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Abstract

Inexact pattern matching using semantic graphs has a wide-
ranging use in AI systems, particularly in machine vision,
case-based reasoning, and, recently, in intelligence analysis
applications. While much previous work in the area has fo-
cused on matching simple flat graphs, there is increasing need
for and use of complex graphical patterns with higher-order
constructs—hierarchical graphs, cardinality constraints, dis-
junction, and others. This paper reports the results of an
experimental analysis of higher-order constructs in graphi-
cal patterns and their effect on pattern matching efficiency.
The study focuses on two aspects of these constructs—the im-
pact of cardinality constraints on representational power and
matching speed, and the benefit of caching hierarchical match
results. The analysis shows that both mechanisms provide a
significant speedup over conventional flat graph matching.

Motivation
Knowledge representation formalisms based on graphs have
a long history in AI (Quillian 1968; Sowa 1984), with ap-
plications in many areas, including case-based reasoning
(Bunke & Messmer 1994; Cunninghamet al. 2004), ma-
chine vision (Shapiro & Haralick 1981; Sebastian, Klein, &
Kimia 2001; Neuhaus & Bunke 2004), bioinformatics (Cook
et al. 2001), and, recently, intelligence analysis (Wolver-
ton et al. 2003; Coffman, Greenblatt, & Marcus 2004;
Holder et al. 2005). Features of semantic graphical rep-
resentations that make them appealing, particularly in appli-
cations involving the matching or comparison of knowledge
structures, include:

• They provide an intuitive visual language for specifying
situations of interest.

• Researchers have devised a number of methods for mea-
suring the similarity between two graphs (Fooet al. 1989;
Poole & Campbell 1995; Bunke 1997; Bunke & Shearer
1998; Zhonget al. 2002), supporting the retrieval of struc-
tures based on inexact matches.

• Several graphical languages incorporate higher-level con-
structs on top of “flat” graphs (Sowa 1984; Blau, Immer-
man, & Jensen 2002; Wolvertonet al. 2003). These
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higher-level constructs include hierarchical graphs, dis-
junction, negation, universal quantification, and cardinal-
ity constraints.
One major issue with graphical representations is the effi-

ciency of computing with them, particularly with matching
them. Subgraph isomorphism—upon which many semantic
graph matching algorithms are based—is a well-known NP-
complete problem. In domains such as intelligence analysis,
which feature matching over very large relational data sets,
efficiency is particularly important.

Higher-order constructs in graphical representations (hi-
erarchy, cardinality, disjunction, etc.) are known to be im-
portant for their added representational power. What is miss-
ing from the research in this area is an understanding of
these constructs’ role in the efficiency and scalability of
graph-based systems. This paper presents an initial set of
experiments designed to measure that role. It focuses on
two areas. First, it quantifies the efficiency improvement
afforded by precisely representingcardinality constraints,
compared to approximating them in flat graphs. By “cardi-
nality constraints,” we mean restrictions on the number of
allowable matches to a subgraph (e.g., “Five or more phone
calls”), coupled with the grouping of those matches within
a match to a supergraph. Second, it investigates the value of
a caching mechanismin which subgraph matches are stored
and reused throughout the match of a supergraph.

These experiments were conducted using the Link Anal-
ysis Workbench (LAW) (Wolvertonet al. 2003; Thomereet
al. 2004), which uses an extension of A* to search for the
best partial matches to a graphical pattern. It uses a compar-
ison metric based ongraph edit distanceto determine the
closeness of the match. The experiments show a significant
benefit to both the mechanisms measured.

The remainder of the paper is organized as follows. First
we describe the key attributes of graph matching being
investigated—inexact matching using graph edit distance,
and hierarchy and cardinality in graphs—and their use in
LAW. Next we explain the experiments and report the re-
sults. Finally, we discuss issues and directions for future
work in the area.

