
Smart testing of functional programs in Isabelle

Lukas Bulwahn

Technische Universität München

Abstract. We present a novel counterexample generator for the interactive the-
orem prover Isabelle based on a compiler that synthesizes test data generators
for functional programming languages (e.g. ML, Haskell) from specifications in
Isabelle. In contrast to naive type-based test data generators, the smart genera-
tors take the preconditions into account and only generate tests that fulfill the
preconditions.
The smart generators are constructed by a compiler that reformulates the pre-
conditions as logic programs and analyzes them with an enriched mode infer-
ence. From this inference, the compiler can construct the desired generators in
the functional programming language.
Applying these test data generators reduces the number of tests significantly and
enables us to find errors in specifications where naive random and exhaustive
testing fail.

1 Introduction

Writing programs and specifications is an error-prone business, and testing is common
practice to find errors and validate software. Being aware that testing cannot prove the
absence of errors, formal methods are applied for safety- and security-critical systems.
To ensure the correctness of programs, critical properties are guaranteed by a formal
proof. Proof assistants are used to develop a proof with trustworthy sound logical in-
ferences. Once one has completed the formal proof, the proof assistant certifies that
the program meets its specification. But in the process of proving, errors could still be
revealed and tracking these down by failed proof attempts is a tedious task for the user.
Undoubtedly, testing is still fruitful on the way to quickly detect errors in programs
and specifications while the user attempts to prove them. Modern interactive theorem
provers therefore do not only provide means to prove properties, but also to disprove
properties in the form of counterexample generators.

Without specifications, it is common practice to write manual test suites to check
properties. However, having a formal specification at hand, we can automatically gen-
erate test data and check if the program fulfills its specification. Such an automatic
specification-based testing technique for functional Haskell programs was introduced
by the popular tool QuickCheck [8], which is based on random testing. The tool Small-
Check [19] also tests Haskell programs against its specification, but is based on exhaus-
tive testing.

The interactive theorem prover Isabelle [22] provides a counterexample genera-
tor [3], which currently incorporates the two approaches, random and exhaustive test-
ing, similar to QuickCheck and SmallCheck. It works well on specifications that have

weak preconditions and properties in a form that is directly executable in the functional
language. If the property to be tested includes a precondition, both approaches gener-
ate test data that seldom fulfill the precondition, and so most of the execution time for
testing is spent generating useless test values and rejecting them.

Our new approach aims to only generate test data that fulfill the precondition. The
test data generator for a given precondition is produced by a compiler1 that analyzes pre-
conditions and synthesizes a purely functional program that serves as generator. For this
purpose, the compiler reformulates the preconditions as logic programs by translating
formulas in predicate logic with quantifiers and recursive functions to Horn clauses. The
compiler then analyzes the Horn clauses with a data flow analysis, which determines
which values can be computed from other values and which values must be generated.
From this analysis, the compiler constructs the desired generators. This way, a much
smaller number of test cases suffices to exhaustively test a program against its spec-
ification. Consequently, we can find errors in specifications where random and naive
exhaustive testing fail to find a counterexample in a reasonable amount of time.

After discussing related work (§1.1), we show examples that motivate the work on
our new counterexample generator (§2). In the main part, we then describe key ideas
of this counterexample generator, the preprocessing, the data flow analysis and compi-
lation (§3 to §6). In the end, we evaluate our counterexample generator compared with
the existing approaches (§7).

1.1 Related work

The aforementioned Haskell tool QuickCheck has many descendants in interactive the-
orem provers, e.g., Agda/Alfa, ACL2, ACL2 Sedan, Isabelle and PVS, and in a variety
of programming languages. QuickCheck uses test data generators that create random
values to test the propositions. Random testing can handle propositions with strong pre-
conditions only very poorly. To circumvent this, the user must manually write a test
data generator that only produces values that fulfill the precondition. SmallCheck tests
the propositions exhaustively for small values. It also handles propositions with strong
preconditions poorly, but in practice handles preconditions better than QuickCheck be-
cause it gives preference to small values, and they tend to fulfill the commonly occur-
ring preconditions more often. Lazy SmallCheck [19] uses partially-instantiated values
and a refinement algorithm to simulate narrowing in Haskell. This is closely related to
the work of Lindblad [13] and EasyCheck [7], based on the narrowing strategy in the
functional logic programming language Curry [11]. This approach can cut the search
space of possible values to check, if partially instantiated values already violate the pre-
condition. The three approaches, QuickCheck (without manual test data generators),
SmallCheck and Lazy SmallCheck, are examples of black-box testing, i.e., they do not
consider the description of the precondition – they generate (partial) values and test the
precondition.

The counterexample generators in Isabelle translate the conjecture and related def-
initions to an ML program, exploiting Isabelle’s code generation infrastructure [10].

1 Throughout the presentation, we use the term compilation with a very specific meaning: to des-
ignate our translation of Horn specifications in Isabelle into programs written in a functional
programming language.

