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Abstract. Cluster deduplication has become a widely deployed technology in 
data protection services for Big Data to satisfy the requirements of service level 
agreement (SLA). However, it remains a great challenge for cluster deduplica-
tion to strike a sensible tradeoff between the conflicting goals of scalable dedu-
plication throughput and high duplicate elimination ratio in cluster systems with 
low-end individual secondary storage nodes. We propose Σ-Dedupe, a scalable 
inline cluster deduplication framework, as a middleware deployable in cloud da-
ta centers, to meet this challenge by exploiting data similarity and locality to op-
timize cluster deduplication in inter-node and intra-node scenarios, respectively. 
Governed by a similarity-based stateful data routing scheme, Σ-Dedupe assigns 
similar data to the same backup server at the super-chunk granularity using a 
handprinting technique to maintain high cluster-deduplication efficiency with-
out cross-node deduplication, and balances the workload of servers from backup 
clients. Meanwhile, Σ-Dedupe builds a similarity index over the traditional lo-
cality-preserved caching design to alleviate the chunk index-lookup bottleneck 
in each node. Extensive evaluation of our Σ-Dedupe prototype against state-of-
the-art schemes, driven by real-world datasets, demonstrates that Σ-Dedupe 
achieves a cluster-wide duplicate elimination ratio almost as high as the high-
overhead and poorly scalable traditional stateful routing scheme but at an over-
head only slightly higher than that of the scalable but low duplicate-elimination-
ratio stateless routing approaches. 

Keywords: Big Data protection, cluster deduplication, data routing, super-
chunk, handprinting, similarity index, load balance 

1 Introduction 

The explosive growth of data in volume and complexity in our digital universe is 
occurring at a record rate, growing by almost 9 times to 7 zettabytes per year in past 
five years and more than 44 fold to 35 zettabytes expected in the next ten years, ac-
cording to a recent IDC study [1]. Enterprises are awash in digital data, easily amass-
ing petabytes and even exabytes of information, and the risk of data loss escalates due 
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to the growing complexity of data management in Big Data. No matter how the data 
is lost, it is costly for an enterprise. In response to an IDC research survey [2], almost 
half of the companies, of all sizes, reported that the total impact of financial loss per 
event of data breach was over $100,000, while 8.5% of the enterprises reported finan-
cial loss of over $1 million. One of the best protection strategies against threats is to 
backup data locally or remotely. The frequency, type and retention of backups vary 
for different kinds of data, but it is common for the secondary storage in enterprises to 
hold tens of times more data than the primary storage, and more data stored and 
moved for disaster recovery [3,17]. The sprawling of backup storage systems not only 
consumes more data storage space, power and cooling in data centers, it also adds 
significant administration time and increases operational complexity and risk of hu-
man error. Meanwhile, to satisfy the high velocity requirements in modern storage 
systems, memory becomes the new disk, and disk becomes the new tape. Managing 
the data deluge under the changes in storage media to meet the SLA requirements 
becomes an increasingly critical challenge for Big Data protection. 

Data deduplication, a specialized data reduction technique widely deployed in 
disk-based backup systems, partitions large data objects into smaller parts, called 
chunks, and represents and replaces these chunks by their fingerprints (i.e., generally 
a cryptographic hash of the chunk data) for the purpose of improving communication 
and storage efficiency by eliminating data redundancy in various application datasets. 
IDC data shows that nearly 75% of our digital world is a copy [4], and over 90% data 
is duplicated in backup datasets [5]. Source inline data deduplication is favored in 
industry and academia, because it can immediately identify and eliminate duplicates 
in datasets at the source of data generation and hence significantly reduce physical 
storage capacity requirements and save network bandwidth during data transfer. To 
satisfy scalable capacity and performance requirements in Big Data protection, cluster 
deduplication [6,7,8,9,11,12] has been proposed to provide high deduplication 
throughput in massive backup data. It includes inter-node data assignment from back-
up clients to multiple deduplication nodes by a data routing scheme, and independent 
intra-node deduplication in individual nodes. Unfortunately, chunk-based inline clus-
ter deduplication at large scales faces challenges in both inter-node and intra-node 
scenarios. First, for the inter-node scenario, it achieves a good balance between capac-
ity saving and performance scalability at the cost of a low duplicate elimination ratio 
caused by deduplication node information island. This means that deduplication is 
only performed within individual servers due to overhead considerations, which 
leaves cross-node redundancy untouched. Thus, data routing, a technique to concen-
trate data redundancy within individual nodes, reduce cross-node redundancy and 
balance load, becomes a key issue in the cluster deduplication design. Second, for the 
intra-node scenario, it suffers from the disk chunk index lookup bottleneck. That is, 
the chunk index of a large dataset, which maps each chunk’s fingerprint to where that 
chunk is stored on disk in order to identify the replicated data, is generally too big to 
fit into the limited memory of a deduplication server and causes the parallel dedupli-
cation performance of multiple data streams from backup clients to degrade signifi-
cantly due to the frequent and random disk I/Os to look up the chunk index. 
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There are several existing solutions that aim to tackle these two challenges of clus-
ter deduplication by exploiting data similarity or locality. Locality based approaches, 
such as the stateless routing and stateful routing schemes [6], exploit locality in back-
up data streams to optimize cluster deduplication. These schemes distribute data 
across deduplication servers at coarse granularity to achieve scalable deduplication 
throughput across the nodes, while deduplicate data at fine granularity in individual 
servers for high deduplication effectiveness (i.e., duplicate elimination ratio) in each 
node. However, to achieve high cluster deduplication effectiveness, it requires very 
high communication overhead to route similar data to the same node. Similarity based 
methods leverage data similarity to distribute data among deduplication nodes and 
reduce RAM usage in individual nodes. While these methods can easily find the node 
with highest similarity by extracting similarity features in the backup data streams, 
they often fail to obtain high deduplication effectiveness in individual deduplication 
servers.  Extreme Binning [8] is a well-know example of similarity-based approaches 
that exploit file similarity in backup cluster systems. A more recent study, called SiLo 
[18], exploits both locality and similarity in backup streams to achieve a near-exact 
deduplication but at a RAM cost that is much lower than locality-only or similarity-
only based methods. However, SiLo only addresses the intra-node challenge of single 
deduplication server. Inspired by SiLo, we aim to exploit data similarity and locality 
to strike a sensible tradeoff between the conflicting goals of high deduplication effec-
tiveness and high performance scalability for cluster deduplication.  

