
A Fine-Grained Alternative to the Subsumption Architecture
for Mobile Robot Control

J. Kenneth Rosenblatt and David W. Payton

Hughes Artificial Intelligence Center
Hughes Research Laboratories

3011 Malibu Canyon Road
Malibu, California 90265

ABSTRACT

We present an architecture for robot control which can be viewed as a very fine-grained

layered architecture motivated by the principles underlying the subsumption architecture.

The subsumption architecture provides a powerful means for defining intelligent robot

control mechanisms through the layered composition of simple behaviors. However, we

have found that there are basic limitations inherent in this architecture due to the

inaccessibility of information internal to a behavior. While adhering to the basic concept

of building a robot control system through successive layers of competence, task

achieving behaviors in our system are fragmented into many smaller decision-making

units. Each of these units simply has the task of transforming a set of input activations

into an output activation, so that the role that any unit plays in the system is defined

entirely by how it is connected to other units. This fine-grained nature of our architecture

permits a more flexible arbitration of commands between behaviors and provides

incrementally added behaviors with complete access to the internal state of existing

behaviors. A detailed example of an operational robot control system for cross-country

navigation is given.

1. INTRODUCTION

An autonomous mobile robot must be constantly involved in the processing of large
amounts of disparate sensory data in order to produce meaningful actions in its
environment. The ability of a control architecture to support this immense processing task
in a timely manner is significantly affected by the organization of information pathways
within the architecture. Some architectures have been explicitly designed to maximize the
amount of parallel information flow from sensing to action so as to provide minimal delay
in responding to a constantly changing environment. Our own experience with such a
system has led us to a better understanding of the types of difficulties that can arise when
action must be derived from the results of multiple independent decision-making
processes.

We present an architecture for robot control which can be viewed as a very fine-grained
layered architecture motivated by the principles underlying the subsumption architecture
[1]. The positive aspects of the subsumption architecture design methodology are
described in Section 2. In particular, we discuss the advantages of distributed control and
perceptual knowledge and the benefits of a layered system where capabilities can be
incrementally added. The limitations found in this architecture are then examined in
Section 3. The inevitable loss of information caused by modules with internal state is
identified as the root cause of these problems. A connectionist solution to these
shortcomings is then proposed in Section 4. Behaviors in this architecture are constructed
of units which maximize the amount of information available to other behaviors, so that the
communication barriers between behaviors do not exist. In Section 5, we provide a
detailed example of how a robot control system is constructed within this framework,
illustrating how problems with our previous subsumption style architecture have been
overcome. In this section, a mechanism is also introduced which is used to insure that the
system will generate coherent action.

2. SYSTEM DESIGN METHODOLOGY

The subsumption architecture advocated by Brooks espouses principles of system design
which we believe to be crucial to the successful construction of robot navigation systems
[1]. A central tenet of the subsumption architecture is that a robot control system should be
decomposed according to the desired external manifestations of the system, rather than
divided along functional lines based on the structure of internal solutions.

Horizontal Decomposition

As Brooks has argued, the traditional horizontal decomposition of the robot control
problem, shown in Figure 1, has certain problems. In such architectures, sensory data is
fused to build a centralized world representation, a plan is generated based on the current
world representation, that plan is executed, and the process repeats. Such an organization
creates bottlenecks by having centralized loci of representation and control. All sensor data
must be fused and all tasks must be coordinated before any action can be taken, no matter
how urgent or how insignificant that action may be. Besides introducing unnecessary

delays, such a decomposition also leads to brittleness because the entire system
degenerates if any part of the system is not functioning correctly.

P
E

R
C

E
P

T
IO

N

W
O

R
L

D
M

O
D

E
L

IN
G

P
L

A
N

E
X

E
C

U
T

IO
N

P
L

A
N

G
E

N
E

R
A

T
IO

N

Sensors Actuators

Figure 1. Traditional horizontal decomposition of robotic systems.

