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AbstractLoop tiling and unrolling are two important program transformations to exploit localityand expose instruction level parallelism, respectively. However, these transformations are notindependent and each can adversely a�ect the goal of the other. Furthermore, the best com-bination will vary dramatically from one processor to the next. In this paper, we thereforeaddress the problem of how to select tile sizes and unroll factors simultaneously. We approachthis problem in an architecturally adaptive manner by means of iterative compilation, wherewe generate many versions of a program and decide upon the best by actually executing themand measuring their execution time. We evaluate several iterative strategies based on geneticalgorithms, random sampling and simulated annealing. We compare the levels of optimizationobtained by iterative compilation to several well-known static techniques and show that weoutperform each of them on a range of benchmarks across a variety of architectures. Finally,we show how to quantitatively trade-o� the number of pro�les needed and the level of opti-mization that can be reached. In this way, we can reach high levels of optimization within 50iterations.
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1 IntroductionE�cient use of the memory hierarchy is essential for good performance due to the ever increasinggap between processor and memory speed. Program transformations such as loop tiling or blockinghave been shown to be an e�ective approach to improving locality and cache exploitation [16, 12,18, 23, 30]. In this approach one tries to divide the loop into smaller tiles in such a way that theworking set of each tile �ts in the cache thereby exploiting the available locality.It is also important to fully utilise the internal parallelism within modern processors which are capa-ble of issuing several instructions per cycle [13]. Loop unrolling is an important transformation forthis purpose [27] as it increases the size of the loop body exposing more instructions for InstructionLevel Parallelism (ILP). As we require e�ective utilization of the memory hierarchy and internalparallelism, we need to combine both of these transformations. To illustrate the transformation weconsider in this paper, consider the example given in Figure 1. In this �gure, TJ and TK are the tilesizes for the J and K loop, respectively, and U is the unroll factor of the I loop.1In this paper we study the combination of these two transformations and address the problem ofdetermining simultaneously optimal tile sizes and unroll factors for any given loop nest. Combiningthe best tiling transformation for locality with the best unrolling factor for ILP, however, doesnot give the best overall transformation as transformation application is not orthogonal in e�ect.Loop unrolling can adversely a�ect locality and tiling may restrict the available instruction levelparallelism.The close interaction between tiling and unrolling can be seen in Figure 2, which shows that a smalldeviation from `good' tile sizes and unroll factors can cause a huge increase in execution time andeven a slow down with respect to the original program. We need to answer the question for whichtile sizes and unroll factors we obtain the minimum execution time. A static technique essentiallytries to give an analytical expression for this minimum. In [7, 21] we have studied the characteristicsof optimization spaces in detail for a variety of benchmarks and platforms and showed that di�erent1The variation on loop unrolling that we consider in this paper is unroll-and-jam [1, 9, 8] whereby an outer loopis unrolled and the inner loops are fused. Epilogue code is not shown here for simplicity.3



Original TransformedDO I = 1,NDO J = 1,NDO K = 1,NA[I,J] = A[I,J] + B[I,K] * C[K,J] DO JJ = 1,N,TJDO KK = 1,N,TKDO I = 1,N,UDO J = JJ,MIN(JJ+TJ-1,N)DO K = KK,MIN(KK+TK-1,N)A[I,J] = A[I,J] + B[I,K] * C[K,J]A[I+1,J] = A[I+1,J] + B[I+1,K] * C[K,J]...A[I+U-1,J] = A[I+U-1,J] + B[I+U-1,K] * C[K,J]Figure 1: Example Transformation
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platforms give rise to widely varying optimization spaces (see Figure 2) and that a compiler, usinga simpli�ed static cost model, would have great di�culty to predict this minimum. Instead, wepropose to actually search this space in a manner that is adaptable for di�erent architectures. Wecall this approach iterative compilation, where we generate many versions of a program and try todetermine their execution time. This can be done by actually executing the program on the targethardware, by employing one or more static models, or by a combination of both techniques. Theversion that performs best is selected and thus we determine the best combined tile size and unrollfactor. In the present paper, we use real execution time to search the space for a minimal pointand by using a generic iterative compilation strategy, we can �nd excellent optimizations across arange of architectures. Thus, we obtain highly architecture speci�c optimizations in an architectureindependent manner.This approach is highly attractive in situations which require high performance, such as embeddedsystems where the compilation time can be amortised across the number of products shipped or inthe case of vendor supplied library codes for which the same argument holds. It is also useful incontexts where the underlying architecture changes (e.g., additional memory, a new release of thelow-level compiler or a completely new processor) as the iterative search strategy has no hardwiredsystem dependent knowledge.Although, theoretically, iterative compilation can �nd the optimal version of a program for anyarchitecture by simply considering all possibilities, in practice the search space is extremely largeand therefore in this paper we examine techniques that reduce this cost and show that iterativecompilation outperforms static techniques across a range of architectures.In section 2 the implementation of our iterative compilation system is briey discussed. In orderto assess the e�ciency of our approach, we use a collection of small benchmark kernels and threetarget platforms in section 3. In section 4 we show that we can �nd good tile sizes and unrollfactors by visiting only a tiny fraction of the entire optimization space. We assess the quality ofthe optimization found by comparing it to two well-known static tile size selection algorithms insection 5 and show that we outperform each of them in almost all cases and can �nd good solutions inless than 6.5 minutes on average. After analysing the cost of compilation time in section 6, we limit5



