
Dynamic proxy-cache multiplication
inside LANs

Claudiu Cobârzan, László Böszörményi

Institute of Information Technology
University Klagenfurt
Technical Report No TR/ITEC/05/2.02
February 2005

Abstract

Proxy-cache deployment in the LANs has become a current practice aimed at increasing
the availability of the data while also reducing client perceived latency, reduce the load
on origin servers as well as the external network bandwidth consumption. As the load
increases, due to an increase in client’s requests for both cached and non-cached data,
it often happens that one single proxy-cache can not handle all the incoming requests.
For those situations, when request dropping and cache replacement becomes necessary,
we propose an alternative, namely proxy-cache splitting. Our solution is to dynamically
deploy additional proxy-caches inside the LAN, and divert towards them some of the
requests addressed to the original proxy-cache(s). By doing this we can achieve even
better response time, load balancing, higher availability and robustness of the service
than in the case in which a single proxy-cache is used.

Contents

1 Introduction 2

2 Proxy-cache splitting 3

2.1 The model of the proposed distributed proxy-cache architecture 4

2.2 Proxy splitting scenarios . 7

2.2.1 In the case of storage constraints 7

2.2.2 In the case of load constraints . 9

2.3 Cache replacement after splitting . 9

2.4 Proxy-to-proxy communication . 10

2.5 Additional costs induced by the proposed architecture: best-case/worst-
case scenarios . 11

2.5.1 Latency . 11

2.5.2 Transferred data . 14

3 Related work 17

4 Conclusion and future work 17

1

1 Introduction

The constant increase in both volume and demand of multimedia data in the Internet,
tends to stress the existing infrastructure. The main factors are the characteristics of
multimedia data (e.g. size, bandwidth requirements) which highly differ from those of
typical web data. The traditional way to cope with such situations is to deploy proxy-
caches at LAN edges. There is a vast literature regarding both web and video caching with
a lot of attention dedicated to cache replacement strategies. Under certain situations a
single proxy-cache does not suffice, so multiple proxy-caches have to be used. Cooperative
caching has been introduced for web caches, e.g. Harvest [5] and Squid [18], and for video
caches as well, e.g. by Brubeck and Rowe [4] and MiddleMan [1].

Our paper proposes a novel proxy-cache system that is able to ”spawn” new proxies
via split operations whenever the actual situation demands it. Examples of such situations
include extremely high load and severe storage constraints on the proxy. In those cases
one additional proxy-cache in the LAN would help lower the load on already running
proxy-caches as well as increase the capacity of the ”federate” cache. Figure 1 shows such
an example with (a) a single proxy-cache servicing the clients of the LAN and (b) the
same LAN with three running proxy-caches after two consecutive split operations.

Proxy

a)

node

node

node

node

node

node

node

node

node

b)

Proxy

New Proxy

node
node

node

node

node

node

node

New Proxy

Figure 1: Example of a) LAN with one proxy-cache; b) LAN after the split operation has
been performed twice

The system we propose dynamically adjusts the number of running proxies in the LAN,
depending on the load and on client request patterns, by either spawning new proxies on
periods with high activity or putting them in a ”hibernate” state or even stopping them
on periods with low activity.

The reminder of this paper is structured as follows. Section 2 describes the proxy-
cache split idea in more detail by presenting a first model of the proposed system and
two proxy split scenarios. A best-case/worst-case analysis regarding the additional costs
in terms of latency and transferred data is also presented. Section 3 outlines the related

2

work and Section 4 concludes the paper while also presenting directions for future work.