Vertical Decomposition

To address the problems of horizontal decomposition, the subsumption architecture is
decomposed vertically according to the activities which the robot is to exhibit. A behavior
encapsulates the perception, planning, and task execution capabilities necessary to achieve
one specific aspect of robot control. Because an individual component in such a system is
capable of producing meaningful action, behaviors can be composed to form levels of
competence [1], each of which endows the robot control system with a particular
capability. Successive levels can be incrementally added in order to enhance the
functionality of the robot. Level i in Figure 2 would endow the robot control system with
a basic level of competence such as the ability to move without colliding. When new levels
are added to provide greater functionality, the existing levels remain intact so that the
capabilities they provide are still available.

Level iii

Level ii

Level i
ActuatorsSensors

Figure 2. Vertical decomposition of robot control
system yields successive levels of competence.

Distributed Control

An important result of the vertical decomposition of the subsumption architecture is that
control is distributed among a number of behaviors operating asynchronously and in
parallel, each concerned with a very narrow aspect of the navigation problem. A behavior
module is implemented as an augmented finite state machine which has internal instance
variables as well as states. These modules are interconnected through a network of
message-carrying wires, each receiving multiple inputs and generating multiple outputs as
shown in Figure 3. A module may overwrite the data on the input or output line of another
module; this is referred to as subsumption or inhibition, respectively.

BEHAVIOR
MODULE

IS

Figure 3. A module receives input data which may be
subsumed, and outputs data which may be inhibited.

The navigation system used by Hughes for control of the Autonomous Land Vehicle
(ALV) employs a distributed control mechanism very similar to that used within the
subsumption architecture [2]. This system differs from the subsumption architecture in
that behaviors are procedural units rather than finite state machines, and that subsumption
and inhibition are effected through a blackboard system rather than being explicitly wired
between modules. These differences allow the system to arbitrate commands according to
data content as well as priority, and behavior priorities may be varied dynamically. The
successful use of subsumption style systems to control both the ALV and the Artificial
Insects [3] of the MIT AI Lab demonstrates that coherent action can be produced from the
interaction of independent concurrent behaviors.

Distributed World Representation

The vertical decomposition of the subsumption architecture also eliminates the bottleneck
which occurs when sensor data must be fused with data from other sensors and integrated
with previous data to form a central world representation. Instead, behaviors only receive
that sensory data which is directly relevant to their particular decision-making needs. In
this way, each layer requires only a partial view of the world, so there is no need to fuse all
available data into a single coherent model. Attention can instead be focused on the
production of coherent action. By appropriately fusing behavior commands through
arbitration, a robot control system can respond to its environment without the delays
imposed by sensor fusion. In effect, sensor fusion is supplanted by command fusion.

3. LIMITATIONS OF THE SUBSUMPTION ARCHITECTURE

Although the subsumption architecture has many good points, we have found through
experience with a similar architecture that there are limitations. Brooks states that one of
the requirements for a robot control system is that it be capable of satisfying multiple,
possibly conflicting goals [1]. In many cases, however, this cannot be achieved. There
can be situations in which the commands from two related behaviors are in direct conflict
with one another. As the name "subsumption" implies, such conflicts are often resolved
by having one behavior's commands completely override the other's. Even though it may
be highly desirable for the system to act to simultaneously accommodate the needs of both
behaviors, there is no way to arrive at a compromise solution.

Inadequate Command Fusion

This inability to compromise stems from the fact that the priority-based arbitration of
commands masks much of what is known within each individual behavior. In the process
of selecting a command, behaviors may have to weigh several alternatives in order to make
an appropriate choice. In other behaviors, it is more natural to rule out inappropriate action
rather than to select the most suitable one, yet their only means of gaining influence is by
completely subsuming or inhibiting the commands of other behaviors. A compromise
between behaviors is not achievable because a behavior cannot express its relative
preferences for the alternatives but can only indicate its first choice. Whenever one
command is inhibited by another, the information contained within that command is
completely lost.

