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Abstract— The increasing popularity of social networks has The semantics of the edge weights depend on the application

initiated a fertile research area in information extraction and (such as users in a social network assigning weights based on

data mining. Although such analysis can facilitate better under- “degree of friendship”, “trustworthiness”, “behavior'tce), or
standing of sociological, behavioral, and other interesting phe- ’ ' '

nomena, there is growing concern about personal privacy being the property being modeled (such as detection of communi-

breached, thereby requiring effective anonymization technique.  ties [12] or modeling network dynamics [13]).
In this paper, we consider edge weight anonymization in social Edge-weight anonymization: why do we care7irst, even

graphs. Our approach builds a linear programming (LP) model though in most cases node identities are anonymized, there a
which preserves properties of the graph that are expressible as a number of instances where they are public knowledge. For

linear functions of the edge weights. Such properties form the . . . S
foundations of many important graph-theoretic algorithms such example, in academic social networks [15], [9], node idsti

as shortest pthS’ k-nearest neighborsl minimum Spanning tree, and link structure are pub|IC knOW|edge, but edge WEIgm&S ar
etc. Off-the-shelf LP solvers can then be used to find solutions sensitive.Second even in the case where the node identities
to the yesulting model Whgre the computed solution constitutes gre anonymized, edge weight anonymization is still impurta
the weights in the anonymized graph. As a proof of concept, We gince jf an adversary re-identifies a node in the anonymized
choose theshortest paths problem, and experimentally evaluate . - . . .
the proposed techniques using real social network data sets. graph, even more information will be revealed if edge wesght
are not anonymized.
|. INTRODUCTION Privacy preserving modeling. Our solution to the problem
Social Networks have become increasingly popular apptf edge weight anonymization is to model the weighted graph
cations in Web 2.0. Social networking sites such as MySpadmsed on the property to be preserved, and then reassign edge
and Facebook have millions of registered users, and eambights to obtain the anonymized graph satisfying the model
user is associated with a number of others through friepgshio be specific, we presenlmear properties of the graph:
professional association (being members of communitéeg),  Definition 1: A linear property of a graph is a property
so on. The resulting graph structures have millions of gegti expressible in terms of inequalities involving linear conab
(users or social actors) and edges (social associatioesgrR tions of edge weights.
research has explored these social networks for undeistand If we consider that the anonymized graph preserves the
their structure [1], [2], [3], advertising and marketind,[dnd structure of the original graph, the objective of the pnvac
others [5]. As a result, companies (such as Facebook) lgostpreserving model can be formally stated as:
the data are interested in publishing portions of the graohs Objective 1: To construct a model thatorrectly captures
that independent entities can mine the data. In order teprotthe inequalities that must be obeyed by the edge weights
the privacy of the users against different types of attaéks [for the linear property being modeled to be preserved.
[7], graphs should be anonymized before they are publishedhy solution to such a model would ensure anonymization
Consequently, there has also been considerable interdst inof edge weights, while preserving the linear property under
anonymization of graph structured data [8], [9], [10]. Butonsideration.
most of the existing research on anonymization techniques
tend to focus orunweightedgraphs fornode and structural
anonymization with very little work concentrating oredge Abstract model formulation. Our proposed model is based
weight anonymizatiofil 1]. on the observation that a gamut of interesting properties ar
Recently, there has been considerable interest in thesisalgxpressible in terms of linear combinations of edge weights
of the weighted network model where the social networkdMe now introduce in abstract the technique used for modeling
are viewed as weighted graphs. The weighted graph motiekar propertiesand use Kruskal's algorithm fominimum
is used for analyzing theormation of communitiewithin the spanning tree (MST[L6] as an example of the algorithm being
network [12],viral and targeted marketing and advertisifdg], modeled. The goal of the model is to capture the dynamic
modeling the structure and dynamissch as opinion forma- behavior of the algorithm using a system of linear ineqigslit
tion [13], and for analysis of the network fonaximizing the Given the original weighted graplir = (V,E, W) with
spread of informatiothrough the social links [14], in addition positive edge weights represented by variablgses, . .., 2,
to the traditional applications on weighted graphs such &shere eache; corresponds to an edge= (u,v) € E), our
shortest pathsspanning treesk-Nearest Neighbors (kNMc. goal is to model the system of linear inequalities in terms
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of these variables. For example at every step of Kruskal's I1l. SINGLE SOURCE SHORTESTPATHS