Graphical Pattern Matching and LAW
Here we describe the key aspects of graph matching be-
ing tested here, and their use in the LAW system. We first



give a formal description of graph edit distance as a pat-
tern matching metric, restricting the description to flat (non-
hierarchical) graphs. Then we briefly describe higher order
constructs in graphical patterns and how the edit distance
metric is extended to incorporate them. Last we discuss
LAW’s method of finding matches to graphical patterns.

Graph Edit Distance

The term “graph edit distance” covers a class of metrics that
measure the degree of match between two graphs. Vari-
ants have been studied theoretically (Bunke 1997; Bunke &
Shearer 1998) as well as applied in a variety of systems.
Many of the applications have come in the machine vision
community (Shapiro & Haralick 1981; Sebastian, Klein, &
Kimia 2001; Neuhaus & Bunke 2004), but the concept has
also applied in reasoning by analogy (Wolverton 1994) and
other domains.

Let a graphg be a 4-tuple(V,E, µ, ν), whereV is a set of
finite vertices,E ⊆ V × V is the set of edges,µ : V → LV

is a function assigning labels to the vertices, andν : E →
LE is a function assigning labels to the edges. And let a
mapping between two graphsg = (V,E, µ, ν) andg′ =
(V ′, E′, µ′, ν′) be a pairM = (ψ, ε), whereψ : V0 → V ′

0
is a one-to-one mapping between some of the vertices of the
two graphs (whereV0 ⊆ V andV ′

0 ⊆ V ′), andε : E0 → E′
0

is a one-to-one mapping between some of the edges of the
two graphs (whereE0 ⊆ E andE′

0 ⊆ E′).
The metric is based on the action of transforming one

graph into another, which in turn is based on edits:

Definition 1 An edit g → g′ is an operation that trans-
forms one graphg = (V,E, µ, ν) into another g′ =
(V ′, E′, µ′, ν′). The set of all edits is denoted byΣ.

In the LAW system, there are three allowable edit types1:

• Delete Node: if v is unconnected ing, g
−v−→ g′ : V ′∪v =

V,E = E′.

• Delete Edge: g
−e−→ g′ : V = V ′, E′ ∪ e = E.

• Replace Node: g
+v′−v−→ g′: V ∪ v′ = V ′ ∪ v,E′ isE with

every appearance ofv replaced withv′.

Then atransformation T between two graphsg andg′

is a sequence of edits(→0, . . . ,→m), whereg is the prede-
cessor of→0, andg′ is the successor of→m, and ifgi is the
successor of→i, thengi is the predecessor of→i+1.

There is a one-to-many mapping between transformations
and mappings. That is, a transformationT between two
graphsg andg′ is consistent with a mappingM = (ψ, ε)
iff:

1In the general case, there are three others: node addition, edge
addition, and edge replacement. Node addition and edge addition
are not relevant in LAW’s type of pattern matching (unlike, for ex-
ample, analogical reasoning), because of the asymmetry between
pattern and data: you aren’t trying to make the pattern look like the
entire data set, only a small portion of it And while edge replace-
ment could be a useful construct in pattern matching, we have not
yet found a need for it in practice in our use of the system.

Figure 1: GroupAcquiringThreateningResource—A hierar-
chical pattern with a cardinality constraint

• If nodesv andv′ are mapped inM , then there is a Re-
place Node edit inT replacingv with v′. I.e., (v, v′) ∈
ψ =⇒+v′−v−→ ∈ T .

• If edgese ande′ are mapped inM , then there is a Re-
place Edge edit inT replacinge with e′. I.e., (e, e′) ∈
ε =⇒+e′−e−→ ∈ T .

Definition 2 A cost function maps an edit into a cost (a
number):C : Σ → <.

The cost function value for a particular edit will typically
depend on both the edit type, and on the particular nodes and
edges being edited. For example, in most LAW patterns, the
cost of a Delete Node edit reflects the (user-defined) level of
importance of the particular node, and the cost of a Replace
Node edit depends on the ontological distance between the
two nodes.

