
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2008; 75:899–944
Published online 21 January 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.2275

Mesh adaptive computation of upper and lower bounds
in limit analysis

H. Ciria1, J. Peraire1 and J. Bonet2,∗,†

1Aerospace Computational Design Laboratory, Department of Aeronautics, MIT, Cambridge, MA 02139, U.S.A.
2Civil & Computational Engineering Centre, School of Engineering, Swansea University,

Swansea SA2 8PP, U.K.

SUMMARY

An efficient procedure to compute strict upper and lower bounds for the exact collapse multiplier in limit
analysis is presented, with a formulation that explicitly considers the exact convex yield condition. The
approach consists of two main steps. First, the continuous problem, under the form of the static principle
of limit analysis, is discretized twice (one per bound) using particularly chosen finite element spaces for
the stresses and velocities that guarantee the attainment of an upper or a lower bound. The second step
consists of solving the resulting discrete non-linear optimization problems. These are reformulated as
second-order cone programs, which allows for the use of primal–dual interior point methods that optimally
exploit the convexity and duality properties of the limit analysis model. To benefit from the fact that
collapse mechanisms are typically highly localized, a novel method for adaptive meshing is introduced.
The method first decomposes the total bound gap as the sum of positive contributions from each element
in the mesh and then refines those elements with higher contributions. The efficiency of the methodology
is illustrated with applications in plane stress and plane strain problems. Copyright q 2008 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Limit analysis is relevant in many practical engineering areas such as the design of mechanical
structures and the analysis of soil mechanics [1–3]. Assuming a rigid, perfectly plastic solid subject
to a static load distribution, the problem of limit analysis consists of finding the minimum multiple
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of this load distribution that will cause the body to collapse. This collapse multiplier results from
solving an infinite dimensional saddle point problem, where the internal work rate is maximized
over an admissible convex set of stresses—defined by a yield condition—in equilibrium with the
applied loads and minimized over the linear space of kinematically admissible velocities for which
the external work rate equals unity. This saddle point problem embeds the well-known convex
(and equivalent) static and kinematic principles of limit analysis [4]. The presence of the yield
condition introduces non-linearity in the problem, which represents an important difficulty.

Traditionally, the way to overcome this difficulty has been to linearize the convex yield condition,
thereby obtaining a polyhedral approximation to the yield surface. With this linearization, first
introduced in [5], the resulting problem reduces to a classical linear program (LP). Initially, the
LP was solved using the simplex method [4, 6, 7] and, more recently, using interior point methods
(IPM) [8, 9]. The first successful attempts to solve for the exact convex yield condition on fine
grids were reported in [10], where the kinematic principle was discretized and then formulated as
a minimization of sum of norms (MSN) subject to a linear constraint. Finally, the discrete problem
was solved extending the ideas of IPMs for LP to the MSN. The approach, however, required the
use of very cumbersome divergence-free elements when dealing with incompressible problems.
This was overcome in [11], by simultaneously approximating the static and kinematic principles
with a discrete duality problem that was solved using the method reported in [12]. This work
was further improved in [13], by introducing automatic mesh refinement and using the primal–
dual IPM developed in [14]. Unfortunately, the refinement strategy did not rely on rigorous local
error measures but in heuristic estimates, thereby limiting its performance. A common feature of
the above-mentioned works [10, 11, 13] is that they only provide approximations to the collapse
multiplier, but do not yield strict bounds. In [15, 16], on the other hand, lower and upper bounds of
the collapse multiplier are computed for soil mechanics problems on uniform meshes, using linear
finite elements and a non-linear two-stage, quasi-Newton optimization algorithm. The method does
not require the linearization of the yield condition, but can only handle smooth yield surfaces.
Duality is not exploited and the solution process is not unified, since the upper and lower bounds
are obtained by different versions of the quasi-Newton method. A new approach to obtain lower
bounds is presented in [17]. It uses an IPM that exploits convexity and duality. This basic approach
has been recently extended to the computation of upper bounds in [18]. More recently, an approach
based on second-order cone programming (SOCP) has been followed in [19–21] using simplex
elements for displacements and strains. Adaptive finite element procedures based on solution
derivatives have been proposed in [22].

The main objective of the present work is to devise a unified and efficient method to compute
upper and lower bounds, for the exact convex yield condition, using an approach that incorporates
the methods presented in [17–20]. The convex nature of the limit analysis problem is exploited
by solving the resulting optimization problems using standard conic programming (primal–dual)
interior point algorithms. This guarantees efficiency in the solution process and global convergence
to the optimal solutions. The domain is discretized using linear triangular finite element mesh
on which two sets of specifically chosen interpolation spaces for the stresses and velocities are
employed in turn in order to obtain an upper bound and a lower bound of the collapse load. In
this way, the evaluation of both upper and lower bounds in this work makes it possible to derive
rigorous mesh adaptive procedures, based on local error measures. These measures are based on
a decomposition of the difference between upper and lower bounds, the bound gap, into positive
local contributions. Areas that contribute significantly to the bound gap can then be identified and
refined. The work presented here expands on the earlier results presented in [23, 24].
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2. THE LIMIT ANALYSIS PROBLEM: DUALITY AND EXACT BOUNDS

In this section, the main concepts of limit analysis as well as its mathematical description and
main results are introduced. For its simplicity and ease of interpretation, the notation adopted
corresponds with that used in [4, 25].

2.1. Notation and basic concepts

Let � denote the domain of study and �� its boundary, which consists of a Neumann portion �N,
where traction boundary conditions will apply, and a Dirichlet part �D, where velocity boundary

conditions will be enforced, so that ��=�N ∪�D. Recall that limit analysis assumes a rigid,
perfectly plastic material subject to a fixed load distribution (consisting of both surface and volume
forces) and aims at computing the minimum multiple (collapse multiplier) of this load distribution
that causes the collapse of the body.

The work rate of the external loads (external work rate) associated with a velocity or plastic
flow u=u(x) is given by the following linear functional:

F(u)=
∫

�
f ·udV +

∫
�N

g ·udS (1)

where f denotes the volume forces and g the surface forces acting on �N. The internal work rate
associated with the stress field r=r(x) and the velocity u is given by the bilinear form

a(r,u)=
∫

�

∑
i, j

�i j �i j (u)dV =
∫

�

∑
i, j

�i j
�ui
�x j

dV (2)

where �i j and �i j denote the components of the stress and strain tensors in the xi , i=1 :3, cartesian
coordinates.

Note that the plastic flow u must belong to an appropriate space Y ≡Y (�) of kinematically
admissible velocity fields. Similarly, the stress field r is restricted to an appropriate space of
symmetric stress tensors X ≡ X (�). The mathematical requirements on Y and X can be found in
[25].

The equilibrium equation can now be expressed as the principle of virtual work:

a(r,u)=F(u) ∀u∈Y (3)

Moreover, the yield condition imposes the stress tensor r to belong to a convex set B(x) of
admissible stresses for the material:

r(x)∈ B(x) ∀x∈� (4)

To simplify the notation, the material will be assumed to be homogeneous, so that B(x) is
independent of x and can be denoted by B. The computational treatment of the limit analysis
problem presented here exploits the convexity properties of B and requires, also, that B can be
expressed in the generic form

B=
{
r∈ X

∣∣∣∣∑
k

f 2k (�i j )� f 20 (�i j ,q)

}
(5)
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where fk and f0�0 are affine functions of their arguments and q is a constant depending on the
material properties. For instance, this structure is embedded in the von Mises (three-dimensional)
yield condition, which is given by

BVM={r∈ X |(�11−�22)
2+(�22−�33)

2+(�33−�11)
2+6�212+6�223+6�213�2�2y} (6)

where �y denotes the yield stress in simple tension and can be interpreted as the generic constant q .
Note that the yield set B might be unbounded, as is the case in the above example (any hydrostatic
stress tensor satisfies the above inequality). The restriction of the von Mises yield condition to
two-dimensional cases (either plane stress or plane strain) also satisfies structure (5). In plane
strain, the same is valid for the Tresca (T), Mohr–Coulomb (MC) or Drucker–Prager (DP) models,
which is given by

BT = {r∈ X |(�11−�22)
2+4�212��2y} (7)

BMC = {r∈ X |(�11−�22)
2+4�212�(2ccos�−(�11+�22)sin�)2,�11+�22�2ccot(�)} (8)

BDP = {r∈ X |(�11−�22)
2+4�212�(2�−3�(�11+�22))

2} (9)

where c is the material cohesion, � denotes the friction angle and � and � refer to material
properties. Clearly, (7)–(9) are convex sets in their variables �i j and can be expressed in the generic
form (5).

2.2. The limit analysis problem, duality and exact bounds in continuous form

Let C denote the affine hyperplane C={u∈Y |F(u)=1}, consisting of those kinematically admis-
sible velocity fields for which the external work rate equals 1. Now, the exact collapse multi-
plier, �∗, which is the value to be bounded, results from solving any of the following equivalent
problems:

�∗ = sup �

s.t.

{∃r∈ B

a(r,u)=�F(u) ∀u∈Y
(10)

= sup
r∈B

inf
u∈C a(r,u) (11)

= inf
u∈C sup

r∈B
a(r,u) (12)

= inf
u∈C D(u) (13)

Problem (10) is the so-called static principle of limit analysis, whereas problem (13) is known as
the kinematic principle of limit analysis. The equivalence between (10) and (11) follows from the
linearity in u of both functionals a(r,u) and F(u). Additionally, the equality between (11) and
(12) holds, thanks to strong duality, which is proved in detail in [25]. Finally, D(u) is defined
as the inner supremum in (12) and represents the total energy dissipation rate associated with u.
Moreover, Christiansen [25] also shows that collapse fields u∗ and r∗ exist and are a saddle point
of a(r,u).
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2.3. The limit analysis problem, duality and exact bounds in discrete form

Let �h denote a discretization of the domain of study, �, and let Xh and Yh be finite element
function spaces that approximate the continuous stress and velocity fields: r≈rh ∈ Xh and u≈uh ∈
Yh . Moreover, the discrete convex set of admissible stresses, Bh , must be such that Bh ⊆ B∩Xh ,
and the affine hyperplane to which uh is restricted now becomes Ch ={uh ∈Yh |F(uh)=1}. Then,
the discretized version of the variational continuous limit analysis problem (10)–(13) reads as
follows:

�∗
h =max �

s.t.

{∃rh ∈ Bh

a(rh,uh)=�F(uh) ∀uh ∈Yh
(14)

= max
rh∈Bh

min
uh∈Ch

a(rh,uh) (15)

= min
uh∈Ch

max
rh∈Bh

a(rh,uh) (16)

= min
uh∈Ch

Dh(uh) (17)

The above discrete duality holds for all practical discretizations (see proof in [25]). Note that,
thanks to discrete duality, the approximated value �∗

h to the exact collapse multiplier, �∗, can
be obtained in several different ways. Indeed, one can compute �∗

h by solving the discrete static
principle (14) or the discrete kinematic principle (17). Also, both problems can be solved at the
same time using a primal–dual optimization method to approximate simultaneously the collapse
fields for the stresses and velocities. This is the approach that will be followed here.

