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Abstract

We present an overview of the current status of the theories of nonequilibrium solvation and their generalizations in modern chemistry.

Based on the continuous medium theory, the nonequilibrium electrostatic free energy has been reformulated. We adopt three different

methods, the multi-step charging approach, the field superposition principle, and the interaction energy method, to achieve the consistent

expression of electrostatic free energy of nonequilibrium. The misunderstandings on the interaction energy between the polarization field and

its source (free) charge have been made clear. Derivations reveal a significant feature that this interaction energy is quite different from that

between two independent fields. In the present work, the solvation free energy is found entirely contributed from the interaction between the

solvent polarization and its source charge, whereas the self-energy of the polarization field is deduced to zero. The spectral shifts for light

absorption and emission, and solvent reorganization energy for electron transfer in solution, have been derived to new forms differing from

the conventional ones. The newly developed two-sphere model for electron transfer has been employed to investigation of the intramolecular

electron transfer in Closs–Miller system.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Because most of chemistry and biochemistry occur in

solution, and the solvent can have a major effect on the

position of chemical equilibrium and on reaction rates,

incorporation of the solvent effects into chemical models

has been of great interest for several decades. In this area,

continuum models have been playing a key role up till now.

There are several models for the equilibrium solvation,

including Onsager spherical model [1] and other arbitrary

cavity ones [2–13]. Introducing the numerical solution of

the appropriate electrostatic potential into the popular
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quantum chemical packages yields different equilibrium

solvation models [10,11,14]. For the importance of

evaluations for the solvent reorganization energy (SRE) in

electron transfer (ET) and the spectral shifts in solution,

particular attentions have been paid to nonequilibrium

solvation in the last decades. Marcus introduced the

nonequilibrium concept in 1950s [15–17], based on the

separation of the orientational (we use orientational to

represent the total of orientational and atomic) and

electronic polarizations of solvent. This led to great

progresses for people to understand the physics of fast

processes in solution. Following the progresses of compu-

tational technique, several continuum models were pro-

posed by means of more accurate numerical solutions for

the cases of arbitrary cavities [18–24]. At present, a feature

common to all the continuum solvation approximations is
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that the solute–solvent interactions are described in terms of

the solute–reaction field interactions. The reaction field is

due to the solvent polarization perturbed by the presence of

solute, and the reaction field in turn perturbs the solute, until

self-consistence is achieved. The reaction field is usually

computed by solving the suitable Poisson equations.

We noticed that the expression for electrostatic free

energy of nonequilibrium state of solute–solvent system was

originally obtained by means of virtual work principle, and

then employed to derive the generalized formulations of such

as SRE for ET and spectral shifts for light absorption and

emission [15–17,25,26]. On the other hand, Ooshika [27],

Mataga [28] and Lippert [29] developed the single-sphere

model. Lippert–Mataga relationship developed in this way

was widely employed in the predictions of the solvent effects

of spectra. A slightly different method was developed by Lee

and Hynes at the end of 1980s [30]. In Hynes’ approach,

Felderhof’s equation [31–33] for the solvation free energy of

electrostatic field was modified. Similar treatments could be

found in the subsequent literatures [18,34–36] in which the

solvent effects of ultrafast processes were intensively

studied. These theories mutually support each other and

give good qualitative or semi-quantitative descriptions for

nonequilibrium solvent effects so far.

Doubts arose recently. Basilevsky and Newton [22,23]

developed a numerical method to evaluate SRE and applied

it to the well-known Closs–Miller ET systems [37,38] by

using conventional Marcus theory. However, the calculated

values of SRE for the biphenyl–bridge–naphthalene system

were exaggerated by a factor of about 2 than those fitted

from the experimental rate constants [22]. In 1989, Johnson

and Miller [39] tried to use Marcus two-sphere formula to

evaluate SRE of the same biphenyl–bridge–naphthalene

system. From the experimental value of SRE, 0.75 eV, a

mean value of 0.507 nm for the cavity radii of biphenyl and

naphthalene was obtained. Comparing with the available

values of 0.39 nm for biphenyl and 0.37 nm for naphthalene

from structural data, these authors were puzzled in finding

an adequate explanation for such a large discrepancy.

Although Johnson and Miller [39] attempted to apply more

sophisticated alternatives to Marcus two-sphere formula,

which retain the dielectric continuum approximation but use

elliptical cavities, no method could substantially improve

the result. When the torsion contribution of 0.13 eV [38] is

subtracted from the total value of 0.75 eV, SRE due to the

presence of solvent becomes an even lower value, 0.62 eV.

Using this value, Basilevsky and Newton [22] obtained an

even larger mean value, 0.59 nm, for the cavity radii. If we

use the same donor–acceptor distance, 1.73 nm for the

biphenyl–bridge–naphthalene system, the mean radius

value, 0.38 nm from the structural data, the previous two-

sphere formula will predict a value of SRE about twice the

experimental fitting, similar to those by Basilevsky and

Newton with numerical solution for arbitrary cavity [22].

Facing with these difficulties, the discrepancies were

attributed to the inaccuracy of the continuum model
[24,39]. However, when we notice that continuous medium

theory make tremendous successes for equilibrium sol-

vation, we ask ourselves whether some aspects of

the previous theories should be improved. In our recent

work [40–42], we addressed some problems on this issue, in

particular the defects in virtual work approach [41]. The

conclusion of zero self-energy of the polarization field was

obtained by direct analysis of the polarization field [42]. In

the present work, we shall make a more detailed discussion

on the doubts of the previous theories. Some new features of

our theory will be paid attentions. The new two-sphere

formula for ET will be applied to the well-known Closs–

Miller [37] ET system.

We arrange our present work as follows. In Section 2, a

brief review on the present situation of nonequilibrium

solvation theory has been made. The doubts in the previous

theories are illustrated. Secondly, reformulations for the

expression of electrostatic free energy of nonequilibrium

state are carried out through different ways in Section 3. The

generalized expressions of SRE for ET and spectral shifts of

light absorption and emission are deduced in this section. In

Section 4, the new two-sphere formula for ET and single-

sphere formula for spectral shifts are presented, and the new

features of our results are given particular attentions. Ab

initio calculations are carried out for the model ET system,

biphenyl–bridge–naphthalene (bridgeZcyclohexane), in

Section 5, and the newly developed two-sphere formula of

ET has been applied to estimation of SRE of this system.

The conclusions are given in Section 6.

We emphasize here that the approximations taken in this

work are just the same as those in the previous theories, so

that we can make our formulations comparable with those

before. Major approximations in the reformulations

throughout this work are worth describing in advance.

First of all is the continuum model approximation, hence we

only make derivations in the framework of electrostatics.

Another one is the neglect of the influence of the solvent

polarization upon the solute charge distribution. In other

words, self-consistent-reaction-field treatment is not taken

into account. The penetration of the solute charge

distribution into the medium region is neglected, this

means we ignore the volume polarization [43].
2. A brief review on theories of nonequilibrium solvation

In 1950s, Marcus [15,16] proposed the concept of

nonequilibrium solvation, and treated the electrostatic free

energy of nonequilibrium state of solution as the sum of

virtual works done during charging process of two steps as

follows

½r Z 0;F Z 0� ����/
A1;3S

½r1;F
eq
1 � ����/

A2;3op

½r2;F
non
2 � (1)

In Eq. (1), symbol F denotes the total electric potential.

We use r to represent the bulk distribution of the solute
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(free) charge, without considering the mutual influence from

solvent polarization. We let the surface distribution of the

solute charge, if any, be incorporated into the bulk

distribution by introducing a Dirac d function. So the free

surface charge disappears throughout this work. The super-

scripts ‘eq’ and ‘non’ in Eq. (1) refer to the equilibrium and

the nonequilibrium, respectively. In the establishment of the

nonequilibrium state, the first step, A1, charges the solute to

r1, and F reaches equilibrium in solvent of a static dielectric

constant 3s. In step A2, the solute is charged from r1 to r2 but

only the electronic component of the solvent polarization,

which corresponds to the optical dielectric constant 3op of

the solvent, responds. The system arrives at a new state in

which the electronic polarization of solvent reaches

equilibrium with r2 but the orientational polari zation does

not. This state, we denote it by ½r2;F
non
2 �, is referred to as the

‘nonequilibrium’ state. If we notice that the potential change

in step A2 is caused by the charge distribution change of the

solute, but only the electronic polarization responds, we can

take the nonequilibrium as an ‘equilibrium’ in the

hypothetical medium that possesses a dielectric constant

of 3op. We define the solute charge change as

Dr Z r2 Kr1 (2)

throughout this work. The total potential F can be divided

into two contributions: j from the solute charge and 4 from

the polarized charge. For convenience we call j the vacuum

potential but 4 the polarization potential. We need to specify

equilibrium or nonequilibrium for 4 but this is unnecessary

for j since it is produced by the solute charge in vacuum.

Therefore we have

F
eq
i Z ji C4

eq
i ; Fnon

i Z ji C4non
i ði Z 1; 2Þ (3)

A few words are needed to make the potential definitions

more clear. When the solute charge r1 is placed in the

medium of 3s, the equilibrium polarization potential can be

divided into two parts, i.e.