the number of iterations to a realistic small and �xed amount and construct quantitative trade-o�graphs, in section 7, that show that good performance can be reached with little cost. Finally, wediscuss related work in section 8, future directions in section 9 and draw some concluding remarksin section 10.2 Implementation of Iterative Compilation SystemIn this section we briey discuss how the iterative compilation system is implemented.
Driver
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Transformed ProgramExecution
    Time

SSL−File

Target PlatformFigure 3: The Compilation ProcessFigure 3 shows an overview of the compiler system. For more details, consult [22]. The compilationsystem is centred around a global driver that reads a list of transformations that it needs to examinetogether with the range of their parameters. The driver keeps track of the di�erent transformationsevaluated so far and decides which transformations have to be applied next using a search algorithmto steer through the optimization space. We have implemented several search algorithms, includinga genetic algorithm, simulated annealing, pyramid search, window search and random search (seesection 3). The global driver invokes the source to source compiler MT1 [5] and instructs it which6



transformation to apply. MT1 has two mechanisms to control the application of transformations: aTransformation De�nition Language (TDL) [4] and a Strategy Speci�cation Language (SSL) [2]. Foreach transformation included in the list of transformations, a transformation needs to be speci�edin the TDL-�le. The global driver constructs an SSL �le that speci�es the order in which to applycertain transformations and outputs it to MT1.Hence one step of the global driver consists of the following actions:1. Decide the next set of parameters for the transformations using the search algorithm.2. Construct an SSL �le that corresponds to this new sequence.3. Invoke MT1 that starts the transformation process by reading in the source program, the SSL�le and the TDL �le.4. The transformed program is compiled for the target architecture and executed.5. The execution time is measured and reported back to the global driver.6. The global driver stores this execution time and starts the next step.After a predetermined number of iterations, the global driver stops searching and outputs thetransformed program with the shortest execution time.3 ExperimentIn this section we discuss the parameters of our experiment, including the search algorithms em-ployed by the global driver, the benchmarks and the target platforms.3.1 Search AlgorithmsWe have implemented several search algorithms, including a genetic algorithm, simulated annealing,pyramid search, window search and random search.7



Genetic algorithm Genetic Algorithms are modelled on natural evolution processes and manip-ulate individuals in a population over several generations to improve their �tness. First, aninitial population of S programs is randomly selected. Second, in the crossover phase, fora number of individuals a crossover point is determined in the bit representation of their`chromosomes' that encode tile size and unroll factor. Di�erent parts of the upperhalf andlowerhalf of these chromosomes are concatenated and thus new individuals are created. Third,in the mutation phase, bits are ipped in the chromosomes based on the mutation probability.Finally, the entire new population is evaluated and the execution time is used to establish the�tness of the individuals. If the �tness is too low, the individual is deleted from the populationuntil a new population of 20 individuals is reached.Simulated annealing SA is modelled on the physical process of heating up a solid and thencooling it down slowly until it crystallizes. Initially, a random point is selected and neigboringpoints are inspected. We move to the point with lowest execution time, or with a certainprobability depending on the current temperature to a point with higher execution time. Thetemperature is subsequently decreased. We keep track of the best point visited so far.Pyramid or Grid search We de�ne a top level grid over the search space and evaluate each pointon this grid. We order the points in a priority queue. Around the best points we re�ne thegrid.Window search We de�ne windows over the search space. Initially, the window is the entirespace. We take a number of samples and order them in a priority queue. Around the bestpoints we de�ne a smaller window.Random search We randomly generate 2000 sets of parameters.The GA, SA and Window algorithms contain parameters: the size of the initial population S, thecross-over rate c and the mutation rate m in GA. In SA we need to de�ne the initial temperatureT0. In Window search we need to de�ne the shrink factor p and number of samples per windows. We conducted a number of experiments with di�erent values for these parameters on a limitedset of benchmarks to establish which parameters perform best [20]. We found that for GA, a low8