In this paper, we propose Σ-Dedupe, a scalable source inline cluster deduplication 
framework to overcome the aforementioned shortcomings of existing state-of-the-art 
cluster deduplication schemes, as a middleware deployable in data centers and cloud 
storage environments, to support Big Data protection. The main idea behind Σ-
Dedupe is to optimize cluster deduplication by exploiting data similarity and locality 
in backup data streams. More specifically, to capture and maintain data locality in 
individual deduplication server, we adopt the notion of super-chunk [6], which repre-
sents consecutive smaller chunks of data, as a unit for data routing that assigns super-
chunks to nodes and then performs deduplication at each node independently and in 
parallel. We extract the super-chunk feature by using handprinting technique, a new 
application of deterministic sampling, to detect resemblance among super-chunks. 
According to the super-chunk handprint, we choose a small subset of nodes in the 
deduplication sever cluster as route candidates, and send the handprint to the selected 
nodes to calculate the resemblance of the super-chunk by comparing its handprint 
with the handprints of previously stored super-chunks. To balance the workload 
among the nodes, we discount the super-chunk resemblances in the candidate nodes 
by storage usage in these nodes, and then find the candidate node with the highest 
discounted resemblance as the target node to route the super-chunk. After the target 
node selection, all the fingerprints of those chunks belonging to the super-chunk are 
sent to the target node to determine whether these chunks are duplicate or unique. 
Finally, the backup client only needs to send the unique chunks of the super-chunk to 
the target node. To reduce the overhead of resemblance detection in each node, we 
build a similarity index to store the handprints of the stored super-chunks in each 
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node, which also helps to alleviate the chunk disk index bottleneck for the deduplica-
tion processes in individual nodes by combining it with the conventional container-
management based locality-preserved caching scheme [3].  

The proposed Σ-Dedupe cluster deduplication system has the following salient fea-
tures that distinguish it from the existing state-of-the-art cluster deduplication 
schemes: 

─ Σ-Dedupe exploits data similarity and locality by applying a handprinting tech-
nique at the super-chunk level to direct data routing from backup clients to 
deduplication server nodes to achieve a good tradeoff between the conflicting 
goals of high cluster deduplication effectiveness and highly scalable deduplica-
tion throughput. 

─ Σ-Dedupe builds a similarity index over the traditional container-based locality-
preserved caching scheme to alleviate the chunk disk index lookup bottleneck 
for the deduplication process in each deduplication server node.  

─ Evaluation results from our prototype implementation of Σ-Dedupe show that it 
consistently and significantly outperforms the existing state-of-the-art cluster 
deduplication schemes in cluster deduplication efficiency by achieving high 
cluster deduplication effectiveness with balanced storage usage across the nodes 
and high parallel deduplication throughput at a low inter-node communication 
overhead. In addition, it maintains a high single-node deduplication perfor-
mance with low RAM usage. 

The rest of the paper is structured as follows. Section 2 presents the necessary 
background and related work to motivate the design of the Σ-Dedupe framework. 
Section 3 describes the architecture of our cluster deduplication system, the similari-
ty based data routing algorithm and similarity-index based optimization technique. 
Section 4 evaluates the Σ-Dedupe prototype with real-world datasets, and Section 5 
draws conclusions. 

2 Background and Motivation  

In this section, we first provide the necessary background and related work for our 
research by introducing the cluster deduplication techniques, and then present data 
similarity analysis based on a handprinting technique to motivate our research in the 
scalable inline cluster deduplication for Big Data protection. 

2.1 Cluster Deduplication Techniques 

Deduplication is both I/O intensive and compute intensive. Its process can be divided 
into four steps: data chunking, chunk fingerprint calculation, chunk index lookup, and 
unique data store. Source deduplication is a popular scheme that performs the first 
two steps of the deduplication process at the client side and decides whether a chunk 
is a duplicate before data transfer to save network bandwidth by avoiding the transfer 
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of redundant data, which differs from target deduplication that performs all deduplica-
tion steps at the target side. To immediately identify and eliminate data redundancy, 
inline deduplication is a process that performs deduplication on the traditional data 
I/O path with some impact on I/O performance. The throughput and capacity limita-
tions of single-node deduplication have led to the development of cluster deduplica-
tion to provide high deduplication throughput in massive backup data. In our scheme, 
in order to shorten the backup window and improve the system scalability by reducing 
data transfer over the network, we choose source inline cluster deduplication to opti-
mize the backup data storage in large-scale storage systems. However, in cluster 
deduplication design, in addition to the design challenge of the traditional chunk in-
dex structure in single-node deduplication, the design of data routing for the assign-
ment of data to deduplication nodes has become a difficult challenge in achieving 
high global duplicate elimination ratio and scalable performance with balanced work-
load across the deduplication nodes. 

Many existing cluster deduplication schemes, such as EMC Data Domain’s global 
deduplication array [24], IBM’s ProtecTier [23], and SEPATON’s S2100-ES2 [25], 
are designed to work well in small clusters.  But using these technologies to scale to 
thousands of nodes in cloud datacenters would most likely fail due to some of their 
shortcomings in terms of cluster-wide deduplication ratio, single-node throughput, 
data skew, and communication overhead. Hence, the design of inter-node data routing 
scheme and intra-node deduplication in large-scale cluster deduplication has become 
increasingly critical in recent years. 

HYDRAstor [9] performs deduplication at a large-chunk (64KB) granularity with-
out data sharing among the nodes, and distributes data at the chunk level using dis-
tributed hash table (DHT). It adopts large chunk size to achieve high deduplication 
throughput because of better data locality and less metadata overhead in large data 
chunks. Nevertheless, 64KB is still too limited to capture and preserve sufficient 
amount of locality for cluster deduplication purposes. While its chunk-level DHT 
based data routing is effective in lowering communication overhead and avoiding data 
sharing across the deduplication nodes, the intra-node local duplicate elimination ratio 
is reduced due to the large chunk size that tends to evade redundancy detection. 