Figure 4 illustrates the nature of the problem. Each behavior considers the five available
command alternatives, labeled A through E in the figure. As indicated by the solid line
originating from Behavior 1, it has chosen A as the alternative which best fulfills its
requirements. As suggested by the dashed lines, Behavior 1 has also determined that B

and E are less desirable yet still satisfactory, but it has no means of expressing this
information. Likewise, Behavior 2 considers D to be the best choice but would also be
satisfied with alternative E.

C D EBA

BEHAVIOR
1

BEHAVIOR
2

Figure 4. Behaviors must consider several alternatives in making a decision.

If the behaviors are configured as in Figure 5, then the output will be A if Behavior 1 is
actively inhibiting the output line of Behavior 2, or D if Behavior 1 remains quiescent. In
either case, the concerns of one of the behaviors will be disregarded. Since information
has been lost, there is no way to properly arbitrate between the two disparate commands.
This is unfortunate since there does exist a command option, E, which is consistent with
the requirements of both behaviors.

BEHAVIOR
1

BEHAVIOR
2 I

D

A

A

Figure 5. Information loss with priority-based arbitration of behaviors

In practice, during our development of behaviors for cross-country navigation [4], we
found that this situation could only be dealt with by creating one larger behavior which
issued commands based on the data and concerns of the two smaller behaviors, thus
violating the goal of maintaining modularity and distributed control. The fundamental
problem is that a behavior's output is an abstraction of all the information which that
behavior computed in order to reach its conclusion.

Inaccessibility of Internal State

Another difficulty found with encapsulating behaviors within a set of finite state machines
is that the internal state of these behaviors becomes inaccessible to successive layers. The
designer of a given layer in a subsumption network cannot anticipate the needs of future
layers, and, ideally, the designer should not have to predict all future interactions with the
current layer. In practice, however, each new layer places new demands on the lower
layers, and, invariably, there is a need to modify behaviors in existing layers in order to
provide for the addition of new levels of competence. An example of this occurring within
the subsumption architecture can be found in [5], where a module (Motor) in the first level
of competence had to be modified to provide a new output (Travel) for use by a second
level module.

Disruption of Levels of Competence

Another problem with one behavior completely inhibiting the output of another is that it
undermines one of the strengths of the subsumption architecture: that a given level of
competence can always be counted on to reliably provide certain capabilities regardless of
subsequent levels. For example, a level of competence may be established which allows
the robot to avoid obstacles, but the robot may collide with an obstacle when the output of
that level is inhibited. Likewise, when the input to a module is subsumed, the information
contained within the overridden data is lost. With the loss of this data, it can no longer be
guaranteed that the behaviors will be able to adequately perform the functions for which
their level of competence was defined.

4. ENHANCEMENT OF SUBSUMPTION ARCHITECTURE

Our solution to the problems described above is to make the behaviors as fine-grained as
possible so that a module has no inaccessible internal state. Instead of finite state machines
with internal states and instance variables, behaviors are comprised of atomic functional
elements.

Fine-Grained Behaviors

In our alternative connectionist architecture, behaviors are divided into a collection of
simple decision-making units. As shown in Figure 6, each unit receives multiple weighted
inputs from other units and from external data sources, computes an activation level, and
issues a single output [6, 7]. The activation and output functions for each unit can be any
mapping from real numbers to a single real number value. The only constraint is that these
functions be defined for inputs between -1 and 1, inclusive, and that the outputs be within
this same range. The network is highly structured: there is no attempt to interconnect
homogeneous units which form a distributed knowledge representation. Each unit
represents a specific concept which the designer establishes through carefully chosen
connections, and the functions for each unit are designated based on the desired output
characteristics for that unit.