cross-over rate performs best. We selected the following values for the parameters in GA: S = 20,c = 0:4 and m = 0:01. Likewise, we found that good values for the parameters in Window searchare s = 75 and p = 75. Therefore, the experiments described below were conducted using thesevalues. We used for the initial temperature in SA the value of T0 = 36700.3.2 BenchmarksIn order to assess the e�ciency of iterative compilation for selecting tile sizes and unroll factors,we use many small kernel benchmarks from multimedia applications that exhibit a wide variety ofmemory access behaviour. In this way, we are able to give a statistically relevant analysis of theresults. Therefore, we chose the following benchmarks.� Matrix-Matrix Multiplication (MxM). We use all 6 possible loop orders to generate 6 bench-marks with highly di�erent memory access behaviour. We use data input sizes of N = 256,N = 300 and N = 301.� Matrix-Vector Multiplication (MxV). We use the two possible loop orders. We use data inputsizes N = 2048, N = 2300 and N = 2301.� Forward Discrete Cosine Transform. This benchmark is one of the most important routinesfrom the low-level bit stream video encoder H263. It contains three initialization loops and twomain loops: the �rst loop repeatedly calculates innerproducts and the other loop is a matrix-matrix multiplication. These loops are hand optimised in the reference implementation andwe undid some of this optimization in order to remove a dependence that would prohibit sometransformation. We use both the �rst main loop in isolation and the entire routine in ourexperiments. We use data input sizes of N = 256, N = 300 and N = 301.3.3 PlatformsWe have conducted our experiments on three di�erent platforms: Pentium II, Hewlett-PackardPrecision Architecture (HP-PA 712/60) and UltraSparc. In order to compile a transformed version9
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4.1 Rectangular Tile SizesIn this section we discuss the results when we search for rectangular tile sizes together with unrollfactors. In this case, the search space consists of 20 � 100 � 100 = 200; 000 points. We let thesearch algorithm run for 2000 iterations. We did not consider MxV in this experiment since it onlycontains a double loop and rectangular tiling is not applicable.4.1.1 Analysis of search algorithm performanceThe results of iterative compilation are given in Figures 4 through 6. The x-axis denotes thenumber of iterations, that is, the number of times a transformed version of the program is generated,compiled and executed. The y-axis denotes the speedup of the fastest version found so far.The �rst observation is that iterative compilation indeed yields high levels of optimization. Forexample, we obtain a speedup of over 18 for MxM (IKJ version) and a speedup of 30 for MxM (KIJversion) on the HP-PA. For these benchmarks, we obtain speedups of over 7, respectively 4, onthe Pentium, and 5.5, respectively 3.3, on the UltraSparc. We have shown in [20] that these highlevels of optimization are found across all our benchmarks and platforms for all data input sizes.This gives some con�dence in the viability of our approach. In section 5 we give a more quanti�edassessment of this by comparing iterative compilation to two well-known static techniques.The second observation we can make is that these search algorithms do not di�er much in theire�ciency. The speedups found by the di�erent search algorithms are within 5% on average of eachother [20]. In the table below, we have given the number of iterations required to obtain maximalspeedup. We also gave the number of iterations needed to reach 90% of this maximum.max. 90% of max.GA 808.4 its. 76.5 its.SA 767.6 its. 144.6 its.Pyramid 1043.9 its. 251.7 its.Window 835.6 its. 65.6 its.Random 747.0 its. 162.2 its.12