4
eq
1 ðr1; 3sÞ Z 4or;1 C4op;1 (4)

When the medium is suddenly changed from 3s to 3op,

prior to the change of the solute charge distribution, 4or,1

and r1 will keep unchanged but the electronic polarization

responds immediately. The electronic polarization in this

case contains two parts: 4or,1-op equilibrated to the fixed

4or,1, and 4r-op equilibrated to r1. Therefore, the polari

zation potential in this stage is given by

4
eq
1 ðr1 Csor;1; 3opÞ Z 4or;1 C4or;1-op C4r1-op (5)

It can be proved that 4op,1 in medium of 3s is equal to the

sum of 4or,1-op and 4r1-op in medium of 3op. Hence we have

(see Appendix A)

4
eq
1 ðr1; 3sÞ Z 4

eq
1 ðr1 Csor;1; 3opÞ (6)

where we use 4
eq
1 ðr1; 3sÞ to denote the equilibrium potential

due to r1 in medium of 3s and 4
eq
1 ðr1Csor;1; 3opÞ to
the potential yielded by changing the dielectric constant 3s

to 3op but r1 and sor,1, the orientationally polarized charge

distribution, keep unchanged. In the following discussion,

we use 4
eq
1 (or F

eq
1 if the vacuum potential j1 included)

indiscriminatingly.

In step A2, the solute charge varies from r1 to r2 in the

medium of 3op. We understand that the slow response, 4or,1

and 4or,1-op, keep unchanged but the fast response changes

from 4r1-op to 4r2-op. So the nonequilibrium polarization

potential is given by

4non
2 Z 4or;1 C4or;1-op C4r2-op (7)

If we denote the sum of 4or,1 and 4or,1-op as 4slow,1, 4r1-op

as 4fast,1, and 4r2-op as 4fast,2, the nonequilibrium potential

can be written as

Fnon
2 Z F

eq
1 CDFop (8)

with

DFop Z j2 Kj1 C4fast;2 K4fast;1 (9)

Eq. (8) can be alternatively expressed as

Fnon
2 Z j2 C4slow;1 C4fast;2 (10)

Using, respectively, 4or,1 and 4op,2 instead of 4slow,1 and

4fast,2 in Eq. (10) may cause some difficulties in under-

standing but does not affect the correct formulations and the

final conclusions.

According to Eqs. (4)–(6), we can express the polari

zation potential as follows

4
eq
1 Z 4slow;1 C4fast;1 (11)

4non
2 Z 4

eq
1 CD4op (12)

with

D4op Z 4fast;2 K4fast;1 (13)

If we consider the inverse process, which we call process

B, we can write the analogue of Eq. (1) as follows

½r Z 0;F Z 0� ����/
B1;3s

½r2;F
eq
2 � ����/

B2;3op

½r1;F
non
1 � (14)

As stated above, we ignore the influence of solvent

polarization upon the solute charge, hence the charge

distributions r1 and r2 in Eq. (14) are supposed to be exactly

the same as given in Eq. (1).

It is very common to integrate the work done in the

charging process by the following equation

dW Z

ð
V

F dr dV (15)

The integration is over the whole space. But if we ignore

the penetration of r into the medium region, the integration

will be in fact only carried out within the cavity occupied by

the solute.

Introducing a charging fraction a during step A1, the

electrostatic free energy of equilibrium state was expressed
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in the well-known form, i.e.

G
eq
1 Z WA1 Z ð1=2Þ

ð
V

r1F
eq
1 dV (16)

On the basis of step A1, step A2 introduces the

further charge distribution change Dr, and the potential

accordingly responds, so the charge distribution ra and the

electric potential Fa during step A2 could be expressed as

[15,16]

r
a Z r1 Caðr2 Kr1Þ and

Fa Z F
eq
1 CaðFnon

2 KF
eq
1 Þ ða Z 0–1Þ

(17)

Therefore, the electrostatic free energy of nonequili-

brium state was expressed by Marcus as the sum of work

done in steps A1 and A2 (Eq. (17) of Ref. [16]), i.e.

Gnon
2 ðAÞ Z ð1=2Þ

ð
V

ðr2Fnon
2 Cr2F

eq
1 Kr1Fnon

2 ÞdV (18)

SRE is defined as the difference of electrostatic free

energies between the nonequilibrium state ½r1;F
non
1 � and the

equilibrium state ½r1;F
eq
1 �, i.e.[44]

l0 Z Gnon
1 KG

eq
1 (19)

without distinguishing the forward and backward processes

since the previous theories yield

Gnon
2 KG

eq
2 Z Gnon

1 KG
eq
1

For the purpose of more direct derivation of SRE,

another route that we call as process C was suggested as

shown in Table 1 [25,26]. In this route, an equilibrium

state ½r1;F
eq
1 �, which corresponds to the initial state of ET

in solution, is assumed to establish before. A hypothetical

step, C1, which produces the proper orientational polari

zation and is in fact the equilibrium state ½r2;F
eq
2 � in the

realistic medium of 3s, follows. A further postulated step

C2 leads to the nonequilibrium state ½r1;F
non
1 �. According

to the definition, SRE is expressed as the sum of work

done in these two steps. Applying Eq. (15) and noticing

the response given in Table 1, the deduction of SRE is

rather straightforward. By the conventional treatment, the

work done in the step C1 is very easy to obtain as

WC1 Z ð1=2Þ

ð
V

ðr2F
eq
2 Kr1F

eq
1 ÞdV (20)
Table 1

Quantities of start and end of the steps in process C [25]

Start End

Step C1 ½r1;F
eq
1 � ½r2;F

eq
2 �

Response ra Zr1 Caðr2 Kr1Þ; Fa ZF
eq
1 CaðF

eq
2 KF

eq
1 Þ

Step C2 ½r2;F
eq
2 � ½r1;F

non
1 �

Response ra Zr2 Caðr1 Kr2Þ; Fa ZF
eq
2 CaðFnon

1 KF
eq
2 Þ
By applying response given in Table 1, the work done

in step C2 can also be deduced according to Eq. (15), i.e.

WC2 ZKð1=2Þ

ð
V

DrðFnon
1 CF

eq
2 ÞdV (21)

Summing over the work done in steps C1 and C2, the

virtual work method finally gives SRE as follows in

literatures [22,25]

l0 Z ð1=2Þ

ð
V

DrðD4op KD4sÞdV (22)

with

D4s Z 4
eq
2 K4

eq
1 ; D4op Z 4fast;2 K4fast;1 (23)

Eq. (22) does not distinguish between the forward ET

and the backward ET since the virtual work method gives

the same SRE for both.

Introducing the two-sphere approximation as shown in

Fig. 1, the famous two-sphere model for ET was developed

based on Eq. (22) and applied widely for decades, i.e.

l0 Z Dq2 1

2rD

C
1

2rA

K
1

d

� �
1

3op

K
1

3s

� �
(24)

where Dq is the transferred charge, rD, rA and d the radii of

the donor, the acceptor, and the distance between these two

species (see Fig. 1).

On the other hand, Felderhof [31–33] proposed an

equation describing the solvation free energy due to the

solvent polarization, based on the thermodynamic theory of

fluctuations with electromagnetic fields and linear response

theory. We use the term ‘solvation free energy’ (DF)

throughout this work to represent the electrostatic free

energy minus the self-energy, ð1=2Þ
Ð

V rj dV , of the solute

charge. The solvation free energy DF was expressed in the

following form by Felderhof [31,45]

DF Z
1

2

ð
cK1P$P dV C

1

2

ð ð
½V$PðrÞ�½V0,Pðr0Þ�

r Kr0j j
dV dV 0

K

ð
P$Ef dV ð25Þ

where P is the solvent polarization, c the dielectric

susceptibility, Ef the electric field due to the solute charge

r in vacuum, and KV$P the polarized charge distribution in
Fig. 1. A schematical description of two-sphere electron transfer.
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the medium. The variable r drops in our notation unless it is

necessary. Later on, some authors [18,30,34–36] modified

this expression by taking ð1=2Þ
Ð

cK1P$P dV as the self-

energy of the solvent polarization. Applying a decompo-

sition to the so-called ‘self-energy’ term, i.e. [30]

ð1=2Þ
Ð

cK1P$P dV Z ð1=2Þ
Ð

dV½c-1
opjPopj

2 Cc-1
orjPorj

2� (26)

with

Por;1 Z corE
eq
1 ; Pop;2 Z copEnon

2 (27)

an expression of electrostatic free energy of the none-

quilibrium state, which coincides with the one by virtual

work method as given in Eq. (18), was deduced [35]. In

Eq. (26), cor and cop are the orientational and electronic

susceptibilities, respectively, and the total susceptibility is

c Z cop Ccor (28)

Enon
2 in Eq. (27) can be written as follows

Enon
2 ZKVFnon

2 ZKVF
eq
1 KVðDFopÞ Z E

eq
1 CDEop

(29)

The nonequilibrium solvent polarization can be

expressed as the sum of Por and Pop. Now we turn to

check what is the defect of Eq. (26). Applying Eqs. (28) and

(29), we have

Pnon
2 Z corE

eq
1 CcopEnon

2 Z P
eq
1 CDPop (30)

with

P
eq
1 Z cE

eq
1 ; DPop Z copDEop

DEop and DPop have the similar definitions as DFop. If

we recall that E
eq
1 and Enon

2 in Eq. (27), respectively,

represent the previous equilibrium field corresponding to r1

and the nonequilibrium field corresponding to r2, the left-

hand side of Eq. (26) can be rewritten as

ð1=2Þ
Ð

cK1P2$P2 dVZ ð1=2ÞcK1
Ð
½c2

opðE
non
2 Þ2

Cc2
orðE

eq
1 Þ2 C2corcopEnon

2 $E
eq
1 �dV (31)

but the right-hand side of Eq. (26) is as follows

ð1=2Þ
Ð
ðcK1

op P2
op;2 CcK1

or P2
or;1ÞdV

Z ð1=2ÞcK1
Ð
f½c2

opðE
non
2 Þ2 Cc2

orðE
eq
1 Þ2

Ccorcop½ðE
non
2 Þ2 C ðE

eq
1 Þ2�gdV (32)

Comparison of Eqs. (31) and (32) immediately tells that

Eq. (26) is false unless Enon
2 ZE

eq
1 . In other words, Eq. (26)

requires DEopZ0 (see Eq. (29)) and it holds only in the

equilibrium state.