2 Proxy-cache splitting

The aim of our work is to provide a way to achieve better service for clients requesting
video content, especially a better response time and higher availability and robustness.
Usually this is done by deploying a proxy-cache node inside the network. There are
situations when deploying a single proxy-cache does not suffice, for example when servicing
large, popular content to many clients, or when the volume of requested data puts the
proxy-cache under constraints (cpu, mem, storage, etc.). In those cases requests have
to be rejected in order to lower the load on the machine and cache replacement has
to be performed in order to free disk space. We state that in some circumstances it
would be more beneficial to just deploy an additional proxy-cache inside the LAN, that
could take over some of the load on the existing proxy-cache(s) and by doing so, avoid
both request dropping and cache replacement. On the other hand, if current and maybe
predicted future load could be handled by a smaller number of proxy-caches than those
currently active, then some of them could enter a ”hibernating” state or could be shut
down (stopped). When hibernating, a proxy-cache could only service requests if the
desired data is already available in the local cache (no forwarding towards origin servers)
or not even service requests at all, but just wait for a reactivation command. Both cases of
”hibernation” have certain advantages over shut-down, especially in the situation a future
proxy split is needed, at the cost of consuming resources on the host machine during the
idle period.

The distributed architecture we propose, assumes the deployment of two types of
entities: the dispatchers and the daemons. The dispatchers are processes/threads
that run at the same node as the proxy-cache and can be seen as front-ends of the proxy-
caches which:

• handle incoming requests - serve them either from the local cache, or from the
origin server; if this is not possible, the requests are forwarded to other active
dispatchers/proxies in the LAN or they are discarded; if there are multiple dispatchers
a request can be forwarded to, the best candidate is chosen (the one that has the
requested object cached or if no cached copy exist in the ”federate” cache, the one
with the smallest load);

• manage the proxy code - archive the proxy code and send it to the location on which
a new proxy-cache is to be spawned (using the daemon running on the selected
target)

• manage the “child” proxy-cache processes - the dispatchers are responsible with
stopping/ pausing/ restarting a “child” proxy-cache depending on various conditions
(global load, volume of the clients’ requests, volume of streamed/stored data, etc.)

3

The daemon processes/threads run in the ideal case on every node of the LAN and are
responsible for:

• managing clients’ requests - the daemon either directly receives, or it intercepts the
client requests and then decides to forward them to the appropriate proxy-cache,
depending on the local available knowledge about the global state of the proxy-
caches “federation” (this may include information on the load of the particular
proxy-caches it uses as well as information on the data cached by those proxies);

• managing the proxy code - the daemon receives/compiles the code sent by a dispatcher
that initiates a proxy split operation;

• managing the local proxy-cache process - stops/ pauses/ restarts it, either as a re-
sult of incoming requests from its “parent” proxy, or depending on specific local
conditions (load, storage capacity).

In the case the daemon thread/process hosted on a certain node crashes, the clients
from that node still have access to the federate cache as long as the proxy-cache(s) set
as default in the client’s browser is/are still running. This is also true for the clients
from nodes with no daemons at all. The daemon is essential in the proxy-cache splitting
process, as it is used by the ”parent” to transfer its code if it is not already available at
the selected node.

2.1 The model of the proposed distributed proxy-cache archi-
tecture

We consider that the number of nodes in the LAN is n. Let P be the set of available
proxy-caches (there is at least one running proxy cache in the LAN):

P =
k⋃

i=1

Pi, k = |P |, 1 ≤ k ≤ n

A proxy-cache Pi is defined as follows:
Pi = (maxResourcesi,minResourcesi, LCi), i = 1..k

where:

• maxResourcesi - represents the maximum amount of resources that can be used by
the proxy-cache:

maxResourcei = (maxCpui,maxMemi,maxCapacityi,maxLani)

namely the maximum amount of CPU power, memory, storage space and external
bandwidth.

4

• minResourcesi - represents the minimum amount of resources that have to be used
in order to serve any client’s request. It is defined in a similar mode with the
maxResourcesi:

minResourcei = (minCpui,minMemi, minCapacityi, minLani)

• LCi - the content of the local cache
LCi = {cij, j = 1..q, q = the number of cached objects}

An object cij is defined as:
cij = (size(cij), timeLastAccess(cij), hitCount(cij), qualityV alue(cij))

where:

– size(cij) - the size of the object

– timeLastAccess(cij) - the last time the object has been requested

– hitCount(cij) - the number of times the object has been requested

– qualityV alue(cij) ∈ [0..1] - the measure of the object’s quality (based on the
actual characteristics of the video object, such as resolution, color information,
etc.)