We observe that we on average need roughly between 750 and 1000 iterations in order to obtainthe maximum speedup. We also observe, however, that iterative compilation reaches high levels ofoptimization much earlier and that the last few hundred iterations are used for a small increasein the �nal outcome. From the table we also observe that SA and Random reach their maximumfastest. It should be noted that SA shows quite random behaviour also, especially in its earlierphases where the probability to accept degradations is high. Also, Window search exhibits randombehaviour because we draw random samples from the window that initially covers the entire searchspace. In our opinion this suggests that the underlying search space indeed is quite irregular andregular searching approaches will not yield acceptable results. Pyramid search is slowest becauseinitially we de�ne a grid over the entire search space that consists of 500 points. Many of thesepoint may be located in regions that perform badly. Therefore, Pyramid search has a high initialoverhead. This is also reected in the high number of iterations needed to reach 90% of the maximalspeedup. In general, we see that we need only a fraction of the number of iterations for maximalspeedup to reach 90% of this maximum. Although the average number of iterations we need toreach this 90% lies between 0.03% and 0.13% of the entire search space, the absolute number isfar too high to settle for it. However, this observation enables us to propose a trade-o� betweenthe number of evaluations we employ and the level of optimization that we can �nd. This topic isdiscussed in more detail in section 7 where we show a quantitative trade-o� graph.4.1.2 ConclusionWe conclude that iterative compilation is capable of �nding good unroll factors and tile sizes acrossa wide variety of benchmarks, data input sizes and platforms. Several natural algorithms all performalmost equally well. We reach high levels of optimization visiting between 0.375% and 0.5% of theentire search space. We can reach 90% of maximum optimization by visiting a far smaller fraction ofthe search space: between 0.03% and 0.13%. However, searching for rectangular tile sizes requiresa large search space of 200,000 points. Therefore, in the next section, we consider the possibility tosearch for square tiles that reduces the size of the search space to 2000 points.13
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MxM (IKJ)UltraSparcFigure 8: Speedup MxM { ikj version4.2 Square Tile SizesIn this section we search for square tile sizes, reducing the size of the search space by a factor100 to 2000 points. We implemented four search algorithms: GA, Pyramid, Random and SA. Wecompared the search algorithms and found that they reached their maximum improvement in aboutthe same number of steps [20]. In this section we only present the results using Pyramid search.The results are given in Figures 7 through 10. We used 400 iterations to determine the maximalspeedup, which is 20% of the number of iterations we used for rectangular tiles.
14