SRE given in Eq. (22) can be used to perform the

numerical solution for the arbitrary cavity cases. However,

if we make a deeper investigation on the previous

nonequilibrium theories, we can find the conventional
models face with serious difficulties in both sides of theory

and experiment. We list the doubts as follows.

(i) Why do the physical quantities, r1 and F
eq
1 of the

previous equilibrium state, enter the expression of electro-

static free energy of nonequilibrium state? Eq. (18) means

that the nonequilibrium state needs more than two state

functions to describe, but what is the physical foundation?

(ii) As shown in Scheme 1, if the integration by using

Eq. (15) were appropriate, we would be able to apply it

directly to the process ½r1;F
eq
1 �/ ½r1;F

non
1 �. But this

treatment will lead to a wrong conclusion of l0Z0 in any

case because of drZ0. This indicates the free energy

difference will be path-dependent.

(iii) If the self-energy of the polarization field could be

expressed as those in the previous literatures, we would face

the dilemma in selecting which side of Eq. (26) for this

purpose. If we take the left-hand side of that equation,

derivations starting from Eq. (31) will lead to a quite

different form of the electrostatic free energy for none-

quilibrium. On the contrary, if we choose the right-hand side

of Eq. (26) instead, we will face with the difficulty to explain

why the interaction energy between the orientational

component and the electronic one of solvent polarization

is not involved in the total energy. Another viewpoint in the

past is to suppose the orientationally polarized charge as

‘free charge’ at the nonequilibrium state. But if we

remember that continuous medium theory is macroscopic

and the average charge of the solvent molecules is zero,

this presumption is lack of physical foundation. In fact,

the free charge and the polarized charge are quite different

in nature.
3. Reformulations for nonequilibrium solvation
3.1. Electrostatic free energy of nonequilibrium state

The electrostatic free energy of nonequilibrium is the

dominating quantity in evaluating SRE of ET and the

spectral shifts in solution. So we discuss the expression of it

at first. From the illustration given in Section 2, we suspect

the validity of Eq. (15) in integrating the energy changes

when nonequilibrium state is involved. For the energy

change of a charging process, Jackson equation [46] is more

general and it serves the purpose of nonequilibrium state.

According to the fundamentals of electrodynamics,
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the change in energy accompanying the changes dr in

charge distribution and dF in potential is of the form [46]

dG Z ð1=2Þ

ð
V

ðr dF CF drÞdV (33)

We need to remind that the right-hand side of Eq. (33)

could not be called the ‘work’ any longer, so we use here G,

instead of W used before. If we use the electric displacement

(D)–electric field (E) notation and notice the following

relationships

V$D Z 4pr (34)

VF ZKE (35)

Eq. (33) can be alternatively changed to the displace-

ment-field form, i.e.

dG Z ð1=2Þ

ð
V

ðD$dE CE$dDÞdV (36)

Eqs. (33) and (36) are more applicable in practical

situations involving the motion of dielectrics and in the

cases that the dielectric properties change [46]. If dielectric

constant keeps unchanged during the charging step, for

example the different equilibrium states subject to different

values of r in the same solvent, the two terms in the right-

hand side of Eq. (33) are equal, i.e. [46]

r dF Z F dr (37)

In this case, Eq. (33) is reduced to the well-known form

as given in Eq. (15) [46]. Eq. (33) apparently treats with two

parts of energy contributions: influences of F upon dr and r

upon dF. We need to emphasize that Eq. (15) is eventually a

reduced form of Eq. (33) subject to Eq. (37). Unfortunately,

as mentioned above, Eq. (15) has been used in a long history

of nonequilibrium theory. In our opinion, the central

problem in the previous virtual work method is just the

inadequate employment of Eq. (15). We now turn to apply

Eq. (33) in collecting the energy changes in the charging

processes. At the end of our reformulations, one will find all

the doubts listed in Section 2 can be automatically solved.

We begin our derivations by adopting the familiar

Marcus two-step approach as given in Eq. (1), but use

Eq. (33) instead of Eq. (15). According to the response

given in Eq. (17) for step A2, we have

ra dFa Z r1DFop da CaDrDFop da (38)

Fa dra Z F
eq
1 Dr da CaDrDFop da (39)

It is apparent that

ra dFa sFa dra (40)

Hence applying Eq. (15) to this step would cause

problems. We substitute Eqs. (38) and (39) into Eq. (33),
integration will give the energy change in step A2 as follows

DGA2 Z
1

2

ð
V

ðr2Fnon
2 Kr1F

eq
1 ÞdV (41)

It should be mentioned that Eq. (33) yields the same G
eq
1

as given in Eq. (16), since Eq. (37) is warranted in step A1.

Collecting these two parts of energy changes, we get the

correct expression of nonequilibrium electrostatic free

energy as

Gnon
2 Z

1

2

ð
V

r2Fnon
2 dV (42)

Parallel derivation for pathway B shown in Eq. (14) can

give the quantity for nonequilibrium state ½r1;F
non
1 � as

Gnon
1 Z

1

2

ð
V

r1Fnon
1 dV (43)

It should be emphasized again that we make the formal

derivations here, without considering the influence of the

polarized charge upon the solute charge distribution,

otherwise Eqs. (42) and (43) will possess slightly different

forms because r1 (or r2) takes different values in

equilibrium and nonequilibrium states. We prefer to leave

the more detailed description on this matter to our further

work.

In below we give a confirmation of the failure of Eq. (15)

in general for nonequilibrium cases. As we know, at the

nonequilibrium state ½r1;F
non
1 �, the corresponding electric

displacement Dnon
1 and the solvent polarization Pnon

1 are as

follows

Pnon
1 Z corE

eq
2 CcopEnon

1 (44)

Dnon
1 Z Enon

1 C4pPnon
1 (45)

where cor and cop are, respectively, the orientational and

electronic components of the susceptibility c of the

medium, i.e.

c Z ð3s K1Þ=4p; cop Z ð3op K1Þ=4p; and

cor Z c Kcop

(46)

Making use of Eqs. (44) and (46), Eq. (45) becomes

Dnon
1 Z 4pcorE

eq
2 C3opEnon

1 (47)

Eq. (47) tells the following relationship

dDnon
1 Z 3op dEnon

1 (48)

Therefore, we have

Enon
1 $dDnon

1 Z 3opEnon
1 $dEnon

1 sDnon
1 $dEnon

1 (49)

Eq. (49) indicates that the two terms in the right-hand of

Eq. (36) are not equal, so the two terms in the right-hand

side of Eq. (33) are not equal either in this case, that is

F drsr dF. We conclude that Eq. (15) becomes invalid
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when the step links a nonequilibrium state. In addition, it is

well known that

dD Z 3s dE (50)

for any equilibrium states. A comparison between Eq. (48)

and Eq. (50) shows that the linear response given by

Eq. (50) holds true when the system moves from one

equilibrium state to another subject to the same medium (3s),

but such a linear response is no longer valid when the

properties of the medium changes (from 3s to 3op). This

indicates that the application of Eq. (15) to A2 step of

Eq. (1) will lead to the wrong expression of the free energy

of the nonequilibrium state.

Up to this stage, the doubts stated in Section 2 can find

their answers. Let us depict as follows.

(i) In our formulation, the electrostatic free energy, Gnon
i

only contains the properties of the nonequilibrium state

own, ri and Fnon
i . But this never means that Gnon

i is

independent of the previous equilibrium state. If we notice

Fnon
2 ZF

eq
1 CDFop from Eq. (8), the dependency of Gnon

i on

the potential of the previous equilibrium is clear.

(ii) Let us perform the direct integration of energy

change from ½r1;F
eq
1 � to ½r1;F

non
1 � by Jackson’s equation

Eq. (33). The energy change becomes path-independent (see

below).

Therefore, we can conclude that the troubles in the

previous virtual work approach are completely caused by

the inappropriate employment of Eq. (15). Adopting

Eq. (33) or alternatively Eq. (36) can make these problems

perfectly solved.
3.2. Spectral shifts of light absorption and emission

Fig. 2 schematically illustrates the energy levels of the

solute–solvent system in Franck–Condon transitions from

state 1 to state 2 and vice versa from state 2 to state 1. Ui(g)

(iZ1,2) is the total energy of state i, corresponding to ri in

vacuum, in other words, Ui(g) is the self-energy of the solute
Fig. 2. Schematical depiction of solvent effect of absorption and emission

spectra.
charge ri. hv1 and hv2, respectively, denote the absorption

and emission spectra in solution. We use DF
eq
i and DFnon

i to

denote the solvation free energies of state i at equilibrium

and nonequilibrium, respectively. As illustrated above, the

solvation free energy can be expressed as follows by

subtracting the self-energy of the solute charge from the

electrostatic free energy, i.e.