The qualityV alue is a relative value that shows the degree in which the cached
object matches the desired quality for a certain class of users. A value equal or
close to 1 corresponds to the objects that have exactly or almost the desired quality,
while values close to 0 are assigned to objects that show the most drastic difference
between actual and desired quality. High absolute quality does not necessarily mean
that the qualityV alue is close to 1. For example, if the vast majority of the users
have only limited display size, say 800x600, a video object encoded at 1280x1024
will have a qualityValue closer to 0 than to 1, because further operations (e.g.
transcoding) have to be performed in order to deliver the object to the requesting
clients.

For each object cij, a utility value can be computed using a function u : LCi → R:
u(cij) = const1 ∗ size(cij) + const2 ∗ 1

timeLastAccess(cij)
+

+const3 ∗ hitCount(cij) + const4 ∗ qualityV alue(cij)

where const1, const2, const3, const4 ∈ [0, 1] and const1+const2+const3+const4 = 1
(u(cij) is computed as a weighted average of the different characteristics of the cached
video object).

Those constants can be fixed when the proxy-cache is started and remain the same
during the run period of the proxy-cache. Another possibility that needs further
investigation would be to dynamically modify those values when traffic conditions,
load level, request rate, etc. reaches certain values, in order to maximize the byte
hit ratio. The utility value of the cached objects is used to decide which objects get
discarded when performing cache replacement.

5

We use D to denote the set of dispatchers:

D =
k⋃

i=1

Di, k = |P |, 1 ≤ k ≤ n.

As each dispatcher corresponds to a certain proxy-cache, there is a function f (bi-
jection), f : D → P, f(Di) = Pi,∀i ∈ {1, .., k} (a proxy P has exactly one dispatcher

D).

One dispatcher Di is defined as follows:

Di = (Pi, GC,GU, siblingsi), ∀i ∈ {1, ..., k}, k = |P |, 1 ≤ k ≤ n

where:

• Pi - the corresponding proxy

• GC - the content of the global cache (viewed as the union of all local caches)

GC =
k⋃

i=1

LCi,∀i ∈ {1, ..., k}, k = |P |, 1 ≤ k ≤ n

• GU - the utility values for the objects in GC

GU =
k⋃

i=1

LUi,∀i ∈ {1, ..., k}, k = |P |, 1 ≤ k ≤ n

where LUi = the set of utility values for the objects in LCi

LUi = {u(cij,∀cij ∈ LCi, i ∈ {1, ..., k}, j ∈ {1, ..., q}, q = |LCi|)}
• siblingsi - the rest of the running proxies/dispatchers

siblingsi = P \ {Pi}

We denote with A, the set of daemons, ideally running on each node of the LAN.

A =
n⋃

i=1

DAi

There is a function g (bijection), g : [1..n] → A, g(i) = DAi,∀i ∈ {1, .., n} which
assigns each node in the LAN a running daemon.

One daemon DAi is defined as follows:

DAi = (P ′i, LOAD(P ′i),
⋃

p∈P ′
MLCp(m)), ∀i ∈ {1, ..., n}

where:

6

• P ′i - a subset of the proxy-cache set P (P ′i ⊆ P)

• LOAD(P ′i) - the load of the proxy-caches in the subset P ′
LOAD(P ′i) =

⋃

p∈P ′
LOAD(p)

where LOAD(p) represents the current load of the proxy p ∈ P ′ (different formula
can be used to compute the load)

• MLCp(m) - the most “useful” m objects stored in the cache p ∈ P ′

MLCp(m) =
m⋃

i=1

cij, u(cij) ≥ u(cij+1), ∀j ∈ {1, ..., m− 1}

where cij represents the cached object and u(cij) the value returned by the utility
function defined above for the object.

We denote requesti(o) a request for the object o issued by a client/daemon at node i
and we define it as following:

requesti(o) = (o, UP)

where:

• o - the object being requested

• UP - the user preferences (UP = NULL if no preferences specified)

If specified, the user preferences must be in the range supported by the terminal
capabilities. It would make no sense to request a video encoded at a 24bit color depth
if the terminal can display a maximum of 256 colors. Of course, if the user preferences
are specified disregarding the terminal capabilities or they are not specified at all, it is
possible that the retrieved content is useless because it can not be visualized.