Employing this translation yields a very efficient evaluation: The ML runtime envi-
ronment can check millions of test cases within seconds, which is thousands of times
faster than evaluating within the prover. Like the existing counterexample generators
in Isabelle, the new one also builds upon this translation. Previous work [2] on code
generation focused on the verification of the transformation of Horn clauses to func-
tional programs, whereas the focus of this work is the extension and application of the
transformation for counterexample generation. Our new counterexample generator is
a glass-box testing approach, i.e., it considers the description of the precondition and
compiles a purely functional program that generates values that fulfill the precondition.
We reported about this work in an early stage in [5]. Closely related to our work is the
glass-box testing by Fischer and Kuchen [9] for functional logic programs, but they take
advantage of narrowing and nondeterministic execution in Curry.

Another approach to finding values that fulfill the preconditions is to use a CLP(FD)
constraint solver, as done by Carlier et al. [6]. A completely different approach to find-
ing counterexamples is translating the specification to propositional logic and invoking
a SAT solver, as performed by the Isabelle tools Refute [21] and Nitpick [4].

2 Motivation

The previously existing counterexample generators in Isabelle, which test with random
values or exhaustively with small values, perform well on conjectures without precon-
ditions. For example, for the invalid conjecture about lists2

reverse (append xs ys) = append (reverse xs) (reverse ys),

the counterexample generators provide the counterexample xs = [a1] and ys = [a2] (for
atoms a1 6= a2) instantaneously. For conjectures of this kind, random and exhaustive
testing are perfectly suited thanks to their lightweight nature.

But random and exhaustive testing generate values without analyzing the conjec-
ture. This can lead to many vacuous test cases, as in this simple example:

length xs = length ys ∧ zip xs ys = zs =⇒ map fst zs = xs ∧map snd zs = ys

The random and exhaustive strategies first generate values for xs, ys, and zs in an uncon-
strained fashion and then check the premises, namely that xs and ys are of equal length
and that zs is the list obtained by zipping xs and ys together. For the vast majority of
variable assignments, the premises are not fulfilled, and the conclusion is left untested.
Clearly, it is desirable to take the premises into account when generating values. For
further illustration, we focus on a simpler valid conjecture about distinct lists:

distinct xs =⇒ distinct (tl xs)

The previously existing counterexample generator, testing exhaustively, produces the
following test program in Standard ML to check the validity of this conjecture:

2 We use common notations from functional programming languages: [] and x ·xs denote the two
list constructors Nil and Cons x xs, lists, such as (x · (y · (z ·Nil))), are conveniently written as
[x,y,z]. The tail of a list xs is obtained with tl xs, where tl [] = [] and tl (x ·xs) = xs. Furthermore,
free variables are implicitly universally quantified.

val generate-nat size chk = if size = 0 then None else case chk 0 of
Some xs⇒ Some xs
| None⇒ generate-nat (size−1) (λn. chk (n+1))

val generate-list size chk = if size = 0 then None else case chk [] of
Some xs⇒ Some xs
| None⇒ generate-nat (size−1) (λx. generate-list (size−1)

(λxs. chk (x · xs)))

val test xs = if distinct xs ∧ ¬ distinct (tl xs) then Some xs else None

val check size = generate-list size (λxs. test xs)

The check function implements a simple generate-and-test loop. It uses the function
generate-list that generates all possible lists (of natural numbers) up to a given bound
and iteratively calls the test function to test the property at hand. It returns the found
counterexample as an optional value, i.e., if the property holds for all values up to the
given bound, the check function returns None, otherwise the counterexample is returned
as result with Some.

Our new approach interleaves generation and checking in a way that avoids gener-
ating lists that are not distinct. From the definition of the distinct predicate,

distinct [] = True
distinct (x · xs) = (x /∈ set xs∧distinct xs),

we can derive how to construct distinct lists: First, the empty list is distinct; secondly,
larger distinct lists can be constructed taking a (shorter) distinct list and appending
an element which is not in the list already to its front. This insight is reflected in the
following test data generator:

val generate-distinct size chk = if size = 0 then None else case chk [] of
Some xs⇒ Some xs
| None⇒ generate-distinct (size−1) (λxs. generate-nat (size−1)

(λx. if x /∈ set xs then chk (x · xs) else None))

The function generate-distinct only generates and tests the given property with distinct
lists. It constructs lists by applying the two rules mentioned above. With this generator
at hand, we can check the conclusion more efficiently by:

val test xs = if ¬ distinct (tl xs) then Some xs else None
val check size = generate-distinct size (λxs. test xs)

Using these smart test data generators reduces the number of tests, and as our evaluation
(§7) shows, this allows us to explore test values of larger sizes where exhaustive testing
cannot cope with the explosion of useless test values. More precisely, in our simple ex-
ample, naive exhaustive testing cannot check all lists of size 15 within one hour, where
the smart generator can easily explore all the lists up to this size within 30 seconds.

In the following sections, we describe how we synthesize these test data generators
automatically from the precondition’s definition.

3 Overview of the tool

In this section, we present the overall structure of our counterexample generator, and
motivate the key features and design decisions. The detached presentation of individual
components is then discussed in the following three sections.