EMC’s super-chunk based data routing [6] exploits data locality to direct data rout-
ing at the super-chunk level. It can route data evenly at the coarse-grained super-
chunk level to preserve data locality and keep load balanced for scalable deduplica-
tion performance, and perform a fine-grained chunk-level deduplication to achieve 
high deduplication effectiveness for intra-node local deduplication. Depending on 
whether the information on previously stored data is used, super-chunk based data 
routing can be divided into stateless routing, which is oblivious of the state of the 
stored data, and stateful routing, which makes routing decision based on the state of 
the stored data. Stateless routing is also based on DHT with low overhead and can 
effectively balance workload in small clusters, but suffers from severe load imbalance 
in large clusters. Stateful routing is designed for large clusters to achieve high global 
deduplication effectiveness by effectively detecting cross-node data redundancy with 
the state information, but at the cost of very high system overhead required to route 
similar data to the same node.  
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Extreme Binning [8] is a file-similarity based cluster deduplication scheme. It can 
easily route similar data to the same deduplication node by extracting similarity char-
acteristics in backup streams, but often suffers from low duplicate elimination ratio 
when data streams lack detectable similarity. It also has high data skew for the state-
less routing due to the skew of file size distribution as studied in [13] and [17]. Simi-
lar to Extreme Binning, a new file-similarity based data routing scheme is proposed 
by Symantec [22] recently, but only a rough design is presented. 

Table 1 compares some of the typical and representative cluster deduplication 
schemes, as discussed above. In relation to these existing approaches, our Σ-Dedupe 
is most relevant to Extreme Binning, and EMC’s super-chunk based data routing 
(Stateless and Stateful). It aims to overcome many of the weaknesses described about 
these schemes. Comparing with Extreme Binning, Σ-Dedupe performs stateful data 
routing with a strong ability to discover similarity at the super-chunk level instead of 
the file level to enhance cluster-wide deduplication ratio and reduce data skew. Simi-
lar to EMC’s super-chunk based data routing, Σ-Dedupe can preserve data locality at 
the super-chunk granularity, but is different from the former in that it exploits strong 
similarity at the super-chunk level to route data by a handprinting technique and only 
performs local stateful routing to keep load balanced and lower system overhead.  

Table 1. Comparison of key features among representative cluster deduplication schemes  

Cluster Dedupli-
cation Scheme 

Routing 
Granularity 

Deduplica-
tion Ratio 

Throughput Data Skew  Overhead 

NEC HydraStor Chunk Medium Low Low Low 
Extreme Binning File Medium High Medium Low 
EMC Stateless Super-chunk Medium High Medium Low 
EMC Stateful Super-chunk High Low Low High 
Σ-Dedupe Super-chunk High High Low Low 

2.2 Super-chunk Resemblance Analysis  

In the hash based deduplication schemes, cryptographic hash functions, such as the 
MD5 and SHA families of functions, are used for calculating chunk fingerprints due 
to their very low probability of hash collisions that renders data loss extremely unlike-
ly. Assume that two different data chunks have different fingerprint values; we use 
the Jaccard index [14] as a measure of super-chunk resemblance. Let h be a crypto-
graphic hash function, h(S) denote the set of chunk fingerprints generated by h on 
super-chunk S. Hence, for any two super-chunks S1 and S2 with almost the same aver-
age chunk size, we can define their resemblance measure r(S1, S2) according to the 
Jaccard index as expressed in Eq (1).  

 
   
r(S1,S2 ) 

| S1 ∩ S2 |
| S1 ∪ S2 |

≈
| h(S1)∩ h(S2 ) |
| h(S1)∪ h(S2 ) |

 (1)  

Our similarity based data routing scheme depends on the creative feature selection 
on super-chunks by a handprinting technique. The selection method is based on a 
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generalization of Broder’s theorem [15]. Before we discuss the theorem, let’s first 
introduce the min-wise independent hash functions. 

Definition 1. A family of hash functions Η = {hi: [n]→[n]} (where [n]={0, 1, … , 
n-1}) is called min-wise independent if for any X ⊂ [n] and x ∈X, it can be formally 
stated as in Eq. (2), where Prh∈H denotes the probability space obtained by choosing h 
uniformly at random from H. 

   
Pr
h∈H

(min{h( X )}= h(x)) = 1
| X |   

(2) 

As the truly min-wise independent hash functions are hard to implement, practical 
systems only use hash functions that approximate min-wise independence, such as 
functions of the MD/SHA family cryptographic hash functions.  

Theorem 1. (Broder’s Theorem): For any two super-chunks S1 and S2, with h(S1) 
and h(S2) being the corresponding sets of the chunk fingerprints of the two super-
chunks, respectively, where h is a hash function that is selected uniformly and at ran-
dom from a min-wise independent family of cryptographic hash functions. Then Eq. 
(3) is established. 

   Pr(min{h(S1)}= min{h(S2 )}) = r(S1,S2 )  (3) 
Considering that h is a min-wise independent cryptographic hash function, for any 

x ∈S1, y ∈S2, the probability of x equaling y is the Jaccard index based resemblance 
r(S1, S2), then we have a result as expressed in Eq. (4). Since there are |S1| choices for 
x and |S2| choices for y, Eq. (3) in the above theorem is established. 

 
   
Pr(min{h(S1)}= h(x)∧min{h(S2 )}= h( y)∧ h(x) = h( y)) =

r(S1,S2 )
| S1 | i | S2 |

  (4) 

We consider a generalization of Broder’s Theorem, given in [10], for any two su-
per-chunks S1 and S2, and then we have a conclusion expressed in Eq. (5), where mink 
denotes the k smallest elements in a set. It means that we can use the k smallest chunk 
fingerprints as representative fingerprints of a super-chunk to construct a handprint 
for it to find more similarity in datasets. With k being the handprint size, two super-
chunks will more likely be found similar. 