2.2 Proxy splitting scenarios

As mentioned before we intend to perform a splitting operation under two conditions:
when the proxy-cache is under storage constraints or under load constraints. The question
is how to decide that a splitting operation is more appropriate than performing cache
replacement or reject the incoming requests? We propose the following two condition:

2.2.1 In the case of storage constraints

If ∀i ∈ {1, .., k},∀m,n ∈ {1, .., q}(m 6= n), k = |P |, q = |LCi|
|u(cim)− u(cin)| < δ (1)

then perform splitting, else perform cache replacement.

7

Cached Size Time of Hit count Quality
objects (MB) last access value

c1 100 -1 60 1
c2 100 -5 70 1
c3 100 -10 80 1
c4 100 -20 90 1
c5 100 -30 100 1

Table 1: Characteristics of the cached objects

Configuration const1 const2 const3 const4

conf1 0.25 0.25 0.25 0.25
conf2 0.10 0.40 0.40 0.10

conf3(LRU) 0 1 0 0
conf4(LFU) 0 0 1 0

Table 2: Values for the coefficients used by the utility function u

In other words, splitting is performed when all the cached objects are essentially
“equally” useful - the difference between the utility of all the objects in the cache is
smaller than a certain fixed limit δ. This means that all cached objects have more or less
the same utility and discarding any of them as result of a cache replacement operation
would not be advisable. A better option would be to preserve all those objects in the
cache. The condition could be relaxed, if considering that not for all, but for a certain
fraction of the cached object set, the above mentioned condition holds.

If the condition does not hold, than cache replacement should be performed with
regard to the utility of the objects. As an observation, if const1 = const3 = const4 = 0
then the cache replacement strategy (CRS) becomes LRU (Least Recently Used), and if
const1 = const2 = const4 = 0, the CRS becomes LFU (Least Frequently Used).

We present a short example of how the values of those constants could influence the
decision of making either a split operation or perform cache replacement. Consider that
the cache contains only 5 objects with the characteristics described in Table 1. Consider
now Table 2 with four value configurations for the constants that appear in the definition
of the utility function (see Section 2.1). The graphical representation of the utility values
corresponding to the data in Table 1 and Table 2 can be seen in Figure 2.

It can be seen that the decision to perform either cache replacement or a split opera-
tion highly depends on the value configuration of the coefficients. For example, if δ = 15
and the proxy is under storage constraints, cache replacement will be performed if config-
uration 3 or 4 are used, but a split operation will be initiated if configuration 1 or 2 are
considered.

8

Figure 2: The utility values for the cache configuration from Table 1 computed using the
constants values from Table 2

2.2.2 In the case of load constraints

When servicing a request for a certain object cij a certain amount of resources must be
available. If ∀Pi ∈ P we have availablei < minResourcei than a particular request ri is
discarded and the particular time ti is marked.

If ∀i ∈ {1, .., p− 1} (p fixed) we have

ti+1 − ti < ξ (2)

(the time interval between p consecutive discarded requests is smaller than a fixed thresh-
old ξ), than we make a split operation.

It is to investigate in a real time environment how different values for δ and ξ influence
the dynamic of the system.

2.3 Cache replacement after splitting

If one local cache, say Pi, is under storage constraints while other running proxies are
not, requests incoming at Pi could be redirected to its siblings so that cache replacement

9

is avoided and potential “valuable” objects are preserved in the federate cache.

If all local caches are under storage constraints, and if condition (1) does not hold
(a new proxy split is not necessarily advised), cache replacement has to be performed in
order to provide storage space for incoming requests. There are two possibilities: either
perform cache replacement independently for each cache, or perform cache replacement
considering the available information regarding the utility of the objects cached at sibling
sites.

If for example, there are two running proxies, and the utility of all the objects in P1 is
greater than the utility of those in P2, then P1 may not perform cache replacement, but
let P2 do it. This would require P1 to signal P2 to start discarding objects. One elegant
solution is to just redirect the first request coming to P1 towards P2 and by doing so force
the cache replacement, instead of explicitly demanding it via message passing.