In general, for a given choice of Xh×Yh , �∗
h is only an estimate or approximation to �∗, but

not a bound. However, there exist particular combinations of appropriately chosen interpolation
spaces Xh×Yh for both stresses and velocities that, when used to discretize the continuous problem
(10)–(13), lead to discretizations (14)–(17) whose solution, �∗

h , is guaranteed to be either a lower
bound (�∗LB

h ��∗) or an upper bound (�∗��∗UB
h ) of the true collapse multiplier, �∗ (and not only an

estimate). In particular, the combination of spaces that guarantee the attainment of lower bounds
will be named purely static spaces, whereas those that yield upper bounds will be named purely
kinematic spaces. The requirements on these particular spaces are given as follows.

Purely static spaces: Xh×Yh is said to be a combination of purely static spaces and is denoted
by XLB

h ×Y LB
h , if the following two conditions hold:

1. Satisfaction of the discrete equilibrium equation on XLB
h implies the continuous equilibrium

equation. This is equivalent to the following implication for any rh ∈ XLB
h :

a(rh,uh)=�F(uh) ∀uh ∈Y LB
h 
⇒ a(rh,u)=�F(u) ∀u∈Y (18)

2. Satisfaction of the membership condition rh ∈ BLB
h ⊆ B∩XLB

h in some discrete or test points
directly implies that rh ∈ B over the continuum.

Thus, the advantage of using purely static spaces is that, by only forcing discrete satisfaction
of equilibrium and membership, one can guarantee equilibrium and membership over the whole
domain. Therefore, the constraints in the maximization problem (10) are satisfied exactly, which
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means that the inner infimum in (11) is also computed exactly for all the stresses belonging to an
appropriate set. Note that the above conditions imply that

max
r∈Bh

inf
u∈C a(r,u)=max

r∈Bh
min
u∈Ch

a(r,u) (19)

Therefore, the use of purely static spaces provides a computable strict lower bound as

�∗ = sup
r∈B

inf
u∈C a(r,u)�max

r∈Bh
inf
u∈C a(r,u)=max

r∈Bh
min
u∈Ch

a(r,u)≡�∗LB
h (20)

Purely kinematic spaces: Xh×Yh is said to be a combination of purely kinematic spaces and is
denoted by XUB

h ×YUB
h , if the discrete energy dissipation rate, Dh(uh), is exact on YUB

h :

max
rh∈Bh

a(rh,uh)= sup
r∈B

a(r,uh) ∀uh ∈Yh (21)

Therefore, a computable strict upper bound is obtained as

�∗ = inf
u∈C sup

r∈B
a(r,u)� min

u∈Ch
sup
r∈B

a(r,u)= min
u∈Ch

max
r∈Bh

a(r,u)≡�∗UB
h (22)

Hence, the use of purely kinematic spaces results in an upper bound method. Figure 1 summarizes
graphically the above explanations.

Figure 1. The use of purely static and purely kinematic spaces to obtain lower and upper bounds.
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3. SOCP WITHIN THE GENERAL FRAMEWORK OF CONIC PROGRAMMING

IPMs for the efficient solution of convex optimization problems have been developed in recent
years. Therefore, recognizing the convex structure of the problem is important since it guarantees
an efficient solution process. A particular class of convex problems are the so-called conic programs
(CP) [26]. Any CP problem can be expressed in the following canonical primal (P) or dual (D)
form:

(P) min{cTx |Ax=b, x ∈K} (23)

(D) max{bTy|ATy+s=c, s∈K∗} (24)

where x ∈�n is the vector of decision variables, c∈�n , b∈�m , A∈�m×n are given data, s∈�n is
a vector of slack variables, K⊂�n is a pointed and closed convex cone with a non-empty interior
and K∗ ={s∈�n|sTx�0,∀x ∈K} is the dual cone to K and is also a closed convex pointed cone
with a non-empty interior. The most relevant cones satisfying these properties are the so-called
canonical cones: the positive orthant, �n+, the Lorentz (or second-order or ice cream) cone, Ln ,
and the positive-semidefinite cone, Sn+. In particular, a Lorentz cone is defined as

K≡Ln =
{
x ∈�n|x1�

√
n∑

i=2
x2i

}
(25)

When the cone K is one of the canonical cones, then the following important subclasses of
conic programming arise: linear programming (LP) when K≡�n+, SOCP (or conic quadratic)
when K≡Ln and semidefinite programming (SDP) when K≡Sn+. Note that LP is a particular
case of SOCP which, in turn, can always be cast as an SDP program.

The most fundamental result of conic programming is the conic duality theorem, over which
the interior point algorithms used in the solution process are built. Provided that either (P) or (D)
is strictly feasible and bounded, the main practical implication of the theorem is that an optimal
primal–dual feasible pair (x∗, y∗) exists and the optimal values of (P) and (D) are equal to each
other, that is, bTy∗ =cTx∗ (zero duality gap).

CP problems are generally solved using IPMs (see [27] for an extensive and deep treatment).
Currently, the primal–dual path-following IPM (with its variants) is the method of choice in
commercial implementations, thanks to its excellent performance in large-scale applications and,
especially, in the presence of sparsity. The method is based on duality, and search directions for
optimality are computed in both primal and dual feasible spaces. Typically, the search directions
used in CP are AHO [28], HKM [29] and NT [30]. In particular, for SOCP, the NT option
is the one that generally offers the best computational performance. Note finally that SOCP is
slower to solve than LP problems, but notably faster than SDP problems, especially if sparsity is
exploited.

4. BOUND PROBLEMS: METHODOLOGY, IMPLEMENTATION AND SOLUTION

This section presents the methodology that has been used to compute bounds to the exact collapse
multiplier, �∗. The bound problems solved here correspond to the two-dimensional version of the
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limit analysis problem (10)–(13), and both plane stress and plane strain models are addressed. Only
the von Mises model has been used, but the method could be extended to other criteria satisfying
criterion (5). Its restriction to plane stress, B1, and plane strain, B2, expressed in the format of (5)
reads as follows:

B1 = {r∈ X |(�11−�22)
2+�211+�222+6�212�2�2y} (26)

B2 = {r∈ X |(�11−�22)
2+4�212� 4

3�
2
y} (27)

Let Th denote a triangulation consisting of E triangular elements, �e, that form a partition of
the body. The boundary of the element �e is denoted by ��e. Let E be the set of all the edges in
the mesh, which is decomposed into the following three disjoint sets: E=EO∪ED∪EN, where
EO={�e′

e |�e′
e =��e∩��e′ ;∀e,e′ ∈Th} (set of interior edges), ED={�De |�De =��e∩�D;∀e∈Th}

(set of edges associated with Dirichlet boundaries) and EN={�Ne |�Ne =��e∩�N;∀e∈Th} (set of
edges associated with Neumann boundaries). For simplicity of presentation, it will be assumed that
a given edge is of either a Dirichlet type or a Neumann type. The extension to mixed boundary
conditions is straightforward.

4.1. The lower bound problem

4.1.1. Purely static spaces. For both plane stress and plane strain cases, one can show that a
possible purely static formulation results from approximating the stress field with piecewise discon-
tinuous stresses that are linearly interpolated within the elements, and the velocity field with
constants on each element together with additional linear interpolations along the inter-element
boundaries. These stresses can be expressed as

�ehi (x1, x2)=
3∑

a=1
�a,e
i Ne

a (x1, x2), i=1 :3 (28)

where a=1 :3 refers to a local numbering of each of the three nodes of the element, �a,e
i (�1≡�11,

�2≡�22, �3≡�12) are the nodal stress values and Ne
a (x) is a linear shape function valuing 1 at

the node a and 0 at the other two nodes. Clearly, the interpolation space introduces nine stress
variables or unknowns per triangle (�ai ; i=1 :3,a=1 :3), thereby enabling different stress tensors
to arise in each node of the mesh, as many as elements sharing that node.

The approximation of the velocity field, uh ∈Y LB
h ⊂Y , Y LB

h introduces two unknowns per triangle
(constant approximation for each element) and four additional degrees of freedom per edge (linear
approximation). This is shown in the following (global and local) interpolations:

uhi (x1, x2) =
E∑

e=1
uei �e(x1, x2), i=1 :2 (29)

u�
hi (s) =

2∑
�=1

u�,�
i N�

� (s), i=1 :2 (30)

where �e(x)=1, ∀x∈�e and �e(x)=0 otherwise, N�
� (s) is a linear shape function over the

edge �, s denotes a local coordinate and �=1 :2 are the two nodes of the edge. Assuming that
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the body forces, f, are constant and the tractions, g, vary at most linearly, then the interpola-
tion space Y LB

h is rich enough, when compared with XLB
h , to force equilibrium point by point.

The formal proof is detailed in Reference [24] but a physical explanation follows from the fact
that the imposition of the piecewise constant velocities (29) translates into an internal equilib-
rium equation in strong form for each element, which can be satisfied exactly because the body
force is constant over the element and the stresses vary linearly; hence, their divergence is also
constant. Additionally, the imposition of the linear velocities (30) over the edges of the elements
impose continuity of tractions between adjacent elements and compatibility with the Neumann
boundary conditions at the external edges of the boundary elements. These can be satisfied
exactly because both the external tractions and the stress tensors vary linearly along the edges of
the elements.

The stress field rh is required to belong to the set of admissible stresses, B	,h , in every
point of the domain �, that is, rh(x)∈ B	,h,∀x∈�; where B	,h = B	∩XLB

h and 	=1 :2 (plane
stress or plane strain). Fortunately, this general pointwise condition can be satisfied by just
forcing the membership constraint to hold over the nodes of each triangle, which translates into
3×E nodal inequalities. This nice property is due to the choice of a piecewise linear interpo-
lation of the stresses and the use of triangular elements. The proof is a simple consequence of
convexity and is given in Reference [24]. Note that, for other element types such as quadratic
or bi-quadratic elements, the yield condition might be violated between nodes even if it is
satisfied at all nodes.

4.1.2. Discretization process. Recall that the attainment of a lower bound or an upper bound
depends only on the interpolation spaces used and not on the particular version of the limit analysis
problem that is discretized (see Figure 1). In particular, the static principle of limit analysis, (10),
has been chosen to be the problem to discretize, using the (previously described) purely static
spaces, XLB

h ×Y LB
h . This choice corresponds to the lower left branch of Figure 1, leading to the

formulation of the ‘discrete static LB’ problem.
The static principle (14) can be exclusively expressed in terms of stresses belonging to the space

XLB
h as follows:

max �

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ ·reh+�fe=0 in �e ∀e∈Th

(reh−re′
h ) ·n�e

′
e =0 ∀�e

′
e ∈EO

reh ·n�Ne =�g�Ne ∀�Ne ∈EN

reh ∈ B	,h in �e ∀e∈Th

(31)

Next, the discretization of each of the above constraints is addressed.
Elemental equilibrium constraints. For each triangle �e, the local interpolation (28) is inserted

into the vectorial equation ∇ ·re+�fe=0. Grouping all the nodal stress components into a single
vector and using the following notation for the (constant) derivatives of the (linear) shape functions
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Ne
a,i =�Ne

a (x)/�xi , where i=1 :2, the following matrix equation emerges:

(
Ne
1,1 0 Ne

1,2 Ne
2,1 0 Ne

2,2 Ne
3,1 0 Ne

3,2

0 Ne
1,2 Ne

1,1 0 Ne
2,2 Ne

2,1 0 Ne
3,2 Ne

3,1

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1,e1

�1,e2

�1,e3

�2,e1

�2,e2

�2,e3

�3,e1

�3,e2

�3,e3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+�

(
f e1

f e2

)
=
(
0

0

)
(32)

or, equivalently in compact form,

Be�eh+�Feq1,e
h =0 (33)

Now, let �h denote a global vector collecting the 9×E nodal stress components for all the

elements in the mesh, and Feq1
h be a 2×E global volume force vector. Similarly, a (2×E,9×E)

global matrix Aeq1, consisting of the elemental matrices Be, is built. The assembly process is

straightforward since the equations for the elements are uncoupled. Consequently, Aeq1 results in
a very sparse block-diagonal matrix:

Aeq1=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 0 · · · · · · 0

0 B2 0 · · · 0

...
. . .