DF
eq
1 Z G

eq
1 K ð1=2Þ

ð
V

r1j1 dV Z ð1=2Þ

ð
V

r14
eq
1 dV (51)

DFnon
2 Z ð1=2Þ

ð
V

r24non
2 dV Z ð1=2Þ

ð
V

r2ð4
eq
1 CD4opÞdV

(52)

For an equilibrium solvation state corresponding to r2,

the solvation free energies are as follows

DF
eq
2 Z ð1=2Þ

ð
V

r24
eq
2 dV (53)

DFnon
1 Z ð1=2Þ

ð
V

r14non
1 dV Z ð1=2Þ

ð
V

r1ð4
eq
2 KD4opÞdV

(54)

According to the widely accepted definitions of spectral

shifts in the processes of light absorption and emission [17,

27,28], we can write the spectral shift of light absorption as

DhnabZ DFnon
2 KDF

eq
1 Z ð1=2Þ

ð
V

ðDr4
eq
1 Cr2D4opÞdV

(55)

In the inverse process, light emission (fluorescence), the

spectral shift reads

DhnemZ DFnon
1 KDF

eq
2 ZKð1=2Þ

ð
V

ðDr4
eq
2 Cr1D4opÞdV

(56)

Compared with Eq. (55), the minus sign in Eq. (56) is due

to the definition of Dr. In our notation, a positive value of

Dhvab indicates a blue shift of the light absorption in

solution, and a positive value of Dhvem indicates a red shift

of the light emission. Attention should be paid since

different literatures give different definitions, in particular

for Dhvem. When we consider the sum of Dhvab and Dhvem,

we have

Dhnsum Z ð1=2Þ

ð
V

DrðD4op KD4sÞdV (57)

Eqs. (55)–(57) are our new formulations for spectral shift

in solution.

On the other hand, if we turn to use the energy expression

of nonequilibrium by the previous theories (see Eq. (18)),



K.-X. Fu et al. / Journal of Molecular Structure: THEOCHEM 715 (2005) 157–175164
the spectral shift of light absorption can be written as

follows

Dhn0ab Z ð1=2Þ

ð
V

ðr24non
2 Cr24

eq
1 Kr14non

2 Kr14
eq
1 ÞdV

Z ð1=2Þ

ð
V

Drð24
eq
1 CD4opÞdV ð58Þ

Parallel treatment gives the spectral shift of light

emission as follows

Dhn0em ZKð1=2Þ

ð
V

Drð24
eq
2 KD4opÞdV (59)

The sum of spectral shift by the previous theories is thus

given by

Dhn0sum Z

ð
V

DrðD4op KD4sÞdV (60)

Comparing our result given in Eqs. (55) and (56) with

those (Eqs. (58)–(60)) given by the previous expression of

electrostatic free energy of nonequilibrium, we can find the

obvious differences. A significant feature of our results is

that the sum of spectral shifts drops to only one half of that

from the previous theories.
3.3. Solvent reorganization energy of electron transfer

We in principle may derive SRE of ET by substituting

Eqs. (16) and (43) into the definition given in Eq. (19).

However, we prefer to perform the following treatments to

reach our reformulations, so as to make the comparison

between our results with those by Marcus [25] as described

in Section 1. We adopt pathway C as shown in Table 1 for

our purpose. Introducing a charging fraction a, and applying

the changes of r and F in step C1, we can see that both

Eqs. (15) and (33) give a same result because

ra dFaZFa draZar1F
eq
1 da. So we see that the appli-

cation of Eq. (15) to the first charging step, as usually seen in

textbooks, can yield a correct result as given in Eq. (20). On

the basis of step C1, step C2 (see Table 1) introduces further

the change of the solute change KDr, but only the fast

polarization of the solvent alters in this step. Applying the

response given in Table 1, we have

ra dFaZ r2ðF
non
1 KF

eq
2 Þda Caðr1 Kr2ÞðF

non
1 KF

eq
2 Þda

(61)

Fa draZ F
eq
2 ðr1 Kr2Þda Caðr1 Kr2ÞðF

non
1 KF

eq
2 Þda

(62)

Consequently, only Eq. (33) is valid to this step.

Substituting Eqs. (61) and (62) into Eq. (33), the energy
change in step C2 is given by

DGC2 Z ð1=2Þ

ð
V

ðr1Fnon
1 Kr2F

eq
2 ÞdV (63)

The total change of electrostatic free energy, which is

just SRE of the forward ET according to conventional

definition, is thus obtained to be

lfw Z WC1 CDGC2 Z ð1=2Þ

ð
V

r1ðF
non
1 KF

eq
1 ÞdV (64)

Differing from the notation l0 given in the above

statements, we distinguish here SRE of forward ET with

that of backward ET and use lfw and lbw to denote these two

quantities. If we notice that r1 produces the same potential

j1 in vacuum but 4
eq
1 in equilibrium state ½r1;F

eq
1 � and 4non

1

in nonequilibrium state ½r1;F
non
1 �, Eq. (64) can be changed

to the following identical form

lfw Z ð1=2Þ

ð
V

r1ð4
non
1 K4

eq
1 ÞdV (65)

Eq. (65) is our new form of SRE. Similar to Eq. (12), we

have

4
non
1 Z 4

eq
2 KD4op (66)

The minus sign before D4op is due to the definition of Dr.

Eq. (65) therefore can be changed to

lfw Z ð1=2Þ

ð
V

r1ðD4s KD4opÞdV (67)

Parallel discussions can be made for the backward ET.

The corresponding SRE reads

lbw Z ð1=2Þ

ð
V

r2ðD4op KD4sÞdV (68)

Eqs. (67) and (68) indicate that SRE depends on the

directions of ET and the charge distributions of the initial

state. This feature is quite different from the conventional

conclusion that l0 has nothing to do with the direction of

ET and only depends on the transferred charge Dr (see

Eq. (22)). An average value of SRE from our derivation can

thus be given by

lav Z ð1=4Þ

ð
V

DrðD4op KD4sÞdV (69)

Comparing Eq. (69) with Eq. (22) shows that the average

value of SRE by us is only one half of that by the

conventional theories.

3.4. Comprehension of interaction between solvent

polarization and its source charge

In Section 3.1, we have deduced the expression of

electrostatic free energy of nonequilibrium via the multi-

step charging approach. Now we present a different method,
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the interaction energy method for the same purpose. At first,

let us show how to obtain the reasonable expressions of the

interaction energy between the polarization field and its

source free charge, and of the self-energy of the solvent

polarization, adopting the field superposition principle. We

consider two independent equilibrium electrostatic fields in

solution, [rA,FA] and [rB,FB]. rA and rB are two

independent free charge distributions and FA is the potential

due to rA and FB due to rB. By denoting the total free charge

distribution and the total electric potential as

r Z rA CrB; F Z FA CFB (70)

the electrostatic free energy ð1=2Þ
Ð

rF dV of the total field

can be divided into three parts

1

2

ð
V

rF dV Z
1

2

ð
V

rAFA dV C
1

2

ð
V

rBFB dV

C
1

2

ð
V

ðrAFB CrBFAÞdV ð71Þ

The integrals in the right-hand of Eq. (70) represent, in

sequence, the electrostatic free energy of the field [rA,FA],

that of the field [rB,FB], and the interaction energy between

these two independent fields. Eq. (71) tells that if we can

divide an electrostatic field into two independent parts, we

can express the electrostatic free energy of the total field by

summing over their individual energies and the interaction

energy between them. The interaction energy should be of

the form

GA–B Z ð1=2Þ

ð
V

ðrAFB CrBFAÞdV (72)

In the case of
Ð

V rAFB dV Z
Ð

V rBFA dV , the interaction

energy between two independent fields takes the usual form.

However, if we divide an electric field E of equilibrium

state into two parts: the vacuum field Ef and the polarization

field e, the electric displacement has the form

D Z Ef Ce C4pP (73)

The total electrostatic free energy is given by

ð1=8pÞ

ð
V

E$D dV Z ð1=8pÞ

ð
V

Ef$Df dV C ð1=8pÞ

ð
V

e$Dp dV

C ð1=8pÞ

ð
V

ðEf$Dp Ce$DfÞdV ð74Þ

where DpZeC4pP and DfZEf. Similar to Eq. (71), the

three terms in the right-hand of Eq. (74) represents, in

sequence, the self-energy of the vacuum field, the self-

energy of the poarization field, and the interaction energy

between these two fields. Applying Eq. (34) to the vacuum

case, we have

V$Ef Z 4pr (75)
Making use of Eqs. (34), (35) and (75), integrals in the

right-hand side of Eq. (74) can be changed to the following

formsÐ
Ef$Df dVZ

Ð
jV$Df dV K

Ð
V$ðjDfÞdV Z 4p

Ð
rj dV

(76)

Ð
e$Dp dV Z

Ð
4V$Dp dV K

Ð
V$ð4DpÞdV

Z
Ð

4V$ðD KDfÞdV Z 0 (77)

Ð
Ef$Dp dV Z

Ð
jV$ðD KDfÞdV Z 0 (78)

Ð
e$Df dVZ

Ð
4V$Df dV K

Ð
V$ð4DfÞdV Z 4p

Ð
r4 dV

(79)

Hence we can come to the following important

conclusions

Gf Z ð1=8pÞ
Ð

Ef$Df dV Z ð1=2Þ
Ð

rj dV (80)

Gp Z ð1=8pÞ
Ð

e$Dp dV Z 0 (81)

Gf–pZ ð1=8pÞ½
Ð

e$Df dV C
Ð

Ef$Dp dV� Z ð1=2Þ
Ð

r4 dV

(82)

We emphasize again that we are discussing an equili-

brium solvation state here. Eqs. (80)–(82) indicate that the

self-energy of the vacuum field, Gf, has the usual form, but

the self-energy of the polarization field or the solvent

polarization, Gp, is zero! The self-energy of the solvent

polarization or polarization field is in fact the interaction

energy between the molecular dipoles of the solvent. This

quantity can be calculated in an exact way. When the point

dipoles are placed as a cubic lattice and a macroscopic

electric field is set up in the substance, the interaction energy

between these parallel dipoles vanishes [46].

