an order of magnitude or more less efficient in serving

random requests than for sequential ones, fragments and

other sub-requests of the same request can be served with

very different efficiency. In the case of synchronous requests

the entire storage system’s productivity will be degraded.

By analyzing I/O traces from various computing environ-

ments we have determined that unaligned access is common.

One example is the set of traces of HPC applications

from the Scalable I/O project at Sandia National Laborato-

ries [13] including applications ALEGRA [1], CTH [7], and

S3D [25]. As shown in Table I, for these applications up to

62.8% of I/O requests, and 35.9% on average, are unaligned

with the striping pattern on the data servers if we assume

a 64KB striping unit. Programmers may not be aware of

the unaligned data access because it also depends on system

configuration details that determine how files are striped.

Another reason unaligned access is pervasive is because of

displacements due to, for example, file formats with small

headers such as superblock and data object headers in HDF5

files [3]. Table I also shows percentages of random requests

in the traces. Here we consider requests that are smaller

than 20KB to be random because they are less likely to

concatenate into large sequential accesses.
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Figure 1. File access with three different alignment patterns.

A. Effects of Unaligned Access on Performance

To experimentally investigate the effects of unaligned

access on storage system performance we ran the mpi-io-test

benchmark [22] in which N processes iteratively read data

from a 10GB file striped over eight data servers. (Details of

the system’s configuration are given in Section III.) All read

requests are of the same size s, which is configurable. At

the kth iteration Process i, 0 ≤ i < N , reads one segment

of data at file offset k∗N ∗s+i∗s using the PVFS2 parallel

file system with a 64KB striping unit. We experimented

with three access methods with differing alignment patterns

on the data servers as illustrated in Figure 1. In the first,

Pattern I, the size of the requests is the same as the striping

unit size and they are exactly aligned. In Pattern II the

request size differs from the striping unit size, here by 1KB.

In the logical file address space the processes still issue

sequential I/O requests but fragments are generated by the

parallel file system at each data server. In Pattern III the

request size is equal to the striping unit size but the requests

are shifted by an offset of 1KB relative to the striping

boundaries, requiring each 64KB request to be served by

two data servers. In these experiments a barrier operation is

not applied between access iterations.

Figure 2(a) shows how the unaligned access of Pattern II

degrades system throughput relative to Pattern I. For Pat-

tern II we varied request size among 64KB, 65KB, 74KB,

84KB, and 94KB with process count ranging from 16 to

512. Note that Pattern II becomes Pattern I for request size

64KB. Unaligned data access results in throughputs that are

consistently lower than their respective aligned counterparts.

For example, with 16 processes and unaligned requests that

are larger than the striping unit (64KB) by 1KB and 10KB,

the throughputs with Pattern II are reduced by 52% (from

159.6MB/s to 77.4MB/s) and 45% (from 159.6MB/s to

88.1MB/s), respectively, relative to Pattern I. Throughput

is also reduced as process count increases, for example

with 64KB requests (aligned access) the throughputs are

159.6MB/s and 116.2MB/s when 16 and 512 processes are

used, respectively. More processes means greater I/O concur-

rency at each data server and less spatial locality, especially

when a barrier is not applied between I/O operations.

Because a disk’s efficiency is directly correlated to the

sizes of block-level requests dispatched to it, we collected

block-layer request activities using the blktrace tool to obtain

the distributions of request sizes shown in Figures 2(c)

and 2(d) for 64KB and 65KB requests, respectively. In

Figure 2(c) most requests are of only two sizes: 72% of

for 128 sectors (64KB) and 18% for 256 sectors (128KB).

In contrast, Figure 2(d) shows a much greater fraction of

small requests, demonstrating the generation of fragments.

Figure 2(b) compares throughputs with file access using

64KB requests with varying offsets (Pattern III). Note that

Pattern III becomes Pattern I for 0KB offset. The I/O

throughputs with offsets are substantially lower than those

that are aligned (Pattern I). For example, with 512 processes

and offsets of 1KB and 10KB, the throughput with Pat-

tern III is reduced by 36% (from 159.6MB/s to 102.1MB/s)

and 49% (from 159.6MB/s to 81.8MB/s), respectively. In

comparison a 1KB offset has smaller throughput degradation

than that with larger offsets across different process counts

(Figure 2(b)) because many of the fragments are relatively

large (63KB). Figure 2(e) shows the block-level request size

distribution for a 10KB-offset, where the two most frequent

request sizes are 40KB and 88KB. Compared to Figure 2(c)

the request sizes are significantly reduced. Replacing the

read operation in mpi-io-test with write gives similar results.