1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

0 100 200 300 400
Number of Iterations

S
pe

ed
up

N = 2300
N = 2301

N = 2048
MxV

Pentium II 4.00

5.00

6.00

7.00

8.00

9.00

10.00

0 100 200 300 400
Number of Iterations

S
pe

ed
up

N = 2300
N = 2301

N = 2048
MxVHP-PA 2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

0 100 200 300 400
Number of Iterations

S
pe

ed
up

N = 2300
N = 2301

N = 2048
MxVUltraSparcFigure 9: Speedup MxV

1.40

1.60

1.80

2.00

2.20

2.40

0 100 200 300 400
Number of Iterations

S
pe

ed
up

N = 256

N = 301
N = 300

FDCTPentium II 1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

2.30

0 100 200 300 400
Number of Iterations

S
pe

ed
up N = 256

N = 301
N = 300

FDCT

HP-PA 1.00

1.05

1.10

1.15

1.20

1.25

0 100 200 300 400
Number of Iterations

S
pe

ed
up

N = 256

N = 301
N = 300

FDCTUltraSparcFigure 10: Speedup FDCT
15



4.2.1 Analysis of resultsComparing the speedups obtained using square tiles with the speedups obtained using rectangulartiles shows that they are about the same. In one case (MxM-KIJ on HP-PA) square tiling performsabout 30% slower than rectangular tiling. In one other case (MxM-IKJ for N = 300 on Pentium)square tiling obtains a speedup of 4.03 whereas for rectangular tiling, speedups of 7.22 are obtainedby 4 out of 5 search algorithms (the other algorithm also yielded a speedup of 4). However, in someother cases square tiling outperforms rectangular tiling: for the �rst loop in FDCT square tilingperforms 45% better than rectangular tiling on the UltraSparc. In all other cases, square tilingis within 5% on average from rectangular tiling. In general, the di�erence between the di�erentsearch algorithms for rectangular tiling is of the same order of magnitude than the di�erence betweensquare and rectangular tiling [20]. This shows that square tiles can provide the same speedup asrectangular tiles do and therefore we can restrict attention to square tiles.The next observation is that iterative compilation reaches high levels of optimization rapidly. In thetable below we have shown the average number of iterations needed to �nd the maximal speedupand 90% of this maximal speedup, for each platform. We see that we improve by a factor of 8 oversearching for rectangular tile sizes, both for �nding the maximal improvement and for �nding 90%of this maximal improvement. max. 90% of max.Pentium 146 its. 31.3 its.HP-PA 79.9 its. 23.9 its.Ultra 127 its. 38.2 its.Average 116.2 its. 30.9 its.4.2.2 ConclusionWe conclude that the speedup obtained using square tiles is almost as good as the one obtainedusing rectangular tiles. However, the time needed for iterative compilation is a factor of 8 smaller forsquare tiles than for rectangular tiles. This provides our �rst heuristic for managing the complexity16



of iterative compilation by only considering square tiles.5 Comparison with Static TechniquesIn this section we quantify the e�ciency of iterative compilation by comparing the performanceimprovements to two static tile size selection algorithms. In [30] it has been shown that these tilingalgorithms perform as good as or better than a host of other tiling techniques. The �rst algorithm,TSS by Coleman and McKinley [12], considers the size of the working set in the loop body andrequires that this working set is smaller than the cache size. It also takes into account an estimateof the cross interference between di�erent arrays and tries to minimise this cross interference. Weunrolled the loop a number of times and computed the tile size using TSS for the unrolled loop.The second algorithm, LRW by Lam, Rothberg and Wolf [23], does not consider the working setnor the cross interference rate. It computes a tile size based only on the size of the cache. We haveused this tile size together with di�erent unrolling factors.We compute the comparison between our approach and the static approaches as follows. Let Sitbe the speedup obtained by iterative compilation and let STSS be the speedup obtained by TSS.Then the improvement of iterative compilation over TSS, ITSS , is given byITSS = Sit � STSSSTSS � 100%We compute the improvement of iterative compilation over LRW likewise. Note that when iterativecompilation produces a lower speedup than TSS, a negative improvement is obtained. The resultsare given in Figures 11 through 17 (see also [20]).We immediately observe from these �gures that iterative compilation outperforms the other tech-niques signi�cantly, up to 1800% for MxM-IKJ on the HP-PA. Note that we show that this im-provement holds for each unroll factor less than or equal to 20 that the compiler might choose.From the �gures it can also be observed that for an unroll factor of 1, which corresponds to nounrolling, improvements over tiling only are large.In the full version of the paper [20] it is shown that the observations given above hold for almost17
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UltraSparcFigure 11: Improvement over TSS for MxM { ijk version, N = 256
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UltraSparcFigure 12: Improvement over LRW for MxM { ijk version, N = 256
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UltraSparcFigure 13: Improvement over TSS for MxM { ikj version, N = 25618
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UltraSparcFigure 14: Improvement over LRW for MxM { ikj version, N = 256
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UltraSparcFigure 15: Improvement over TSS for MxV, N = 2048
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UltraSparcFigure 16: Improvement over TSS for FDCT, N = 25619
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UltraSparcFigure 17: Improvement over LRW for FDCT, N = 256each benchmark, data size and platform. In particular, iterative compilation improves in all caseson Pentium. For UltraSparc, there is 1 case out of 600 where iterative compilation performs 2%less than TSS and it always performs better than LRW. For HP-PA, there are 20 out of 600 caseswhere iterative compilation performs 2% less than TSS and 2 cases where iterative compilationperforms 3% less than LRW. On examining the code, this slight degradation is due to statisticalnoise in measuring the execution time. This means that speedups found by iterative compilationare the same in these cases as those found by static means. Hence, summing up, in 99.4% of ourbenchmarks iterative compilation outperforms a static tile size selection algorithm. In the othercases only a very slight degradation of about 2% can be observed that is largely due to noise. Fromthis data we conclude that iterative compilation is a powerful optimization technique outperformingexisting static techniques signi�cantly.6 Compilation TimeIn this section we discuss the compilation time required for iterative compilation that we showin Figure 18 as a function of the number of iterations, together with the breakdown in the timesrequired for searching and program transformation in MT1, native Fortran77 compilation andexecution. We observe that the relationship is almost linear. For 400 iterations, we need on averageon Pentium 14.6 minutes, on HP-PA 65.23 minutes and on UltraSparc 64.49 minutes.20
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In case of the Pentium and UltraSparc, most time is spent in executing the transformed program.However, for HP-PA, the time required for native Fortran77 compilation is the dominant factor andthe time required for the global driver can be larger than the execution time of the transformedprogram. Hence most reduction in time required for iterative compilation can be obtained fromreducing the number of actual executions, that need both native compilation and running theprogram.7 Trade-o� between Number of Iterations and Level of Op-timizationIn this section we discuss how much improvement we can obtain from iterative compilation whenlimiting the number of iterations. Thus we investigate how much performance gain is available fora given compilation time \budget".7.1 Comparing ImprovementsWe need to de�ne a metric that we can use to compare improvements. In this subsection we discusstwo possibilities. We use both metrics below to construct a trade-o� graph between the numberof iterations and the levels of optimization that result. First, we want to quantify the e�ect of atransformation. There are two natural approaches.Speedup Suppose the execution time of the original program is t0 and the execution time of thetransformed program is t1. The speedup of the transformation S is de�ned asS = t0t1As we keep track of the best version found so far, the speedup is always greater than or equalto one, S � 1.Execution time improvement This quantity is de�ned as the di�erence between the originalexecution time and the execution time of the transformed program, relative to the execution22