...

...
. . .

...

0 · · · · · · · · · BE

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(34)

where 0 is a zero matrix of dimensions (2,9). Finally, the global discrete system of equations
corresponding to the elemental equilibrium constraint is given by

Aeq1�h+Feq1
h �=0 (35)

Inter-element and boundary equilibrium constraints: The restriction of the linear interpolation
(28) to an edge, �, can be expressed as follows:

�i (s)=
2∑

�=1
��
i N

�
� (s), i=1 :3 (36)
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Now, inserting interpolation (36) into the equations (reh−re′
h ) ·n�e

′
e =0,∀�e

′
e ∈EO and reh ·n�Ne =

�g�Ne ,∀�Ne ∈EN, one obtains, after some simple algebra, a system of four scalar equations for each
vector equation. The four equations imposed in each interior edge, �e

′
e ∈EO, are

(�1,e1 −�1,e
′

1 )n�
1+(�1,e3 −�1,e

′
3 )n�

2=0 (37)

(�2,e1 −�2,e
′

1 )n�
1+(�2,e3 −�2,e

′
3 )n�

2=0 (38)

(�1,e3 −�1,e
′

3 )n�
1+(�1,e2 −�1,e

′
2 )n�

2=0 (39)

(�2,e3 −�2,e
′

3 )n�
1+(�2,e2 −�2,e

′
2 )n�

2=0 (40)

Similarly, the following four equations are imposed on each boundary edge, �Ne ∈EN:

�1,e1 n�
1+�1,e3 n�

2=�g�
1 (41)

�2,e1 n�
1+�2,e3 n�

2=�g�
1 (42)

�1,e3 n�
1+�1,e2 n�

2=�g�
2 (43)

�2,e3 n�
1+�2,e2 n�

2=�g�
2 (44)

Clearly, the total number of edge equations is 4×(|EO|+|EN|). The systems of equations (37)–
(40) and (41)–(44) can be combined into a global matrix linear equation as follows:

Aeq2�h+Feq2
h �=0 (45)

where �h is the 9×E vector of unknown nodal stresses previously used. Moreover, Aeq2 is a

(4×(|EO|+|EN|),9×E) matrix, whose entries are either zero or the components n�
1,n

�
2 of the

unit vectors normal to the edges with the appropriate sign. Finally, Feq2
h is a vector consisting of

zeros, for the equations associated with the interior edges, or minus the components g�
1,g

�
2 of the

external surface loads, for the Neumann boundary edges.
Membership constraints. Formulation as multiple second-order cones: The yield condition is

not violated at any point of the domain if the inequality

(�a,e
1 −�a,e

2 )2+(�a,e
1 )2+(�a,e

2 )2+6(�a,e
3 )2�2�2y (	=1,plane stress) (46)

or

(�a,e
1 −�a,e

2 )2+4(�a,e
3 )2� 4

3�
2
y (	=2,plane strain) (47)

is satisfied at every node, a, of each element, e, of the mesh (3×E inequalities). A convenient
way to impose inequality (46) or (47) is to force the vector (

√
2�y,�

a,e
1 ,�a,e

2 ,
√
6�a,e

3 ,�a,e
1 −�a,e

2 )

(plane stress) or (2/
√
3�y,2�

a,e
3 ,�a,e

1 −�a,e
2 ) (plane strain) to belong to the Lorentz cone Ln ,

where n=5 for plane stress and n=3 for plane strain. Since second-order cone constraints are
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directly imposed through the decision variables (see Section 3), it is convenient to introduce a
vector of additional variables, xa,e, as follows:

plane
stress

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xa,e
1 =√

2�y

−�a,e
1 +xa,e

2 =0

−�a,e
2 +xa,e

3 =0

−√
6�a,e

3 +xa,e
4 =0

−�a,e
1 +�a,e

2 +xa,e
5 =0

,
plane
strain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
xa,e
1 = 2√

3
�y

−2�a,e
3 +xa,e

2 =0

−�a,e
1 +�a,e

2 +xa,e
3 =0

(48)

Now, each vector xa,e is forced to belong to Ln . The imposition of (48) over all the mesh requires
3n×E equations (n equations per node and three nodes per element). In matrix notation, the global
system can be expressed as follows:

Asoc
	

�h+ I
	
x soc	 =bsoc	 (49)

where �h is the usual vector of unknown nodal stresses, I
	
is a (3n×E,3n×E) identity matrix,

x soc	 is a vector of 3n×E additional variables ordered in the same way as �h , and bsoc	 and Asoc
	

are, respectively, a 3n×E vector and a (3n×E,9×E) block-diagonal matrix of the following
forms:

bsoc	 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ba,e
	

ba,e
	

...

...

ba,e
	

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Asoc
	

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M
	

0 · · · · · · 0

0 M
	

0 · · · 0

...
. . .

...

...
. . .

...

0 · · · · · · · · · M
	

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 	=1 :2 (50)

where

ba,e
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2�y

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M
1
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

−1 0 0

0 −1 0

0 0 −√
6

−1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ba,e
2 =

⎛
⎜⎜⎜⎝

2√
3
�y

0

0

⎞
⎟⎟⎟⎠ , M

2
=
⎛
⎜⎝

0 0 0

0 0 −2

−1 1 0

⎞
⎟⎠ (51)

4.1.3. The lower bound problem as an SOCP. Expressing the previous matrix constraints (35),
(45) and (49) in a single matrix equation, the discretization of the lower bound problem (31)
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is given by

�∗LB
h ≡max �

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

9×E + 1 + 3n×E︷ ︸︸ ︷⎛
⎜⎜⎜⎜⎜⎝
Aeq1 ... Feq1

h

... 0

Aeq2 ... Feq2
h

... 0

Asoc
	

... 0
... I

	

⎞
⎟⎟⎟⎟⎟⎠
⎛
⎜⎝

�h

�

x soc	

⎞
⎟⎠=

⎛
⎜⎝

0

0

bsoc	

⎞
⎟⎠
⎫⎪⎬
⎪⎭
m1=2×E

m2=4×(|EO|+|EN|)
m3=3n×E

�h free, � free, x soc	 ∈K

(52)

where K=
3×E︷ ︸︸ ︷

Ln×·· ·×Ln .
Note that this problem is a CP and has the standard form required by most optimization packages.

However, in order to optimize the computational cost of the solution, it is possible to introduce
a change of variables that reduces considerably the number of equations involved. Algorithmic
details of this process are given in Reference [24]. In addition, from Section 3, and given that the
lower bound problem has a strictly feasible interior, it is clear that strong duality holds. Therefore,
�∗LB
h can also be obtained by solving the dual problem to (52), which takes the following form:

�∗LB
h ≡min bsoc

T

	 y

s.t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎝ Aeq1T Aeq2T AsosT

	

Feq1T

h Feq2T

h 0T

⎞
⎟⎠
⎛
⎜⎜⎝
u1

u2

y

⎞
⎟⎟⎠=

(
0

1

)}
9×E

1

u1,u2 free, y∈K

(53)

where u1∈�m1 and u2∈�m2 and y∈�m3 . The interpretation of these equations and variables will
become more transparent when the upper bound problem is described below.

4.2. The upper bound problem

4.2.1. Purely kinematic spaces. To obtain an upper bound, �∗UB
h , the use of purely kinematic

spaces is required. In this case, and unlike the lower bound problem, different finite element spaces
are used to solve the plane stress and the plane strain models.

In plane stress, a continuous, piecewise linear, function element space, YUB
h,1 ⊂Y , is chosen to

approximate the velocity field: u≈uh ∈YUB
h,1 as

ui (x1, x2) =
N∑

A=1
uA
i �A(x1, x2), i=1 :2 (54)

uei (x1, x2) =
3∑

a=1
ua,e
i Ne

a (x1, x2), i=1 :2 (55)
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where �A(x) are the linear, hat shape functions and Ne
a (x) their restriction to the element e.

The index A=1 :N represents a global numbering of the N nodes of the mesh, whereas a is its
local counterpart. From (54), it should be clear that YUB

h,1 introduces 2×N degrees of freedom in
the displacement rates. Note that there exists a mapping that relates the superscript a,e with the
global numbering A. Consequently, for a given global node, A, shared by two adjacent elements,
e and e′, the following holds: uA

i =ua,e
i =ub,e

′
i for a certain value of a and b from 1 to 3. For the

stresses, a piecewise constant function element space, XUB
h,1 ⊂ X , is chosen. The global interpolation

is given by

�i (x1, x2)=
E∑

e=1
�ei �e(x1, x2), i=1 :3 (56)

where �e(x)=1, ∀x∈�e and 0 otherwise.
In plane strain, the velocity field is approximated by a discontinuous, piecewise linear, finite

element space, YUB
h,2 ⊂Y , so that u≈uh ∈YUB

h,2 . Therefore, the displacements uh are linear and

continuous within an element, but discontinuities are allowed between elements. Clearly, YUB
h,2

introduces 6×E velocity unknowns. The choice of this interpolation is due to the necessity
to introduce enough degrees of freedom so that incompressibility can be satisfied [31]. The
incompressibility condition, ∇ ·uh =0, is a requirement in plane strain because the von Mises yield
set, B2, is unbounded (hydrostatic pressure has no influence on yield), which means that only
incompressible flow fields have finite energy dissipation rate. In this case, it is convenient to work
with a local interpolation, which is given by

uei (x1, x2)=
3∑

a=1
ua,e
i Ne

a (x1, x2), i=1 :2 (57)

Note that (57) looks exactly like (55), but here each global node, A, does not have a single velocity
vector associated with it. Instead, it has as many velocity vectors as elements converging at the
node.

For the stresses, a piecewise constant interpolation is used, as in the plane stress case:

�i (x1, x2)=
E∑

e=1
�ei �e(x1, x2), i=1 :3 (58)

However, an additional internal traction field, denoted by th , also needs to be introduced. This field
represents the tractions acting on the internal edges of the mesh and is independently parameterized
from the stress field, rh . These tractions are allowed to vary linearly along the internal edges as

t
�e

′
e

i ′ (s)=
2∑

�=1
t
�,�e

′
e

i ′ N
�e

′
e

� (s), i ′ =1′ :2′ (59)

For convenience, the tractions will be expressed in a local coordinate system, x1′, x2′ , different
for each edge. To be consistent, let e denote the element on the left of the edge �e

′
e and e′ the

element on the right, when one moves from the node �=1 of the edge to the node �=2. Then,
x1′ is normal to the edge and points towards e′, whereas x2′ follows the edge pointing towards the
node �=2. For simplicity, XUB

h,2 will denote the interpolation spaces chosen for both stresses and
tractions.
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Finally, to prove the purely kinematic nature of the interpolation spaces just introduced, one
needs to show that when the continuous problem (10)–(13) is discretized using XUB

h,1×YUB
h,1 (plane

stress) or XUB
h,2×YUB

h,2 (plane strain), condition (22), or the less general condition (21), holds. This is
shown in Reference [24].