algorithm [16] for the MST, the edge with the minimum weight |, this section, we demonstrate how the abstract model
amongst the set of remaining edges is selected, and if this egescriped in Section Il can be used &ingle source shortest
does not result in a cycle, it is added to the MST. Letv) paths tree Given a weighted grapl = (V,E,W), and
be the edge selected in thié iteration, and(u’,v’) be the 5 source vertexy,, a single source shortest paths trée a
edge selected in the + 1) iteration, then this implies that gpanning tree of the graph where the path from the source to
wlu, v] < wl',v']. I 2,.) and z. . are the variables gy other vertex in the tree is the shortest path between the
representing thege edge_s in the model, then this outcomep;;ﬁ;r in G. Dijkstra’s algorithm [17] is a well known greedy
modeled by the inequalityt(y,.) < @(w o). Therefore, for 4 gorithm forsingle source shortest paths treBiven a start
every pair of edgesu, v) and (u’,v") selected in consecutive yertex,, at every step the algorithm selects the vertexith
iterations, the inequality:(,,v) < z(.,,v) can be added to the he smallest known cost from. The algorithm tries to “relax”
model whenever the given weights satisfyu, v] < wlu’,v'].  the neighbors of: by checking if the cost from the source has
The algorithm makes decisions based on the actual numeow decreased because of the selectionv.oDue to space
ical values of the edge weights (ar[u,v]’s) and we model limitations, the pseudocode and proofs of the theorems have
this decision in terms of the variables, .. Decisions made been moved to an extended version of the paper [18]. In the
at each step of the algorithm can similarly be expressed faowing discussion, the cost of the path from the verieto
inequalities involving the edge-weights. Thus, the execut v is denoted ad[u,v], andf(u,v) is Z(u,,v,)ep[u’v] T 01
of the algorithm processing the graph can be modeled as awbere P[u, v] denotes the path from to v in G.
of linear inequalities involving the edge weights\agiables

and this results in a system of linear inequalities: A. Linear model

Dijkstra’s algorithm [17] makes a number of decisions based

O B Z; on the outcome of comparisons of linear combinations of edge
<l . (1) weights. These decisions can be modeled using the following
C : : : three categories of inequalities:
k1 k2 Gkm ] AT _b’f_, e Category I: When processing edde, v), if D[vo,v] can be
A X B improved, thenD[vg, v] > Dlvg, u] + wlu, v], add constraint

If the edge weights are reassigned as any solution of t}ﬁ@;ow) > f(v0, 1) + T(u,v)-
system of inequalities in (1), this would ensure that the Category II: When processing edge:, v), if D[vg,v] can

properties of the graph remain unchanged w.r.t the algaritthot be improved, thenD[vp,v] < Dlvg,u] + wlu,v], add
being modeled. The model can therefore be formulated aganstraintf (vo, v) < f(vo, u) + (y0)-

Linear Programming (LP) problem e Category Ill : When extracting the minimum weight edge
o o u for the next iteration, ifu’ is the previous vertex processed,
Minimize (or Maximize)  F(z1,22,...,Tm) thenD[vy, w/] < Dvo, u], add constrainf (vo, v') < f(vo, w).
subjectto  AX <B This captures the order in which the vertices are selected.
where I is a linear objective function. Any property that can Theorem 1:A model built from all the inequalities of Cat-
be expressed as a function of a linear combination of edggories |, II, and 1ll combined will correctly model Dijksts

weights can be expressed as a Linear Optimization problesigorithm, i.e., any solution to the model used to anonymize
and hence this abstract modeling technique can be used d@ije weights in the graph results in the same shortest paths
any such property. Once the model has been developed, &g in the original as well as the anonymized graph.
off-the-shelf LP solver package can be used to find a soluti@gbmplexity of the Model. Category | and Category |l com-
to the set of inequalities (constraints) that optimiZzésThe bined will result inO(dn) inequalities. This is because, when
model is said to becorrect if the property being modeled an edge is processed, either the path to its neighbor is iragro
is preserved across anonymization, i.e., any solution € t{Category 1), or it remains unchanged (Category I), ancchen
model ensures that the property being modeled is the sagiery edge results in at least one inequality. Since theageer
in the original graph as well as the anonymized graph. Thgree per node ig, the resulting number of inequalities is
complexity of the model is the number of inequalities nece(dn). The number of inequalities for Category 1l 8(n)
essary to define the model. Columns in matkixcorrespond since one inequality of Category Ill is generated for every
to variables in the system, i.e., the number of edges in thertex processed. Thus, the complexity of the modél(gn).
graph, and rows correspond to the inequalities produced 8jhce most large real graphs are sparse,d.&; n (generally
the model. The fewer the constraints required by the modglis of the order of tens or hundreds), we refer to this model
the more efficient it is. Note that most social network graphss theLinear modelwith complexity growing linearly with.