In addition, the interaction Gf–p between the polarization

field and its source free charge is as shown in Eq. (82).

Particular attentions should be paid to Eq. (78). The zero

value for the term
Ð

Ef$Dp dV leads to an important

conclusion as given in Eq. (82), which indicates that the

interaction energy between the polarization field and its

source charge no longer possesses the form similar to that

between two independent fields (see Eq. (72)). Conclusions

given in Eqs. (81) and (82) are quite different from the

conventional understandings, which take Gf–p ZK
Ð

P$Ef d

V and GpZ ð1=2Þ
Ð

P$Ef dV [47–49]. One can see that no

other approximation is taken in the present derivations

except taking the total equilibrium electrostatic free energy

as the usual form of GZ ð1=8Þ
Ð

E$D dV . If we look back to

the conventional understandings for Gf–p and Gp, we guess

that the previous definition for Gf–p is just a postulation

based on the analogue to Eq. (76), but Eq. (82) is ignored. So

we can conclude that the interaction energy between the

polarization field and its source charge does not possess the

form as that between two independent fields. If we notice
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this point, all the doubts in the past will be solved without

difficulties.

After the correct understanding of the interaction energy

and the self-energy within the framework of continuum

model, as illustrated above, the expression of electrostatic

free energy of nonequilibrium becomes rather straightfor-

ward. Combined with Eqs. (10)–(12), Gnon
2 can be expressed

as follows

Gnon
2 Z

1

2

ð
V

r2j2 dV C
1

2

ð
V

r24slow;1 dV C
1

2

ð
V

r24fast;2 dV

The terms in the right-hand side represent, in sequence,

the self-energy of the vacuum field, the interaction energy

between the slow part of the polarized charge due to r1 in

medium of 3op and the free charge r2, as well as the

interaction energy between the fast part of the polarized

charge and the free charge r2. This expression is essentially

the same as that given in Eq. (42) when we notice that

Fnon
2 Zj2C4slow;1C4fast;2.

Based on the field superposition principle presented

above, the expression of Gnon
2 can be directly deduced by

considering the superposition of two independent fields,

[r1;F
eq
1 ] and [Dr,DFop]. Relevant formulations are given in

Appendix B. Up till now, we have in fact achieved the

consistent expression of Gnon
2 via three different methods:

the multi-step charging approach (see Section 3.1), the field

superposition principle (see Appendix B), and the inter-

action energy method presented in this section.

A few words are still needed to give an explanation for

the zero value for the self-energy of the solvent polarization.

The continuous medium theory requires that the size of

solvent molecules and the distance between them should be

infinitely small, but the value of the dipole moment Pi

of the solvent molecule is limited. Based on these

presumptions, the solvent polarization P is defined as

PZ limDV/0

P
qiri=DV , with DV being the volume element

and qiri the ith dipole [50]. A corollary is the point dipole

approximation of the solvent molecules for the continuum

model. If we notice this, the zero value of the self-energy for

the polarization field is understandable since no energy is

needed to change the orientation situation of the solvent.

The detailed consideration of the interaction energy

between the solvent dipoles, or the self-energy of the

polarization field for the real medium, will depend on

the amount of the molecular dipole, the distance between

the charged pair, the intermolecular distances, and so on, but

such a consideration is apparently beyond the ability of the

macroscopic continuous medium theory, and is much more

complicated. How to correctly evaluate the self-energy of

the polarization field for the real solute–solvent system is

another problem. The postulation of a non-zero self-energy

Gp of the polarization field [47–49], without careful

derivation, is just the cause leading to the incorrect

expression of the nonequilibrium free energy.
4. Theoretical treatment for ideal cavity shape
4.1. Two-sphere model for electron transfer

Eqs. (67)–(69) can be easily reduced to the two-sphere

form. We consider the following intramolecular ET reaction

DqD KB KAqA Z DqDCDq KB KAqAKDq (83)

where B is the bridge. For the reactant, we assume that there

is a point charge qD at the center of sphere D with a radius of

rD, and qA at the center of sphere A of rA. The two vacuum

spheres are embedded in medium of 3S (see Fig. 1) and

separated by a distance d. Analogous to Marcus, we ignore

the influence of polarized charge due to qA on cavity D, and

vice versa the influence of polarized charge due to qD on

cavity A. Thus the total potential within D is contributed

from three parts: the vacuum potential due to qD, i.e.

jDðqDÞ Z qD=r1 (84)

the polarization potential due to qD, i.e.

4D
s ðqDÞ Z ðqD=rDÞð1=3s K1Þ (85)

and the potential yielded by qA in medium under the

presumption of rA/0 and rD/0, i.e.

FD
s ðqAÞ Z qA=ð3sR2Þ (86)

The subscript ‘s’ for 4 or F means the equilibrium in

medium of 3S. Summing over these three parts, the total

potential within sphere D reads

FD
s ðqD CqAÞ Z ðqD=rDÞð1=3s K1ÞCqD=r1 CqA=ð3sR2Þ

(87)

Noticing R2Zd at the center of D and cutting off the

potential by qD and qA in vacuum, say, qD/r1CqA/R2, we

can write the polarization potential at the center of D as

follows

4D
s ðqD CqAÞ Z ðqD=rD CqA=dÞð1=3s K1Þ (88)

In the similar way, the polarization potential

yielded by the transferred charge Dq at the center of D is

given by

D4D
s Z ðDq=rD KDq=dÞð1=3s K1Þ (89)

We turn to consider the polarization potential by the

electronic polarization. For this case, we only need to

change 3S to 3op in Eq. (89). Hence we have

D4D
op Z ðDq=rD KDq=dÞð1=3op K1Þ (90)

D4A
s and D4A

op for sphere A can be given via parallel

derivations, i.e.

D4A
s Z ðKDq=rA CDq=dÞð1=3s K1Þ (91)

D4A
op Z ðKDq=rA CDq=dÞð1=3op K1Þ (92)
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Using the solute charge specified in Eq. (83), Eqs. (67)

and (68) become

lfw Z
1

2
½qDðD4D

s KD4D
opÞCqAðD4A

s KD4A
opÞ� (93)

lbwZ
1

2
½ðqD CDqÞðD4

D
s KD4

D
opÞCðqA KDqÞðD4

A
s KD4

A
opÞ�

(94)

Substituting Eqs. (89)–(92) into Eqs. (93) and (94) yields

the following results

lfw Z
1

2
Dq

1

3op

K
1

3s

� �
qA

1

rA

K
1

d

� �
KqD

1

rD

K
1

d

� �� �

(95)

lbw Z
1

2
Dq

1

3op

K
1

3s

� �
ðqD CDqÞ

1

rD

K
1

d

�� �

K qA KDqÞ
1

rA

K
1

d

� �� �
(96)

The average value thus becomes

lav Z
1

2
Dq2 1

3op

K
1

3s

� �
1

2rD

C
1

2rA

K
1

d

� �
(97)

Alternatively, if one substitutes Eqs. (89)–(92) into

Eq. (22), which is based on the previous virtual work

method, conventional two-sphere formula, Eq. (24), is very

easy to obtain, although it was originally derived in a

slightly different way [16,17,25,26]. Eqs. (95)–(97) are our

new two-sphere formulae. A significant feature of our

results is that SRE depends both on the direction and the

charges brought by the species, unlike Eq. (24) deduced in

the past. We should emphasize that present conclusion is

quite straightforward when we use Eq. (33) to express the

energy change or alternatively the field superposition

principle, without introducing any other approximations

beyond those in the conventional formulations. Owing to

the inappropriate application of Eq. (15) to the steps

involving nonequilibrium state, SRE was incorrectly

deduced to be independent of the direction of ET and of

the charges brought by the donor and accepter in the past

[16,25,26].

We assume DqZe (e is the elementary charge) and take

several typical cases of ET into account in the following.

Case 1. qDZKe/2, and qAZe/2. In this case, Eqs. (95)

and (96) reduce to a same form, i.e.

lfw Z lbw Z
e2

2

1

2rD

C
1

2rA

K
1

d

� �
1

3op

K
1

3s

� �
(98)

Eq. (98) indicates that SRE of the forward ET and that

of the backward ET are equal in this case, but SRE

measures one half of the conventional expression given by

Eq. (24).
Case 2. qDZqAZ0. This case indicates a charge

separation process and its inverse indicates the charge

recombination. lfw and lbw in this case are as follows

lfw Z 0 (99)

lbw Z e2 1

2rD

C
1

2rA

K
1

d

� �
1

3op

K
1

3s

� �
(100)

Eq. (99) indicates that SRE of a charge separation

vanishes. This point deserves attentions. From our present

work, the interaction energies between the polarization field

of equilibrium state ½r1Z0;4
eq
1 Z0� or nonequilibrium

state ½r1 Z0;4non
1 �, and the free charge r1 is zero, lfw

consequently vanishes. However, in the conventional

theories, a non-zero self-energy of the polarization field is

incorrectly postulated, as described in Section 3.4. This

misunderstanding misleads to a non-zero value of SRE by

Eq. (24) for the charge separation process. There is an

energy change from ½r1Z0;4
eq
1 Z0� to ½r1Z0;4non

1 �,

owing to the entropy change caused by the ordering of the

solvent molecules. But it should be noticed that the energy

change due to the entropy change is in usual trivial and does

not belong to the electrostatic free energy. Postulating this

energy change to the same amount as solvation free energy

is lack of physical foundations.