4.2.2. Discretization process. Upper bounds are typically computed using the kinematic principle
of limit analysis (13): �∗ = infu∈C D(u). This principle is formulated in terms of velocities that
are implicitly required to satisfy the flow rule. The resulting problem is highly non-linear and the
approach exploits neither convexity nor duality in an explicit manner. Going back to Figure 1, the
conventional approach corresponds to discretizing the kinematic principle with a flow interpolation
and, then, solving exclusively the problem shown in the figure as ‘discrete kinematic UB’.

Here, a different approach has been chosen whereby the static principle of limit analysis (14)
is discretized. Recall that, as shown in (14)–(17), the static and kinematic principles are dual
each other and completely equivalent. Moreover, purely kinematic interpolation spaces are used
for both stresses and velocities. Thus, the approach formulates the ‘discrete static UB’, which
corresponds to the upper left branch of Figure 1. Additionally, the solution process is based on a
primal–dual IPM (see Section 3), thereby explicitly considering the dual form. Note that following
this approach there is no need to impose any restriction on the velocity field (such as the flow rule
or the normalization of the external work rate to unity), since the dual problem directly takes care
of this. In summary, the approach computes an upper bound by discretizing the static principle of
limit analysis by means of a purely kinematic discretization. This may not be the natural way of
thinking, but mathematically it is simpler and more efficient.

Equilibrium constraint in plane stress: To discretize the weak form of equilibrium, a(r,u)=
�F(u),∀u∈Y , one replaces the continuum fields r and u by the global interpolations (54) and
(56), respectively. The result of the discretization is given by the following global matrix equation
(see details in Appendix A.1):

Aeq�̃h =�Feq
h (60)

where Aeq is a matrix of dimensions (2×N ,3×E), Feq
h is a 2×N vector of nodal forces and �̃h

is a 3×E vector of elemental stresses. Note that the rows of Aeq associated with the Dirichlet
boundary nodes have been removed.

Equilibrium constraint in plane strain: In plane strain, discontinuities in the velocities between
elements are allowed. Consequently, the definition of the internal work rate needs to be extended to
consider the work occurring in the inter-element boundaries. Thus, the weak form of equilibrium
reads as follows:

a(r, t,u)=�F(u) ∀u∈Y

2∑
i, j=1

∫
�

�i j
�ui
�x j

dV + ∑
�e

′
e ∈EO

2∑
i ′=1

∫
�e

′
e

t
�e

′
e

i ′ (ue
′
i ′ −uei ′)dS

=�
2∑

i=1

(∫
�
fi ui dV +

∫
�N

giui dS

)
∀u∈Y

(61)

To discretize (61), the continuum spaces X×Y are replaced by the interpolation spaces XUB
h,2×YUB

h,2
defined by (57)–(59). The details of the discretization process are given in Appendix A.2. Finally,
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the discrete version of the weak equilibrium equation (61) corresponds to the following global
matrix equation:

Ãeq1�̃h+ Ãeq2t h =�F̃
eq
h (62)

where Ãeq1 is a matrix of dimensions (6×E,3×E), Ãeq2 has dimensions (6×E,4×|EO|), �̃h is

the usual 3×E vector of elemental stresses, t h is a 4×|EO| vector collecting the nodal tractions
for each interior edge and F̃

eq
h is a vector of 6×E discontinuous nodal forces. Here also, the rows

of Ãeq1 and Ãeq2 associated with the Dirichlet boundary nodes need to be removed.

Membership constraints. Formulation as multiple second-order cones: Discretizing the constraint
r∈ B	 is straightforward, since XUB

h consists of elementally constant stresses. It is therefore only
necessary to impose, in each element, that the uniform stress tensor belongs to the admissible set:

(�e1−�e2)
2+(�e1)

2+(�e2)
2+6(�e3)

2 � 2�2y (	=1,plane stress) (63)

(�e1−�e2)
2+4(�e3)

2 � 4
3�

2
y (	=2,plane strain) (64)

The above elemental constraints are exactly the same as inequalities (46) and (47) in the lower
bound problem, which were imposed in each of the three nodes of the element. Here, however, only
E inequalities need to be imposed. For each inequality, the vectors (

√
2�y,�e1,�

e
2,

√
6�e3,�

e
1−�e2)

or (2/
√
3�y,2�e3,�

e
1−�e2) are forced to belong to the Lorentz cone Ln , where n=5 for plane

stress and n=3 for plane strain. This can be imposed by introducing an n-tuple elemental vector x̃ e

of additional variables that satisfies Equations (48). Globally, this translates into n×E equations
that are given, in matrix form, by the following equation:

Ã
soc

	
�̃h+ Ĩ

	
x̃ soc	 = ˜̃bsoc	 (65)

where �̃h is the usual 3×E vector of unknown elemental stresses, Ĩ
	
is an (n×E,n×E) identity

matrix, x̃ soc is a vector of n×E additional variables ordered in the same way as �̃h , and
˜̃bsoc	 and

Ã
soc

	
are an n×E vector and a (n×E,3×E) block-diagonal matrix of forms (51), respectively.

For plane strain, the condition th ∈ B̃2,h must also be imposed, where B̃2,h is a set that places
no restriction on the components of th that are normal to the inter-element edges, but forces
the parallel components to satisfy the von Mises plane strain condition, B2,h . The idea is to let
the tangential tractions be as big as possible (in absolute value) within B2,h , which is equivalent
to restrict them to a pure shear state. Note that, in the local coordinates x1′, x2′ , a pure shear
state makes the tangential tractions coincide with the shear stresses, �12. Clearly, B2,h ⊂ B̃2,h , as
was required to obtain a purely kinematic discretization and, consequently, an upper bound. The
motivation for this new set of admissible stresses is to guarantee that the resulting velocity field
is kinematically admissible. Indeed, the fact that the normal tractions are not restricted will force
the normal jump in the velocities to vanish in each internal edge.

To impose the constraint th ∈ B̃2,h , the components of th parallel to the edges must satisfy,

for each edge �e
′
e (denoted � in the next expressions), the following inequality: (t�,�

2′ )2� 1
3�

2
y , for

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 75:899–944
DOI: 10.1002/nme



BOUNDS IN LIMIT ANALYSIS USING SOCP AND MESH ADAPTIVITY 915

�=1 :2 or, equivalently, −1/
√
3�y�t�,�

2′ �1/
√
3�y . These inequalities are imposed through the

following equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
t1,�2′ +s1= 1√

3
�y, −t1,�2′ +s2= 1√

3
�y, s1�0,s2�0 (�=1)

t2,�2′ +s3= 1√
3
�y, −t2,�2′ +s4= 1√

3
�y, s3�0,s4�0 (�=2)

(66)

In matrix form, (66) reads as follows:

⎛
⎜⎜⎜⎜⎝
0 1 0 0

0 −1 0 0

0 0 0 1

0 0 0 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

t1,�1′

t1,�2′

t2,�1′

t2,�2′

⎞
⎟⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
s1

s2

s3

s4

⎞
⎟⎟⎟⎟⎠= 1√

3
�y

⎛
⎜⎜⎜⎜⎝
1

1

1

1

⎞
⎟⎟⎟⎟⎠ (67)

or

At
�
t�h+ I �s� =bt�, s��0� (68)

Finally, after the assembly process, (68) results in the following global equation:

At t h+ I t s=bt , s�0 (69)

where At is a block-diagonal matrix of dimensions (4×|EO|,4×|EO|), I t is an identity matrix of

the same dimensions, t h is the previously introduced 4×|EO| traction vector and s is a 4×|EO|
vector of slack variables.

4.2.3. The upper bound problem as an SOCP. Considering Equations (60) and (65) for plane
stress, and (62), (65) and (69) for plane strain the discretization of the upper bound problem (14)
is obtained. For plane stress this gives

�∗UB
h ≡max �

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

3×E + 1 + 5×E︷ ︸︸ ︷⎛
⎜⎝ Aeq ... −Feq

h

... 0

Ã
soc

1

... 0
... Ĩ

1

⎞
⎟⎠
⎛
⎜⎝

�̃h

�

x̃ soc1

⎞
⎟⎠=

⎛
⎝ 0

˜̃bsoc1

⎞
⎠
⎫⎬
⎭m1=2×(N−ND)

m2=5×E

�̃h free, � free, x̃ soc1 ∈K̃

(70)
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whereas for plane strain

�∗UB
h ≡max �

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3×E + 4×|EO| + 1 + 4×|EO| + 3×E︷ ︸︸ ︷⎛
⎜⎜⎜⎜⎜⎝
Ãeq1 ... Ãeq2 ... −F̃ h

eq ... 0
... 0

Ã
soc

2

... 0
... 0

... 0
... Ĩ

2

0
... At ... 0

... I t
... 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�̃h

t h

�

s

x̃ soc2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

0

˜̃bsoc2

bt

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭
r1=6×E−4×|ED|
r2=3×E

r3=4×|EO|
�̃h free, t h free,� free, s�0, x̃ soc2 ∈K̃

(71)

where K̃=
E︷ ︸︸ ︷

Ln×·· ·×Ln (n=5 for plane stress and n=3 for plane strain) and ND is the total
number of Dirichlet nodes. Note that the above problems present the canonical form of a CP.
Thanks to strong duality, �∗UB

h is also the solution to the problems dual to (70) and (71). For plane
stress, the dual to (70) is

�∗UB
h ≡min ˜̃bsoc

T

1 ỹ

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎝ AeqT Ã

socT

1

−FeqT

h 0T

⎞
⎠(u

ỹ

)
=
(
0

1

)}
3×E

1

u free, ỹ∈K̃

(72)

where u∈�m1 , ỹ∈�m2 and for plane strain, the problem dual to (71) is

�∗UB
h ≡min ˜̃bsoc

T

2 y
1
+bt

T
y
2

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

Ãeq1T Ã
socT

2
0

Ãeq2T 0 AtT

−FeqT

h 0T 0T

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎝

ũ

y
1

y
2

⎞
⎟⎟⎠=

⎛
⎜⎝
0

0

1

⎞
⎟⎠
⎫⎪⎬
⎪⎭
3×E

4×|EO|
1

ũ free, y
2
�0, y

1
∈K̃

(73)

where ũ∈�r1 , y
1
∈�r2 and y

2
∈�r3.
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The equations and variables in the above dual problems have useful interpretations. For instance,
in problem (72), the vector u are the nodal velocities (this vector is equivalent to the variables
u1 and u2 in the lower bound dual problem (53), which represented elemental and inter-element
velocities, respectively), whereas the vector y collects the plastic multipliers associated with the
flow rule that govern the deformation of each element. Taking this into account and the fact that

the vector ˜̃bsoc1 incorporates the yield stress, �y , the cost function can be seen as an approximation
to the total energy dissipation rate, D(u). Finally, the first matrix equation approximately imposes
the flow rule, whereas the second equation equates the approximated external work rate to unity.