Interestingly, and importantly, for both of the unaligned

access patterns the I/O scheduler and normal prefetching do

not consistently produce large requests even though the re-

quests across the MPI program’s processes are for sequential

data in the same file. The reason is the nondeterminism of

parallel execution, where requests received by a data server

are issued by uncoordinated concurrent processes and so are

less likely to produce opportunities for in-kernel prefetching

and request merging in the I/O dispatch queue [29], [33].

In general the larger a request, the more servers the

data is striped over and the more servers will be affected

by inefficiency due to serving the request’s fragments. To

demonstrate this we ran a program to synchronously send

requests of constant size. If the request size is a multiple

k of the 64KB striping unit size it is served by Servers

0, 1, . . . , k − 1. If the request size is 1KB larger than

a multiple of 64KB it is served by Servers 0, 1, . . . ,

k − 1, and k, where the last 1KB fragment is served

by Server k. The sub-requests to the first k servers are

contiguous. Because each server is normally serving more

than one process concurrently, we ran another program

to simultaneously read 64KB random data segments from

Server k. We ran 16 processes to collectively issue these

requests. Figure 3 compares the system’s throughput with

and without fragment requests for different valuse of k, and

each with and without a barrier between I/O operations.

The general trend is that throughput in the presence of
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Figure 2. I/O throughput and block-level request size distribution with various alignment patterns. (a) I/O throughput with differing request sizes and
process counts; (b) I/O throughput with 64KB requests and differing offsets and process counts; (c) Block-level requests’ size distribution with aligned
64KB requests; (d) Block-level requests’ size distribution with 65KB requests; (e) Block-level requests’ size distribution with 64KB requests with 10KB
offset. In Figures (c), (d), and (e) the block-level requests are measured in the disk sector size unit of 0.5KB.
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Figure 3. Throughput with differing numbers of servers involved in the
serving of requests. The X axis describes the number of servers serving
non-fragment requests. The numbers above the bars indicate respective
reductions in throughput due to fragments.

fragments is significantly lower. Moreover, as the number of

servers increases, relative throughput increases more slowly

in the presence of fragments. If a barrier is used between

requests the serving of sub-requests is synchronized across

the servers, which helps improve access spatial locality and

increase throughput. However, serving fragments with sub-

optimal efficiency can not only delay the completion of its

owner’s request, but also delay all requests synchronized by

the barrier, resulting in even greater loss of performance. We

call the phenomenon of the increasing loss of performance

with increasing number of servers involved in a request

serving, due to the reduced efficiency of one or more servers

serving fragments, the striping magnification effect.

B. Using SSD to Eliminate Unaligned Data Access

We propose a scheme that employs a SSD of relatively

small capacity at each data serverW to efficiently serve

fragments identified at the client side. Because SSD’s perfor-

mance is less sensitive to spatial locality, a fragment can be

quickly served by SSD and so avoid being the last finished

sub-request of its owner’s request.

In summary, we make the following contributions.

• We extensively investigate the performance implica-

tions of unaligned data access using benchmark pro-

grams with various request patterns in parallel file



systems and show that a mismatch of the request pattern

and file striping pattern can significantly compromise

I/O performance.

• We propose iBridge, a scheme leveraging SSD’s high

random access performance to remove the inefficiency

caused by the mismatch. Based on a dynamic analysis

of resource-effectiveness, iBridge prioritizes the use of

SSD for serving small sub-requests (fragments) over

other regular random requests for increased perfor-

mance benefits. Throughout the paper regular random

requests specifically refer to those that by themselves

are smaller than a pre-set threshold, such as 20KB,

while a fragment refers to a sub-request that is a compo-

nent of a larger request spanning multiple data servers

and whose size is smaller than a pre-set threshold.

• We describe the design and implementation iBridge in

the MPI-IO library and the PVFS2 file system for iden-

tifying fragments and transparently pre-loading/pre-

writing them to make unaligned access as efficient

as aligned access. By replaying traces of scientific

programs such as ALEGRA, CTH, S3D, and running

representative MPI-IO benchmarks such as ior-mpi-io,

mpi-io-test, and BTIO, we show that iBridge can effec-

tively bridge the performance gap between unaligned

and aligned access and thereby improve I/O throughput

by more than a factor of two on average.

II. THE DESIGN OF iBridge

The objective of iBridge is to use SSDs to serve fragments

produced by unaligned data accesses. Such a use of SSDs

represents a highly desirable combination: SSD’s strong per-

formance advantage for random access, fragments’ relatively

small sizes, and a strong need to efficiently serve fragments.