3.1 Design decisions

QuickCheck and SmallCheck execute the program with concrete values. Testing with
concrete values has the clear advantage of being natively supported by the functional
programming language, in our case ML, and hence can be executed very fast. But test-
ing with concrete values has the drawback that a large set of test inputs may exhibit
indistinguishable executions. E.g., in our example about distinct lists, the lists [1,1,2],
[1,1,3], [1,1,4], . . . are all non-distinct because of the non-distinct prefix [1,1], and
hence testing the conjecture with all these lists succeeds without even checking its con-
clusion.

An alternative to testing functional programs is executing the program by a needed
narrowing strategy [1], which executes the program symbolically as far as possible. It
avoids symmetric executions, i.e., a set of input values that result in the same execu-
tion. It checks the conjecture for a set of values with one symbolic execution, reducing
the number of tests. In our example, all the lists [1,1,2], [1,1,3], [1,1,4], . . . can be
treated immediately with one symbolic execution 1 · (1 · xs), where xs is a free vari-
able representing any list of natural numbers. Symbolic executions usually result in a
non-deterministic computation, which is implemented with a backtracking mechanism,
as known from Prolog. This execution principle requires some overhead, which then
causes symbolic testing to be slower than testing with concrete values, if the number of
eliminated symmetric executions is too low to compensate for the execution’s overhead.

Two circumstances contribute to the fact that symbolic executions frequently do not
pay off in practice: First, large parts of the program are purely functional executions;
nevertheless one inherits some overhead even in those parts of the execution. Second,
if the conclusion is hyperstrict, i.e., requires checking with all test values, it incurs the
overhead of symbolic executions, but ends up doing all executions necessarily with
concrete values anyway.

Our test data generators aim to find a balance between fast execution with concrete
values and avoiding symmetric executions. The test data generators produce concrete
values during the execution, so that it can be translated directly into the target functional
programming language.

For conjectures without preconditions, we enumerate all possible concrete values.
This is quite effective, because usually there are only very few symmetric executions in
that case. When preconditions occur in conjectures, test data generators only produce
values fulfilling the precondition, and then test the conclusion. We find values fulfill-
ing the precondition by an implementation that queries the precondition’s predicate for
all possible values up to some bound. The generator will enumerate possible values,
similar to a query in Prolog, but returning only ground solutions, i.e., not using logical
variables. The query is integrated in a lightweight fashion into the test program by a

compilation. It retains purely functional evaluations, detects values that can be com-
puted by inferring data flow in the program (between variables), and combines it with
generation of values if data flow cannot be inferred.

In the end, this static analysis and the compilation lead to test data generators for
the preconditions. They discard useless test inputs before generating them, and keep
the execution mechanism simple to target functional programming languages. If large
parts of symmetric executions are avoided by the data flow analysis, these generators
can explore the space of test input faster than symbolic and concrete executions.

3.2 Architecture

The counterexample generator performs these steps: As the original specification can
be defined using various definitional mechanisms, the specification is preprocessed by a
few simple syntactic transformations (§4) to Horn clauses. The core component, which
was previously described in [2], consists of a static data flow analysis, the mode analysis
(§5) and the code generator (§6). This core component only works on a syntactic subset
of the Isabelle language, namely Horn clauses of the following form:

Q1 u1 =⇒ ···=⇒ Qn un =⇒ P t

In a premise Qi ui, Qi must be a predicate defined by Horn clauses and the terms ui must
be constructor terms, i.e., only contain variables or datatype constructors. Furthermore,
we allow negation of atoms, assuming the Horn clauses to be stratified. If a premise
obeys these restrictions, the core compiler infers modes and compiles functional pro-
grams for the inferred modes. If a premise has a different form, e.g., the terms contain
function symbols, or a predicate is not defined by Horn clauses, the core compiler will
treat them as side conditions. For side conditions, the mode analysis does not infer
modes, but requires all arguments as inputs. Enriching the mode analysis, we mark un-
constrained values to be generated. Once we have inferred modes for the Horn clauses,
these are turned into test data generators in ML using non-deterministic executions and
type-based generators.

4 Preprocessing

In this section, we sketch how specifications in predicate logic and functions are pre-
processed to Horn clauses. A definition in predicate logic is transformed to a system of
Horn clauses, based on the fact that a formula of the form P x = ∃y. Q1 u1∧·· ·∧Qn un
can be soundly underapproximated by a Horn clause Q1 u1 =⇒ ···=⇒ Qn un =⇒ P x.
Predicate logic formulas in a different form are transformed into the form above by a
few logical rewrite rules in predicate logic. We rewrite universal quantifiers to negation
and existential quantifiers, put the formula in negation normal form, and distribute ex-
istential quantifiers over disjunctions. In the process of creating Horn clauses, it is nec-
essary to introduce new predicates for subformulas, as our Horn clauses do not allow
disjunctions within the premises or nested expressions under negations. Furthermore,
we take special care of if, case and let-constructions.