It is possible for a cost function to be defined over only
a subset of possible edits. For example, it may be desire-
able to have the cost of a Replace Node edit be undefined if
the ontology path distance between the nodes’ classes is too
great, or if the two classes have no path connecting them.

Definition 3 Thecost of a transformation is the sum of the
cost of the edits in it:

C(T ) =
∑
e∈T

C(e)

The graph edit distance metric is generally used to find
the lowest-cost mapping between two graphs. Here we give
a more precise description of what that means:

Definition 4 The least-cost transformationof a mapping
M is the transformation consistent withM that has lowest
cost. Theleast-cost mappingbetween two graphsg andg′

is the mapping betweeng andg′ whose least-cost transfor-
mation has lowest cost.

The problem of finding the graph edit distance between
two graphs can then be categorized as follows: The graph
edit distance between two graphsg andg′ is the cost of the
least-cost mapping betweeng andg′.
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Figure 2: Improved efficiency from hierarchy and cardinality on “Group Gets Resources for Mode” pattern, measured by (a)
amount of search space explored and (b) match time

Higher-order Constructs
Our design goal for the pattern graph representation is to
provide a representational capability that is powerful, but
still understandable to a lay-user and reasonably efficient
to match. In particular, we want a pattern language that
stops well short of the representational power and inferential
capabilities of first-order logic or conceptual graphs (Sowa
1984), but still goes beyond the capabilities of simple flat
typed graphs. For additional expressive power, we extended
the design of the pattern graph representation to include no-
tions of hierarchy, disjunction, and cardinality. By cardi-
nality, we mean specifying information about the number
of links, nodes, or subgraphs, e.g. “three or more visits.”
Figure 1 shows a hierarchical pattern representing a group
acquiring a threatening resource. The pattern includes a sin-
gle subpattern—GroupAcquiringResource—representing a
group member carrying out a transfer to obtain a resource.
The oval-shaped nodes areinterface nodes, which are nodes
that are shared between the subgraph and its parent graph.
The subpattern has a cardinality constraint of “1+”, indicat-
ing that it will match if one or more transactions involving a
given group and a given resource are found.

Pattern Matching Algorithm
LAW’s current approach to finding the closest matches to
the pattern in the data is based on A* search (Hart, Nilsson,
& Raphael 1968). A state in the search is a partial match—
a mapping between a subset of the pattern nodes and data
nodes, a mapping between a subset of the pattern links and
data links, a set of unmapped nodes, a set of unmapped links,
and a cost of the mappings so far. The cost is the sum of
the delete costs of the unmapped nodes and link, and re-
placement cost of the node and link mappings, as described
above.

LAW generates start states for the search by selecting the

node in the pattern with the fewest legal mappings in the data
and creating a partial match for those mappings. It expands
a partial match by selecting an unexplored node mapping
(PatternNode,DataNode) and generating new mappings
for each link adjacent toPatternNode to every mappable
link adjacent toDataNode. When a pair of links is mapped,
the nodes on the other ends of those links are mapped as
well. The search selects as the next state to expand the one
with the minimum worst-case cost—i.e., the cost of the map-
pings so far plus the cost of deleting all unexplored nodes
and links in the pattern.

The search process is designed to find a good set of pat-
tern matches quickly, and then use those existing matches to
prune the remainder of the search. One key asset of the ap-
proach is that it is ananytimealgorithm: at any point during
the process the algorithm can return the set of matches it has
found already, and that set of matches will monotonically
improve as the process continues.

Experimental Results
To evaluate the impact of higher-order constructs on pattern
matching scalability, we ran a set of experiments measuring
the effect of (1) data set size and (2) various advanced fea-
tures of LAW—specifically, hierarchy and cardinality—on
LAW’s match efficiency. The results of these experiments
showed encouraging progress toward the goal of solving re-
alistic problems in a reasonable amount of time, and at the
same time they indicate areas of needed improvement in fu-
ture work.