An analogous interpretation can be performed for problem (73). The vector ũ collects the nodal
velocities associated with each element, which results in a global discontinuous velocity field.
The vector y

1
gives the non-negative plastic multipliers involved in the flow rule of each element.

Similarly, y
2
collects non-negative scalars that can be seen as plastic multipliers of an alternative

flow rule for the tractions t h . Now, as previously, the cost function is an approximation to the energy

dissipation rate D(u). Note that, in this case, there is an additional term, bt
T
y
2
that corresponds to

the rate of energy dissipated at the inter-element boundaries. Clearly, this is due to the discontinuities
in the flow. The first equation is the classical flow rule relating the deformation with the gradient
of the yield function in each element. The second equation can be seen as another flow rule, but
in this case for the jump in the velocities in each internal edge �e

′
e . More specifically, it forces two

conditions: (1) it gives the magnitude of the jump in the velocities in the tangential direction, i.e.
in the direction of the edge; (2) it imposes the jump in the velocities to be zero in the direction
normal to the edge. Thus, if two adjacent elements have different velocities, this last condition
forces their relative displacement to be tangential, therefore resulting in a velocity field that is
kinematically admissible. Finally, the third equation makes the external work rate equal to 1.

Similar to the lower bound evaluation problem, it is possible to reduce the number of unknowns
by appropriate changes in problem variables. Details are given in Reference [24].
4.3. Solution to bound problems

The above problems present the canonical form of a CP and, in particular, their level of complexity
is that of a second-order cone program (SOCP). This is important mainly for two reasons. First, it
allows for the use of state-of-the-art primal–dual interior point algorithms that have been particularly
developed for SOCP and that guarantee global convergence and efficiency in the solution process.
Moreover, with these algorithms, not only the above discrete static bound problems but also their
duals are solved, which are discrete versions of the kinematic principle. In this way, collapse fields
for the stresses and velocities are simultaneously obtained. Second, the bound problems can be
solved using any conic programming optimization package. In particular, the public domain conic
solvers SeDuMi [32] and SDPT3 [33] are the ones used here.

5. MESH ADAPTIVITY

The objective of mesh adaptivity is to efficiently refine the computational mesh, Th , by only
dividing the elements that make the largest contribution to the overall numerical error. In the
problem considered here, the numerical error is measured by the bound gap, �h =�∗UB

h −�∗LB
h ,

for which it is possible to identify the contribution of each element in the mesh. Indeed, for both
plane stress and plane strain cases, this elemental contribution, named elemental bound gap, is
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given by

�e
h =

∫
�e

�y�eq(ueUB)︸ ︷︷ ︸
De(ueUB)

dV −
(∫

�e
(−∇ ·reLB) ·ueUB dV +

∫
��e

(n�e ·reLB) ·ueUB dS
)

︸ ︷︷ ︸
Fe(ueUB)

(74)

In (74), reLB is the linear elemental stress tensor computed in the lower bound problem (52) and ueUB
are the linear velocities, restricted to the element �e, obtained when the upper bound problem (70)
or (71) is solved. These elemental stress and velocity fields are illustrated in Figure 2. Furthermore,
n�e is the unit outward normal vector acting on the edge �e of a particular element and �eq is a
scalar known as the effective strain rate given by

�eq(u)=
√

2
3e

′(u) :e′(u) (75)

where e′ is the deviatoric component of the strain rate tensor. Note that �e
h is obtained as the

difference between the total elemental energy dissipation rate, De(ueUB), and the elemental external
work rate, Fe(ueUB), in both cases for the upper bound elemental velocity, ueUB.

The elemental gap, �e
h , satisfies the following two important properties:

1. It is always positive, i.e. �e
h�0,∀e∈Th .

2. Its sum over all the elements equals the total bound gap, at least as the mesh size tends to
zero. In particular, for plane stress, the property holds strictly regardless of the mesh size, i.e.∑

e∈Th
�e
h =�h . On the other hand, for plane strain, the property holds only in the limit as

h→0. In this case, the total bound gap can be decomposed into two positive terms, namely,
�h =�O

h +�̄h , where �O
h comes from the continuum (interior of the elements) and �̄h comes

from the inter-element boundaries. With the previous definition of �e
h , one can show that the

sum of all the elemental bound gaps adds up to the total contribution from the continuum,
i.e.

∑
e∈Th

�e
h =�O

h . Finally, �̄h is found, in practice, to converge to zero as the mesh is

refined, i.e. �̄h →0 when h→0.

The above properties make �e
h an effective indicator of the elemental contribution to the numer-

ical error. Consequently, the strategy used here for mesh adaptivity consists of refining only the
elements with higher �e

h , that is, those elements for which �e
h >��e

hmax. Through numerical trial
and error, a value of �=0.005 has emerged as a reasonable choice. Regular refinement is used
whereby the element to be refined is divided into four triangles by joining the midpoints of the
sides. The resulting non-conformity is overcome by bisection of the adjacent triangles.

Figure 2. Notation for the elemental bound gap �e
h .
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Proof of the above properties is given in the following sections.

5.1. Positiveness of �e
h

Consider the individual element and the loading shown in Figure 2 as an isolated limit analysis
problem. Recall that, in the lower bound problem, the stresses rLB are in equilibrium over the
continuum and belong to the yield set B	,	=1 :2, at any point of the domain. Therefore, the
local problem shown in Figure 2 is also in equilibrium and satisfies the von Mises yield criterion.
This is enough to guarantee, in accordance with the static principle, that the lower bound for
this problem, �e,LBh , is greater than or equal to 1:

�e,LBh �1 (76)

On the other hand, if the kinematic principle (13) is applied to the same elemental problem in
Figure 2, using kinematically admissible velocity fields, ue, its upper bound, �e,UBh , is equal to

�e,UBh = inf
ue

De(ue)
Fe(ue)

(77)

In particular, choosing the continuous velocity field ueUB that results from the global upper bound
problem, it is apparent that

De(ueUB)

Fe(ueUB)
��e,UBh (78)

Finally, combining (78) with (76) one obtains

De(ueUB)

Fe(ueUB)
��e,UBh ��e,LBh �1 
⇒ �e

h =De(ueUB)−Fe(ueUB)�0 (79)

which proves the statement.

5.2. Sum of �e
h

To make the next proof easier to follow, it is convenient to recall first the following identities for
the global upper bound, �∗UB

h . In plane stress, for uh ∈ XUB
h,1, one had

�∗UB
h = min

F(uh)=1
D(uh)=D(uUB) (80)

uUB∈ XUB
h,1 being the optimal solution. In plane strain, the inter-element discontinuities had also

to be considered in the internal work rate. Therefore, for uh ∈ XUB
h,2 and (rh, th)∈YUB

h,2 , one had

�∗UB
h = min

F(uh)=1
max

rh∈Bh,2,th∈B̃h,2

a(rh, th,uh)

= min
F(uh)=1

⎧⎪⎨
⎪⎩
D(uh)+ ∑

�e
′
e ∈EO

∫
�e

′
e


max|(ue′
h −ueh) ·s�

e′
e |dS if (ue

′
h −ueh) ·n�e

′
e =0 ∀�e

′
e ∈EO

∞ otherwise

= D(uUB)+
max
∑

�e
′
e ∈EO

∫
�e

′
e

|(ue′
UB−ueUB) ·s�e

′
e |dS=D(uUB)+ D̄(uUB) (81)
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where n�e
′
e and s�

e′
e represent orthonormal vectors, following the directions x1′ and x2′

(normal and tangential to the edge), 
max=�y/
√
3 given that the constraint th ∈ B̃h,2 implies

−1/
√
3�y�t

�,�e
′
e

2′ �1/
√
3�y , for �=1 :2 (see (66)), and D̄(uUB) represents an inter-element energy

dissipation rate.
In order to construct the proof, plane strain will be assumed. The proof can be easily extended

to plane stress by setting to zero the inter-element terms. Adding the elemental contributions, one
obtains ∑

e∈Th

�e
h = ∑

e∈Th

De(ueUB)− ∑
e∈Th

Fe(ueUB) (82)

The first term satisfies∑
e∈Th

De(ueUB)= ∑
e∈Th

∫
�e

�y�eq(ueUB)=
∫

�
�y�eq(uUB)=D(uUB)=�∗UB

h − D̄(uUB) (83)

where the last equality follows from (81). For the second term, the following equalities hold:

∑
e∈Th

Fe(ueUB)
(1)= ∑

e∈Th

(∫
�e

(−∇ ·reLB) ·ueUB dV +
∫

��e
(n�e ·reLB) ·ueUB dS

)

(2)= ∑
e∈Th

∫
�e

�∗LB
h fe ·ueUB dV + ∑

e∈Th

∑
�e∈��e

∫
�e
q�e
LB ·ueUB dS

(3)= �∗LB
h

∑
e∈Th

∫
�e

fe ·ueUB dV +�∗LB
h

∑
�Ne ∈EN

∫
�Ne

g�Ne ·ueUB dS

+ ∑
�e

′
e ∈EO

∫
�e

′
e

q
�e

′
e

LB ·(ueUB−ue
′
UB)dS

(4)= �∗LB
h

(∫
�
f ·uUB dV +

∫
�D

g ·uUB dS
)

+ ∑
�e

′
e ∈EO

∫
�e

′
e

q
�e

′
e

LB ·(ueUB−ue
′
UB)dS

(5)= �∗LB
h + ∑

�e
′
e ∈EO

∫
�e

′
e

q
�e

′
e

2′,LB(ueUB−ue
′
UB) ·s�e

′
e dS (84)

Equalities (1) and (4) are trivial. Equality (2) follows from (31). In equality (3) the integration
is performed over all the edges �e of all the elements. These edges can be either interior edges,
�e

′
e , or boundary edges, �De or �Ne . For each interior edge, two integrals are computed, one for

element e and another one for element e′. The inter-element stresses, q
�e

′
e

LB, are of equal magnitude
and opposite sign (see second constraint in problem (31)), which explains the third term in the
equality (recall that in plane strain the displacements are discontinuous). Moreover, the integrals
over the Dirichlet edges, �De , vanish because uUB is equal to zero. For the Neumann boundaries �Ne ,

note that q
�Ne
LB=�∗LB

h g�Ne (see third constraint in problem (31)). Finally, equality (5) holds because

F(uUB)=1 and (ueUB−ue
′
UB) ·n�e

′
e =0 (uUB is forced to be kinematically admissible).
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From (83) and (84), it is possible to conclude that

∑
e∈Th

�e
h = (�∗UB

h −�∗LB
h )−

⎛
⎝D̄(uUB)+ ∑

�e
′
e ∈EO

∫
�e

′
e

q
�e

′
e

2′,LB(ueUB−ue
′
UB) ·s�e

′
e dS

⎞
⎠

︸ ︷︷ ︸
�̄h∑

e∈Th

�e
h = �h−�̄h

(85)

Observe that �̄h�0, since q
�e

′
e

2′,LB�
max. Now, if �O
h denotes the sum of the elemental bound gaps, it

follows from (85) that �h =�O
h +�̄h , where �O

h =∑e∈Th
�e
h�0. Additionally, all the computations

performed show that, in practice, �̄h →0 as h→0. This concludes the proof for the plane strain
case.

Finally, in plane stress the velocity field is continuous, which implies that ueUB−ue
′
UB|

�e
′
e

=
0, ∀�e

′
e ∈EO. Consequently, �̄h =0 and

∑
e∈Th

�e
h =�h .