O Wi i j O j
A j

Oi is the output of unit i.
Wij is the weight on the link from unit i to unit j.
Aj = fA(O1W1j, ..., OnWnj), is the activation level of unit j with n weighted inputs.
Oj = fO(Aj), is the output of unit j.

Figure 6. A network unit.

Distributed Command Arbitration

Each behavior is now distributed among several units so that the desirability for each
choice can be explicitly expressed by the output value of the corresponding unit. In
addition, since outputs may be negative, a behavior can directly indicate which choices it
finds to be undesirable. To illustrate, let us consider how a compromise can now be
reached in the situation described earlier where two behaviors are choosing between a set
of command alternatives labeled A through E. As shown in Figure 7, behavior alternatives
are represented by the appropriate place-coding of the component units.

BEHAVIOR 1

BEHAVIOR 2

C EDA B

Figure 7. Fine-grained behaviors explicitly
indicate preference for each alternative.

The level of activation for each unit in the figure is indicated by the diameter of the circle
representing that unit, with a filled circle signifying positive activation and an open circle
denoting a negative activation level. The output of each behavior unit serves as input to the
corresponding command unit, as indicated by the arrows in the figure. The relative
priority of each behavior is established by the weight on the links to the command units.
Positive and negative activations are combined for each command unit, and the one with
the highest activation (E in this example) is chosen as the option which best satisfies the
needs of both behaviors. Thus, a connectionist architecture makes it possible to
simultaneously satisfy the constraints of multiple independent behaviors.

Additional Levels Of Competence

As we build up levels of competence, the connections between a new behavior and existing
behaviors provide a rich means for expressing commands. New behaviors do not
completely subsume the function of existing behaviors, but merely bias decisions in favor
of different alternatives. Thus, an established level of competence remains intact and need
not be suppressed before behaviors within higher levels of competence may express their
concerns.

In keeping with our philosophy of reducing the grain-size of decision-making units, the
function computed by each unit in the network may have no internal variables. Thus, the
state of a behavior is easily accessible to any other behavior and there is no need to define
an interface which might need subsequent revision.

5. AN INSTANCE OF FINE-GRAINED BEHAVIORS FOR ROBOT CONTROL

To illustrate how fine-grained distributed behaviors can be constructed for robot control
and how capabilities may be incrementally added, we present a portion of the network
which has been used to control a simulated robotic vehicle.

First Level of Competence

The first level of competence allows the robot to avoid obstacles while wandering
aimlessly. This is accomplished by behaviors which react to sensors on-board the vehicle.

SENSORY INPUT

One type of processed sensory data available to the planner is the Vehicle Model Trajectory
(VMT) [8]. A VMT indicates how far the vehicle may safely travel along a linear trajectory
in each of several headings, and whether an obstacle is known to exist in that direction. In
Figure 8a, the distance known to be safe at each azimuth is proportional to the length of the
line drawn, and the dark squares indicate obstacles at -x° and -y°.

- x °

x °

y °

- y °

0 °

LENGTH

OBSTACLE

(a)

(b)

Figure 8. (a) Vehicle Model Trajectory output, and
(b) corresponding input units.

INPUT UNITS

To make the data available for use by those behaviors which base their decisions on
VMTs, the first step is to create input units which represent VMT data. To this end, two
groups of units are created, one to represent the trajectory lengths and one to represent
trajectory obstacles. These groups of units are labeled LENGTH and OBSTACLE,
respectively, as shown in Figure 8b. Each group contains one unit for each trajectory in a
VMT, and the direction that unit represents is indicated by its position within the group.
Thus, if the directions of the trajectories were as in Figure 8, the first unit in each group
would represent data concerning the trajectory at -y°, the second unit would correspond to
the trajectory at -x°, the third would be 0° straight ahead, and so on. The activation of a
LENGTH unit is proportional to the length of the corresponding trajectory, and the
activation of an OBSTACLE unit is 1 if the corresponding trajectory terminates at a known
obstacle or 0 otherwise.