Example 1. The distinct predicate on lists is defined by the two equations,

distinct [] = True
distinct (x · xs) = (x /∈ set xs∧distinct xs)

In the preprocessing step, these are made to fit the syntactic restrictions of the core
component, yielding the two Horn clauses:

distinct []
x /∈ set xs =⇒ distinct xs =⇒ distinct (x · xs)

To enable inversion of functions, we preprocess n-ary functions to (n+1)-ary predicates
defined by Horn clauses, which enables the core compilation to inspect the definition of
the function and leads to better synthesized test data generators. This is achieved by flat-
tening a nested functional expression to a flat relational expression, i.e., a conjunction
of premises in a Horn clause.

Example 2. We present how the length function for lists and a precondition containing
this function are turned into relational expressions by flattening. The length of a list is
defined by length [] = 0, and length (x ·xs) = Suc (length xs)3 . We derive a correspond-
ing relation lengthP with two Horn clauses:

lengthP [] 0
lengthP xs n =⇒ lengthP (x · xs) (Suc n)

The precondition length xs = length ys is then transformed into

lengthP xs n ∧ lengthP ys n

In the new formulation, the constraint of the two lists having the same length is ex-
pressed by their shared variable n. This relational description helps our mode analysis
to find a more precise data flow.

This well-known technique of flattening is similarly described by Naish [15] and
Rouveirol [18]. We also support flattening of higher-order functions, which allows in-
version of higher-order functions if the function argument is invertible.

5 Mode analysis

In order to execute a predicate P, its arguments are classified as input or output, made
explicit by means of modes. Modes can be inferred using a static analysis on the Horn
clauses. Our mode analysis is based on Mellish [14]. There are more sophisticated mode
analysis approaches, e.g., by using abstract domains [20] or by translating to a boolean
constraint system [17]. But for our purpose, we can apply the simple mode analysis,
because if the analysis does not discover a dataflow due to its imprecision, the overall
process still leads to a test data generator.

3 Natural numbers are defined by constructors 0 and Suc.

Modes. For a predicate P with k arguments, a mode is a particular dataflow assignment
which follows the type of the predicate and annotates all arguments as input (i) or output
(o), e.g., for lengthP, o⇒ i⇒ bool denotes the mode where the first argument is output,
the last argument is input.
A mode assignment for a given clause Q1 u1 =⇒···=⇒Qn un =⇒ P t is a list of modes
M,M1, . . .Mn for the predicates P,Q1, . . . ,Qn. Let FV(t) denote the set of free variables
in a term t. Given a vector of arguments t and a mode M, the projection expression t〈M〉
denotes the list of all arguments in t (in the order of their occurrence) which are input
in M.

Mode consistency. Given a clause Q1 u1 =⇒ ··· =⇒ Qn un =⇒ P t a correspond-
ing mode assignment M,M1, . . .Mn is consistent if the chain of sets of variables v0 ⊆
·· · ⊆ vn defined by (1) v0 = FV(t〈M〉) and (2) v j = v j−1∪FV(u j) obeys the conditions
(3) FV(u j〈M j〉)⊆ v j−1 and (4) FV(t)⊆ vn. Mode consistency guarantees the possibility
of a sequential evaluation of premises in a given order, where v j represents the known
variables after the evaluation of the j-th premise. Without loss of generality, we can
examine clauses under mode inference modulo reordering of premises. For side condi-
tions R, condition 3 has to be replaced by FV(R) ⊆ v j−1, i.e., all variables in R must
be known when evaluating it. This definition yields a check whether a given clause is
consistent with a particular mode assignment.

Generator mode analysis. To generate values that satisfy a predicate, we extend the
mode analysis in a genuine way: If the mode analysis cannot detect a consistent mode
assignment, i.e., the values of some variables are not constrained after the evaluation
of the premises, we allow the use of generators, i.e., the values for these variables are
constructed by an unconstrained enumeration. In other words, we combine two ways
to enumerate values, either driven by the computation of a predicate or by generation
based on its type.

Example 3. Given a unary predicate R with possible modes i⇒ bool and o⇒ bool and
the Horn clause R x =⇒ P x y, classical mode analysis fails to find a consistent mode
assignment for P with mode o⇒ o⇒ bool. To generate values for x and y fulfilling P,
we combine computation and generation of values as follows: the values for variable x
are built using R with o⇒ bool; values for y are built by a generator.

This extension gives rise to a number of possible modes, because we actually drop
the conditions (3) and (4) for the mode analysis. Instead, we use a heuristic to find a
considerably good dataflow by locally selecting the optimal premise Q j and mode M j
with respect to the following criteria:

1. minimize missing values, i.e., have
∣∣FV(u j〈M j〉)− v j−1

∣∣ to be minimal;
2. use functional predicates with their functional mode;
3. use predicates and modes that do not require generators themselves;
4. minimize number of output positions;
5. prefer recursive premises.

Next, we motivate and illustrate these five criteria. In general, we would like to avoid
generation of values and computations that could fail, and to restrain ourselves from
enumerating any values that could possibly be computed. Hence, the first priority is to

use modes where the number of missing values is minimal. This way, we partly recover
conditions (3) and (4) from the mode analysis.