2.4 Proxy-to-proxy communication

We consider that in the proposed system, the following types of messages are transmit-
ted:

1. request (from a client to the proxy, or from a proxy to another proxy)

2. response (from a proxy to a client)

3. cache information (information on objects added/removed from a cache)

4. proxy-cache code (duplicate the proxy code)

A send operation is defined as follows:

send(source, destination, MSG TY PE, MSG CONTENT, MSG LEN,UP)

where:

• source - identifies in a unique way in the system, the initiator of the communication

• destination - identifies in a unique way in the system, the recipient of the message

• MSG TYPE - indicates the type of the message (request/response/cache info/proxy-
cache code)

• MSG CONTENT - the effective content of the message (rtsp request, rtsp response,
etc.)

• MSG LEN - the size of the message

• UP - the defined user preferences

10

When a proxy chooses to forward a client request towards another proxy, it only has
to indicate in the source field the client from which it received the original request. The
receiving proxy will treat the request as it would have originated from the client. We do
this in order to prevent the response being forwarded through multiple proxies on it’s way
back to the client. The increased complexity at the dispatcher side when processing
a (forward) request is worth because of the save in streaming capability that would be
required when forwarding a response towards a client across multiple proxies.

Regarding the UP (user preferences), if none are defined, than the existing objects
will be returned in their original form, unless transcoding is required in order to cope
with the specified TC (terminal capabilities). Specifying both UP and TC introduces
additional complexity in the system but also helps to efficiently use existing resources
(bandwidth, storage space, processor power) and achieve a great degree of satisfaction
among served clients. It is still an open question how different quality variants of the
same object should be treated by the system. As an observation, it can be added that
the qualityValue of the cached objects should be computed while taking into account the
user preferences/terminal capabilities of the clients that are being served. If a massive
shift in terms of UP/TC is detected (e.g. many and highly active mobile clients, many
clients with low resolution displays, etc.) than it would make sense to recalculate the
qualityValue as well as the utility value of the cached objects. This is because the cache
replacement process is performed based on the computed utility values, and for example,
it would make no sense to favor high quality objects when most of the clients have low
terminal capabilities/user preferences or vice-versa.

2.5 Additional costs induced by the proposed architecture: best-
case/worst-case scenarios

Inside the system, the message exchange cost can be viewed with regard to the required
time to transmit a message, with regard to the amount of data that is transferred, or as
a combination of the two (both time and data volume).

In the following, we give a short analysis of the best/worst case scenarios from the
point of view of the latency perceived by the client. Another possible best/worst case
analyses would be with regard on the amount of data transferred within the system.

2.5.1 Latency

The delay perceived by the client depends on the delay introduced by the LAN communi-
cation, the one introduced by the WAN communication, as well as on the delay introduced
by searching the local caches and the server repository.

We make the following notations:

• Delay - the total delay as perceived by the client

11

• dlan - the delay introduced when transmitting a message (request/response) in the
LAN;

• dwan - the delay introduced when transmitting a message (request/response) in the
WAN;

• dcache - the delay introduced when searching the local cache (depends on the number
of cached objects);

• dserver - the delay introduced when searching the server repository/performing ad-
mission control;

• dtimeOut - the time out interval fixed for the proxy-server communication

We propose the following forwarding algorithm for requests passed from one proxy to
another inside the LAN: when a proxy receives a request, it first checks the local cache
and returns the appropriate object in case of a hit. Otherwise (local miss) it checks the
list with cached objects at siblings sites in order to see if the requested object is cached
in the federate cache. If it does, it marks the request and sends it to the appropriate
sibling. The decision to forward a request to a certain proxy is made based on the locally
available information on the global state of the federate cache. It may happen that this
information is outdated and that by the time a forwarded requests reaches the sibling,
the requested object does not exist anymore on the sibling site. The worst case would
be when a request received by a dispatcher Di is forwarded from one dispatcher to the
other until returns to Di. In this case, supposing that the client didn’t cancelled the
request, it is forwarded by Di to the origin server S. In the case the client has really bad
luck, the server is down or it can’t serve incoming requests.