6. NUMERICAL EXAMPLES

To assess the efficiency and accuracy of the method presented in the previous sections, three
two-dimensional examples are solved in plane stress and plane strain. For simplicity, and to make
it possible to compare with known results, the volume forces are set to zero and the yield stress
is chosen to be �y =√

3. In the last section, the size of the problems and the computational time
involved in the solution process are indicated.

6.1. Asymmetrical cantilever in plane stress

In this example, an end-loaded wide tapered cantilever, for which an analytical solution does
not seem to be known, is studied for the plane stress model. The geometry and load distribution
are illustrated in Figure 3. The following sections show, first, the results obtained when the
computational meshes are refined uniformly and, second, the results when mesh adaptivity is
considered. Finally, the improvements in the mesh adaptive strategy are evaluated.

6.1.1. Uniform meshing. Table I summarizes the main results for five different uniform meshes
that are obtained by refining the initial mesh. In each refinement, a triangle is divided into four
smaller triangles. The lower and upper bound relative errors in the table are computed as follows:
(�∗UB

h −�∗)/�∗ and (�∗−�∗LB
h )/�∗, where �∗ is the unknown exact solution. In this case, �∗ has

been assumed to be �∗ =0.68504, which corresponds to the limit of convergence when very fine
meshes are used.

Figure 4 illustrates the deformed geometry for different meshes. Note that only the right-hand
side of the cantilever flows. Figure 5 shows graphically the bounds obtained for each refinement
and, also, the rate of convergence for the bound errors and the bound gap. After four refinements,
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Figure 3. Geometry and loads for the cantilever problem in plane stress.

Table I. Results for the cantilever problem in plane stress using uniform meshing.

Number Number Lower bound Upper bound Bound Lower bound Upper bound
of refinements of elements �∗LB

h �∗UB
h gap �h error (%) error (%)

Uniform meshing
0 34 0.52186 0.75759 0.23573 23.821 10.591
1 136 0.65432 0.71936 0.06503 4.484 5.010
2 544 0.68079 0.69704 0.01624 0.620 1.752
3 2176 0.68349 0.68983 0.00634 0.226 0.699
4 8704 0.68440 0.68662 0.00223 0.093 0.231

Figure 4. Cantilever problem—deformed geometry.

with 8704 elements, the maximum relative error is only 0.231%. Moreover, the upper bound error
presents a rate of convergence clearly higher than linear. On the other hand, the lower bound error
converges linearly in the asymptotic range, despite the initial superlinear convergence.
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Figure 5. Cantilever problem—convergence.

Table II. Results for the cantilever problem in plane stress using adaptive meshing.

Number Number Lower bound Upper bound Bound Lower bound Upper bound
of refinements of elements �∗LB

h �∗UB
h gap �h error (%) error (%)

Adaptive meshing
0 34 0.52186 0.75759 0.23573 23.821 10.591
1 90 0.65782 0.71951 0.06169 3.973 5.032
2 300 0.68079 0.69704 0.01625 0.620 1.752
3 882 0.68349 0.68989 0.00640 0.226 0.708
4 2450 0.68440 0.68667 0.00227 0.093 0.238
5 5506 0.68459 0.68549 0.00090 0.066 0.066

6.1.2. Adaptive meshing. Table II summarizes the results obtained when the adaptive mesh proce-
dure introduced in Section 5 is used. In this case, five refinements of the original mesh have been
performed. Note that, with only 2450 elements, the maximum relative error is 0.238%, practically
the same as the one obtained previously with 8704 elements. Moreover, with 5506 elements, the
error reduces to 0.066%, which can be considered negligible in practice.

The deformed geometry is shown in Figure 6 for three different adaptive meshes. Moreover,
Figure 7 shows the contribution of each element to the total bound gap. In Figure 8, the elements
with higher contribution, which are the ones selected to be refined, are identified and filled in
blue. As can be observed in Figure 6, the adaptive meshing strategy seems to capture very well
the collapse mechanism, identifying four ‘slip-lines’ that converge in a central plastic hinge, thus
dividing the cantilever into four regions (this mechanism is predicted by the ‘slip-line’ theory in
the symmetric cantilevers analysed in [34]).

Figure 9 plots the upper and lower bounds computed for each mesh refinement. Note the accuracy
obtained. Finally, Figure 10 compares the performance of the adaptive meshing strategy with the
uniform meshing. Clearly, the adaptive meshing outperforms the uniform refinement.

6.1.3. Comparison of the elemental bound gap adaptive meshing strategy with an alternative,
deformation-based strategy. In [13], two alternative strategies for adaptive meshing are presented.
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Figure 6. Cantilever problem—deformed geometry using adaptive meshing.
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Figure 7. Cantilever problem—elemental contribution to the bound gap �e
h .

Figure 8. Cantilever problem—adaptive meshing strategy: elements to be refined.
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Figure 9. Cantilever problem—bounds using adaptive meshing.
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Figure 10. Cantilever problem—comparison of adaptive meshing with uniform meshing.

The first one consists of refining only the elements whose deformation is greater than a certain
threshold. In the second strategy, a triangle is refined only if a certain number of its vertices are
‘sufficiently’ close to the yield surface.

As mentioned in [13], the non-uniqueness of the collapse fields hampers the applicability of
the above two conditions. Furthermore, the lack of a local error measure as a refinement criterion
also undermines the optimality of the above strategies. On top of these two distinct strategies, two
different refinement procedures are tried: the regular refinement (the refinement technique used
in this article) and the refinement by bisection of longest edge [35]. The conclusion in [13] is
that the strain strategy together with the regular refinement is, in practice, the best combination.
Consequently, this is the adaptive meshing combination that is going to be compared with the
elemental bound gap strategy presented in Section 5.
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Figure 11. Cantilever problem—elemental measure of deformation ‖eeh‖.

Figure 12. Cantilever problem—alternative adaptive meshing strategy: elements to be refined.

More specifically, the strain strategy in [13] refines an element if the following inequality is
satisfied:

‖eeh‖=
√

(�e11)
2+(�e22)

2+(�e12)
2>	 (86)

where eeh is the strain tensor for element �e and 	 is a given threshold that, in this case, has been
chosen to be 	=0.005‖eeh‖max.

‡ Figure 11 shows, for different adaptive meshes, the elemental
deformation measure ‖eeh‖, upon which one decides the elements to be refined. Note the difference
between this figure and the equivalent one for the elemental bound gap strategy (Figure 7). As a
result, the refined meshes are clearly different, as one can observe by comparing Figure 12 with
Figure 8. It seems clear that for this example and refinement threshold the deformation-based

‡Similarly, in the adaptive meshing proposed in this article, the threshold chosen to refine an element is:
�e
h>0.005�e

hmax.
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Table III. Results for the cantilever problem in plane stress using an alternative, deformation based,
adaptive meshing strategy.

Number Number Lower bound Upper bound Bound Lower bound Upper bound
of refinements of elements �∗LB

h �∗UB
h gap �h error (%) error (%)

Alternative adaptive meshing
0 34 0.52186 0.75759 0.23573 23.820 10.591
1 90 0.65782 0.71951 0.06170 3.973 5.032
2 304 0.68079 0.69704 0.01625 0.621 1.751
3 950 0.68349 0.68982 0.00634 0.227 0.698
4 3265 0.68440 0.68662 0.00223 0.094 0.231
5 11222 0.68457 0.68540 0.00083 0.069 0.053
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Figure 13. Cantilever problem—bound gap rate of convergence for different adaptive meshing strategies.

meshing strategy is not able to capture the slip-lines in the collapse mechanism (as opposed to the
elemental bound gap strategy), this way incurring in an unnecessary overrefining.

The numerical results are summarized in Table III. Additionally, Figure 13 illustrates the
improved efficiency of the elemental bound gap strategy since, in all cases, fewer elements are
required in the mesh to achieve a given bound gap.

6.2. Slotted square block in plane stress

This example shows a square block with external thin symmetrical cuts, subject to a uniform
tension in plane stress. The depth of the cut has been chosen to be 1

6 of the total height of the
block. Figure 14 illustrates the problem. As in the previous example, the results corresponding
to the uniform meshing approach are presented before those obtained with the proposed adaptive
meshing strategy.

6.2.1. Uniform meshing. Table IV shows the bounds computed for six different uniform meshes.
Note that, in the last refinement, a very fine mesh consisting of 18432 elements is used. The
magnitude of these problems proves the capacity of the method to solve large, complex limit
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Figure 14. Geometry and loads for the slotted block problem in plane stress.

Table IV. Results for the slotted block problem in plane stress using uniform meshing.

Number of Number of Lower bound Upper bound Bound gap Maximum relative
refinements elements �∗LB

h �∗UB
h �h error, eh (%)

Uniform meshing
0 18 1.0414 1.5690 0.52765 20.213
1 72 1.1830 1.4408 0.25774 9.823
2 288 1.2352 1.3619 0.12662 4.876
3 1152 1.2553 1.3183 0.06303 2.449
4 4608 1.2639 1.2960 0.03206 1.252
5 18432 1.2679 1.2844 0.01643 0.644

analysis problems. Since the exact collapse multiplier solution is not known for this example, the
last column in the table corresponds to the maximum possible relative error, eh , associated with
the predictor, �prh (the average of the upper and lower bounds). Clearly, for each refinement, the
exact solution belongs to the interval �prh ±eh .

Figure 15 illustrates for different computational meshes. Note that the upper part of the domain
moves as a rigid body, sliding over the lower left region, which remains static. Moreover, the lower
right part is pushed horizontally by the upper region of the body. Finally, Figure 16 shows a linear
rate of convergence for the bound gap, �h .

6.2.2. Adaptive meshing. Nine refinements of the initial mesh have been considered, for which the
results are given, numerically, in Table V. These results are also shown, graphically, in Figure 19.
The adaptive meshing is found to capture the collapse mechanism very accurately, as can be
observed in Figures 17 and 18. Finally, Figure 20 shows the efficiency of the adaptive meshing
when compared with the uniform meshing. Indeed, the rate of convergence for the bound gap
is much higher in the adaptive case. Note also that in the sixth adaptive refinement, with 1550
elements, a bound gap of only 0.01515 is obtained. In the uniform meshing, the finer mesh yielded
a bound gap of 0.01643 and used 18435 elements. In the last adaptive refinement (5568 elements),
the bound gap reduces to 0.00490, which translates into a maximum error of 0.192%.
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Figure 15. Slotted block problem 1—deformed geometry using uniform meshing.
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Figure 16. Slotted block problem 1—convergence using uniform meshing.

Table V. Results for the slotted block problem in plane stress using adaptive meshing.

Number of Number of Lower bound Upper bound Bound gap Maximum
refinements elements �∗LB

h �∗UB
h �h error (%)

Adaptive meshing
0 18 1.0414 1.5690 0.52765 20.213
1 70 1.2181 1.4402 0.22206 8.353
2 254 1.2496 1.3615 0.11190 4.285
3 483 1.2593 1.3202 0.06095 2.363
4 714 1.2663 1.3028 0.03654 1.422
5 1082 1.2690 1.2907 0.02173 0.849
6 1550 1.2703 1.2855 0.01515 0.593
7 2538 1.2710 1.2808 0.00979 0.384
8 3564 1.2714 1.2785 0.00705 0.276
9 5568 1.2719 1.2768 0.00490 0.192
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Figure 17. Slotted block problem 1—deformed geometry using adaptive meshing.