The experiments were designed to measure how LAW’s
match time changed as various problem characteristics were
varied. We used the EAGLE program’s data set generator
(Schrag 2005) to create data sets of various sizes, where size
is measured by number of relations in the data. This data
generator creates simulated scenarios involving abstracted
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Figure 3: Improved efficiency from hierarchy and cardinality on “Hub-and-Spoke” pattern, measured by (a) the amount of
search space explored and (b) match time

human activity, including criminal or terrorist activity. It
creates simulated people, groups they belong to (“threat”
and “non-threat”), resources they acquire, communications
between them, etc. Other than data set size, we kept the
settings of the generator—observability, noise level, and so
on—constant. We ran the set of experiments on a small suite
of patterns of various characteristics. Individual experiment
descriptions below will describe the specific patterns used.
The dependent variables we measured were (1) CPU time
elapsed during the matching process2, and (2) the number of
A* search space states examined during the matching pro-
cess. Our goal was to measure the contribution of higher
order constructs in the pattern language toward scalability
of the pattern matcher.

Cardinality Results
The first experiment was designed to measure the extra ef-
ficiency achieved by adding cardinality to the pattern lan-
guage and matching capability. The cardinality constuct
in the pattern language allows the pattern designer to im-
pose numerical constraints on the number of matches of a
subgraph—for example, “three or more meetings.” More
important for efficiency, it also provides a way of grouping
results of a subgraph match and thereby controlling the com-
binatorial explosion of possible matches. That is, instead of
creating a separate new parent graph match for each sub-
graph match, the cardinality construct allows LAW to group

2The runs were with the LAW pattern matcher implemented in
Allegro Common Lisp v6.2, running under Solaris on a SunBlade
1500.

all matches to a subgraph under a single parent graph match.
In these experiments, we compared the resources used—

measured by search space size and time consumed—by the
LAW matcher in matching two patterns: (1) a hierarchical
graph with cardinality constraints on its subgraphs, and (2)
the best “flat” approximation of graph (1). The best flat ap-
proximation was determined by insertingN copies of each
subgraph into the parent graph, whereN is the value of the
cardinality constraint on that subgraph.

It is important to note that the flat approximation (2) is
truly an approximation to the hierarchical graph (1), and is
not equivalent, either semantically or computationally. In
other words, the fact that we achieved efficiency gains by us-
ing hierarchical graphs is not unexpected, and does not rep-
resent a breakthrough in complexity theory. Rather, these
experiments measure the scalability benefit of giving the
user the extra expressive power to represent what he wants.
Situation descriptions that include “N or more” occurrences
of an event are common, both in the simulated domain used
here and in the real world. By giving the user the ability
to represent such situations, and by giving the matcher the
capability of matching those situations efficiently, we expect
to see improved efficiency compared to matching inexact ap-
proximations.

Figure 2 shows the efficiency gain from hierarchy and car-
dinality on one pattern, representing a threat group with two
or more members each acquiring a threatening resource. The
hierarchical pattern contained a single subgraph with a “2 or
more” cardinality constraint. The graphs show the change in
search efficiency as the data set size grows, with the smallest
data set size containing around 15,000 links and the largest



Figure 4: “Two Related Groups Acquiring Threat Re-
sources” pattern

containing around 75,000. Figure 2a) measures the number
of search states explored, which was reduced by a factor of
more than three using hierarchical graphs on the largest data
set. Even more encouraging is the amount of time saved
by hierarchical patterns, shown in Figure 2b. Hierarchical
patterns with cardinality improved match time by over two
orders of magnitude—from 630 seconds to six.

Figure 3 shows the same measurements for another pat-
tern (and its flat approximation). This pattern represents
hub-and-spoke communication—two or more phone calls
from members of a threat group to another “hub” group
member. Like the “Group Gets Resources for Mode” pattern
of Figure 2, the hierarchical version of the hub-and-spoke
pattern contains a single subgraph with a “2 or more” cardi-
nality constraint. The efficiency gain with this pattern was
even more dramatic than that shown in Figure 2. Figure 3(a)
shows a search space reduction on this pattern of over an or-
der of magnitude—from 180,000 states to 16,000—and Fig-
ure 3(b) shows a match time reduction of almost three orders
of magnitude—from over 1,700 seconds to less than three.