   

Pr(mink{h(S1)}∩mink{h(S2 )}≠ ∅)
= 1− Pr(mink{h(S1)}∩mink{h(S2 )}=∅)
≥1− (1− r(S1,S2 ))k ≥ r(S1,S2 )

  (5) 

We evaluate the effectiveness of handprinting on super-chunk resemblance detec-
tion in the first 8MB super-chunks of four pair-wise files with different application 
types, including Linux 2.6.7 versus 2.6.8 kernel packages, and pair-wise versions of 
PPT, DOC and HTML files. We actually use the Two-Threshold Two-Divisor 
(TTTD) chunking algorithm [16] to subdivide the super-chunk into small chunks with 
1KB, 2KB, 4KB and 32KB as minimum threshold, minor mean, major mean and 
maximum threshold of chunk size, respectively. TTTD is a variant of the basic con-
tent defined chunking (CDC) algorithm that leads to superior deduplication. We can 
calculate the real resemblance value based on the Jaccard index by the whole chunk 
fingerprint comparison on each pair of super-chunks, and estimate the resemblance by 
comparing representative fingerprints in handprint comparison with different 
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handprint sizes. The estimated resemblance, as shown in Figure 1 as a function of the 
handprint size, approaches the real resemblance value as the handprint size increases. 
An evaluation of Figure 1 suggests that a reasonable handprint size can be chosen in 
the range from 4 to 64 representative fingerprints. Comparing with the conventional 
schemes that only use a single representative fingerprint (when handprint size equals 
to 1), our handprinting method can find more similarity for file pairs with poor simi-
larity (with a resemblance value of less than 0.5), such as the two PPT versions and 
the pair of HTML versions. 

 
Fig. 1. The effect of handprinting resemblance detection  

3 Σ-Dedupe Design 

In this section, we present the design of the Σ-Dedupe cluster deduplication system. 
Besides the high throughput requirement in individual deduplication nodes, any clus-
ter deduplication system must support scalable performance without significantly 
sacrificing capacity saving. We use the following design principles to govern our 
design for system architecture and data routing scheme: 

─ Throughput: The cluster deduplication throughput should scale with the num-
ber of nodes by parallel deduplication across the cluster nodes. Deduplication 
nodes should perform near-raw-disk data backup throughput by eliminating in-
dex lookup bottleneck, implying that our scheme must optimize for cache locali-
ty even with some but acceptable penalty on capacity saving.  

─ Scalability: The cluster deduplication system should easily scale out to handle 
massive data volumes with balanced workload among deduplication nodes, im-
plying that our design must not only optimize the intra-node throughput by cap-
turing and preserving high locality, but also reduce inter-node communication 
overhead for data routing by exploiting data similarity. 

─ Capacity: In backup data streams, similar data should be forwarded to the same 
deduplication node to achieve high duplicate elimination ratio. And capacity us-
age should be balanced across nodes to support high scalability and simplified 
system management. If system resources are scarce, deduplication effectiveness 
can be sacrificed to improve the system performance. 
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To achieve high deduplication throughput and good scalability with negligible ca-
pacity loss, we design a scalable inline cluster deduplication framework in this sec-
tion. In what follows, we first show the architecture of our inline cluster deduplication 
system. Then we present our similarity based data routing algorithm to achieve scala-
ble performance with high deduplication efficiency. This is followed by the descrip-
tion of the similarity index based lookup optimization for high deduplication through-
put in deduplication nodes. 

3.1 System Overview 

The architecture of our cluster deduplication system is shown in Figure 2. It consists 
of three main components: backup clients, deduplication server cluster and director. 

Backup Clients

Chunk Fingerprint Caching

Parallel Container Management

Similarity Index Lookup

Chunk Fingerprinting

Data Partitioning

Similarity-aware 
Data Routing

Deduplication Server Cluster

fingerprint 
lookup

chunk 
transfer

Director 

Backup Session 
Management

File Recipe 
Management

chunk metadata

read and write 
file metadata

  

RFP CID

a1cb 359

... ...
ef2d 764

Similarity Index

...

Disk Array

FingerprintsCID

802
...

513

Chunk Fingerprint Cache

RAM

containers containers containers

3c5e, f76a, ...

e43b, 9fd1, ...

 
Fig. 2. Σ-Dedupe architectural overview  Fig. 3. Data structures in deduplication server

Backup clients. There are three main functional modules in a backup client: data 
partitioning, chunk fingerprinting and data routing. The backup client component 
backs up and restores data streams, performs data chunking with fixed or variable 
chunk size and super-chunk grouping in the data partitioning module for each data 
stream, and calculates chunk fingerprints by a collision-resistant hash function, like 
SHA-1 or MD5, then selects a deduplication node for the routing of each super-chunk 
by the data routing scheme. To improve cluster system scalability by saving the net-
work transfer bandwidth during data backup, the backup clients determine whether a 
chunk is duplicate or not by batching chunk fingerprint query in the deduplication 
node at the super-chunk level before data chunk transfer, and only the unique data 
chunks are transferred over the network.  

Deduplication server cluster. The deduplication server component consists of 
three important functional modules: similarity index lookup, chunk index cache man-
agement and parallel container management. It implements the key deduplication and 
backup management logic, including returning the results of similarity index lookup 
for data routing, buffering the recent hot chunk fingerprints in chunk index cache to 
speedup the process of identifying duplicate chunks and storing the unique chunks in 
larger units, called containers, in parallel.  
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Director. It is responsible for keeping track of files on the deduplication server, 
and managing file information to support data backup and restore. It consists of back-
up session management and file recipe management. The backup session management 
module groups files belonging to the same backup session of the same client, and file 
recipe management module keeps the mapping from files to chunk fingerprints and all 
other information required to reconstruct the file. All backup-session-level and file-
level metadata are maintained in the director. 

3.2 Similarity based data routing algorithm 

As a new contribution of this paper, we present the similarity based data routing algo-
rithm. It is a stateful data routing scheme motivated by our super-chunk resemblance 
analysis in Section 2. It routes similar data to the same deduplication node by looking 
up storage status information in only one or a small number of nodes, and achieves 
near-global capacity load balance without high system overhead. In the data partition-
ing module, a segment of the data stream is first divided it into n small chunks, that 
are grouped into a super-chunk S. Then, all the chunk fingerprints {fp1, fp2, …, fpn} 
are calculated by a cryptographic hash function in the chunk fingerprinting module. 
The data routing algorithm, shown below, performs in the data routing module of 
backup clients. 
 