TRAJECTORY SELECTION BEHAVIOR

The next step is to use the LENGTH and OBSTACLE input units described above to
determine which trajectories pose hazards and which can be followed safely. This is
accomplished by the SAFE TRAJECTORY group shown in Figure 9. Each unit in this
group combines these inputs to produce an output value which reflects how safe it is to
proceed in each direction. Only links for the center unit in a group are shown for clarity;
the links for the other units are equivalent. A plus (+) or minus (-) sign next to a link
indicates the sign of that link's weight. Thus, the activation of a SAFE TRAJECTORY unit
increases with the activation of the corresponding LENGTH unit and decreases with the
activation of the corresponding OBSTACLE unit.

LENGTH OBSTACLE

SAFE TRAJECTORY

+ -

Figure 9. The combination of LENGTH and OBSTACLE inputs.

The SAFE TRAJECTORY group indicates the relative safety of traveling in each direction
when considered in isolation, but it is also desirable to avoid traveling adjacent to an unsafe
trajectory. Therefore, an intermediate set of units is introduced which represents the
presence of undesirable neighbors. The UNSAFE LEFT NEIGHBOR and UNSAFE RIGHT

NEIGHBOR groups, shown in Figure 10, provide negative activation whenever a neighbor
is more hazardous than the trajectory being evaluated. The SAFE PATH group can then
combine these to indicate how safe each trajectory is when its neighbors are taken into
consideration as well. Thus, since the trajectory at 0° is relatively short, the UNSAFE LEFT

NEIGHBOR unit for x° is activated. The result is that the SAFE PATH unit for y° is more
activated than the one for x°, even though the opposite is true for the SAFE TRAJECTORY

units. The units in Figure 10 constitute a behavior which expresses preferences for the
turn commands based on VMT input.

UNSAFE RIGHT NEIGHBORUNSAFE LEFT NEIGHBOR

- -

+- + -

+

SAFE TRAJECTORY

TURN CHOICES
0
o

x
o

-x
o

y
o

-y
o

SAFE PATH

TRAJECTORY SELECTION BEHAVIOR

Figure 10. TRAJECTORY SELECTION behavior
expresses preference for each turn choice.

The outputs of the TRAJECTORY SELECTION behavior are connected to the TURN

CHOICES group of units, which represent the available turn choices. Since only one
behavior is inputting preferences to these units, their activations correspond exactly with

the activations of the SAFE PATH units; however, as other behaviors are added which
influence the choice of a heading, the TURN CHOICES activations will reflect all these
behaviors. The activation levels of the TURN CHOICES group are then fed into a winner-
take-all network, which results in exactly one of the CHOSEN TURN units having an
activation of 1 and all the rest having an activation of 0, as shown in Figure 11. The
choice this one active unit represents is then used in sending turn commands to the vehicle.

WINNER-TAKE-ALL NETWORK

TURN CHOICES
0
o

x
o

-x
o

y
o

-y
o

CHOSEN TURN

0
o

x
o

-x
o

y
o

-y
o

Figure 11. Winner-take-all network selects the most activated choice.

TRAJECTORY SPEED BEHAVIOR

The internal states of this behavior are also available for use by other behaviors. For
example, once a choice has been made as to which direction the vehicle should head, it is
necessary to select a suitable speed. In our previous non-connectionist implementation of
behaviors, the length of the trajectory in the chosen direction was used in computing a
speed. However, much more information is now accessible from units within the
TRAJECTORY SELECTION behavior; the activation of a SAFE PATH unit reflects not
only the length of the corresponding trajectory, but also the presence or absence of an
obstacle and the traversability of the adjacent trajectories. Since all these factors influence
how safe travel along a particular trajectory is, the value of the chosen SAFE PATH unit is a
better measure for determining an appropriate speed. This value can be extracted by the
"Chosen Value" subnetwork shown in Figure 12. The CHOSEN SAFE PATH units multiply
the inputs from the SAFE PATH and CHOSEN TURN units, so that a CHOSEN SAFE PATH

unit is nonzero only if the output of the linked CHOSEN TURN unit is 1, in which case the
value is equal to the corresponding SAFE PATH unit. The outputs of these units are then
input to the CHOSEN SAFE PATH VALUE unit, where a sum yields the desired result. The
SPEED unit then sets the vehicle speed as a function of this value.