are sparse, and hence matfixis also sparse, and LP solvers

optimized for such large systems can be used. We remdtk Reduced model

that our technique is not dependent on the semantics of edge¥e now improve the performance of the model explained by
weights, and is general enough to encompass any algoritheducing its complexity. Note that even though Dijkstrd's a
based orlinear propertiesof the graph. gorithm tries to relax the neighbors when processing a xerte



TABLE |

the ultimate goal is to select an appropriate vertex for e n SUMMARY OF THE SOCIAL GRAPHS

iteration, i.e., the vertex with the smallest known costrfro

the source. It does not matter how many times the cost of theData Set [ No. of Vertices | No. of Edges| Avg. Degree |
path to a particular vertex is improved, the minimum amongst Flickr-user-3 55,803 6,662,377 119.39
these costs determines its order of selection, and hence thgJ-user3 15,508 384,947 24.82

. " rkut-user-3 26,110 899,638 34.46
shortest path from the source. Category Il inequalitiesl@ho | voutube-user-3 237,469 2.457.206 1035

this information in an efficient way, and hence ideally, only
Category lll are needed. However Category Il inequalitieb%
. e part of the model, as long the edge¥inare tracked, and
only '”C'“d‘? the edges that are part O.f. the shortest' paths ?[rvevherz)n assigning weights togthe anognyérInL;’]zed graph, non-tree
Therefore, ifonly Category Il inequalities are considered medges are assigned weights greater than the shortest fihth wi

the model, then only part of the total number of edges e largest weight. This captures the information as matele

modeled. Such a model does not put constraints on non-tfeé S ; . .
. : . A the constraints in (2), without adding to the complexify o
edges, and thus, if no care is taken while reassigning edge

; . : : SO € model to be solved by the LP solver. Thus, Category llI
weights in the anonymized graph, it can lead to violations @ " . " : i
. ; : . inequalities along with some additional information candelo
the order in the anonymized graph. For instance, if gdge)

is 2 non-tree edae. then a model using onlv Cateaory Il wo %jkstra’s algorithm, and the complexity of the modified nebd
g€, g only gory ubecomei)(n) (n—1 to be exact). The asymptotic complexity

not impose any constraint ofu, v). Hence a reaSS|gnment0f the models in this section and in Section IlI-A are the

of weights in the anonymized graph might assign the edggme: both grow linearly with (assuming thad is a constant

(u,v) a weight such that Dijkstra’s algorithm executing on thgompared ton). But considering the fact that is generally

anonymized graph selects, v) as a tree edge. Therefore, toof the order of10 or 100 (as shown in our experiments using

ensure correctness, the model must be augmented to make SUIe | network graphs), the model suggested in this section

that the non-tree edges are not included in the tree when the . . o
. . . provides1 to 2 orders of magnitude reduction in the number
algorithm executes on the anonymized graph. The follownP

. . L &t inequalities.
theorem formalizes this proposition. q

Theorem 2:A model which ensures thét) the order of se- IV. EXPERIMENTAL EVALUATION
lection of vertices remains the same even after anonymizati In this section, we experimentally evaluate the two mod-
and(ii) non-tree edges in the original graph are not included &is presented in this paper, compare their performance, and
the tree constructed on the anonymized graph, will alsorenswalidate our analysis. All the algorithms were implemerited
that the shortest paths tree in the original and anonymiz&ava, and the experiments were run on an Intel Core 2 Quad
graph are also same, i.e., the model is correct. Q6600 processor operating at a clock speed of 2.4GHz. The
Augmenting the model — Comp|ex|ty and Correctness. machine has 3GB main memory and runs Fedora Core Linux
Category Il inequa”ties enforce Condmc(m) of Theorem 2. with kernel 2.6.26.6-49.fc8. We used four real social nekwo
A simple solution to ensure that conditi¢i) is also satisfied data sets obtained from the authors of [3]. In our experisjent
is to add all the non-tree edges into the constraints of tMé used a free open-source LP SolMetgolve 5.5 [19]. We
model. This can be done as follows: letbe the last vertex report the time taken to generate the model, complexity ef th
to be processed by Dijkstra’s algorithm, and Tetrepresent model, and the time taken to solve the models. The model is
the shortest paths tree obtained as output from the alguyithvritten to disk, and the system solving the model reads the

then add all inequalities of the form: model from disk, and generates the solution, which is then
used to anonymize the model. The reported times therefore
V(u,v) € EA (u,v) ¢ Ts, include the disk access latencies. More experiments can be

AddConstraint (2 > f(vs01)) ) found in the extended version of the paper [18].