time of the original execution time. The improvement I of the transformation is thereforede�ned as I = t0 � t1t0 � 100%If the transformation slows down the original program, I < 0. Otherwise, 0 � I < 100%. IfI = 0%, then the transformation has no e�ect. If t1 decreases to 0 seconds, I increases to100%. In the present case of iterative compilation, I lies between 0% and 100%.Using the two measures above, we can de�ne a metric to quantify how close a transformationcomes to another transformation. There are two properties we require this metric to have. First, iftransformation T1 has no e�ect, but transformation T2 has a positive e�ect, we want to be able tosay that T1 reaches 0% of the improvement of T2. Second, if T1 results in the same running timeas T2, we want to be able to say that T1 reaches 100% of the improvement of T2.Speedup Since the minimal speedup we obtain from iterative compilation is 1, we de�ne the metricMS based on speedup by MS(T1; T2) = S1 � 1S2 � 1 � 100%where Si is the speedup obtained from transformation Ti. It is easy to see that MS has thetwo properties discussed above.Execution time improvement We want the metric MI to measure how close the improvementI1 comes to I2. That is, we want the relation I1 = MI(T1; T2) � I2 to hold. Therefore, wede�ne MI(T1; T2) = t0 � t1t0 � t2 � 100%where t0 is the original execution time and ti is the execution time resulting from transfor-mation Ti. Again it is easy to see that MI has the two properties discussed above. We canrewrite MI in terms of speedup as follows.MI(T1; T2) = S2S1 � S1 � 1S2 � 1 � 100%Below, T2 is the transformation with maximal improvement, hence S2 � S1 and MI �MS .23



For example, suppose we have a program that runs in 20 seconds. Suppose transformation T1reduces the running time to 4 seconds, and transformation T2 reduces the running time to 2 seconds.Then S1 = 5 and S2 = 10, and I1 = 80% and I2 = 90%. To compute comparisons, MS(T1; T2) =49 � 100% � 44% and MI(T1; T2) = 20�420�2 � 100% � 88%. Hence we see the di�erence between the twometrics. There is a large di�erence between speedups and therefore MS is only 44%. On the otherhand, there is not so much di�erence in running times compared to the original running time. T1already reduces the running time to a large extend. The metric MI records this and says that T1reaches 88% of T2.7.2 Quantitative Trade-o� GraphsWe now want to compare the transformation Ti found in iteration i to the �nal transformation Tmwith maximal e�ect that has been found after 400 iterations. We use the results of both the Pyramidand the Random search algorithm since this last algorithm inspects the entire search space in afew iterations and hence delivers high levels of optimization rapidly. We use both metrics discussedabove in this comparison. In this way, we are able to focus on both speedup and execution timeimprovement. We proceed as follows.We base our comparison on the transformations using square tiles discussed in section 4.2. Wemeasured the speedup found after 25 iterations in all 82 experiments that we have conducted. Wecounted the number of cases where we reached 100% of the speedup. This yields a percentage ofthe experiments that reach this maximal result. Likewise, we counted the number of cases wherewe reached at least 95%, 90%, 80% and 70% of the maximal speedup. We also counted the caseswhere we reached at least 100%, 99%, 98%, 97%, 95%, 90% and 80% of the maximal executiontime improvement.We followed the same procedure after 50, 75 and 100 iterations. The results are plotted in Figure19 that provide quantitative trade-o� graphs. From these �gures we can deduce, for example, thatusing the Random algorithm after 100 iteration, 58% of the benchmarks were fully optimized andthus reached 100% of the speedup or execution time improvement. Likewise, we see that after 5024
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(b) Pyramid: Trade-o� Time Improvement