CHOSEN TURN

0o xo- xo yo- yo

SAFE PATH

CHOSEN
SAFE PATH

CHOSEN SAFE
PATH VALUE

S P E E D

TRAJECTORY SPEED BEHAVIOR

Figure 12. TRAJECTORY SPEED behavior.

ADJUST SPEED BEHAVIOR

As the vehicle proceeds along the chosen trajectory at the established speed, the rate of
travel should diminish since the distance ahead known to be safe is reduced. This task can

be accomplished very simply by making use of the existing units and adding in a single
unit which represents the distance the vehicle has traveled since receiving the last VMT
input. This MOVEMENT unit has a negatively weighted link to the SAFE TRAJECTORY

units so that it decreases their activation, as shown in Figure 13. This leads to a decrease
in the activation of the SAFE PATH units, so that they now represent the safety of travel at
all times, rather than just at the time the VMT input is received. Thus, the functionality of
existing behaviors can be extended by providing them with additional information, without
a need to subsume existing data.

+ --
MOVEMENT

SAFE TRAJECTORY

SPEED

ADJUST SPEED BEHAVIOR

TRAJECTORY SELECTION BEHAVIOR

TRAJECTORY SPEED BEHAVIOR

LENGTH OBSTACLE

Figure 13. ADJUST SPEED behavior.

Thus, the fine-grained distributed implementation of a behavior not only provides access to
all internal state, but it also allows for behaviors to share subparts and thereby avoid
computational and functional redundancy. Once the vehicle is proceeding along in the
chosen direction, the MOVEMENT unit's output will increase, leading to a decrease in the
activation of each SAFE PATH unit. This has the desirable effect of reducing the output of
the CHOSEN SAFE PATH VALUE unit so that the speed will be diminished. However, a
deleterious side effect could occur: as the values of the SAFE PATH units change, the
relative activations of these units could change so that the unit which originally had the
greatest output, and therefore was chosen, might no longer have the largest output. While
in the process of following a chosen trajectory, that choice could suddenly change, leading
to unpredictable behavior.

SELECTIVE UNIT UPDATE

To overcome this problem, a "latch" of some sort is needed so that a decision cannot be
countermanded prematurely. The TURN CHOICES units need to receive new values from
the SAFE PATH units when the changes reflect a new VMT input, but would like to ignore
new values resulting from a change in the MOVEMENT input. This is accomplished by
propagating markers through the network when new input arrives and allowing units to
conditionally update their activation based on the arrival of these markers. When a new
value is entered into an input unit, for one time step the links emanating from that unit not
only carry a numerical value, but also transmit a tag which is unique to that unit (or unique
to the group of units it is a member of). Thus, when vehicle movement is reported and a
new value is input to the MOVEMENT unit, for the next time step the links from that unit
will bear a Movement new input tag, as well as a new value from the unit's output. Next,

each of the SAFE TRAJECTORY units will perform the default action, which is to receive
the new data and tag, apply its unit functions to compute a new activation level and output,
and propagate the tag through its outgoing links. The Movement tag will continue to
propagate through the network until it reaches the TURN CHOICES group of units. The
definition of these units specifies that their activation values should only be updated when a
Length or Obstacle new input tag is received, so their values will remain unaffected when
the Movement tag arrives. Thus, the outputs of the SAFE PATH units will have changed so
that the activation of the CHOSEN SAFE PATH VALUE unit will change and the vehicle
speed will be reduced, but the TURN CHOICES units will retain the activations which were
computed when a VMT last arrived, so that the choice of a turn direction will not change
until new VMT input is available. Propagation markers are also used to detect and avoid
cycles in the network.