Example 3 (continued). For mode M1 for R x, one has two alternatives: generating
values for x and then testing R with mode i⇒ bool, or only generating values for x using
R with o⇒ bool. The first choice generates values and rejects them by testing; the latter
only generates fulfilling values and is preferable. The analysis favors o⇒ bool to i⇒
bool due to criterion 1: for v0 = {}, u1 = x and M1 = i⇒ bool, FV(u1〈M1〉)−v0 = {x};
whereas for M1 = o⇒ bool, FV(u1〈M1〉)−v0 = {}. |FV(u1〈M1〉)− v0| is minimal for
M1 = o⇒ bool.

Example 4. Consider a clause R x y =⇒ F x y =⇒ P x y where R is a one-to-many
relation and F is functional. R and F both allow modes i⇒ o⇒ bool and i⇒ i⇒ bool.
For M = i⇒ o⇒ bool, R x y and F x y can be evaluated in either order. Our criterion 2
induces preference for computing y with the functional computation F x y and checking
R x y, i.e., whether the one value for y can fulfill R x y or not.

Criterion 3 induces avoiding the generation of values in the predicate to be invoked.
Furthermore, we minimize output positions, e.g., we prefer checking a predicate (no
output position) before computing some solution (one output position) as we illustrate
by the following example:

Example 5. In a clause R x y =⇒ Q x =⇒ P x y with mode i⇒ o⇒ bool for R and P,
and i⇒ bool for Q, we prefer Q x before R x y, since computing values for y would be
useless if Q x fails. This ordering is enforced by criterion 4.

Finally, we prefer recursive premises – this leads to a bottom-up generation of values.
Generating larger values for predicates from smaller values for the predicate is com-
monly preferable because it takes advantage of the structure of the preconditions.

Example 6. In a clause P xs =⇒ C xs =⇒ P (x · xs), P xs is favored for generation
of xs and C xs for checking. Generating values for P, we apply the generator for P
recursively and check the condition C xs afterwards.

This “aggressive” mode analysis results in moded Horn clauses with annotations for
generators of values. In summary, it does not only discover an existing dataflow, but
helps to create a dataflow by filling the gaps with value generators.

6 Generator compilation

In this section, we discuss the translation of the compiler from moded Horn clauses to
functional programs. First, we present the building blocks of the compiler, the execution
mechanism and the generators. Then, we sketch the compilation scheme by applying it
to the introductory examples.

Monads for non-deterministic computations. We use continuations with type α cps
to enumerate the (potentially infinite) set of values fulfilling the involved predicates – in
other words, the constructed continuations will hold the enumerated solutions. We de-
fine plus monad operations describing non-deterministic computations. Depending on

our enumeration scheme, we employ three different plus monads: one for unbounded
computations, and two others for depth-limited computations within positive and nega-
tive contexts, respectively.

A plus monad supports four operations: empty, single, plus and bind. It provides
executable versions of basic set operations: empty= /0, single x = {x}, plus A B= A∪B
and bind A f =

⋃
x∈A f x. Employing these operations in SML results in a Prolog-

like execution strategy, with a depth-first search. This strategy is fine for user-initiated
evaluations, but for counterexample generation, automatically generated values cause
infinite computations escaped from the control of the user. To avoid being stuck in such
a computation, we also employ a plus monad with a different carrier that limits the
computation by a depth-limit. Evaluating predicates with a depth-limited computation,
we must take special care of negation. We implement different behaviors for queries
in different contexts: for positive contexts, we compute an underapproximation; for
negative contexts, an overapproximation.

For positive contexts, we implement a plus monad with the type int → α cps as
carrier. The bind+ operation checks the depth-limit and if reached, returns empty, which
yields a sound underapproximation; otherwise it passes a decreased depth-limit to its
argument. It is defined by:

bind+ xq f = (λi. if i = 0 then empty else bind (xq (i−1)) (λa. f a i))

In negative contexts, we must explicitly distinguish failure (no solution found) from
reaching the depth limit. To signal reaching the depth-limit, we include an explicit ele-
ment to model an unknown value (as a third truth value), and continue the computation
with this value. This makes the monad carrier type be int → α option cps where the
option value None stands for unknown. If one computation reaches the depth-limit and
another computation fails, then the overall computation fails; in other words failure ab-
sorbs the unknown value (which is consistent with a three-valued logic interpretation).

Because negative and positive occurrences of predicates are intermixed, in actual
enumeration we have to combine the positive and negative monads – the bridge be-
tween them is performed by executable not-operations that handle the unknown value
depending on the context. For instance, when applied to a solution enumeration of a
negated premise, unknown is mapped to false (computation failure); this reflects the
intuition that if we were not able to prove a negated premise ¬Q x within a given depth-
limit for x, then all we can soundly assume is that Q x may hold; hence the computation
cannot proceed further.

The compilation scheme builds abstractly on the monad structure interface and
hence is employed for all three monads. For the rest of the presentation, we write plus
and bind infix as t and >>=.