Case 3. qDZKe and qAZ0. This is the usual situation of

an excess electron transferring from the donor to the

acceptor. In this case, Eqs. (95) and (96) become

lfw Z
e2

2

1

rD

K
1

d

� �
1

3op

K
1

3s

� �
(101)

lbw Z
e2

2

1

rA

K
1

d

� �
1

3op

K
1

3s

� �
(102)

A parallel discussion can be made to the hole transfer,

qAZe and qDZ0. Eqs. (101) and (102) indicate that SRE in

this case only depends on the radius of the charged sphere of

the initial state, but the radius of the neutral sphere

disappears. If we recall the statement given in Section 3.4,

this feature meets the need of the physical requirement. The

neutral sphere does not contribute to the change of

interaction energy from the equilibrium state to the none-

quilibrium state subject to the initial charge distribution, so

its size and shape do not apply influence on SRE. The well-

known Closs–Miller ET system belongs to this case. From

our present viewpoint, we can give an estimation of radius

for biphenyl group which is charged to an anion, but can not

for naphthalene because it is neutral at the initial state and

hence it does not contribute to SRE of the forward ET.

The average value of SRE keeps unchanged, in spite of

the appearances of lfw and lbw in different cases. New

features of SRE can make us have a more complete

comprehension on the nature of this quantity. One can find

all the doubts listed in Section 2 can be excellently explained

by our new theory up till now. In Marcus’ electron transfer



K.-X. Fu et al. / Journal of Molecular Structure: THEOCHEM 715 (2005) 157–175168
theory, SRE is in fact incorporated into the total reorganiz-

ation energy by taking the average value of lfw and lbw.

Therefore, the expression of the average value given by

Eq. (97) will be adopted in the practical calculations in the

following sections. When compared with the conventional

two-sphere model, our predication of lav drops to only

one half.
4.2. Single-sphere model for spectral shift

We have given the spectral shifts of light absorption and

emission as well as their sum in Eqs. (55)–(57). Here, we

reduce them to fit the spherical cavity. Like the model

introduced by Onsager in equilibrium solvation [1], we

adopt the approximation of point dipole of solute within a

spherical cavity with radius a. The photoexcitation drives

the point dipole to vary from initial m1 to the final one, m2.

Assuming that the vacuum cavity occupied by the solute is

surrounded by the medium of 3S. The electric potential of

equilibrium state within the cavity is as follows (Eq. (6) of

Ref. [1])

F
eq
1 Z 4

eq
1 Cm1$r=r3 (103)

with

4
eq
1 ZKRm1$r (104)

R Z ð1=a3Þ½2ð3s K1Þ=ð23s C1Þ� (105)

It could be understood that the second term in the right-

hand side of Eq. (103) is the vacuum potential due to m1. The

reaction field (the term ‘reaction field’ is essentially the

same as the term ‘polarization field’ used above, but we use

here the term ‘reaction field’ following the literatures)

within the cavity by the solvent polarization thus reads

e
eq
1 ZKV4

eq
1 Z Rm1 (106)

Similar form is given for the equilibrium solvation case

of m2, i.e.

e
eq
2 ZKV4

eq
2 Z Rm2 (107)

During the Franck–Condon transition, the reaction field

resulted from the dipole variation DmZm2Km1 in medium

of 3S is of the form

Des Z RDm (108)

In the similar way, the reaction field due to Dm in

medium of 3op reads

Deop Z enon
2 Ke

eq
1 Z RopDm (109)

with

Rop Z ð1=a3Þ½2ð3op K1Þ=ð23op C1Þ� (110)
Using the point dipole approximation, say

m Z lim
L/0
q/N

qL;

we haveð
V

ri4
eq
j dV Z ½Kqi4

eq
j ðC0ÞCqi4

eq
j ðK0Þ�

Z lim
L/0
q/N

qL$V4
eq
j ZKmi$e

eq
j ði; j Z 1; 2Þ (111)

ð
V

ri4
non
j dV Z ½Kqi4

non
j ðC0ÞCqi4

non
j ðK0Þ�

Z lim
L/0
q/N

qL$V4non
j ZKmi$enon

j ði; j Z 1; 2Þ (112)

where the signs ‘C0’ and ‘K0’ specify the positions

approaching the origin from two opposite sides. Accord-

ingly we haveð
V

Dr4
eq
i dV ZKDm$e

eq
i ði Z 1; 2Þ (113)

ð
V

riD4op dV Z

ð
V

rið4
non
2 K4

eq
1 ÞdV

ZKmi$ðe
non
2 Ke

eq
1 Þ ði Z 1; 2Þ (114)

Applying Eqs. (113) and (114), Eq. (55) becomes

Dhnab ZKð1=2ÞðDm$e
eq
1 Cm2$DeopÞ (115)

Combining Eqs. (106) and (109) with Eq. (115), we

obtain the final form of the spectral shift for light absorption

as follows

Dhnab ZKð1=2ÞðRm1 CRopm2Þ$ðm2 Km1Þ (116)

In the similar way, the spectral shift of light emission can

be derived to the following form, i.e.

Dhnem Z ð1=2ÞðRm2 CRopm1Þ$ðm2 Km1Þ (117)

The sum of these two parts reads

Dhnsum Z ð1=2ÞRorðm2 Km1Þ
2 (118)

with

Ror Z R KRop (119)

When comparing with the well-known Lippert–Mataga

relationship

DhnsumðL KMÞ Z Rorðm1 Km2Þ
2 (120)
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given by Lippert [29] and Mataga [28] originally and by

Marcus [17] later, our result given in Eq. (118) drops to only

one half of that from the conventional models.

If one applies the expressions of electrostatic free energy

by the conventional virtual work method, such as Eq. (18),

and use the same spherical cavity approximation presented

above, Lippert–Mataga relationship given in Eq. (120) will

be easily deduced. In fact, if we notice the misunderstand-

ings on the self-energy of the solvent polarization field in

the past, the defects in the original deduction [27,28] of

Eq. (120) become apparent.
5. Application

The s-bridge mediated ET reactions between biphenyl

anion radical (BpK) and different acceptors were intensively

investigated by Closs and Miller [37,38,51]. It has been

widely believed that the experimental measurement of ET

reactions between biphenyl and a series of organic systems,

designed by Closs and coworkers is the first successful

experimental observation of ET reactions in Marcus’

inverted region. In this section, we study the electron

transfer from BpK to naphthalene (Np) in solution. The

newly developed two-sphere formula is used to estimate

SRE. The cyclohexane (B) mediated ET from BpK to Np

has been taken as the model system (Fig. 3). The coplanar

orientation between the two p-electron moieties was

confirmed by experiments and molecular mechanic calcu-

lations [37]. In the coplanar manner, Vrp will be predicted to

arrive the maximum. Here ‘coplanar’ means that the

orientation angle q between the planar BpK group and Np

group is set zero. In this system, the excess electron could be

localized on one of the two p-electron moieties.

When the nuclear tunneling effect is small enough so that

we can ignore it and the ET matrix element Vrp is small, the

semi-classical model become applicable for predicting the

ET rate constant [52]. Several parameters, the ET matrix

element VrP, the standard free energy DA0, the inner

reorganization energy IR and the solvent reorganization

energy lfw, dominate the ET rate.

We carry out the investigation using the double-well

potential picture. In this case, the ET reaction is assumed to
Fig. 3. Schematic drawing of model system of intramolecular electron transfer. Th

(a) Reactant system BpK–B–Np; (b) product system Bp–B–NpK.
start from the energy minima of the charge-localized

reactant and reach its transition state at the crossing of the

two charge-localized potential curves for reactant and

product states. Such charge-localized potential curves are

sometimes called the quasi-diabatic potential energy

surfaces [53] so as to distinguish from the adiabatic

potential constructed under the Born–Oppenheimer

approximation. Systems shown in Fig. 3 are composed of

three fragments: the donor, the acceptor and the bridge. In

order to get the reasonable electronic structure, we need to

obtain the electronically localized state in which the excess

electron is localized on the donor or the acceptor. First of all,

we optimize the three isolated species, NpHK, NpH, and

cyclohexane at the UHF/6-31G** level. We do not pursue

the higher level here because we need to warrant that the

geometries obtained in this stage can produce the energy

minima in the further constructions of the charge-localized

potential curves.

After the geometry optimization of the isolated species,

we link these three parts to form the BpK–B–Np system by

cutting off the terminal hydrogen atoms at proper positions,

with the internal coordinates of the isolated species

unchanged. Finally, the two C–C bonds linking the species

undergo optimization with the other internal coordinates

fixed. In the connection, BpK and Np are linked to the

bridge molecule by substituting them for the para-hydrogen

atoms in the chair-shaped cyclohexane. In addition, the

donor and the acceptor fragments in BpK–B–Np prefer to sit

perpendicular to the average plane of the cyclohexane ring.

This consideration is also based on the results from X-ray

structure determination on trans-1,4-diphenylcyclohexane

[37]. Similarly, we can prepare the starting nuclear

configuration of charge-localized state for product Bp–B–

NpK. The starting geometries of BpK–B–Np and Bp–B–

NpK prepared in this way are assumed the optimal

geometries for the electronically localized state. So it does

not undergo further full geometry optimization. In our

experience, a full geometry optimization will drive the

system to the energy minima with the excess electron

delocalized. Such a geometry is of course not desirable

because it is not the optimal geometry in which the excess

electron is localized on donor or on acceptor.
e orientation angle between the planar BpK group and Np group is set zero.