This ensures that any path which includes these non-tRe Datasets
edges will have a cost greater than the corresponding patiMislove et al. [3] crawled a number of social network
involving only the edges ifl’;, and hence all such paths withsites for analyzing the properties of these large socighltsa
non-tree edges will not be selected by Dijkstra’s algorithmnd have made their data sets publicly available. Their data
running on the anonymized graph. Tki&{n) edges inT; sets include the graphs for a number of popular social net-
are modeled by Category Il inequalities, and the remaininvgorking sites: Flickr, LiveJournal, Orkut, and Youtube.
O(dn) edges are modeled by the inequalities in (2). Thugye model the graphs of these networks as directed graphs
the complexity of the model still remain8(dn), even after where edges have positive weights, but the models can be
eliminating inequalities of Categories | and Il. Note thiae t extended for undirected graphs. The published graph dita se
inequalities in (2) add very little to the model except foare unweighted, but since our model is not dependent on
ensuring that any non-tree edge should be assigned a weiltjiet semantics of the weights or their magnitude, we assign
that is greater tharD’[v,,v;], and it does not really matterrandomly generated weights (real numbers in the range 1 to
what weight is assigned to these edges as long as the abb9@) to the edges of the graph. We used different distribstio
condition is satisfied. Therefore, the edges nofjmeed not for assigning edge weights, but no considerable change in



TABLE I

EXPERIMENTAL EVALUATION OF SINGLE SOURCE SHORTEST PATHS TRE

Linear Model Reduced Model Summary
Number Inequalities Time Number of Time Times Reduction | % Reduction
Data Sets Catl [ Catll [ Catlll | Total Taken (s) || Inequalities | Taken (s) in Complexity in Time
Flickr-user-3 204,626 | 6,457,751| 55,802 | 6,718,179 98.81 55,802 2.835 120.39 97.13
LJ-user-3 39,030 | 345,917 | 15,507 | 400,454 4.783 15,507 0.938 25.83 80.39
Orkut-user-3 72,130 827,508 26,109 925,747 15.735 26,109 1.752 35.47 88.87
Youtube-user-3 || 417,526 | 2,039,680 | 237,468 | 2,694,674| 44.943 237,468 8.226 11.35 81.7
complexity was observed. In our experiments, we usser ACKNOWLEDGEMENT

driven graph structuresvhere we select a vertex in the graph The authors would like to thank Divyakant Agrawal, Pamela
as the root, and extract the graph induced by the verticgfattacharya, Sayan Ranu, and the anonymous reviewers for
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vertex v is the first degree connection of the raetif there  g,thors would also like to thank Alan Mislove for providing

exists an edgéuvo, v)). We use theuser suffix for referring 0 the data sets used for the experiments. This work is partiall
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degree of separation (e.@rkut-user-3. Table | summarizes
the different graphs in the data set in terms of the number of
vertices, number of edges, and average out-degrees. [1]

B. Single source shortest paths [2]

We experimentally evaluate the two modelsgorgle source
shortest paths tree We compare thd.inear model to the [3]
Reducedmodel in terms of the complexity of the model, and
the time taken to build the model and write it to the disk. [4]

Table Il provides the result from these experiments along
with a detailed breakup of the number of inequalities, ag]
well as the reduction in complexity and time of tReduced 6]
model compared to theinear model. For theLinear model,
the categories of inequalities in Table Il correspond to the
categories defined in Section I1I-A. As is evident from Talble [7]
the Reducedmodel provides aboub(d) times improvement (g
in complexity of the models for all the graphs. Depending
on the graph, the value af varies, and so does the factor [°]
of improvement. For example, for thdickr-user-3 data set,
d is 119.39, and the complexity of thReduced model is
about 120 times less than that of thkinear model. The
large reduction in the number of inequalities also affebts t(;y;
time for generating the model, since in thénear model,
fewer number of inequalities need to generatedand more [12]
importantly, fewer number of inequalities need to Wstten
to the disk This is illustrated by the almo$t% improvement [13]
in time to generate thReducedmodel.

(20]

V. CONCLUSION (14]
. . . . 415]
In this paper, we provided a solution for -effectiv
anonymization of weighted social network graphs. We first
presented an abstract model that can effectively preseye &6l
linear property of edge weights. As a proof of concept, we
considered theshortest paths problerand showed how off- [17]
the-shelf linear programming libraries can be used to effe
tively anonymize the graphs. We analyze the complexity ]
the models, and experimentally validate our analysis ussag

social network data. [19]
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