Suppose there are k active proxy-caches, and using the above mentioned notations, we
distinguish the following two worst cases, when it comes to the user perceived latency:

• bouncing request and server down

Delay = (k + 1)dlan + kdcache + dtimeOut

• bouncing request and server can’t serve incoming requests

Delay = k(dlan + dcache) + 2(dlan + dwan) + dserver

The best case is of course when the first proxy receiving the client request, can serve
it from the local cache. In this case we have:

Delay = 2dlan + dcache

Assuming the following two configuration, conf1 with dlan = 0.1, dcache = 0.001, dwan =
0.5, dserver = 0.005 (in seconds each), and conf2 with dlan = 0.01, dcache = 0.001, dwan =

12

Figure 3: The maximum delay that could be introduced when servicing a request for the
values dlan = 0.1, dcache = 0.001, dwan = 0.5, dserver = 0.005 corresponding to conf1 and
for dlan = 0.01, dcache = 0.001, dwan = 0.05, dserver = 0.005 corresponding to conf2

0.05, dserver = 0.005 (also measured in seconds) the maximum introduced delay in the
case up to 11 proxy-caches are active inside a LAN is showed in Figure 3.

It can be seen from the above example that, if the time needed for a cache and server
look-up remains the same (constant load on both cache and server), the introduced latency
can vary widely depending on both local and external network conditions. The example
shows the “jump” in additional latency corresponding to a 10 time increase in both local
and external latency (the values were measured using the ping utility for the same hosts
during different times of the day).

It can be easily seen that even without constraints regarding the available external
bandwidth, it is highly probable for the maximum number of active proxy-caches to
be limited by the additional latency that would be induced in the worst case scenario.
This holds especially if the network conditions are not very good (we have high induced
latencies for both LAN and WAN) as the delay is highly dependable on those conditions.

Recent studies (see [3, 9]) have shown that hit rate and byte hit rate, for both web
and multimedia data, grow in a log-like fashion as a function of cache size when classical
replacement strategies like LRU, LFU, LFU-DA, etc. are considered. If we apply this
knowledge to our previous example with 11 active proxy-caches, with a storage capacity
of 50GB each, we get a graphic like the one in Figure 4.

13

Figure 4: Variation of the bit rate and byte hit rate as function of cache size

From both Figure 3 and Figure 4 we can deduce that the best costs/benefits ratio is
achieved when a relative small number of split operations are performed. In this case the
client perceived latency could be reduced since the amount of data transferred from the
external WAN is smaller than the amount of data transferred from the much faster LAN.
We intend to validate this assumption in a real time environment, once our implementation
of the system (which is based on the existing implementation of the QBIX proxy-cache
[15, 17]) is completed. We also want to see if the above mentioned assumption holds when
cache replacement is done considering also the size and the quality of the objects.

2.5.2 Transferred data

When we speak about data transferred inside the system we can make the following
difference:

• data transferred from the proxy-cache to the client in response to a client request

• data transferred from the proxy-cache to one arbitrary node when doing a split
operation

• “maintenance information” when more than one proxy-cache exists inside the LAN

14

The best case scenario, is the one in which a single proxy-cache exists inside the LAN.
In this case, the last two situations mentioned above can not occur.

In the case there is a single proxy-cache in the LAN, but a split operation is necessary,
the proxy-cache code has to be transferred from the existing proxy-cache to a suitable
node in the local network. This operation induces of course some stress on the underlying
network because of the volume of transferred data.

In the case of a “global” miss, the requested object has to be requested from an origin
server. If it is cached at an arbitrary proxy, this proxy has to announce it’s siblings about
the new entry, which again induces additional costs.

The worst case scenario is when as a result of the announcements of new cached
objects, new splitting operations become necessary.