To make the approach truly effective there are several

questions to be answered in the design. First, how to

distinguish regular random requests and fragments? Second,

what are the criteria for determining whether a regular

random request or a fragment should be admitted into the

SSD? Third, when SSD space is limited for the serving of

small requests, how should it be allocated between regular

random requests and fragments? In this section we describe

the architecture of iBridge and the management of data on

the server side to answer these questions.

A. The Architecture

The iBridge scheme has client-side and server-side com-

ponents. In a parallel file system like PVFS2 or Lustre a

large request is split at the client into a number of sub-

requests that are issued to respective servers. We call this

request the sub-requests’ parent, and the sub-requests are

each other’s siblings. The data servers are not aware of the

distinction between requests and sub-requests so the client-

side component is responsible for identifying fragments and

passing the information to the data servers. We instrument

the client-side PVFS2 function io datafile setup msgpairs()

to flag fragments. As long as the striping unit size of the

parallel file system is known at the client side, sub-requests

belonging to a request can be determined in this way. To be

designated a fragment a sub-request must be smaller than

a pre-defined threshold. In addition to setting the fragment

flag iBridge also passes the identifiers of the servers holding

this fragment’s sibling sub-requests. This information allows

a data server to assess the potential performance effect of

serving the fragment on its parent request, accounting for

the striping magnification effect.

On the server side the pvfs2-server daemon responsible for

creating I/O jobs (I/O requests) is instrumented to retrieve

the fragment flag from a request. At a server both the

disk and the SSD are managed by their respective local

file systems (Linux Ext2 on our experimental platform). In

iBridge the SSD is treated as a cache for the local disk

to store selected writeback dirty data and pre-loaded data

for reading. iBridge maintains a mapping table to record

data and their statuses (dirty or clean). This table is backed

up on the SSD. Because sequential writes are much more

efficient than random writes on SSD, iBridge writes new

data into the SSD sequentially into a pre-created large file

that is maintained much like a log-based file system.

B. SSD Management for Fast and Balanced Disk Access

Because the SSD is of relatively small size only small

requests (or sub-requests) should be cached. However, we

must dynamically evaluate the potential performance benefit

of redirecting regular random requests and fragments to pri-

oritize their eligibility for caching. Conceptually the metric

is by how much faster, in terms of average request service

time, a disk could be if a request to the disk were served by

its companion SSD. However, this concept must be expanded

for caching fragments to a disk to account for the fact that

where a fragment (disk or SSD) is served also affects the

efficiency of the disks serving the fragment’s siblings.

To quantitatively evaluate the benefit we calculate the

average request service time Ti for the ith request arriving

at and served by a disk by

Ti =
Ti−1

8
+

(D to T (λi − λi−1) +R+ Sizei/B) ∗ 7

8
(1)

where λi is the location of the ith request, which is rep-

resented as the logical block number (LBN) of its first

requested block, Sizei is the size of the ith request, B is

the disk’s peak throughput, R is the disk average rotation

time, and D to T is a function for converting the disk seek

distance to seek time. We use the approach described by

Huang et al. to obtain this function from an offline profiling

of the disk [12]. In the calculation of average time we

incorporate a decay effect so that more recent requests are



better represented: specifically, we adopt an approach that

is similar to the one developed in Linux for anticipatory

scheduling by using the weights 1/8 and 7/8 for the last

average value and the new one, respectively [15].

If the ith request is served at SSD the disk’s average

request service time does not change, i.e.,

Ti = Ti−1. (2)

Therefore, the average service time Ti should be updated

differently depending on where the ith request will be

served. If the request is served at the disk, Ti (= T disk
i

)

should be updated according to Equation (1). If the request is

served at the SSD, Ti (= T ssd
i

) should be updated according

to Equation (2). Their difference, T ret
i

= T disk
i

− T ssd
i

,

represents the return, or the benefit of serving the ith request

at the SSD. A positive T ret
i

indicates that serving the request

at the disk will increase the disk’s average service time, i.e.

slow the disk down. In such a case the ith request will be

served at the SSD. Otherwise, serving the request at the

disk helps improve the disk efficiency and there is no need

to serve it at the SSD.