Figure 18. Slotted block problem 1—adaptive meshing strategy: elements to be refined.
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Figure 19. Slotted block problem 1—bounds using adaptive meshing.
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Figure 20. Slotted block problem 1—comparison of adaptive meshing with uniform meshing.

Figure 21. Geometry and loads for the slotted block problem in plane strain.

6.3. Slotted square block in plane strain

Very similar to the second example, the slotted square block considered here has a cut of 1
4 of the

total height of the block, as shown in Figure 21, and is solved assuming plane strain. This example
is a classical problem and is well documented in the literature. In particular, it has been studied
in [11] (main reference), [4, 8, 10, 13, 25] or, more recently, in [17]. Although a rigorous exact
solution is not available, the extrapolated value �∗ =1.13156, derived in [11], is considered here
as a sufficiently accurate solution. This problem is very appropriate to achieve different purposes:
(i) verify the correctness of the method in plane strain; (ii) address convergence studies for various
cases; (iii) compare the results with those of other sources; and (iv) show the relevance that the
choice of the computational mesh might have on the accuracy of the results. In particular, to
illustrate the fourth point, the same problem is solved starting from three different initial meshes,
which are shown in Figure 22 and denoted by Th,1, Th,2 and Th,3. Clearly, the use of different
interpolation spaces will lead to different solutions. In particular, note that, in all the meshes, the
edges of the elements define preferential slip directions in the domain.
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Figure 22. Slotted block problem 2—deformed geometry using uniform meshing.

6.3.1. Uniform meshing. For the three meshes under consideration, the numerical results are
summarized in Table VI, and the collapse geometries are given in Figure 22. Moreover, Figures 23
and 24 show, respectively, the upper and lower bounds obtained and, also, the rate of convergence
for the bound gap as well as for the upper and lower bound relative errors. Note that the accuracies
obtained for the different meshes differ substantially. Indeed, in terms of bound gap and with
only half of the elements, Th,3 outperforms Th,2 which, in turn, works better than Th,1. These
results are not surprising, as explained next. Since the collapse mechanisms are typically highly
localized, one can expect better solutions if the preferential directions of the meshes match, or
are similar, to the slip-lines of the real mechanism. In this problem, two slip-lines exist. The
main one has its origin at the end of the cut and goes down to a point near the right boundary,
describing a logarithmic spiral. From this point, a second discontinuity develops following a
direction perpendicular to the previous main slip-line. Then, one expects Th,2 to work better than
Th,1, since its preferential direction is similar to the main slip-line of the mechanism, whereas
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Table VI. Results for the slotted block problem in plane strain using uniform meshing.

Number of Number of Lower bound Upper bound Bound Lower bound Upper bound
refinements elements �∗LB

h �∗UB
h gap �h error (%) error (%)

Uniform meshing with initial mesh Th ,1
0 32 0.9952 1.3688 0.37355 12.051 20.966
1 128 1.0760 1.2840 0.20797 4.910 13.472
2 512 1.1069 1.2240 0.11716 2.179 8.169
3 2048 1.1198 1.1862 0.06647 1.039 4.829
4 8192 1.1258 1.1641 0.03833 0.509 2.876

Uniform meshing with initial mesh Th ,2
0 32 0.9109 1.2444 0.33344 19.496 9.972
1 128 1.0341 1.2061 0.17193 8.613 6.587
2 512 1.0871 1.1784 0.09128 3.929 4.139
3 2048 1.1103 1.1601 0.04976 1.879 2.522
4 8192 1.1212 1.1489 0.02770 0.916 1.532

Uniform meshing with initial mesh Th ,3
0 16 1.11405 1.22888 0.114830 1.5478 8.6001
1 64 1.12690 1.20063 0.073735 0.4119 6.1044
2 256 1.13046 1.17785 0.047395 0.0973 4.0911
3 1024 1.13126 1.16057 0.029304 0.0262 2.5636
4 4096 1.13147 1.14956 0.018082 0.0076 1.5904

0 0.5 1 1.5 2 2.5 3 3.5 4
0.9

1

1.1

1.2

1.3

1.4

# of mesh refinements

up
pe

r 
an

d 
lo

w
er

 b
ou

nd
s

Upper bound
Lower bound
Predictor

0 0.5 1 1.5 2 2.5 3 3.5 4
0.9

1

1.1

1.2

1.3

1.4

# of mesh refinements

up
pe

r 
an

d 
lo

w
er

 b
ou

nd
s

Upper bound
Lower bound
Predictor

0 0.5 1 1.5 2 2.5 3 3.5 4
0.9

1

1.1

1.2

1.3

1.4

# of mesh refinements

up
pe

r 
an

d 
lo

w
er

 b
ou

nd
s

Upper bound
Lower bound
Predictor

Figure 23. Slotted block problem 2—upper and lower bounds using uniform meshing.

in Th,1 the preferential direction only matches the second, less important, slip-line. Finally, Th,3
has to be the best mesh, since more flexibility is introduced and the elements can slide in both
directions.

Besides the mesh phenomenon, it is also remarkable that the errors in the lower bound are
clearly inferior to the upper bound ones. This agrees with the observation made in the cantilever
example. In the same line, Figure 24 shows that the rate of convergence for the bound gap is,
for all cases, sub-linear, as was also observed in the cantilever example. This is due to the poor
convergence rate of the upper bound error, since the lower bound error converges, at least, linearly.
Note the extraordinary accuracy and rate of convergence obtained in the lower bound problem
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Figure 24. Slotted block problem 2—rates of convergence using uniform meshing.

Table VII. Results for the slotted block problem in plane strain using adaptive meshing.

Number of Number of Lower bound Upper bound Bound Lower bound Upper bound
refinements elements �∗LB

h �∗UB
h gap �h error (%) error (%)

Adaptive meshing with initial mesh Th ,1
0 32 0.9952 1.3688 0.37355 12.051 20.966
1 87 1.0708 1.2840 0.21321 5.370 13.472
2 291 1.1107 1.2240 0.11336 1.843 8.169
3 962 1.1213 1.1862 0.06484 0.907 4.829
4 2821 1.1265 1.1645 0.03802 0.447 2.911
5 6901 1.1290 1.1522 0.02320 0.226 1.824

Adaptive meshing with initial mesh Th ,2
0 32 0.9109 1.2444 0.33344 19.496 9.972
1 74 1.0514 1.2063 0.15494 7.084 6.605
2 262 1.1055 1.1784 0.07295 2.303 4.139
3 807 1.1195 1.1601 0.04063 1.066 2.522
4 2065 1.1256 1.1491 0.02346 0.527 1.550
5 4621 1.1286 1.1428 0.01421 0.261 0.993

Adaptive meshing with initial mesh Th ,3
0 16 1.11405 1.22888 0.114830 1.5478 8.6001
1 38 1.12425 1.20063 0.076386 0.6462 6.1044
2 114 1.13035 1.17830 0.047951 0.1068 4.1309
3 397 1.13126 1.16087 0.029602 0.0261 2.5899
4 1089 1.13147 1.15011 0.018635 0.0076 1.6392
5 2716 1.13153 1.14347 0.011947 0.0029 1.0528
6 5913 1.13154 1.13902 0.007480 0.0021 0.6589

for the mesh Th,3: after four refinements, the lower bound error is only 0.0076% and its rate of
convergence is found to be quadratic.

6.3.2. Adaptive meshing. When mesh adaptivity is used, previous observations are even more
valid. In this aspect,Th,3 continues to behave clearly better thanTh,2 andTh,1, as can be observed
in Table VII and Figures 26 and 27. Also, the upper bound is consistently less accurate than the
lower bound and has a worst convergence rate. Furthermore, Th,3 yields an outstanding accuracy
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Figure 25. Slotted block problem 2—deformed geometry using adaptive meshing.

for the lower bound, with a final relative error of only 0.0021%. It is interesting to compare,
in Figure 25, the meshes Th,1 and Th,2 after five refinements. Note that, in the first case, the
refinement is principally concentrated in a wide region around the main slip-line (the one starting
from the cut and going down to the right side), and less refinement is performed around the second
slip-line (the one in the lower right corner). However, in Th,2, the refinement is very thin around
the main slip-line, and a dense refinement is necessary to capture the second slip-line, whose
direction is perpendicular to the diagonal edges of the mesh. This clearly agrees with the expected
relevance of the preferential directions.

Figure 27 compares the rate of convergence for both the lower bound error and the bound gap,
for the three meshes considered under uniform and adaptive meshing. Clearly, mesh adaptivity
permits gains in both accuracy and convergence. Also, the impact of the initial mesh is proved.
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Figure 26. Slotted block problem 2—bounds using adaptive meshing.
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Figure 27. Slotted block problem 2—comparison of adaptive meshing with uniform meshing.

6.3.3. Comparison of the results with other approaches. The results obtained for this example are
now compared with those given in two recent sources [11, 17].

In Reference [11], a mixed formulation stress velocities is used to approximate, but not bound,
the collapse multiplier. Linear, continuous interpolations are chosen for both the stresses and the
velocities on a triangular finite element mesh whose triangles are oriented as in the mesh Th,2.
The best estimate obtained for �∗ is 1.13582, for a mesh of 115 200 elements. When using a
coarser mesh of 7200 elements, the estimate is 1.1485. Note that this value is worse than the
upper bound obtained when adaptive meshing is applied to the initial mesh Th,2. Indeed, with
only 4621 elements, the value obtained is 1.1428. Moreover, the method proposed in this article
yields a strict upper bound, as opposed to just an approximation. The rate of convergence in [11]
is linear, which coincides with our results.

In [17], the problem is solved using a lower bound formulation based on a discontinuous,
piecewise linear interpolation of the stresses (the same formulation used here for the lower bound
problem). The initial mesh considered is of type Th,3, which explains the quadratic rate of
convergence reported when refining the mesh uniformly. Recall (see Figure 24) that this result is
only a consequence of the mesh. Indeed, for the lower bound case, the same formulation yields a
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Table VIII. Computational cost of solving the lower and upper bound problems for the finest uniform and
adaptive meshes used in all previous examples.

Lower bound problem Upper bound problem

No. of No. of No. of No. of No. of
Example Meshing elements equations variables SeDuMi SDPT3 equations variables SeDuMi

Cantilever Uniform 8704 122176 130561 1:57 4:18 52384 69633 0:21
Adaptive 5506 77252 82591 1:07 1:27 33120 44049 0:14

Block1 Uniform 18432 258496 276481 — 11:12 110816 147457 1:22
Adaptive 5568 78058 83521 1:07 1:27 33461 44545 0:14

Beam Uniform 6912 76432 82945 2:35 10:26 102864 123201 1:31
Adaptive 4788 52858 57457 1:51 7:05 71538 85713 0:53

Block2-Th,1 Uniform 8192 90432 98305 — 25:09 122176 146433 1:38
Adaptive 6901 75979 82813 — 21:43 103243 123879 1:10

Block2-Th,2 Uniform 8192 90432 98305 — 26:27 122176 146433 1:36
Adaptive 4621 50929 55453 — 11:31 69073 82839 0:43

Block2-Th,3 Uniform 4906 45216 49153 — 8:16 61088 73217 0:38
Adaptive 5913 65079 70957 — 14:30 88559 106263 0:56

Note: For the cases not solved, SeDuMi ran into numerical problems.

linear rate of convergence when using Th,1 or Th,2, whereas Th,3 gives quadratic convergence.
Since the formulation in [17] coincides with the lower bound approach presented in this article, the
numerical results are the same when uniform meshing is used. However, when adaptive meshing is
considered, considerable gains are obtained. For instance, with 2716 elements, the present approach
yields a lower bound of 1.13153 (error of 0.0029%), whereas in [17], 5776 elements are needed
to obtain a worse lower bound of 1.13150 (0.0052% error).