We make the following assumptions:

• the initial cost in terms of transferred data for a message of type request/response
is the same, and we note it as creqRes;

• the cost in terms of transferred data for the proxy-cache code transfer is ccodeTrans

• the cost in terms of transferred data for the “maintenance” information (entries
added or removed from a local cache) is cmaint

Consider also the following notations:

• n - the number of nodes in the LAN

• k - the number of proxy-caches/dispatchers in the LAN

• Pmax - the maximum number of proxy-caches that can run at the same time in the
LAN (obtained as a result of multiple measurements)

• DATA - the amount of data transferred in the system

Now also consider the following worst case situation:

1. all the nodes in the LAN make a request for an independent object (this costs
2(n− k)creqRes)

2. when receiving the requests and serving them, the changes in the local caches have
to be announced to all the siblings (this costs (k − 1)(n− k)cmaint)

3. those requests/responses can also trigger the remaining (Pmax−k) of split operation
(costs (Pmax − k)ccodeTrans)

4. supposing that each proxy announces the daemons about the new cached objects
we have additional costs (k(n− k)creqRes)

15

Figure 5: Maximum amount of data transferred in the worst case situation described
above

So, the total cost in terms of transferred data, when each client in the LAN makes
exactly 1 request for a non-cached object is:

DATA = (n− k)[(k + 2)creqRes + (k − 1)cmaint] + (Pmax − k)ccodeTrans

Considering creqRes = 0.001, cmaint = 0.01, ccodeTrans = 23 (values in MB, estimated for
the ViTooKi system [17]) the maximum amount of data that is additionally transferred
is shown in Figure 5.

As you can see, there is a big difference in the amount of transferred data depending
on the value of Pmax. Pmax = 2k means that there is no coordination between the running
proxies regarding the decision to perform a split operation. In this case, if the conditions
are right, it may happen that all running proxies decide to perform a split operation in
the same time, so the number of running proxies actually doubles. This is not the most
fortunate decision, not only from the point of view of the additional transferred data. On
the other hand, if the running proxies take a common decision (Pmax = k + 1) at the
cost of supplemental inter-proxy communication, and perform a single split operation,
the additional amount of transferred data remains virtually the same, regardless of the
number of active proxies. As it can be seen in Figure 5, the cost of the additional inter-
proxy communication needed in order to make a common decision, from the point of view
of additional transferred data, is very small and can be ignored.

16

3 Related work

The last few years have brought an increasing interest in video caching as a result of the
rising popularity and availability of multimedia content on the Web. The vast majority of
the research concentrates on partial video caching, approach that considers specific parts
of videos or is done with respect to the quality of the videos. Examples of proposals for
partial video caching include caching of a prefix [16], caching of a prefix and of selected
frames [10], caching of a prefix combined with periodic broadcast [7], caching of hotspot
segments [6]. Other approaches consider the caching of a prefix based on popularity [11],
segment-based prefix caching [19] or variable sized chunk caching [2].

Quality based video caching proposals include periodic caching of layered coded videos
[8], adaptive caching of layered coded videos in combination with congestion control [13],
quality adjusted caching of GoPs (group of pictures) [14] or simple replacement strategies
(patterns) for videos consisting of different quality steps [12].

Regarding distributed video caching we have among others, the work of Brubeck and
Rowe [4] proposing multiple video servers accessible via the web and which manage tertiary
storage systems as well as the MiddleMan [1] system which proposes a cooperative caching
video server.

Our proposal, though having similarities with that in [1], differs from previous work
by the fact that our system is dynamic and able to adjust the number of running proxy-
caches in the LAN in a fully distributed fashion depending on a number of factors including
current load, storage constraints, request patterns.

4 Conclusion and future work

We have presented a distributed proxy-cache architecture which aims at providing better
service to LAN clients. The feature that distinguishes our proposal from those made in
the past is the dynamic characteristic of our system which is able to adapt itself to changes
in access, request and response patterns as well as to changes in network condition.

Future work will focus on finishing the implementation of the system, evaluating its
performance in real-life situations and compare the performance with the case in which
a single proxy-cache is used. Other points of interest are represented by the conditions
triggering the split, hibernate and shut down operations. Another interesting problem is
what happens in a system like the one we described, when multiple outgoing links with
different capacities are available.