Algorithm 1. Similarity based stateful data routing 
     Input: a chunk fingerprint list of super-chunk S, {fp1, fp2, … , fpn} 

Output: a target node ID, i 
1. Select the k smallest chunk fingerprints {rfp1, rfp2, …, rfpk} as a handprint for the 

super-chunk S by sorting the chunk fingerprint list {fp1, fp2, …, fpn}, and sent the 
handprint to candidate nodes with IDs {rfp1 mod N, rfp2 mod N, …, rfpk mod N} 
in the deduplicaton server cluster with N nodes; 

2. In deduplication server cluster, obtain the count of the existing representative fin-
gerprints of the super-chunk in the candidate nodes by comparing the representa-
tive fingerprints of the previously stored super-chunks in the similarity index. 
The returned k count values, one for each of the k candidate nodes, are denoted as 
{r1, r2, …, rk}, which are directly corresponding to the resemblances of S in these 
nodes; 

3. Balance the capacity load in the candidate nodes, by discounting the resemblance 
value by the relative storage usage that is a node storage usage value divided by 
the average storage usage value, and the discounted resemblance values in the k 
candidate nodes, are denoted as {w1, w2, …, wk}; 

4. Choose the deduplication server node with ID i that satisfies ri/wi = max{r1/w1, 
r2/w2, …, rk/wk} as the target node. 
 

Our similarity based data routing scheme can achieve local load balance for the k 
candidate nodes by adaptively choosing deduplication server node. We now prove 
that the global load balance can be approached by virtue of the universal distribution 
of randomly generated handprints by cryptographic hash functions, in Theorem 2.  
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Theorem 2. If each super-chunk handprint includes k fingerprints, and a local load 
balancing scheme is considered for the k candidate nodes with a mapping based on a 
modulo operation, then loads on all deduplication nodes can approach to the global 
load balance. 

Proof. We prove by contradiction. Assume that the deduplication cluster consists 
of N nodes, N  k. First, we assume that our proposition is false. It means that there 
are at least two capacity load levels in the deduplication cluster without global load 
balance. We can divide all nodes into two groups by load level, denoted {H1,…, Hi} 
for high load level and {L1,…, Lj} for low load level, where i + j = N. For any super-
chunk, the fingerprints in its handprint all map to the high-load group or low-load 
group, which means that all the datasets can be divided into two groups with the same 
cryptographic hash function. We know that this conclusion contradicts with the uni-
versal distribution property of cryptographic hash functions. Hence, our proposition 
must be true. We will further evaluate the theorem by experiments on real datasets in 
Section 4. 

3.3 Similarity index based deduplication optimization 

We outline the salient features of the key data structures designed for the deduplica-
tion server architecture. As shown in Figure 3, to support high deduplication through-
put with low system overhead, a chunk fingerprint cache and two key data structures, 
similarity index and container, are introduced in our design.  

Similarity index is a hash-table based memory data structure, with each of its entry 
containing a mapping between a representative fingerprint (RFP) in a super-chunk 
handprint and the container ID (CID) where it is stored. To support concurrent lookup 
operations in similarity index by multiple data streams on multicore deduplication 
nodes, we adopt a parallel similarity index lookup design and control the synchroniza-
tion scheme by allocating a lock per hash bucket or for a constant number of consecu-
tive hash buckets. 

Container is a self-describing data structure stored in disk to preserve locality, sim-
ilar to the one described in [3], that includes a data section to store data chunks and a 
metadata section to store their metadata information, such as chunk fingerprint, offset 
and length. Our deduplication server design supports parallel container management 
to allocate, deallocate, read, write and reliably store containers in parallel. For parallel 
data store, a dedicated open container is maintained for each coming data stream, and 
a new one is opened up when the container fills up. All disk accesses are performed at 
the granularity of a container. 

Besides the two important data structures, the chunk fingerprint cache also plays a 
key role in deduplication performance improvement. It keeps the chunk fingerprints 
of recently accessed containers in RAM. Once a representative fingerprint is matched 
by a lookup request in the similarity index, all the chunk fingerprints belonging to the 
mapped container are prefetched into the chunk fingerprint cache to speedup chunk 
fingerprint lookup. The chunk fingerprint cache is a key-value structure, and it is con-
structed by a doubly linked list indexed by a hash table. When the cache is full, fin-
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gerprints of those containers that are ineffective in accelerating chunk fingerprint 
lookup are replaced to make room for future prefetching and caching. A reasonable 
cache replacement policy is Least-Recently-Used (LRU) on cached chunk finger-
prints. To support high deduplication effectiveness, we also maintain a traditional 
hash-table based chunk fingerprint index on disk to support further comparison after 
in-cache fingerprint lookup fails, but we consider it as a relatively rare occurrence. 

To backup a super-chunk, after selecting the target node by our data routing algo-
rithm, we resort to looking up the representative fingerprints in the similarity index. 
When a representative fingerprint is matched, we find the mapped container in the 
chunk fingerprint cache. If the container is already cached, we compare the finger-
prints in the super-chunk with all the chunk fingerprints in the corresponding contain-
er; otherwise, we prefetch the fingerprints of that container from its metadata section 
before further comparison. After the search in all containers of the matched repre-
sentative fingerprints, the unmatched fingerprints will be compared with the on-disk 
chunk fingerprint index. Finally, the chunks corresponding to the unmatched finger-
prints are stored in an open unfilled container or a new container. Our similarity-index 
based optimization can achieve high deduplication throughput with less system RAM 
resource overhead by preserving strong chunk-fingerprint cache locality over contain-
er management.  

4 Evaluation 

We have implemented a prototype of Σ-Dedupe as a middleware in user space using 
C++ and pthreads, on the Linux platform. We evaluate the parallel deduplication effi-
ciency in the single-node multi-core deduplication server with real system implemen-
tation, while use trace-driven simulation to demonstrate how Σ-Dedupe outperforms 
the state-of-the-art cluster deduplication techniques by achieving a high cluster-wide 
capacity saving that is very close to the extremely high-overhead stateful approach at 
a slightly higher overhead than the highly scalable stateless approach, while maintain-
ing a scalable performance in large cluster deduplication. In addition, we conduct 
sensitivity studies to answer the following important design questions: 

─ What is the best chunk size for the single-node deduplication to achieve high 
deduplication efficiency? 

─ How does similarity index lock granularity affect the representative fingerprint 
index performance? 

─ How sensitive is the cluster deduplication ratio to handprint size? 