Second Level of Competence

GRADIENT FIELD

The above behaviors constitute a basic level of competence which endows the robot with
the ability to avoid obstacles indicated in VMT input. Another source of information that is
used in deciding upon a vehicle heading is the gradient field [9], which indicates the
globally optimal route to a goal from any location. A representative gradient field is shown
in Figure 14. The optimal path from any given point to the goal can be traced out by
following the arrows. During the execution of a planned route, the gradient field is
indexed by the current vehicle position and a desired heading is determined.

OBSTACLE

OBSTACLE

GOAL

X

Figure 14. Gradient field.

PURSUE GOAL BEHAVIOR

The units which receive the gradient field input are shown in Figure 15. In this example,
the gradient field indicates that -x° is currently the preferred direction of travel, so the
corresponding unit is the most highly activated. The activation for units representing each
of the other directions is a function of the angle between that direction and the preferred
direction. Note that a heading of y° significantly diverges from -x°, so that input unit has a
negative activation. The FOLLOW GRADIENT units constitute a behavior which uses the
GRADIENT FIELD units as input. This PURSUE GOAL behavior favors heading in a
direction consistent with the gradient field. The choice of activation function for these

units is designed so that the sensitivity to the divergence angle is initially small and
increases as the divergence increases.

GRADIENT FIELD

FOLLOW GRADIENT

0
o

x
o

-x
o

y
o

-y
o

PURSUE GOAL BEHAVIOR

Figure 15. PURSUE GOAL behavior.

The use of a single desired heading as input from the route planner is a vestige from our
previous system. This will be changed so that the desirability of each direction is evaluated
independently so that the gradient field input will be more detailed. Thus, the explicit
representation of each alternative also allows for greater communication between
components of the planning system.

COMMAND FUSION

The PURSUE GOAL behavior endows the robot control system with a higher level of
competence by allowing the robot to achieve a specific goal. In our earlier subsumption
style architecture, one behavior had to be constructed which combined gradient field input
with VMT input, internally fusing commands in order to reach a decision. In our
connectionist architecture, the command fusion can be achieved though the network itself
via the TURN CHOICE units, as shown in Figure 16. Therefore, the TRAJECTORY

SELECTION behavior can operate as always, utterly unaffected by the addition of the
PURSUE GOAL behavior. The TURN CHOICES unit for x° is now the most activated, so that
would be chosen instead of y° if both behaviors are used. Note that because the TURN

CHOICES units have been defined to only update their activation based on new Length or
Obstacle input, a change in the gradient field input will not have an effect on the chosen
turn direction while a trajectory is being followed, but will have an effect once new VMT
input arrives. Thus, the selective unit update mechanism once again provides a way to
combine behaviors while maintaining the integrity of their decisions.

FOLLOW GRADIENT

+

SAFE PATH

+

TURN CHOICES
0o xo-xo yo-yo

Figure 16. Fusion of commands from the TRAJECTORY
SELECTION and PURSUE GOAL behaviors.

GRADIENT SPEED BEHAVIOR

The FOLLOW GRADIENT units also influence the vehicle speed in the same manner as the
SAFE PATH units do; i.e., a CHOSEN FOLLOW GRADIENT VALUE unit is created which
has a link to the SPEED unit so that the vehicle speed will vary according to whether the
robot is traveling with or against the gradient field. This configuration is shown in Figure
17.

CHOSEN TURN

FOLLOW GRADIENT

CHOSEN FOLLOW
GRADIENT

CHOSEN FOLLOW
GRADIENT VALUE

0o xo- xo yo- yo

S P E E D

CHOSEN SAFE
PATH VALUE

TRAJECTORY SPEED BEHAVIOR

GRADIENT SPEED BEHAVIOR

Figure 17. GRADIENT SPEED behavior influences vehicle speed.