17

References

[1] Acharya, S., Smith, B.: Middleman: A Video Caching Proxy Server. In: Proceedings
of the 10th International Workshop on Network and Operating System Support for
Digital Audio and Video (2002)

[2] Balafoutis, E., Panagakis, A., Laoutaris, N., and Stavrakakis, I.: The impact of re-
placement granularity on video caching. In: IFIP Networking 2002. Lecture Notes in
Computer Science, vol. 2345. Springer-Verlag, Berlin, Germany, (2002) 214-225

[3] Breslau, L., Cao, P., Fan, L., Phillips, G., and Shenker, S.: Web Caching and Zipf-like
Distributions: Evidence and Implications. In: Proc. 21st Annual Conf. of the IEEE
Computer and Communication Societies, (INFOCOM 99) New York, NY, (1999) 126-
134

[4] Brubeck, D.W., Rowe, L.A.: Hierarchical Storage Management in a Distributed VOD
System, In: IEEE MultiMedia, Fall 1996, Vol. 3, No. 3

[5] Chankhunthod, A., Danzig, P, Neerdaels, C., Schwartz, M., Worrell, K.: A Hirerchical
Internet Object Cache. In: Proceedings of the 1996 USENIX Technical Conference
(1996)

[6] Fahmi, H., Latif, M., Sedigh-Ali, S., Ghafoor, A., Liu, P., Hsu, L.H.: Proxy Servers
for Scalable Interactive Video Support. In: IEEE Computer, 43(9): (2001) 54-60

[7] Guo, Y., Sen, S., Towsley, D.: Prefix Caching Assisted Periodic Broadcast for Stream-
ing Popular Videos. In: Proceedings of ICC (International Conference on Communi-
cations) (2002)

[8] Kangasharju, J., Hartanto, F., Reisslein, M., Ross, K.W.: Distributing Layered En-
coded Video through Caches. In: Proceedings of IEEE INFOCOM (2001)

[9] Lindemann, C., Waldhorst,O.: Evaluating the Impact of Different Document Types
on the Performance of Web Cache Replacement Schemes. In: Proc. International
Performance and Dependability Symposium (IPDS 2002), Washington, DC, (2002)

[10] Ma, W.-H., Du, D.H.-C.: Reducing Bandwidth Requirement for Delivering Video
over Wide Area Networks with Proxy Server. In: IEEE International Conference on
Multimedia and Expo, (2000) 991-994

[11] Park, H. S., Chung, K.D., Lim, E.J.: Popularity-based Partial Caching for VOD
Systems using a Proxy Server. In: Workshop on Parallel and Distributed Computing
in Image Processing, Video and Multimedia (2001)

[12] Podlipnig, S., Böszörmenyi, L.: Replacement strategies for quality based video
caching. In: Proceedings of the IEEE International Conference on Multimedia and
Expo (ICME). Vol. 2. IEEE Computer Society, Piscataway, NJ, (2002) 49-53

18

[13] Rejaie, R., Kangasharju, J.: A Quality Adaptive Multimedia Proxy Cache for Inter-
net Straming. In: Proceedings of the International Workshop on Network and Oper-
ating Systems Support for Digital Audio and Video (2001)

[14] Sasabe, M., Wakamiya, N., Murata, M., Miyahara, H.: Proxy Caching Mechanisms
With Video Quality Adjustment. In: Proceedings of the SPIE Conference on Internet
Multimedia Management Systems (2001) 276-284

[15] Schojer, P., Böszörmenyi, L., Hellwagner, H, Penz, B., Podlipnig, S.: Architecture
of a quality Based Intelligent Proxy (QBIX) for MPEG-4 Videos, World Wide Web
Conference, (2003) 394-402

[16] Sen, S., Rexford, J., Towsley, D.: Proxy Prefix Caching for Multimedia Streams. In:
Proceedings of the IEEE INFOCOM99. (1999) 1310-1319

[17] http://vitooki.sourceforge.net/

[18] Wessels, D.: Web Caching. O’Reilly, 2001

[19] Wu, K.-L., Yu, P.S., Wolf, J.L.: Segment-Based Proxy Caching of Multimedia
Streams. In: Proceedings of the Tenth International World Wide Web Conference
(2001)

19

Institute of Information Technology
University Klagenfurt
Universitaetsstr. 65-67
A-9020 Klagenfurt
Austria

http://www-itec.uni-klu.ac.at

University Klagenfurt