The return T ret
i

can be underestimated for a fragment if

it is the slowest among its siblings because of the striping

magnification effect. To know which server is currently

the slowest in terms of disk efficiency, each server runs a

daemon that periodically (every second by default) reports

its current Ti value to the metadata server, which also has

a daemon to receive the values and then broadcast this up-

to-date information to each data server. If the ith request

reaching a data server is a fragment we need to check if

its T ret
i

is underestimated. If this current Ti value is not

the largest among the current T values of the disks holding

the fragment’s siblings, being a fragment does not provide

additional benefit, as its parent request’s service efficiency is

bottlenecked at some other server that has the largest average

efficiency. Accordingly, the return of this fragment request is

T ret frag
i

= T ret
i

. Otherwise, this fragment holds the largest

Ti value, which is denoted by Tmax . We denote the second

largest Ti value by T sec max . The return of serving the ith
request, which is a fragment with n sibling subrequests, at

the SSD should be updated by

T ret frag
i

= T ret
i

+ (Tmax
− T sec max

i
) ∗ n. (3)

When the ith request, either a regular random request or

a fragment, arrives at a data server, we calculate its T ret
i

or

T ret frag
i

, respectively, and if it is positive it will be served

at the SSD. In addition to answering the question at each

server of which requests should be served by the SSD, in

consideration of the limited capacity of the SSD we also

need to quantitatively prioritize, according to their return

values, the caching of the requests in the SSD.

To enforce the caching priority we partition the SSD space

between the two types of requests—regular random requests

and fragments. When requested data is cached in the SSD

its corresponding return value is recorded with it. For all of

the data of the same type cached in the SSD we calculate

the average return values and the SSD space is partitioned

proportionally to the types’ respective averages. In this way

fragments on a slow disk causing their completed sibling

sub-requests to wait will produce a larger average return

value and have greater SSD space allocated. The cached data

items are replaced using the LRU replacement algorithm

if the allocation for its type is full. If the request to be

redirected to the SSD is a write, its data is written into the

SSD. If a read request arrives, iBridge will first check the

mapping table to see if it is cached. If so the data will be

read from the SSD, otherwise the request is served by the

disk. However, iBridge still evaluates its return value and

determines if its data should be cached. If so iBridge will

write the data to the SSD when the SSD is idle. During

quiet I/O-device periods a system thread is woken to write

dirty cached data in the SSD to the disk. These writes

are scheduled to form as many long sequential accesses as

possible for higher disk efficiency. To ensure reliability, the

dirty entries of the mapping table are immediately updated

on the SSD with the write requests to the SSD.

iBridge cannot help with I/O efficiency of read requests

if the requested data have not yet been cached in the SSD.

However, a production MPI program is often executed on a

parallel computer many times, possibly with different sets

of parameters. As the data access patterns of its processes

are generally consistent from one run to another run, the

performance-compromising fragments identified and cached

in the SSD in one run are very likely to appear in the

following runs and iBridge can improve performance.

In the discussion we assume each data server has only

one disk and one SSD. An extension to a system with more

disks or greater SSD capacity would be straightforward and

would not require modification of the described design.

III. PERFORMANCE EVALUATION

A. Experimental Setup

iBridge was prototyped on the Darwin cluster at Los

Alamos National Laboratory. The cluster includes 116 48-

core (12 core by 4 socket) 2GHz AMD Opteron 6168 nodes

running Fedora Linux of kernel-2.6.35.10. All nodes were

interconnected with a dual-rail 4X QDR Infiniband network.

We configured eight nodes as data servers and one node

as the meta-data server for the PVFS2 2.8.2 parallel file

system. Each data server had one 7200-RPM disk drive

(HP model MM0500FAMYT) and a 120GB SSD drive (HP

model MK0120EAVDT).

Table II summarizes the performance characteristics of the

storage devices. NCQ is enabled on all disks. The Noop [4]

I/O scheduler is used for SSD, and CFQ [2] for hard disk.

MPICH2 [19] compiled with ROMIO MPI-IO was used to

generate executables. By default data are striped over the

data servers with 64KB striping unit size. When iBridge is



SSD Hard Disk

Capacity 120GB 1TB

Interface SATA SAS

Sequential Read 160MB/s 85MB/s

Random Read 60MB/s 15MB/s

Sequential Write 140MB/s 80MB/s

Random Write 30MB/s 5MB/s

Table II
COMPARISON OF BASIC PERFORMANCE OF THE SSD AND HDD

DEVICES USED IN THE EXPERIMENTS. 4KB REQUESTS ARE USED IN

THE BENCHMARKING.

enabled an SSD partition of 10GB is used and the thresholds

for determining regular random requests and fragments are

both 20KB except where otherwise specified. To make our

comparison fair and conservative we include in program

execution time the time for writing dirty data back to the

hard disk after program termination. Before each run we

flush the system buffer caches to ensure that all requested

data are served at the storage devices. To ensure that write

throughput on the storage devices is correctly measured we

flush the dirty blocks in the memory to the storage devices

every second.