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

25 50 75 100
Number of Iterations

100% of max.
95 % of max.
90 % of max.

70 % of max.
80 % of max.

P
er

ce
nt

ag
e 

of
 B

en
ch

m
ar

ks
 

(a) Random: Trade-o� Speedup 20.00
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(b) Random: Trade-o� Time ImprovementFigure 19: Trade-o� Graphs for Pyramid search (top) and Random search (bottom)
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iterations, 85% of the benchmarks reached at least 90% of the maximal speedup and 79% of thebenchmarks reached at least 97% of the execution time improvement. Conversely, given a budgetif N iterations, we can deduce the e�ect of iterative compilation in terms of how likely it is that acertain level of improvement is reached.There are a number of observations we can make. First, we see that after 25 iterations mostbenchmarks reach high levels of optimization: more than 50% reach 95% of the maximal speedupand 45% reach 99% of the maximal execution time improvement for Random search. Likewise, after25 iterations more than 50% of the benchmarks reach 90% of the maximal speedup and 97% of themaximal execution time improvement for Pyramid search. For 50 iterations, all benchmarks reachat least 70% of their maximal speedup and 80% of their maximal execution time improvement forRandom search, and 90% of the benchmarks reach 60% of their maximal speedup and 70% of theirmaximal execution time improvement for Pyramid search. Conversely, after 100 iterations mostbenchmarks reach high levels of optimization. For 50 or more iterations, the \equibars" for 70%and 80% of the speedup, and the \equibars" for 80% and 90% of the execution time improvementare close together. This means that there are few programs with an improvement between 70%and 80% in speedup (or between 80% and 90% in execution time improvement). The vast majorityreaches a higher level of optimization.Comparing the trade-o� graphs for Pyramid search and Random search we observe that Randomsearch reaches the highest levels of optimization quickest. One reason for this is that Random searchtakes samples from the entire optimization space, whereas Pyramid search evaluates a 50 point grid�rst. Therefore, after 25 iterations, Pyramid search only has inspected half of the search space.This shows that if we are only willing to execute a few iterations, Random search can outperformother approaches. The trade-o� graph suggests that after taking 50 random samples, we have ahigh probability to have found a good optimization.In Table 1, we have shown the compilation time in minutes required for 25, 50, 75 and 100 iterations.We observe that the times for 25 or 50 iterations can be a�orded. In future work we hope to bringdown these compilation times even further by including static models in the search.26



Compilation time 25 its. 50 its. 75 its. 100 its.Pentium 1.23 m. 2.37 m. 3.27 m. 4.63 m.HP-PA 4.10 m. 7.68 m. 10.4 m. 14.34 m.UltraSparc 4.66 m. 9.02 m. 12.51 m. 17.77 m.Table 1: Compilation Time for Small Numbers of Iterations8 Related WorkThere are many paper dealing with tile size selection [12, 16, 23, 27, 30]. All these selectionalgorithms use static analysis and models to compute tile sizes, in contrast to the present approachthat uses dynamic pro�ling information. Carr and Kennedy [9] and Carr [8] compute unroll-and-jam factors in order to minimise the di�erence in machine and loop balance. Carr computes howmuch bene�t the unroll-and-jam of a loop has for a range of unroll factors based on static modelsand searches at compile time to decide which unroll factor has the most bene�t. In contrast, thepresent approach uses actual execution times and moreover considers loop tiling at the same time.Currently, searching techniques are employed in hardware generation, for example, in design spaceexploration [14]. In this approach, many implementations of a design are generated and static mod-els are used to estimate for example die size and speed of the circuit. Optimal points in the designspace are called Pareto points. For example, one such point signi�es that some implementationgives the fastest circuit for a given die size, or alternatively the smallest die for a given speed.Whaley and Dongarra [32], and Bilmes et al. [6] describe systems for generating highly optimizedBLAS routines that probe the underlying hardware to �nd optimal transformation parameters.They show to be capable of outperforming vendor supplied, hand optimized library BLAS routines.In contrast to the present approach, however, these systems are only able to optimise BLAS routinesand are not general purpose compilers.Wolf, May Dan and Chen [33] have described a compiler that also searches for the optimal opti-mization by considering the entire optimization space. Han, Rivera and Tseng [18] also describe27