The behaviors described above are part of a larger network which has been implemented
and successfully used to navigate a vehicle in simulation. The vehicle simulation is a
detailed and complex one, and behaviors previously developed using this simulation have
been successfully transferred without modification for use on an actual autonomous vehicle
[8]. In simulation, the vehicle winds its way around a variety of obstacles, always
avoiding any path indicated as unsafe by a VMT; but the decisions of the robot control
system are also influenced by the gradient field input so that it completely avoids mapped
areas which are known to be difficult to traverse, and the vehicle ultimately reaches the
goal point.

6. CONCLUSION

By identifying the difficulties resulting from information loss within a subsumption style
architecture, we have been able to develop an alternative architecture which overcomes
many of these problems. Our primary objective was to eliminate the strict priority-based
scheme for arbitrating behavior commands, and allow the selection of commands which
best meet the demands of all behaviors. The resulting connectionist architecture provides a
very fine-grained methodology for constructing behaviors. Since the processing elements
in the system are extremely simple, behaviors are defined by the connections between
elements rather than by the properties of the elements themselves. Since no information is
hidden within these elements, the internal representations used in one behavior are
completely accessible to all other behaviors. The result is a system with no internal
communication barriers.

Although our architecture takes a different approach to behavior modularity and command
arbitration, our overall approach to system development is guided by the same principles
which motivated the subsumption architecture. In particular ,we view the process of
system development as one of building successive layers of competence. However, we

find that by taking a finer grained approach, new layers can be introduced with minimal
alteration of existing layers and without disrupting their functionality.

7. ACKNOWLEDGEMENTS

Many of the concepts presented in this paper came about through fruitful discussions with
Thomas Caudell, Charlie Dolan, and Nigel Goddard. This work was funded in part by
DARPA contract DACA76-85-C-0017.

8. REFERENCES

[1] R. A. Brooks, "A Robust Layered Control System for a Mobile Robot," IEEE Journal
of Robotics and Automation, vol. RA-2, no. 1, pp. 14-23, April 1986.

[2] D.W. Payton, "An Architecture for Reflexive Autonomous Vehicle Control", in
Proceedings of the IEEE Conference on Robotics and Automation, San Fransisco, CA,
April 1986, pp. 1838-1845.

[3] R. A. Brooks, "Achieving Artificial Intelligence Through Building Robots," MIT AI
Memo 899, May 1986.

[4] D.M. Keirsey, D.W. Payton, and J.K. Rosenblatt, "Autonomous Navigation in Cross
Country Terrain", in Proceedings of the Image Understanding Workshop, Boston,
MA, April 1988, pp. 411-416.

[5] R. A. Brooks, "A Layered Intelligent Control System for a Mobile Robot," in
Proceedings of ISSR; Third International Symposium of Robotics Research,
Gouvieux, France, October 1985.

[6] J. A. Feldman and D. H. Ballard, Connectionist Models and Their Properties.
Cognitive Science, vol. 6, pp. 205-254, 1982.

[7] D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing, Cambridge:
MIT Press, 1986, Vol. 1, ch. 2.

[8] M. J. Daily, J. G. Harris, D. M. Keirsey, K. E. Olin, D. W. Payton, K. Reiser, J. K.
Rosenblatt, D. Y. Tseng, and V. S. Wong, "Autonomous Cross-Country Navigation
with the ALV," in Proceedings of the IEEE Conference on Robotics and Automation,
Philadelphia, PA., April 1988. (also in Proceedings of the DARPA Knowledge-Based
Planning Workshop, Austin, Texas, December 1987, pp. 718-726)

[9] D. W. Payton, "Internalized Plans: A Representation for Action Resources", presented
at the Workshop on Representation and Learning in an Autonomous Agent, Faro,
Portugal, November 16-18, 1988.