In this section we experimentally answer the following

questions.

• Can unaligned requests be effectively served using

iBridge in hybrid storage systems?

• Is iBridge effective for real scientific workloads with

diverse data access patterns?

• How efficiently is iBridge implemented in PVFS2?

• What are the performance implications for iBridge

when parameters such as the SSD size and threshold

of request size are changed?

B. The mpi-io-test Benchmark

We first revisit the mpi-io-test benchmark that is designed

to test the I/O throughput of PVFS2 for sequential data

access. The benchmark’s access can be configured as either

writes or reads. We remove the barrier functions from the

original program, making the program non-blocking and so

allowing more concurrent I/O requests to be generated. In

the experiments a 10GB file is accessed. First, with a 64-

process instance of the program, we measure the throughput

when the request size increases from 33KB, 65KB, to

129KB, as shown in Figures 4(a) and 4(b) for writes and

reads, respectively. When iBridge is used the throughput for

writes is increased by 105%, 183%, and 171%, respectively,

compared to the stock system. At a request size of 33KB the

sub-requests served at the disks are of sizes between 20KB

and 33KB, substantially smaller than the 64KB striping unit

size, while the sub-requests served by the disks for the 65KB

and 129KB request sizes can be much larger. Therefore,

iBridge’s throughputs for the 65KB and 129KB request sizes

are much larger, fairly close to that with the fully aligned

64KB requests, which is 167MB/s and shown as the “+0”

bars in Figure 4(a). For three request sizes, 33KB, 65KB,

and 129KB, the data served at the SSDs account for 19%,

10%, and 4%, respectively, of the total amount of data

accessed. We can see that iBridge is most effective for access

of very small fragments. The performance trend is similar

for read requests, as shown in Figure 4(b).
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Figure 4. Throughputs of the mpi-io-test benchmark with various request
sizes and request offsets. The requests in the program can be configured
either as (a) writes or (b) reads. For the cases where requests have a ’+xKB’
offset, the request size is always 64KB.

Next we introduce an option for the program to set a

request offset. We use a 64KB request size with 64 processes

to execute mpi-io-test. With no request offset a 64KB request

is dedicatedly served by one data server, and no cross-

boundary data access occurs. However, when an offset is

introduced every request is served by two data servers.

The results with offsets are denoted by +x in Figures 4(a)

and 4(b) for writes and reads, respectively. Because the

identified fragment requests are served by SSDs, iBridge can

efficiently serve large requests from the disks. As evidence

of the improved efficiency we show the distribution of sizes

of block-level read requests in Figure 5 for a file offset

of 10KB. As shown, request sizes of 128 sectors and 256

sectors (sector size 0.5KB) predominate, in contrast to what

is shown in Figure 2(e) wherein much smaller requests are
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Figure 5. Block-level request size distribution with 64KB requests and
10KB offset when iBridge is used for mpi-io-test with read requests.

frequent. When the offset is 0KB all requests are aligned and

iBridge does not redirect requests to the SSDs, so iBridge

has the same throughput as the stock system. However, with

non-zero offsets the throughout of iBridge changes little

while that for the stock system is reduced significantly by

40% and 226% on average for reads and writes, respectively.

In the stock system write requests are served more efficiently

than read requests. By comparing Figures 4(a) and 4(b),

it is apparent that in the stock system write throughput is

considerably less than corresponding read throughput in all

test scenarios except for the aligned 64KB (+0KB) case. This

is because the hard drives installed in our testbed exhibit

up to three-times different bandwidth (5MB/s vs. 15MB/s)

for random writes and random reads as shown in Table II.

By applying iBridge the throughput gap between writes and

reads is largely closed and both approach that of aligned

access.

Next we investigate the scalability of iBridge with in-

creasing number of processes. In the experiment the request

size is 65KB. As we increase the process count of mpi-

io-test from 16, 64, 128, to 512, I/O concurrency at data

servers correspondingly increases. I/O throughput with and

without iBridge is shown in Figure 6. iBridge consistently

improves the throughput, by 154% on average, for both reads

and writes. When 512 processes are used the throughput is

moderately lower than with a smaller number processes for

both the stock system and iBridge. We believe that this is

caused by access interference on the disks due to highly

concurrent requests from a large number of processes. In

these experiments only 10% of requested data is served by

the SSDs.