Type-based generators. If values cannot be computed, we enumerate them up to a
given depth. To generate values of a specific type, we make use of type classes in
Isabelle. More specifically we require that the involved types τ come equipped with
an operation gen τ, the generator for type τ that enumerates all values. For inductive
datatypes τ with n constructors C1 τ

1
1 . . . τ

m1
1 | . . . | Cn τ

1
n . . . τ

mn
n we construct generators

that enumerate values exhaustively up to depth d by the following scheme:

gen τ d =
if d = 0 then empty else
(gen τ1

1 (d−1)>>=(λx1. gen τ2
1 (d−1)>>= . . . >>=(λxm1−1.

gen τm1
1 (d−1)>>=(λxm1 . single (C1 x1 . . . xm1))) . . .)) t . . . t

(gen τ1
n (d−1)>>=(λx1. gen τ2

n (d−1)>>= . . . >>=(λxmn−1.
gen τmn

n (d−1)>>=(λxmn . single (Cn x1 . . . xmn))) . . .))

We already have seen concrete instances of these generators for lists and natural num-
bers, generate-list and generate-nat in §2 – although there, the scheme is disguised by
the fact that we inlined the plus monad operations.

Compilation of moded clauses. The central idea underlying the compilation of a pred-
icate P is to generate a function PM for each mode M of P that, given a list of input
arguments, enumerates all tuples of output arguments. The functional equation for PM

is the union of the output values generated by the characterizing clauses. Employing the
data flow from the mode inference, the expressions for the clauses are essentially con-
structed as chains of type-based generators and function calls for premises, connected
through bind and case expressions. All functions PM are executable in ML, because
they only employ the monad operations and pattern matching. The function PM for the
mode M with all arguments as output serves as test data generator for predicate P.

Example 7. For the predicate distinct, we can infer the mode o⇒ bool: The first clause
distinct [] allows the mode o⇒ bool, as the empty list is just a constant value. The
second clause allows the mode o ⇒ bool by choosing modes for its premises, i.e.,
distinct xs with mode o⇒ bool and x /∈ set xs with mode i⇒ i⇒ bool. This is then
compiled to a test data generator distincto for lists of type τ:

distincto τ= single [] t
(distincto>>=(λxs. gen τ >>=(λx.if x /∈ set xs then single (x · xs) else empty))

Instantiating τ to the natural numbers and unfolding the plus monad operators, the def-
inition of distincto yields the test data generator generate-distinct from section 2.

Example 8. For the precondition length xs = length ys ∧ zip xs ys = zs, we obtain the
following moded clause:

– lengthP xs n with mode o⇒ o⇒ bool,
– lengthP ys n with mode o⇒ i⇒ bool,
– zipP xs ys zs with its functional mode i⇒ i⇒ o⇒ bool

In other words, we enumerate lists with their corresponding length, and as we know
the length of xs, we only enumerate lists ys of equal length, and finally we obtain zs by
executing zip xs ys. The generator for this precondition then is:

lengthP
oo>>=(λ(xs,n). lengthP

oi n
>>=(λys. single (zip xs ys)>>=(λzs. single (xs,ys,zs))))

size
predicate 5 6 7 8 9 10 11 12 13 14

– 24 89 425 2,373 16,072 125,673 1,112,083 10,976,184 119,481,296 1,421,542,641
distinct 16 39 105 315 1,048 3,829 15,207 65,071 297,840 1,449,755

sorted 15 31 63 127 255 511 1,023 2,047 4,095 8,191
Table 1. Number of test cases for given sizes and preconditions

Unfolding the definitions of the plus monad operators and reducing the syntactic clutter,
this leads to

if d = 0 then None
else lengthP

oo (d−1) (λ(xs,n). lengthP
oi n (d−1) (λys. c xs ys (zip xs ys))

The arguments c and d make the continuation and the limit on the depth of the compu-
tation explicit. The monad operations implicitly pass around the values for c and d.

7 Evaluation

To evaluate our approach, we compared the performance of the new approach against
the three other existing testing approaches in Isabelle: random, exhaustive and nar-
rowing-based testing. Random and exhaustive testing employ concrete values, whereas
narrowing-based testing employs symbolic values. The narrowing-based testing in Is-
abelle is a descendant of Lazy SmallCheck, employing the same evaluation mechanism.

First, we compare their performance validating conjectures with simple precondi-
tions. Table 1 shows the number of test cases up to a given size, and the number of
test cases (for that size) for which the preconditions distinct and sorted hold. In other
words, we measured the density of the search space if restricted by some precondi-
tion, compared to the unrestricted search space. For example, testing the proposition
distinct xs =⇒ distinct (tl xs), the table shows how many test cases are generated by
the naive exhaustive testing and by the smart test generators. This already gives a rough
estimate on the possible improvement avoiding useless tests. Table 2 shows the run
time4 to validate properties with values up to a given size on some representative con-
jectures from Isabelle’s library with the precondition distinct (D1, D2, D3) and sorted
(S1, S2, S3):

– D1: distinct xs =⇒ distinct (tl xs)
– D2: distinct xs =⇒ distinct (remove1 x xs)
– D3: distinct xs =⇒ distinct (zip xs ys)
– S1: sorted xs =⇒ sorted (remdups xs)
– S2: sorted xs =⇒ sorted (insort-insert x xs)
– S3: sorted xs∧ i≤ j∧ j < length xs =⇒ nth xs i≤ nth xs j