4.1 Evaluation Platform and Workload 

We use two commodity servers to perform our experiments to evaluate parallel dedu-
plication efficiency in single-node deduplication servers. All of them run Ubuntu 
11.10 and use a configuration with 4-core 8-thread Intel X3440 CPU running at 2.53 
GHz and 16GB RAM and a SAMSUNG 250GB hard disk drive. One server serves as 
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both the backup client and director, and the other as the deduplication server. Our 
prototype deduplication system uses GBit Ethernet for internal communication. To 
achieve high throughput, our backup client component is based on an event-driven, 
pipelined design, which utilizes an asynchronous RPC implementation via message 
passing over TCP streams. All RPC requests are batched in order to minimize the 
round-trip overheads. We also perform simulation on one of the two servers to evalu-
ate the cluster deduplication techniques. 

Table 2. The workload characteristics of the real-world datasets and traces 

Datasets Size (GB) Deduplication Ratio 
Linux 160 8.23(CDC) / 7.96(SC) 
VM 313 4.34(CDC) / 4.11(SC) 
Mail 526 10.52(SC) 
Web 43 1.9(SC) 

 
We collect two kinds of real-world datasets and two types of application traces for 

our experiments. The Linux dataset is a collection of Linux kernel source code from 
versions 1.0 through 3.3.6, which is downloaded from the website [19]. The VM da-
taset consists of 2 consecutive monthly full backups of 8 virtual machine servers (3 
for Windows and 5 for Linux). The mail and web datasets are two traces collected 
from the web-server and mail server of the CS department in FIU [20]. The key work-
load characteristics of these datasets are summarized in Table 2. Here, the “size” col-
umn represents the original dataset capacity, and “deduplication ratio” column indi-
cates the ratio of logical to physical size after deduplication with 4KB fixed chunk 
size in static chunking (SC) or average 4KB variable chunk size in content defined 
chunking (CDC). 

4.2 Evaluation Metrics 

The following evaluation metrics are used in our evaluation to comprehensively as-
sess the performance of our prototype implementation of Σ-Dedupe against the state-
of-the-art cluster deduplication schemes. 

Deduplication efficiency: A simple metric that encompasses both deduplication 
effectiveness and overhead in single-node deduplication. It is well understood that the 
deduplication efficiency is proportional to deduplication effectiveness that can be 
defined by deduplication ratio (DR), which is the ratio of logical size to physical size 
of the dataset, and inversely proportional to deduplication overhead that can be meas-
ured by deduplication throughput (DT), which is the ratio of logical dataset size to 
deduplication process time. Based on this understanding and to better quantify and 
compare deduplication efficiency of a wide variety of deduplication techniques, we 
adopt a metric, called “bytes saved per second”, which is first defined in [13], to 
measure the efficiency of different deduplication schemes in the same platform by 
feeding a given dataset. It is calculated by the difference between the logical size L 
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and the physical size P of the dataset divided by the deduplication process time T. So, 
deduplication efficiency (DE) can be expressed in Eq. (6). 

   
DE = L− P

T
= (1− 1

DR
)× DT  (6) 

Normalized deduplication ratio: The metric is designed for cluster deduplication 
effectiveness. It is equal to the cluster deduplication ratio divided by deduplication 
ratio achieved by a single-node, exact deduplication system. This is an indication of 
how close the deduplication ratio achieved by a cluster deduplication method is to the 
ideal cluster deduplication ratio. 

Normalized effective deduplication ratio:  A single utility measure that considers 
both cluster-wide deduplication effectiveness and storage imbalance. It is equivalent 
to normalized deduplication ratio divided by the value of 1 plus the ratio of standard 
deviation σ of physical storage usage to average usage α in all deduplication servers, 
similar to the metric used in [6]. According to the definition of normalized deduplica-
tion ratio by cluster deduplication ratio (CDR) and single-node deduplication ratio 
(SDR), normalized effective deduplication ratio (NEDR) can be expressed in Eq. (7). 
It indicates how effective the data routing schemes are in eliminating the deduplica-
tion node information island. 

 
 
NEDR = CDR

SDR
× α
α + σ

 (7) 

Number of fingerprint index lookup messages: An important metric for system 
overhead in cluster deduplication, which significantly affects the cluster system scala-
bility. It includes inter-node messages and intra-node messages for chunk fingerprint 
lookup, both of which can be easily obtained in our simulation to estimate cluster 
deduplication overhead. 

4.3 Parallel Deduplication Efficiency on Single-Node Server 

As deduplication is a resource intensive task, we develop parallel deduplication on 
multiple data streams for each node with multi-thread programming in pthreads to 
leverage the compute capabilities of multi-core or many-core processor of modern 
commodity servers. In our design, we adopt the RAM file system to store the work-
load and avoid unique data write to disks to eliminate the disk I/O performance bot-
tleneck, due to our low disk I/O configuration. Meanwhile, we assign a deduplication 
thread for each data stream to read in parallel different files that are stored in RAM to 
create multiple data streams. We measure the throughput of parallel chunking and 
hash fingerprinting at backup clients as a function of the number of data streams. 
Considering the fact that static chunking has negligible overhead, we only test Rabin 
hash based content defined chunking (CDC) for chunking throughput by implement-
ing it based on the open source code in Cumulus [21] with 4KB average chunk size. 
The implementation of the hash fingerprinting is based the OpenSSL library. Figure 
4(a) shows the experiment results of CDC and MD5/SHA-1 based fingerprinting in 
the backup client. The throughput of chunking and fingerprinting can scale almost 
linearly and reach their peak values (148MB/s for CDC, 980MB/s for SHA-1 finger-
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printing and 1890MB/s for MD5 fingerprinting) with 4 or 8 data streams, since the 
processor at the client is a 4-core 8-thread CPU. To find more data redundancy in 
backup datasets, CDC may affect the performance of deduplication for its low 
throughput and high deduplication time. We select SHA-1 to reduce the probability of 
hash collision even though its throughput is only about a half that of MD5. 

   
(a) Chunking and fingerprinting throughput 
in backup client  

(b) The performance of similarity index 
parallel lookup 

Fig. 4. Intra-node parallel deduplication performance 

To exploit the multi-core or many-core resource of the deduplication server node, 
we also develop parallel similarity index lookup in individual deduplication servers. 
For our multiple-data-stream based parallel deduplication, each data stream has a 
deduplication thread, but all data streams share a common hash-table based similarity 
index in each deduplicaiton server. We lock the hash-table based similarity index by 
evenly partitioning the index at the single-hash-bucket or multiple-contiguous-hash-
bucket granularity to support concurrent lookup. We test the performance of the paral-
lel similarity index when all index data is loaded in memory. To avoid the possible 
performance bottleneck of a single backup client, we feed the deduplication server 
with chunk fingerprints generated in advance. Figure 4(b) shows the performance of 
the parallel index lookup for multiple data streams as a function of the number of 
locks. When the number of locks is greater than 1024, the performance drops as the 
lock overhead becomes non-negligible. 8 data steams still perform the best because 
the CPU supports 8 concurrent threads, while the performance of 16 streams drops 
when the number of locks is larger than 16 because of the overhead of thread context 
switching that causes data swapping between cache and memory.  