Lastly we investigate the scalability of iBridge with

increasing number of data servers. In the experiment we

run mpi-io-test with 64 processes and differing numbers of

data servers over which the file data is striped. For each

server configuration we first use the stock system to serve

requests of 64KB with the aligned access pattern to serve

as a performance reference. We then use requests of 65KB
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Figure 6. Throughputs without and with iBridge as process count increases.
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Figure 7. Throughputs of the mpi-io-test benchmark for request sizes 64KB
and 65KB as data server count increases. The requests in the program can
be configured as either writes (a), or reads (b).



to assess the performance of unaligned access in the stock

system and with iBridge. The general performance trend is

that with a larger number of data servers the throughput

improves in all of the test cases as more servers are available

to concurrently serve requests. For 65KB requests iBridge

consistently performs better than the stock system, nearly

closing the large performance gap between access with

65KB unaligned requests and 64KB aligned requests in

the stock system. As the gap increases with increasing

number of servers, the improvement provided by iBridge

also increases, especially for write requests, which have

lower throughputs than read requests with unaligned access.

C. The ior-mpi-io Benchmark

In this section we use the ior-mpi-io benchmark to study

the performance of iBridge with random data access pat-

terns. This benchmark is from the ASCI Purple benchmark

suite developed at Lawrence Livermore National Labora-

tory [14]. We run the benchmark with 64 processes accessing

a 10GB file. In the program a file is split into 64 chunks of

equal size and each process is responsible for sequentially

reading or writing one data chunk using requests whose sizes

can be configured. However, because requests for data at

the same relative offset are issued concurrently by different

processes, the effective access pattern is random from the

perspective of a parallel file system. In the experiments re-

quest sizes range over 33KB, 64KB, 65KB, and 129KB. The

program’s throughputs are shown in Figures 8(a) and 8(b).

For both reads and writes iBridge significantly improves

the throughput except for the case of fully aligned 64KB

requests when it has the same throughout as the stock

system. On average iBridge achieves a larger improvement

for writes (169%) than that for reads (48%), as writes from

the SSD to the disks can be highly optimized for strong

spatial locality. For request sizes of 33KB and 65KB, 19%

and 10% of total data are served from the SSDs, respectively,

reducing the load on the hard disks, which allows iBridge

to produce greater improvements, especially for writes. In

contrast, for 129KB accesses only 4% of data are served

from the SSDs. With such little help from the SSDs the

improvements are still substantial—35% and 60% for reads

and writes, respectively.

D. The BTIO Benchmark

Next we study the performance of iBridge in serving regu-

lar random requests with macro-benchmark BTIO, a Fortran

MPI program for solving the 3D compressible Navier-Stokes

equations [21]. We compile the code with the MPI-IO

option and use computing scale C which generates 6.8GB

data. In the experiment we increase the number of parallel

processes from 9, 16, 64, to 100. The program generates

random and very small I/O requests during execution. Unlike

the previous two benchmarks, with the increase of process

count from 9 to 100, I/O request size is correspondingly
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Figure 8. Throughputs of ior-mpi-io when request size is increased from
33KB to 129KB. Both writes (a) and reads (b) are evaluated.

reduced from 2160B to 640B, which are all regular random

requests. As Figure 9 shows, the program’s execution times

are reduced by 45%, 55%, 61%, and 59%, for 9, 16, 64,

and 100 processes, respectively. Because the threshold for

determining random requests is 20KB, all write requests are

served by the SSDs. By using SSDs, the proportion of I/O

time in the program’s total execution time is reduced from

58% to 4% on average with iBridge.

We also run the benchmark without iBridge with the entire

data file on SSDs to determine how efficiently iBridge is im-

plemented. Figure 10 shows the results with various numbers

of processes. We observe that iBridge helps further improve

I/O performance over the parallel file system using only SSD

for storage. BTIO is a write-intensive program and the data

in the write requests are sequentially written to the SSDs in a

log-structured format by iBridge. However, without iBridge

these requests were often written to random locations on

the SSDs, resulting in the reduced throughputs due to the

SSD’s bandwidth gap between sequential and random writes

(140MB/s and 30MB/s, respectively) as shown in Table II.

We also use BTIO to demonstrate the effect of available
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Figure 10. BTIO’s execution times with and without iBridge. Disk-only
refers to the stock system, and SSD-only refers to the system in which only
SSD is used as storage.

SSD capacity on I/O performance when using iBridge.