The numbers of D1 indicate the improvement using the smart test generators for distinct.
In case of D2, a more representative conjecture of the Isabelle’s theory of lists, we ob-
serve a similar behaviour. In D3, the exhaustive testing does not enumerate all pairs of

4 All tests ran on a Pentium DualCore P9600 2.6GHz with 4GB RAM using Poly/ML 5.4.1 and
Ubuntu GNU/Linux 11.04

size
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

D1

E 0 0 0 0.3 3.2 38 509
N 0 0.1 0.4 3.5 32 364
S 0 0 0 0 0.2 0.7 3.8 22 135 862

D2

E 0 0 0 0.4 3.8 45 589
N 0 0.1 0.5 4.0 37 395
S 0 0 0 0.1 0.4 2.5 16 98 671

D3

E 0.1 4.3 155
N 0.9 17 446
S 0.1 4.3 157

S1

E 0 0 0 0.2 2.7 31 404
N 0 0 0 0.1 0.1 0.1 0.2 0.4 0.9 2.0 4.6 10 23 52 115 257 565 1238
S 0 0 0 0 0 0 0 0 0 0.1 0.2 0.3 0.8 1.7 3.6 7.8 17 36

S2

E 0 0 0 0.2 2.5 29 381
N 0 0.1 0.1 0.1 0.1 0.2 0.4 0.8 1.8 3.9 8.8 20 44 98 218 286 1063
S 0 0 0 0 0 0 0.1 0.1 0.2 0.5 1.1 2.5 5.5 12 28 61 135 292

S3

E 0 0 0 0.2 2.3 27 337
N 0 0 0.1 0.1 0.2 0.5 1.3 2.9 6.9 16 38 87 204 467 1064
S 0 0 0 0 0 0.1 0.1 0.2 0.4 0.9 2.2 5.1 12 26 59 136 311 708

Table 2. Run time in seconds for given sizes – E, N, S denote exhaustive testing, narrowing,
and smart generators, resp.; 0 denotes time < 50 ms, empty cells denote timeout after 1h; bold
numbers indicate the lowest run time

lists for xs and ys, but only generates lists ys if the generated list xs is distinct. This
simple optimisation already reduces the number of tests dramatically, i.e., only 0.025
percent of all tests are rejected by the precondition. Due to this fact, using the smart
generator does not add any further significant improvement in the run time behaviour.
Hence our smart generators perform practically the same to the exhaustive testing. Sym-
bolic execution with narrowing performs worst due to its overhead in the execution in
all three cases. On the very sparse precondition, sorted xs, the improvements with smart
test data generators are even more apparent. For example, in S1, naive exhaustive test-
ing times out at size 15 (with a time limit of one hour), where the smart generators
can still enumerate lists up to size 20 within a second. Narrowing performs better than
exhaustive testing, but is still slower than the smart generators. These numbers show
that the test data generators outperform the naive exhaustive testing and the symbolic
narrowing-based testing.

Second, to show that this performance improvement also results in a direct gain
for our users, we apply the counterexample generators on faulty implementations of
typical functional data structures. We injected faults by adding typos into the correct
implementations of the delete operation of 2-3 trees, AVL trees, and red-black trees. By
adding typos, we create 10 different (possibly incorrect) versions of the delete operation
for each data structure. On 2-3 trees, we check two invariants of the delete operation,
keeping the tree balanced and ordered, i.e., balanced t =⇒ balanced (delete k t), and
ordered t =⇒ ordered (delete k t). With the 10 versions, this yields 20 tests, on which we
apply the different counterexample generators. Random testing (with 2,000 iterations
for each size) finds errors in 5, and exhaustive testing in 7 of 20 tests within thirty

seconds. The smart generator finds errors in five more cases, uncovering 12 errors in
the 20 tests; the narrowing approach performs equally well. In principle, exhaustive
testing should find the errors eventually: so, on the five more intrinsic cases where the
generators perform well, we increased the time for naive exhaustive testing to finally
discover the fault – even after one hour of testing, exhaustive testing was not able to
detect them. Also increasing the iterations for random testing to 20,000 iterations, it
still discovers only five faults. This shows that using the test data generators in this case
is clearly superior to naive exhaustive testing. In the eight cases, where all approaches
found no fault, even testing more thoroughly for an hour did not reveal any further
errors – most probably the property still holds, as the randomly injected faults do not
necessarily affect the invariant.

On AVL trees, we observe a similar behaviour. When checking the two invariants
of its delete operation on 10 modified versions, random testing uncovers 5, exhaustive
testing 6, the smart generators and narrowing-based approach 11 errors in 20 cases. On
red-black trees, the invariant was formulated in a way by the user that our data flow
analysis cannot discover a reasonable ground data flow and therefore the synthesized
generators perform very poorly. Here, the narrowing-based testing clearly benefits from
its usage of symbolic values.