a compiler that searches for tile and pad sizes using static models. In contrast to the present ap-proach, however, their compilers use static cost models to evaluate the di�erent optimizations. Ourapproach based on actual execution times will deliver superior performance and can adapt to anyarchitecture, requiring no prior modelling phase.Chow and Wu [10] apply `fractional factorial design' to decide on a number of experiments to runfor selecting a collection of compiler switches. They, however, focus on on/o� switches and do notconsider the choice of parameter values that might come from a large range of values.Over the past years, many proposals have been put forward to use pro�le information, for exam-ple, in the creation of superblocks [19] or hyperblocks [24] to enable e�cient scheduling for ILPprocessors. These techniques are currently being employed in commercial compilers [11]. Pro�lesare also used to identify runtime constants that can be exploited at compile time [26]. The recentlyestablished workshop on Feedback Directed Optimization shows that currently many proposals arebeing put forward to exploit pro�le information in the compiler chain [15]. This paper can be seenas taking pro�ling one step further by using many pro�les for deciding between many alternatives.The present research was started within the Esprit project OCEANS [3]. Within this project, otherapproaches to iterative compilation are considered. Bodin explores in [31] the interplay betweenloop unrolling and software pipelining. This approach can be fully integrated with the presentapproach since Bodin targets a di�erent phase in the compiler, namely, the code generation phase.In [28], Nisbett proposes a genetic algorithm approach to searching.9 Future DirectionsThe obvious drawback of iterative compilation is its long compilation time that is required in orderto generate many versions of the source program and execute them to obtain pro�ling information.In this section we discuss a few possible solutions.The �rst approach is to use analytical models in the search. We intend to use the static modelsto guide the search by using them to decide whether one version of the program is better than28



another. Only if the models predict that some version might be better than the best one found sofar, we will actually pro�le that version. In this way, pro�ling the transformed program will only bedone in situations where static information is insu�cient to give reliable predictions. These modelsshould be accurate enough to cover a large portion of the search space or, alternatively, should beaccurate for certain aspects of the search space. Currently, we are implementing a cache modelto measure the impact of the transformations at compile time on memory access behaviour anda parameterised scheduler to measure the impact on ILP exploitation. We are also implementingCache Miss Equations [17] and the procedure to statically evaluate the e�ect of Unroll-and-Jamproposed by Carr [8]. In the long term we envisage a compilation system where the user can trade-o�levels of optimization and compilation time by tuning the complexity and accuracy of static models,the number of points that are inspected and the number of programs that are actually executed.In this compilation model, traditional compilers use models of low to medium complexity, visitone point and execute no programs. The present paper discusses the situation where there are nomodels and many points are visited and evaluated. The compilers by Wolf, Maydan and Cheng[33], and the one by Han, Rivera and Tseng [18] fall in between by using low complexity models,visit many points but do not execute any program.In the present paper we discuss how to deal with parameters for a given transformation. How-ever, many other transformations can be employed that do not have such a parameter, like loopinterchange. In [25] we discuss an approach by considering decision trees for applying a host oftransformations, including data transformations [29]. Loop unrolling and tiling is one node in thistree and the present approach to transformation space exploration can be used in this node todetermine optimal parameters. However, we need to ensure that good tile sizes and unroll factorscan be found very quickly for this approach to be feasible.10 ConclusionIn this paper we have discussed how to simultaneously select tile sizes and unroll factors using a novelapproach to program optimization, namely, iterative compilation. This approach generates many29
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