We decrease the size of SSD available for serving regular

random or fragment requests from 8GB, where all data could

potentially be served at the SSD, to 0GB where the SSDs

are effectively unavailable. The I/O times reported by the

benchmark are given in Figure 11. We observe an almost-

linear relationship between amount of data cached and I/O

performance for this benchmark. The I/O time is increased

by 12 times when the SSD size is 0GB, but the program’s

total execution time is only increased by 2.2 times because

its computation time is also significant.

E. Trace Replay of Scientific Programs

In this section we evaluate iBridge by replaying the four

scientific workload traces examined in Section I. The first

two traces, ALEGRA.2744 and ALEGRA.5832, are derived

from programs developed for shock and multiphysics sim-

ulations. The third trace, CTH, contains I/O accesses of
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Figure 11. BTIO’s I/O time as a function of SSD capacity.

strong shock wave, solid mechanics programs. Trace S3D

is from a combustion simulation. We replay the traces,

which provide the offset and size of each request, but not

the process ID that issued it, with a single process using

the MPI-IO library to access data in PVFS2. We restrict

the data size to 10GB during trace replay. The average

request service times without and with iBridge are shown

in Table III. With iBridge the request service times are

reduced by 13.9%, 18.7%, 25.9%, and 29.8%, respectively.

Because CTH and S3D have 12% and 24% more random and

unaligned requests, respectively, than ALEGRA, they exhibit

larger performance improvements. The average request size

of S3D is significantly larger than the other three workloads,

making its average service request time about twice as long.

ALEGRA.2744 ALEGRA.5832 CTH S3D

Stock 16.6ms 17.2ms 19.4ms 36.0ms

iBridge 14.2ms 14.0ms 14.4ms 25.3ms

Table III
COMPARISON OF REQUEST SERVICE TIMES FOR I/O TRACES REPLAYED

WITH AND WITHOUT USING iBridge.

F. Performance of Heterogeneous Workloads

Fragments and regular random requests are handled dif-

ferently by iBridge considering their relative benefits of

being served by SSD. To assess its effectiveness we run

mpi-io-test, which generates fragments, concurrently with

BTIO, which generates regular random requests, to observe

the behavior of iBridge under heterogeneous workloads.

Specifically, mpi-io-test is executed with 64 processes and

65KB requests to write to a 10GB file. BTIO is executed with

the C computing scale and 64 processes to access another

file of 6.8GB. We first run the two benchmarks on the stock

system without SSDs. Then the SSD cache, whose total
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Figure 12. I/O throughput when BTIO and mpi-io-test are run concurrently.
For iBridge, the SSD space is either statically partitioned 1:1 or 1:2 for
regular random requests and fragments, or allowed to dynamically adapt.

size is 8GB, is statically divided into two partitions with

relative sizes either 1:1 or 1:2, for regular random requests

and fragments, respectively, for use by iBridge. We then

compare with iBridge dynamically adjusting the partition as

it is designed.

Figure 12 shows the I/O throughput of the two bench-

marks, and the system’s aggregate throughput. iBridge

achieves a 84MB/s system-wide throughput, which is 53%

higher than that of the stock system where SSD is not

used. Compared to the 1:1 and 1:2 cases where the SSD

is statically partitioned, iBridge’s dynamic partitioning im-

proves the aggregate I/O throughput by 13% and 5%,

respectively. As shown in Figure 12, the BTIO benchmark

has consistently higher throughput improvement over mpi-

io-test because it issues requests of very small size and

serving such requests on the SSDs can significantly improve

the I/O efficiency of the disks.

G. Effect of Request Size Threshold

iBridge uses a request size threshold to determine whether

a request should be considered a regular random request or

a fragment. We have used a default 20KB as the threshold.

Next we investigate the effect of the threshold size on I/O

performance by running mpi-io-test with 64 processes and

65KB request size. The request size threshold is increased

from 10KB, 20KB, 30KB, to 40KB. Figure 13 shows the

throughputs normalized to that with aligned 64KB requests

and 64 processes. It also shows the amount of SSD space

used in all data servers by iBridge. This value is normalized

to the total amount of data accessed in one execution.

In general, as the threshold value increases I/O throughput

improves because more requests are served by the SSDs.

When the threshold value is 40KB, we see an I/O throughput

increase of 56% over that with a 10KB threshold. However,

at the same time the normalized SSD usage also increases

from 3% with the 10KB threshold to 42% with the 40KB
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Figure 13. Throughput of mpi-io-test with 65KB requests normalized
to that of aligned 64KB requests (164MB/s), and SSD usage with 65KB
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threshold. We chose 20KB as the default threshold to

balance performance and SSD longevity. For the mpi-io-test

benchmark the default threshold achieves a throughput only

21% lower than with a 40KB threshold, but with SSD usage

76% less.