According to the metric defined in section 4.2, we measure the deduplication effi-
ciency in a configuration with a single backup client and a single deduplication server 
to show the tradeoff between deduplication effectiveness and overhead. To eliminate 
the impact of the disk bottleneck, we store the entire workload in memory and per-
form the deduplication process to skip the unique-data-chunk store step. The dedupli-
cation effectiveness is affected by the data chunking method and the selected chunk 
size. High deduplication effectiveness can be achieved by using small chunk size and 
the CDC scheme instead of the Static Chunking (SC) scheme. This high effectiveness, 
however, comes at the expense of the increased amount of metadata necessary to 
manage the increased number of chunks and variable chunk size, negatively impact-
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ing system’s performance. To assess the impact of the metadata overhead on dedupli-
cation efficiency, we measure “Bytes Saved Per Second”, the deduplication efficiency 
as defined in Section 4.2, as a function of the chunk size. The results in Figure 5(a) 
show that SC outperforms CDC in deduplication efficiency due to the former’s low 
overhead in data chunking. The deduplication efficiency is dynamically changing 
with the selected chunk size, and also depends on the workload. The single deduplica-
tion server can achieve the highest deduplication efficiency when the chunk size is 
4KB for statically chunked Linux workload, 8KB for statically chunked VM work-
load and 2KB for both workloads with CDC. As a result, we choose to perform 
chunking with the SC scheme and select 4KB as the chunk size in the following ex-
periments for high deduplication efficiency. 

 
(a) Deduplication efficiency in single server  (b) Deduplication effectiveness as a function 

of the sampling rate and super-chunk size
Fig. 5. Sensitivity study on chunk size and handprint size 

In our Σ-Dedupe design, handprinting plays a key role in similarity-index based 
deduplication optimization since the container ID is indexed by the representative 
fingerprints of a handprint. Handprinting is a novel use of deterministic sampling, 
where we define the handprint-sampling rate as the ratio of handprint size to the total 
number of chunk fingerprints in a super-chunk. This sampling rate affects both the 
deduplication effectiveness and RAM usage in each node. We turn off the traditional 
chunk index lookup module in our prototype, and conduct a series of experiments to 
demonstrate the effectiveness of the handprint-based local deduplication in Σ-Dedupe. 
Figure 5(b) shows the deduplication ratio produced by applying our similarity-index-
only optimization (without traditional chunk index) to the Linux workload, normal-
ized to that of the traditional single-node exact deduplication with a chunk size of 
4KB, as a function of the handprint-sampling rate and super-chunk size. As can be 
seen, the deduplication ratio falls off as the sampling rate decreases and as the super-
chunk size decreases, and the “knee” point for the 16MB super-chunk at the sample 
rate of 1/512 is a potentially best tradeoff to balance deduplication effectiveness and 
RAM usage, and it translates to a handprint size of 8. Meanwhile, the results further 
suggest that, interestingly, the deduplication ratio remains roughly constant if the 
sampling rate is halved and super-chunk size is doubled at the same time. As a result, 
we can find that 8 representative fingerprints in a handprint are sufficient to achieve a 
deduplication ratio that is close to that of the exact deduplication approach with high 
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RAM utility. Furthermore, and importantly, Σ-Dedupe only uses 1/32 of the RAM 
capacity required by the traditional chunk index to store our similarity index to 
achieve about 90% of the deduplication effectiveness when the super-chunk and 
handprint sizes are 1MB and 8 respectively. A first-order estimate of RAM usage, 
based on our earlier analysis, indicates that, comparing with the intra-node deduplicai-
tion scheme of the EMC super-chunk based data routing—DDFS [3], and the intra-
node deduplication of Extreme Binning, for a 100TB unique dataset with 64KB aver-
age file size, and assuming 4KB chunk size and 40B index entry size, DDFS requires 
50GB RAM for Bloom filter, Extreme Binning uses 62.5GB RAM for file index, 
while our scheme only needs 32GB RAM to maintain similarity index. We can fur-
ther reduce the RAM usage by adjusting super-chunk size or handprint size with the 
corresponding deduplication effectiveness loss as indicated in Figure 5(b).  

4.4 Cluster-Deduplication Efficiency 

We route data at the super-chunk granularity to preserve data locality for high per-
formance of cluster-wide deduplication, while performing deduplication at the chunk 
granularity to achieve high deduplication ratio in each server locally. Since the size of 
the super-chunk is very sensitive to the tradeoff between the index lookup perfor-
mance and the cluster deduplication effectiveness, as demonstrated by the sensitivity 
analysis on super-chunk size in [6], we choose the super-chunk size of 1MB to rea-
sonably balance the conflicting objectives of cluster-wide system performance and 
capacity saving. In this section, we first conduct a sensitivity study to select an appro-
priate handprint size for our Σ-Dedupe scheme, and then compare our scheme with 
the state-of-the-art approaches that are most relevant to Σ-Dedupe, including EMC’s 
super-chunk based data Stateful and Stateless routing and Extreme Binning, in terms 
of the effective deduplication ratio, normalized to that of the traditional single-node 
exact deduplication, and overhead measured in number of fingerprint index lookup 
messages. We emulate each node by a series of independent fingerprint lookup data 
structures, and all results are generated by trace-driven simulations on the four da-
tasets under study. 