The dramatic difference between the search space reduc-
tion and the search time reduction—the (a) and (b) graphs
in each figure—is an interesting phenomenon, and one for
which we do not have a definitive explanation. Our cur-
rent hypothesis is as follows. State expansion in LAW’s
A* search involves copying the parent state. When the
patterns are hierarchical, the pattern representation is more
compact—since each subgraph is represented in a parent
graph as only a pointer, rather than a complete list of all
nodes and links in the subgraph—and therefore the copying
operations per state expanded are smaller.

Caching Results
The second set of experiments measures the value of caching
subgraph matches in hierarchical pattern matching. We de-
signed a mechanism in the LAW matcher that caches sub-
graph match results during a match of a parent graph. Sub-
graph matches are cached indexed by

• The subgraph being matched, and

• The mappings of the subgraph’s interface nodes.

Once a subgraphS with a given set of interface node map-
pings< m1, . . . ,mn > is matched, the results for any future
attempts to matchS with< m1, . . . ,mn > will be retrieved
and returned from the cache.

Our hypothesis was that caching would be especially use-
ful for patterns that contain multiple copies of the same sub-
pattern. Such a pattern is shown in Figure 4. This pat-

Figure 5: Effect of caching as data set size grows on “Two
Related Groups Acquiring Threat Resources” pattern

Figure 6: Effect of caching as data set size grows on “Group
Gets Resources for Mode” pattern

tern represents two different Threat Groups, related through
a common member, each acquiring a threatening resource.
Matching this graph will require multiple attempts to match
the AcquiringThreateningResource subgraph for each Per-
son, and caching will eliminate all but one of those attempts.

As we expected, Figure 5 reduces match time dramati-
cally for Figure 4’s pattern. For the largest data set tested,
caching reduced match time by an order of magnitude, from
1,800 seconds to 180, and the time savings were even greater
for some smaller data sets.

However, we did not expect the results shown in Figure
6. The pattern that generated those results—“Group Gets
Resources For Mode”—is a pattern with a single subpattern,
and one for which we expected little or no repetition. Our
hypothesis was that caching would have little impact; in fact,
we thought it would be possible that the overhead associ-
ated with caching could cause the runs with caching to be
slower than the ones without. Instead, Figure 6 shows that
caching did have a significant positive effect even for this
pattern, cutting match time roughly in half for all data set
sizes tested.

Figure 7 summarizes the caching results, showing the
benefit of caching for all three patterns tested on the largest
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Figure 7: Summary of caching results: benefit of caching on largest data set for (a) “Group Gets Resources for Mode”, (b)
“Hub-and-spoke Communication”, and (c) “Two Related Groups Acquiring Threat Resources” patterns

data set tested.

Discussion and Future Work

The experiments reported here represent only a first step in
understanding the role of higher-order constructs in graph
matching efficiency. There are many open areas for future
work, including:

• Further experimentation involving a larger test set of pat-
terns, data sets with different characteristics, and/or dif-
ferent independent variables. One area in which these ex-
periments only scratch the surface is the degree to which
inexact matching (vs. exact matching) influences the re-
sults.

• Further exploring mechanisms for caching intermediate
results. One topic to explore here is optimizing the level
of caching that goes on within a pattern match. One
can imagine a continuum of degrees of caching, from no
caching at all to the caching of a match at every state in
the seach (which essentially amounts to a dynamic pro-
gramming approach to the problem). The experiments of
the previous section strongly suggest that the no-caching
side of the continuum is suboptimal. But can we identify
(characteristics of) an optimal point on the continuum?
And if so, can an optimal caching scheme be automated?

• Investigating the degree to which the results here de-
pend on LAW’s particular pattern matching algorithm. It
seems likely that caching and (especially) precise cardi-
nality representation would have some benefit in alternate
approaches to A*—including dynamic programming and
genetic algorithms. But how much?
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