IV. RELATED WORK

iBridge is proposed to address the performance loss due

to unaligned data access by using an SSD-augmented hybrid

storage system at data servers. Here we survey related work

on approaches to handling unaligned data access, and other

SSD-related approaches, for performance optimization of

parallel I/O.

A. Approaches to Handle Unaligned Data Access

Unaligned data access has been identified as one of the

I/O bottlenecks in high performance computing [17]. Ward

presented four rules for end-users to develop I/O-friendly

applications [27]. However, developers usually consider only

logical file address space in their programming. Accesses

that are well aligned in the logical file address space can be

mapped to unaligned disk accesses because of data striping

and using I/O optimization techniques such as collective

I/O and data sieving [26] in MPI-IO middleware. Data

prefetching techniques [6], [8], which hide I/O time behind

computation time, become less effective as a program can

spends more time on I/O than on computation, and with

high access concurrency due to uncoordinated requests from

different processes of an MPI program [31]. Zhang et al.

proposed a data-driven execution mode to improve I/O

efficiency via program pre-execution when program perfor-

mance hinges on I/O resources [33]. However, the advantage

of the method is reduced when I/O dependency becomes

significant. Data caching can largely hide performance loss

for unaligned data access [20], [18], [24]. However, DRAM-

based cache can be of very limited size and DRAM is



much more expensive than SSD. Bent et al. proposed PLFS

to handle check-pointing workloads that access a shared

file in parallel file systems [5]. Through rearranging data

access space using a log-structured file system, unaligned

data access could be reduced. Nevertheless, this approach

may not be effective for regular workloads, as spatial locality

is largely lost in the log file system.

Instead of using SSD, Wang et al. proposed to replicate

frequently accessed data chunks at the compute nodes’ local

disks to reduce data access latency [28]. The frequently

accessed data chunks are identified through analysis of

I/O traces collected in a profiling run. The legitimacy of

their approach of identifying data of certain access patterns

through profiling runs is built on their observations that

“In scientific applications, file access patterns are generally

independent of the data values stored.” Using on-disk data

replication for improving I/O performance is also proposed

on data servers [32]. Nowadays, SSD is a readily available

device and is well-suited for speeding up the disk access.

For read requests, our identification and in-SSD caching of

fragments in prior runs for accelerating future unaligned read

requests are based on a similar rationale.

B. Using SSDs for Parallel I/O Performance Optimization

Because the performance of the hard disk can be sub-

stantially degraded by random access because of their use

of mechanical moving parts, the increasing trend towards

high-end storage has elevated SSDs, essentially a uniform

memory access device, to first class storage entities in

Petascale machines. Gordon is the first SSD-based cluster

for high performance computing [10]. Considering limited

budgets researchers have proposed other methods to more

economically use SSDs. Chen et al. designed Hystor to

use disks to handle regular data and SSDs to handle per-

formance critical data that are identified at run time based

on data access patterns [9]. Compared to Hystor, iBridge

uses SSDs as a temporal area for handling randomness

caused by unaligned I/O requests. iBridge gives priority to

more performance-critical unaligned data access than regular

random requests. iTransformer [31] was recently proposed to

help disk schedulers handle high I/O concurrency. Requested

data are either committed to disks or to SSDs according

to the I/O workload’s spatial locality. SSDs have also been

adopted in other layers of the memory hierarchy for effec-

tive data management. Prabhakar et al. proposed a multi-

layer data staging scheme using DRAM, SSD, and disk to

satisfy users’ QoS requirements, mainly for checkpointing

time [23]. Wang et al. implemented NVMalloc to share

SSD space at compute servers for out-of-core HPC appli-

cations [30].

V. CONCLUSION

We have presented the design and implementation of

iBridge, a hybrid storage scheme to handle the fragmentation

resulting from unaligned parallel data access using the MPI-

IO library and parallel file systems. iBridge identifies and

serves fragments and regular random requests only when

the cost-effectiveness of serving them on SSD can maximize

the benefits of the use of SSDs. By doing so it distinguishes

itself from works in which SSD is simply used for caching

small and/or random data. iBridge is implemented in the

client and server sides of the PVFS2 parallel file system. Our

experimental evaluation, with both running of representative

benchmarks and the replaying of real scientific workloads,

shows that iBridge can improve I/O throughput by more than

a factor of two on average for representative workloads.
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