Handprint-based Stateful routing can accurately direct similar data to the same 
deduplication server by exploiting data similarity. We conduct a series of experiments 
to demonstrate the effectiveness of cluster deduplication by our handprint-based 
deduplication technique with the super-chunk size of 1MB on the Linux workload. 
Figure 6 shows the deduplication ratio, normalized to that of the single-node exact 
deduplication, as a function of the handprint size. As a result, Σ-Dedupe becomes an 
approximate deduplication scheme whose deduplication effectiveness nevertheless 
improves with the handprint size because of the increased ability to detect resem-
blance in super-chunks with a larger handprint size (recall Section 2.2). We can see 
that there is a significant improvement in normalized deduplication ratio for all cluster 
sizes when handprint size is larger than 8. This means that, for a large percentage of 
super-chunk queries, we are able to find the super-chunk that has the largest content 
overlap with the given super-chunk to be routed by our handprint-based routing 
scheme. To strike a sensible balance between the cluster-wide deduplication ratio and 
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system overhead, and match the handprint size choice in single-node, we choose a 
handprint consisting of 8 representative fingerprints in the following experiments to 
direct data routing on super-chunks of 1MB in size. 

To compare Σ-Dedupe with the existing data routing schemes in cluster deduplica-
tion, we use the effective deduplication ratio (EDR), normalized to the deduplication 
ratio of the single-node exact deduplication, to evaluate the cluster-wide deduplication 
effectiveness with the load-balance consideration. We compare our Σ-Dedupe scheme 
with the state-of-the-art cluster-deduplication data routing schemes of Extreme Bin-
ning (ExtremeBin), EMC’s stateless (Stateless) and EMC’s stateful (Stateful) routing 
schemes, across a range of datasets. Figure 8 plots EDR as a function of the cluster 
size for the four datasets and four algorithms. Because the last two traces, Mail and 
Web, do not contain file-level information, we are not able to perform the file-level 
based Extreme Binning scheme on them. In general, Σ-Dedupe can achieve a high 
effective deduplication ratio very close that achieved by the very costly Stateful data 
routing. More specifically, the Σ-Dedupe scheme achieves 90.5%~94.5% of the EDR 
obtained by the Stateful scheme for a cluster of 128 server nodes on the four datasets, 
while this performance margin narrows to 96.1%~97.9% when averaging over all 
cluster sizes, from 1 through 128. Stateless routing consistently performs worse than 
Σ-Dedupe and Stateful routing due to its low cluster-wide data reduction ratio and 
unbalanced capacity distribution. Extreme Binning underperforms Stateless routing 
on the VM dataset because of the large file size and skewed file size distribution in 
the VM dataset, workload properties that tend to render Extreme Binning’s similarity 
detection ineffective. Σ-Dedupe outperforms Extreme Binning in EDR by up to 
32.8% and 228.2% on the Linux and VM datasets respectively for a cluster of 128 
nodes. For the four datasets, Σ-Dedupe is better than Stateless routing in EDR by up 
to 25.6%~271.8% for a cluster of 128 nodes. As can be seen from the trend of curves, 
these improvements will likely be more pronounced with cluster sizes larger than 128. 

In cluster deduplication systems, fingerprint lookup tends to be a persistent bottle-
neck in each deduplication server because of the costly on-disk lookup I/Os, which 
often adversely impacts the system scalability due to the consequent high communica-
tion overhead from fingerprint lookup. To quantify this system overhead, we adopt a 
metric used in [6], the number of fingerprint-lookup messages. We measure this met-
ric by totaling the number of chunk fingerprint-lookup messages on the two real da-
tasets of Linux and VM, for the four cluster deduplication schemes. As shown in Fig-
ure 7 that plots the total number of fingerprint-lookup messages as a function of the 
cluster size, Σ-Dedupe, Extreme Binning and Stateless routing have very low system 
overhead due to their constant fingerprint-lookup message count in the cluster dedu-
plication process, while the number of fingerprint-lookup messages of Stateful routing 
grows linearly with the cluster size. This is because Extreme Binning and Stateless 
routing only have 1-to-1 client-and-server fingerprint-lookup communication for 
source deduplication due to their stateless designs. Stateful routing, on the other hand, 
must send the fingerprint lookup requests to all nodes, resulting in 1-to-all communi-
cation that causes the system overhead to grow linearly with the cluster size even 
though it can reduce the overhead in each node by using a sampling scheme. As de-
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scribed in Algorithm 1, the main reason for the low system overhead in Σ-Dedupe is 
that the pre-routing fingerprint-lookup requests for each super-chunk only need to be 
sent to at most 8 candidate nodes, and only for the lookup of representative finger-
prints, which is 1/32 of the number of chunk fingerprints, in these candidate nodes. 
The total number of fingerprint-lookup messages for Σ-Dedupe is the sum of after-
routing message number, which is almost the same as Extreme Binning and Stateless 
routing, and pre-routing message number, which is a quarter (8×1/32) that of after-
routing. So the fingerprint lookup message overhead will not exceed 1.25 times that 
of Stateless routing and Extreme Binning in all cluster sizes. 

 

Fig. 6. Cluster deduplication ratio (DR), nor-
malized to that of single-node exact dedupli-
cation, as a function of handprint size 

Fig. 7. System overhead in terms of the num-
ber of fingerprint-lookup messages 

 

  
Fig. 8. Effective deduplication ratio (EDR), normalized to that of single-node exact deduplica-
tion, as a function of cluster size on four workloads 



 
 

 
 
 

20 

5 Conclusion 

In this paper, we describe Σ-Dedupe, a scalable inline cluster deduplication frame-
work for Big Data protection, which achieves a tradeoff between scalable perfor-
mance and cluster-wide deduplication effectiveness by exploiting data similarity and 
locality in backup data streams. It adopts a handprint-based local stateful routing algo-
rithm to route data at the super-chunk granularity to reduce cross-node data redundan-
cy with low overhead, employs similarity index based optimization to improve dedu-
plication efficiency in each node with very low RAM usage. Our real-world dataset-
driven evaluation clearly demonstrates Σ-Dedupe’s significant advantages over the 
state-of-the-art cluster deduplication schemes for large clusters in the following im-
portant two ways. First, it nearly (over 90%) achieves the cluster-wide deduplication 
ratio of the extremely costly and poorly scalable Stateful cluster deduplication scheme 
but only at a slightly higher overhead than the highly scalable Stateless and Extreme 
Binning schemes. Second, it significantly improves the Stateless and Extreme Bin-
ning schemes in the cluster-wide effective deduplication ratio while retaining the 
latter’s high system scalability for low overhead. Meanwhile, high parallel deduplica-
tion efficiency can be achieved in each node by exploiting similarity and locality in 
backup data streams. 
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