Table 2

Dipole moment and net charge of different parts

System Dipole moment (Debye) Net charge

X y z Total Bp Bridge Np

BpK–B–Np 0.00 0.50 K10.65 10.66 K0.89 K0.06 K0.05

Bp–B–NpK 0.08 K0.84 11.10 11.14 K0.06 K0.07 K0.87

Fig. 4. Highest occupied molecular orbitals of the reactant state (BpK–B–Np) (a) and the product state (Bp–B–NpK) (b) See Fig. 3 for the definition of the

Cartesian coordinate.

Fig. 5. Double-well potential of coplanar system in THF.

K.-X. Fu et al. / Journal of Molecular Structure: THEOCHEM 715 (2005) 157–175170
We check the validity of the localization of the excess

electron. Single point calculations at the same level, UHF/

6-31G**, have been carried out for the two starting

geometries of BpK–B–Np and Bp–B–NpK prepared in the

above steps. The net charges on the three moieties by

Mulliken population analysis and the dipole moment are

collected in Table 2. The frontier orbitals of these two

systems are shown in Fig. 4. Population analysis indicates

the successful localization of the excess electron. Therefore,

the starting geometries could be safely used to construct the

charge-localized potential curves. Negligibly small net

charge brought by the bridge permits us to make the bridge

molecule fixed in the construction of the double-well

potentials.

In the construction of the double-well potential curves,

we need to determine the reaction coordinates at first.

However, the accurate determination of the ET reaction

pathway for an even small system is not practicable at

present. Therefore, we apply the linear coordinate R in this

paper to describe the nuclear configuration variation during

ET [53,54], i.e.

Qi Z RQ
p
i C ð1 KRÞQr

i (121)

where Qi represents the ith internal nuclear coordinate, Qr
i

and Q
p
i represent the ith internal nuclear coordinates at the

starting geometries of reactant and product, respectively.

RZ0 corresponds to the starting geometry of BpK–B–Np

and RZ1 to that of Bp–B–NpK. The choice of the 3NK6

independent internal coordinates (Qi,iZ3NK6) out of 3N,

which dominate the nuclear configuration of the system

during ET, is somewhat arbitrary in this work but it does not

apply large influence to the potential curves according to our

experience.

The molecular orbital sets from UHF-SCF calculations at

the starting geometries of BpK–B–Np and Bp–B–NpK,

which yield different charge-localized states, are used to
induce the potential energy calculation of the charge-

localized state. Such an induction usually maintains the

electronic structure of the reactant even if at the optimal

geometry of the product. We call this as the charge-

localized-initial-guess induced SCF technique. In this way,

the charge-localized potential curves for electronic struc-

tures of both reactant and product have been constructed at

UHF/6-31G** level. The conductor-like-screening-model

[14] (COSMO), a continuum model for the equilibrium

solvation and arbitrary cavity coded into HONDO package

[55], has been adopted to simulate the solvent effect in the

energy calculation. The potential energy curves of Ur for

BpK–B–Np and Up for Bp–B–NpK in tetrahydrofuran

(THF, 3SZ10.37 [22]) are calculated and shown in Fig. 5.

The crossing of two curves, which determines the nuclear

configuration of the transition state of ET, is found at RCZ
0.53. If we use the energy difference DU0ZUp(1)KUX(0)

to approximate the standard free energy DA0, this ET is

found slightly exothermic, and DA0 is obtained

K2.5 kJ molK1 in gas phase and K3.6 kJ molK1 in THF



Table 3

Reorganization energy and ET matrix elementa

IR lav DA0 Vrp

This work 74.4 47.5 K3.6 2.7

Exp.b 56.0c 53.0c K4.8 1.7

a Energy is in kJ molK1.
b Experimentally estimated parameters from Ref. [37].
c The contribution from biphenyl torsion of 0.13 eV given in Ref. [38] is

subtracted from lfw and added to IR.
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solvent. Experimental estimation for this quantity is about

K4.8 kJ molK1 in solution [37].

Based on the energy curves of charge-localized states

shown in Fig. 5, the inner reorganization energy can be

expressed as the average value, i.e.

IR Z ½Urð1ÞKUrð0ÞCUpð0ÞKUpð1Þ�=2 (122)

Here Ur(R) and Up(R) are the energy curves corresponding

to BpK–B–Np and Bp–B–NpK, respectively. The value of

IR is listed in Table 3. One of the authors [54,56] performed

IR calculations for this system by only taking the isolated

donor and acceptor into account. In this way, the inner

reorganization energy in gas-phase was approximated by

IR Z ½IRðBpHK=BpHÞC IRðNpHK=NpHÞ�=2 (123)

where IR(BK/B) (BZBpH or NpH) represent the inner

reorganization energy of the self-exchange reactions

BKCBZBCBK. The results obtained by one of the authors

[54,56] with Eq. (123) are 81.7 kJ molK1 (UHF/4-31G),

77.8 kJ molK1 (UHF/DZP), 81.3 kJ molK1 (UHF/6-31G*)

and 75.3 kJ molK1 (CASSCF/6-31G*). The computation

level is given in the parentheses. DZP represents Dunning’s

(9s,5p)/(3s,2p) basis functions with the polarization function

on all atoms; CASSCF refers to the complete active space

SCF. In the experimental aspect, Closs et al. [37] obtained the

value of 0.45 eV without inclusion of the contribution from

the torsion motion around the C–C bond linking the two

phenyl rings. If the contribution K13 kJ molK1 from this

low-frequency torsion motion from another experimental

measurement [38] is involved, the inner reorganization

energy fitted by experiment should be about 56 kJ molK1.

The two-sphere formula given in Eq. (97) is used to make

the estimation of SRE. The ET distance from the mass

center of the donor fragment to that of the acceptor for the

present system (this system is denoted C-1,4-e,e in

Ref. [37]) is found to be 1.171 nm. Adopting the crystal-

lographic determinations [39] of the radii, 0.39 nm for

biphenyl and 0.37 nm for naphthalene, and taking 3SZ10.37

and 3opZ2.078 [22] for THF, lav is estimated 47.5 kJ molK1

according to Eq. (97). We need to emphasize that we take

lav rather than lfw here since Marcus’ semi-classical model

for electron transfer rate adopts the average value of

reorganization energies. In Ref. [37], SRE for the present

system was experimentally estimated 53.0 kJ molK1 by

subtracting a value of 0.13 eV [38] from the value of

0.68 eV [37]. Comparing the present estimation with
the value given in Ref. [37], we can find the possible

explanation for the difference of about 5 kJ molK1 as

following: neither the donor nor the acceptor are not

spherical, so the polarized charge tends to concentrate on

the portion of cavity surface close to the solute free charge,

hence the effective radius of the cavity in the realistic

environment of polar solvent should be smaller than the

crystallographic radius. This consideration will make the lav

value increase slightly. If we use the experimentally

estimated value of 53.0 kJ molK1, Eq. (97) gives a value

of 0.36 nm for effective average radius of biphenyl and

naphthalene in solution. However, if we use the average

radius of BpH and NpH, 0.38 nm, the conventional two-

sphere formula shown in Eq. (24) will predict a value of

95 kJ molK1. From our present arguments, we think that the

continuum theory behaves well for nonequilibrium sol-

vation as for equilibrium solvation.

Several theoretical methods can be used to calculate Vrp,

such as the partitioning method [57,58], the variational

principle on the basis of two-state approach [53,59], and

Koopmans’ theorem [54,60]. In the present work we employ

the direct variational principle treatment to the two charge-

localized states. If we denote the two charge-localized states

hr for the reactant and hp for the product, we have [53,59]

Vrp Z ½Hrp KSrpðHrr CHppÞ=2�ð1 KS2
rpÞ

K1 (124)

here SrpZ hhrjhpi and Hij Z hhijHjhji ði; jZ r; pÞ with H
being the electronic Harmiltonian. If we can correctly

produce the two charge-localized states hr and hp, Vrp can be

calculated with the subroutines linked to HONDO package

[55]. A key step is to generate an initial orbital guess to

induce the UHF-SCF calculation of Vrp, since an ordinary

SCF can not produce the charge-localized state at nuclear

configuration of transition state.

As described before, two sets of molecular orbitals can

yield different charge-localized states. From the position of

crossing of the two energy curves shown in Fig. 5, we can

determine the geometry of the transition state by setting

RcZ0.53, and consequently all the internal nuclear

coordinates of the transition state can be determined. The

two sets of charge-localized molecular orbitals {4r
i} of

BpK–B–Np at RZ0 and {4
p
i } of Bp–B–NpK at RZ1, are

taken as initial guesses to induce the UHF-SCF calculations

at transition state (RcZ0.53). The standard method coded in

HONDO package [55] can yield two charge-localized states

and give the value of Vrp according to Eq. (124). In this way,

we obtain the value of 2.7 kJ molK1 for Vrp in THF solvent.

This result is slightly larger than the value of 1.69 kJ molK1

estimated from the experimental fitting in the same solvent

[37], the value of 2.0 kJ molK1 by partitioning method [57],

and the value of 1.30 kJ molK1 by Koopmans’ theorem

[56]. By means of the Mulliken population analysis, the

bridge has found slightly negatively charged. The incom-

plete charge localization is a possible reason for the

overestimation of Vrp in the present work, since it will
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enlarge the overlap Srp. Eq. (124) shows that the over-

estimation of Vrp will be caused for this reason.
6. Summary

From the derivation by the authors, some doubts existing

in current theories of nonequilibrium, including the

methods, SRE, and spectral shifts, have been clarified.