Beyond data structures, we also check a hotel key card system in Isabelle by Nip-
kow [16] which itself was inspired by a model from Jackson [12]. The faulty sys-
tem contains a tricky man-in-the-middle attack, which is only uncovered by a trace
of length 6. The formalisation uses a restrictive predicate that describes in which order
specific events can occurs. Using the smart generators, we can find the attack within a
few seconds. Synthesizing a test data generator for these valid traces requires the pre-
processing techniques (§4), i.e., we can eliminate existential quantifiers, which render
it non-executable for the random and exhaustive testing. Even after manual refinements
to obtain an executable reformulation, random and exhaustive testing fail to find the
counterexample within ten minutes of testing. The narrowing-based testing can han-
dle the existential quantifiers in principle, but practically it performs badly with the
deeply nested existential quantifiers in the specification, rendering it impossible to find
the counterexample. After manual rewriting to eliminate the existentials, we also can
obtain a counterexample with this approach within a few seconds.

8 Conclusion

This counterexample generator described in this paper is included in the current Isabelle
development version and can be invoked by Isabelle’s users to validate their specifica-
tions before proving them correct. It complements the existing naive exhaustive and
narrowing-based testing techniques by combining the strengths of both: it reduces the
number of tests, as narrowing-based testing does, and it executes tests very fast, as the
naive exhaustive testing does.

Acknowledgements I would like to thank Andrei Popescu, Sascha Boehme, Tobias
Nipkow, Alexander Krauss, Thomas Tuerk, Brian Huffman, Jasmin Blanchette and the
anonymous referees for comments on earlier versions of this paper.

References

1. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM 47, 776–822
(2000)

2. Berghofer, S., Bulwahn, L., Haftmann, F.: Turning inductive into equational specifications.
In: TPHOLs ’09. LNCS, vol. 5674. Springer (2009)

3. Berghofer, S., Nipkow, T.: Random Testing in Isabelle/HOL. In: SEFM ’04, pp. 230–239.
IEEE Computer Society (2004)

4. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order logic
based on a relational model finder. In: ITP ’10. LNCS, vol. 6172, pp. 131–146. Springer
(2010)

5. Bulwahn, L.: Smart test data generators via logic programming. In: ICLP ’11 (Technical
Communications). Leibniz Int. Proc. in Informatics, vol. 11, pp. 139–150. Schloss Dagstuhl,
Leibniz-Zentrum für Informatik (2011)

6. Carlier, M., Dubois, C., Gotlieb, A.: Constraint Reasoning in FocalTest. In: ICSOFT ’10.
(2010)

7. Christiansen, J., Fischer, S.: EasyCheck – Test Data for Free. In: FLOPS ’08. LNCS, vol.
4989, pp. 322–336. Springer (2008)

8. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of Haskell
programs. In: ICFP ’00, pp. 268 – 279. ACM SIGPLAN (2000)

9. Fischer, S., Kuchen, H.: Systematic generation of glass-box test cases for functional logic
programs. In: PPDP ’07, pp. 63–74. ACM (2007)

10. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In: FLOPS
’10. LNCS, vol. 6009, pp. 103–117. Springer (2010)

11. Hanus, M.: Multi-paradigm declarative languages. In: ICLP ’07. LNCS, vol. 4670, pp.
45–75. Springer (2007)

12. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press (2006)
13. Lindblad, F.: Property directed generation of first-order test data. In: The Eigth Symposium

on Trends in Functional Programming. (2007)
14. Mellish, C.S.: The automatic generation of mode declarations for Prolog programs. Techni-

cal Report 163, Department of Artificial Intelligence (1981)
15. Naish, L.: Adding equations to NU-Prolog. In: 3rd Int. Sym. on Programming Language

Implementation and Logic Programming. LNCS, pp. 15–26. Springer (1991)
16. Nipkow, T.: Verifying a Hotel Key Card System. In: ICTAC ’06. LNCS, vol. 4281. Springer

(2006) Invited paper.
17. Overton, D., Somogyi, Z., Stuckey, P.J.: Constraint-based mode analysis of mercury. In:

PPDP ’02, pp. 109–120. ACM (2002)
18. Rouveirol, C.: Flattening and Saturation: Two Representation Changes for Generalization.

Mach. Learn. 14(2), 219–232 (1994)
19. Runciman, C., Naylor, M., Lindblad, F.: SmallCheck and Lazy SmallCheck: automatic ex-

haustive testing for small values. In: Haskell ’08, pp. 37–48. ACM (2008)
20. Smaus, J.G., Hill, P.M., King, A.: Mode analysis domains for typed logic programs. In: Sel.

papers from the 9th Int. Workshop on Logic Programming Synthesis and Transformation,
pp. 82–101. Springer (2000)

21. Weber, T.: Bounded model generation for Isabelle/HOL. In: PDPAR ’04. Electronic Notes
in Theoretical Computer Science, vol. 125(3), pp. 103–116. Elsevier (2005)

22. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle Framework. In: TPHOLs ’08. LNCS,
vol. 5170, pp. 33–38. Springer (2008)

	Smart testing of functional programs in Isabelle