Particular attentions have been paid to the previous virtual

work method [16,25,26], but the failure in the modification

of Felderhof’s equation [18,30,31,34–36] and the misunder-

standings on the interaction energy between the polarization

field and its source free charge are also clarified in this

article. From the derivations given in this work, we feel that

the problems in the virtual work approach are simply the

inadequate use of the work expression given in Eq. (15).

In general, like a great amount of literatures and textbooks,

Eq. (15) is invalid. However, if we notice the rarely used

Jackson’s equation, Eq. (33), we know Eq. (15) is in fact its

reduced form. Because the linear response given by Eq. (50)

does not remain during the step from the equilibrium state to

the nonequilibrium state, the application of Eq. (15) is

invalid in the present case. For this reason, as illustrated in

Section 2, a series of doubts arose in the theoretical

conclusions deduced in the past.

This work reveals that the central defect in the previous

theories of nonequilibrium is the postulation of interaction

energy between the polarization field and its source charge.

Particular attentions should be paid to the zero value for the

term
Ð

Ef$Dp dV , as given in Eq. (78). This leads to an

important conclusion that the interaction energy between

the polarization field and its source charge no longer

possesses the form similar to that between two independent

fields. From the present derivation, we feel that the

postulations on Gf–p and Gp in the past are somewhat

arbitrary and lack of physical foundations. These presump-

tions do not affect the results of the equilibrium solvation,

but they will have important influence on the conclusions of

the nonequilibrium state, since the a non-zero self energy of

the orientatonal component of the solvent polarization will

be taken as fixed and brought into the electrostatic free

energy of the nonequilibrium state.

It should be mentioned that the zero result of the self-

energy of polarization field is exactly derived within the

frame of continuous medium theory. However, for the

realistic medium, the situation might be different, but it is

beyond the ability of the macroscopic continuum model,

and the microscopic structures of the individual solvent

molecules need to be taken into account. Postulating a non-

zero self-energy but making derivations within the frame-

work of continuum model in the past is apparently

inappropriate.

The conclusions deduced in the past, for example the

identical value of SRE for both the forward and backward

processes of ET reaction, are based on the linear response,
dDZk dE, with k being a constant depending on properties

of the solvent. However, our derivations in Section 3.1 show

that k is different at equilibrium state and at nonequilibrium

state (see Eqs. (48) and (50)). This fact indicates that

previous virtual work approach seems not well founded.

Unlike the conventional theory, reformulations in this

work reveal that SRE depends on both the direction of ET

and the charge distribution r1 of the initial state, but has

nothing to do with the charge distribution r2 of the final state

(see Eq. (64)). When reduced to the two-sphere model, SRE

is case-sensitive. The charge recombination process gives

the largest value of SRE.

The failure of the current two-sphere formula for

evaluation of SRE of ET can be clarified immediately

when it is employed to the Closs–Miller system. The mean

radius of 0.59 nm for biphenyl and naphthalene is

unacceptable when compared with the structural data,

0.39 nm for biphenyl and 0.37 nm for naphthalene. From

our theory, 0.36 nm for the radius of Bp, is slightly smaller

than that form the structural data. This deviation can find its

explanation if we notice that the polarized charge of solvent

tends to distribute on the portion of cavity surface close to

the solute charge. This behavior makes the effective radius

slightly decrease. As depicted above, the two-sphere

formula developed here can only give estimation for Bp

radius but not for Np. This feature is somewhat unexpected.

However, if we notice that Np is not charged at the initial

state, this conclusion becomes understandable. Experiments

on this matter are encouraged to validate these new features

predicted in the present work.

All the ab initio calculations have been carried out by

HONDO/S package [55].
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Appendix A. A proof of Eq. (6)

We consider an arbitrary cavity. As shown in Fig. A1, the

interface is denoted S. The solute charge distribution inside



Fig. A1. Electric field inside and outside the interface.
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the cavity is r1, and the medium is of a dielectric constant of

3S. We assume that the distribution of polarized surface

charge on S is s1. We denote the electric fields of

equilibrium state E
eq
o;n outside the surface and E

eq
i;n inside

the surface with n being the normal direction of the

interface. We have

3sE
eq
o;n Z E

eq
i;n (A.1)

Eeq
o;n KE

eq
i;n Z 4ps1 (A.2)

At the point X on S, we divide the total electric field into

two parts: EX
i;n (EX

o;n) due to the polarized surface charge at

X, and EY
i;n (EY

o;n) by other charge distribution, including

both solute charge and polarized charge. Hence

Eeq
o;n Z EX

o;n CEY
o;n; E

eq
i;n Z EX

i;n CEY
i;n (A.3)

In addition, we notice the following properties of the

electric field on the interface, i.e. (see Fig. A1)

EY
i;n Z EY

o;n Z EY
n ; EX

i;n ZKEX
o;n (A.4)

Combining Eqs. (A.2)–(A.4) gives

Eeq
o;n Z 2ps1 CEY

n ; E
eq
i;n ZK2ps1 CEY

n (A.5)

Substituting Eq. (A.5) into Eq. (A.1) yields

2ps1

3s C1

3s K1
CEY

n Z 0 (A.6)

Expressing EY
n in the form of integral, Eq. (A.6) becomes

2ps1ðrÞ
3s C1

3s K1
C

ð
SKX

ðr Kr0Þ$n

r Kr0j j
3

s1ðr
0ÞdS0

C

ð
V 0

ðr Kr0Þ$n

r Kr0j j
3

r1ðr
0ÞdV 0Z 0 (A.7)

The surface integration is over all the interface but the

point X is excluded. Eq. (A.7) is just what is used in D-PCM

method by Cossi and Barone [61]

In the equilibrium state in the medium of 3S, the

polarized surface charge can be divided into two parts: the

orientational sor,1 and electronic sop,1. The following
relationships are well known

s1

c
Z

sor;1

cor

; 4pc Z 3s K1 and 4pcor Z 3s K3op

(A.8)

Hence, we have

sor;1 Z
cor

c
s1 Z

c Kcop

c
s1 Z

3s K3op

3s K1
s1 (A.9)

We suppose the dielectric constant is suddenly changed

from 3S to 3op, the polarized charge becomes to s
op
1 such that

s
op
1 Zsor;1Csor;1�op Csr1�op and Eq. (5) holds. Similar to

Eqs. (A.1)–(A.6), we have

3opEop
o;n KE

op
i;n Z 4psor;1 (A.10)

Eop
o;n KE

op
1;n Z 4ps

op
1 (A.11)

E
op
o;n Z E

op;X
o;n CE

op;Y
o;n ; E

op
i;n Z E

op;X
i;n CE

op;Y
i;n (A.12)

E
op;Y
i;n Z Eop;Y

o;n Z Eop;Y
n ; E

op;X
i;n ZKEop;X

o;n (A.13)

E
op
o;n Z 2ps

op
1 CE

op;Y
n ; E

op
i;n ZK2ps

op
1 CE

op;Y
n (A.14)

2p s
op
1

3op C1

3op K1
Ksor;1

2

3op K1

� �
CEop;Y

n Z 0 (A.15)

Eq. (A.15) can be expressed in the form of integral, i.e.

2p s
op
1 ðrÞ

3op C1

3op K1
Ksor;1ðrÞ

2

3op K1

� �

C

ð
SKX

ðr Kr0Þ$n

r Kr0j j
3

s
op
1 ðr0ÞdS0C

ð
V 0

ðr Kr0Þ$n

r Kr0j j
3

r1ðr
0ÞdV 0 Z 0

(A.16)

Making use of Eq. (A.9), the first term in Eq. (A.16)

becomes

2p s
op
1

3op C1

3op K1
Ksor;1

2

3op K1

� �

Z 2p ðs
op
1 Ks1Þ

3op C1

3op K1
Cs1

3 C1

3 K1

� �
(A.17)

Combining Eqs. (A.7), (A.16) and (A.17) givesð
SKX

ðr Kr0Þ$n

r Kr0j j
3
½s

op
1 ðr0ÞKs1ðr

0Þ�dS0C2p½s
op
1 ðrÞ

Ks1ðrÞ�
3op C1

3op K1
Z 0 (A.18)

Eq. (A.18) holds true for any interface S unless

s
op
1 ðrÞZs1ðrÞ. This means that the sudden change of

dielectric constant does not change the polarized charge

since sor,1 and r1 remain unchanged. Based on this
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conclusion, we have

4
eq
1 ðr1; 3sÞ Z 4

eq
1 ðr1 Csor;1; 3opÞ (A.19)
Appendix B. Field superposition approach to Eq. (42)

For the simplicity of the derivation, we make our

derivation in terms of charge-potential notation. Here we

employ the field superposition principle for our purpose. As

shown in Eq. (1), the nonequilibrium state ½r2;F
non
2 � can be

taken as a superposition of the two independent fields ½r1;

F
eq
1 � and [Dr,DFop] which, respectively, relate to the

equilibrium in the realistic medium of 3S and the

pseudoequilibrium in the hypothetical medium of 3op.

Making the energy decomposition similar to Eq. (71),

these two independent fields have their individual self-

energies as

Gs Z
1

2

ð
r1F

eq
1 dV (B.1)

Gop Z
1

2

ð
V

DrDFop dV (B.2)

The interaction energy between these two fields is thus

given by

GsKop Z
1

2

ð
V

ðr2DFop CDrF
eq
1 ÞdV (B.3)

Up to this stage, the expression of the electrostatic free

energy of the nonequilibrium state is rather straightforward.

By summing over the three parts of energy contributions

given in Eqs. (B.1)–(B.3) and noticing Eqs. (2) and (8), we

can obtain the same expression as given by Eq. (42).
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