6.4. Computational cost of previous examples

This section gives an indication of the computational cost required to solve both the lower and the
upper bound problems for the finest uniform and adaptive meshes used in all previous examples.
To solve the bound problems, the free software SeDuMi 1.05R5 and SDPT3-3.02 were used in
Matlab 6.5.1 on a Pentium R©4 2.53GHz desktop PC. For both cases, the NT search direction was
considered (see Section 3).

Table VIII shows, for each example, the number of elements in the meshes considered, the
number of equations and variables as well as the time (in minutes and seconds) required to solve
the optimization problems.

When solving the problems, SDPT3 was very robust and it always yielded optimal solutions.
On the other hand, for some cases and always for the lower bound problem, SeDuMi ran into
numerical difficulties that stopped the solution process. Possible reasons for this behavior has been
studied in [19]. For the cases where SeDuMi could solve, it was systematically faster than SDPT3.

Note that examples of considerable size can be solved. For instance, the finest uniform mesh
in the second example (Block1) consists of 18432 elements resulting in matrices of dimensions
(258496,276481) (lower bound) and (110816,147457) (upper bound), leading to the bound
problems being solved in only 11min 12 s and 1:22 s, respectively. For the adaptive case, matrices
of dimensions (78058,83521) and (33461,44545) were addressed in 1:07 and 0:14 s.
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7. CONCLUSIONS

The paper has presented a methodology for the evaluation of strict upper and lower bounds in limit
analysis for convex yield criteria using SOCP. Applications have been presented in plane stress
and strain using linear finite element interpolation spaces. For the lower bound evaluation, static
interpolation spaces have been used in which the stresses are piecewise linear but discontinuous
across element edges and displacement fields are piecewise constant. Action and reaction equili-
brium across element edges is enforced by means of linear displacement fields acting as Lagrange
multipliers. In the case of the upper bound evaluation, the interpolation spaces are reversed and
linear displacements fields are used together with constant stresses in each element. For plane strain
applications, the incompressibility constraint requires the displacement fields to be discontinuous
across element edges with the impenetrability constraint being enforced via linear traction Lagrange
multipliers on element edges. Similar displacement fields could be used for plane stress, but the
size of the problem is significantly reduced by using continuous displacement interpolation fields
across elements.

The paper has shown that the gap between upper and lower bounds can be expressed as a sum
of positive elemental contributions. The relative values of these contributions can then be used to
derive a nested mesh adaptivity procedure to ensure that the gap is closed to within a prescribed
tolerance. Examples demonstrating this process and the resulting improved rate of convergence
have been given for both plane stress and plane strain applications.

APPENDIX A: DISCRETIZATION OF THE EQUILIBRIUM EQUATIONS
FOR THE UPPER BOUND PROBLEM

A.1. Equilibrium constraint in plane stress

To discretize the equilibrium equation a(r,u)=�F(u),∀u∈Y , where a(r,u) is given in (2), one
replaces the stresses, r, and velocities, u, by their global interpolations (54) and (56), respectively

a(r,u)=�F(u) 
⇒
2∑

i, j=1

∫
�

�i j
�ui
�x j

dV =�
2∑

i=1

(∫
�
fi ui dV +

∫
�N

giui dS

)
(A1)

E∑
e=1

N∑
A=1

2∑
i, j=1

∫
�

�ei j�e(x)u
A
i

��A(x)
�x j

dV =�
N∑

A=1

2∑
i=1

uA
i

(∫
�
fi�A(x)dV+

∫
�N

gi�A(s)dS

)
(A2)

where �A(s) is the restriction of �A(x) to the boundary �N. Taking into account that the stress
shape function �e(x) is equal to 1 inside the element �e and vanishes outside, (A2) can be
simplified as follows:

E∑
e=1

N∑
A=1

2∑
i, j=1

∫
�e

�ei j u
A
i

�Ne
A(x)

�x j
dV =�

N∑
A=1

2∑
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i

E∑
e=1

(∫
�e

fi N
e
A(x)dV +

∫
�Ne

gi N
e
A(s)dS

)
(A3)

Note that �A(x) has been substituted by Ne
A(x) because the integrals are now restricted to the

elements. To avoid a cumbersome notation, the global nodal index A has been maintained in the
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local shape functions. In matrix form, and using the notation Ne
a,i =�Ne

a (x)/�xi , where i=1 :2,
(A3) reads as follows:

E∑
e=1
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A=1

(uA
1 ,uA

2 )
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or, equivalently,

E∑
e=1

N∑
A=1

(uA
h )TBe

A
�̃eh =�

N∑
A=1

(uA
h )TF A

h (A6)

Finally, the above expression can be expressed in a more compact form by using global matrices
and vectors:

(uh)
TAeq�̃h =�(uh)

TFeq
h (A7)

where

Aeq=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1
1

B2
1

· · · · · · BE
1

B1
2

B2
2

· · · · · · BE
2

...
. . .

...

...
. . .

...

B1
A

· · · · · · · · · BE
A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, uh =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1h
...

uA
h

...

uN
h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, �̃h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̃1h
...

�̃eh
...

�̃E
h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Feq
h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1
h

...

F A
h

...

FN
h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A8)

Clearly, the dimensions of the matrix Aeq are (2×A,3×E). Since Equation (A7) must be satisfied

∀uh ∈YUB
h , one can eliminate the nodal displacement vector uh , thereby obtaining the following

global equilibrium equation:

Aeq�̃h =�Feq
h (A9)
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A.2. Equilibrium constraint in plane strain

In plane strain, the weak form of equilibrium is given by

a(r, t,u)=�F(u) ∀u∈Y

2∑
i, j=1

∫
�

�i j
�ui
�x j

dV︸ ︷︷ ︸
1

+ ∑
�e

′
e ∈EO

2∑
i ′=1

∫
�e

′
e

t
�e

′
e

i ′ (ue
′
i ′ −uei ′)dS

︸ ︷︷ ︸
2

=�
2∑

i=1

(∫
�
fi ui dV +

∫
�N

giui dS

)
︸ ︷︷ ︸

3

∀u∈Y

(A10)

To discretize (A10), one inserts interpolations (57) (for uh), (58) (for rh) and (59) (for th). Note
that the terms (1) and (3) in the above equation are the same as in the plane stress case.

Using (57) and (58), term (1) results in the following expression:

E∑
e=1

3∑
a=1

(ua,e
1 ,ua,e

2 )

⎛
⎜⎜⎝
∫

�e
Ne
a,1 dV 0

∫
�e

Ne
a,2 dV

0
∫

�e
Ne
a,2 dV

∫
�e

Ne
a,1 dV

⎞
⎟⎟⎠
⎛
⎜⎝

�e1

�e2

�e3

⎞
⎟⎠

=
E∑

e=1

(
3∑

a=1
(ua,e

h )TBe
a

)
�̃eh =

E∑
e=1

(u1,e,u2,e,u3,e)

⎛
⎜⎜⎝
Be
1

Be
2

Be
3

⎞
⎟⎟⎠ �̃eh

=
E∑

e=1
ueBe�̃eh =(ũh)

T Ãeq1�̃h (A11)

where ũh is a vector collecting the 6×E nodal displacements, Ãeq1 is a matrix of dimensions
(6×E,3×E) and �̃h is a 3×E vector of elemental stresses (the same as in (A8)).

Regarding term (3), using (57) one obtains

E∑
e=1

3∑
a=1

(ua,e
1 ,ua,e

2 )

⎛
⎜⎜⎜⎝
∫

�e
f e1 N

e
A(x)dV +

∫
�Ne

g
�Ne
1 Ne

A(x)dS

∫
�e

f e2 N
e
A(x)dV +

∫
�Ne

g
�Ne
2 Ne

A(x)dS

⎞
⎟⎟⎟⎠=

E∑
e=1

(
3∑

a=1
(ua,e

h )TF h
e
a

)

=
E∑

e=1
(u1,e,u2,e,u3,e)

⎛
⎜⎝
F h

e
1

F h
e
2

F h
e
3

⎞
⎟⎠=

E∑
e=1

ueF h
e=(ũh)

T F̃ h
eq (A12)

where F̃ h
eq is a vector of 6×E discontinuous nodal forces.
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Let n�e
′
e and s�

e′
e be orthonormal vectors, following the directions x1′ and x2′ , respectively,

but expressed in the conventional rectangular coordinates x1−x2. Thus, term (2) can be
rewritten as

∑
�e

′
e ∈EO

∫
�e

′
e

(t
�e

′
e

1′ , t
�e

′
e

2′ )

⎛
⎝(ue

′
h −ueh) ·n�e

′
e

(ue
′
h −ueh) ·s�

e′
e

⎞
⎠dS

= ∑
�e

′
e ∈EO

∫
�e

′
e

(t
�e

′
e

1′ , t
�e

′
e

2′ )

⎛
⎜⎝n

�e
′
e

1 n
�e

′
e

1



�e

′
e

1 

�e

′
e

1

⎞
⎟⎠

︸ ︷︷ ︸
M�e

′
e

(
ue

′
1 −ue1

ue
′
2 −ue2

)
dS (A13)

To simplify the notation in the following expressions, the edge �e
′
e will be denoted as �.

Moreover, the interpolation of the displacements on the edge considered will be expressed
as follows:

uei (s)=u�1
i N�

1 (s)+u�2
i N�

1 (s), ue
′
i (s)=u

�1
i N�

1 (s)+u
�2
i N�

1 (s), i=1 :2 (A14)

Now, introducing in (A13) interpolations (59) for th , and (A14) for ueh and ue
′
h , one has

∫
�
(t1,�1′ N�

1 + t2,�1′ N�
2 , t1,�2′ N�

1 + t2,�2′ N�
2 )M�

⎛
⎝(u

�1
1 −u�1

1 )N�
1 +(u

�2
1 −u�2

1 )N�
2

(u
�1
2 −u�1

2 )N�
1 +(u

�2
2 −u�2

2 )N�
2

⎞
⎠dS (A15)

Expanding (A15), one obtains

(t1,�1′ , t1,�2′ )B�
11

⎛
⎝u

�1
1 −u�1

1

u
�1
2 −u�1

2

⎞
⎠+(t1,�1′ , t1,�2′ )B�

12

⎛
⎝u

�2
1 −u�2

1

u
�2
2 −u�2

2

⎞
⎠

+(t2,�1′ , t2,�2′ )B�
12

⎛
⎝u

�1
1 −u�1

1

u
�1
2 −u�1

2

⎞
⎠+(t2,�1′ , t2,�2′ )B�

22

⎛
⎝u

�2
1 −u�2

1

u
�2
2 −u�2

2

⎞
⎠ (A16)

where B�
i j

=M� ∫
� N

�
i N

�
j dS, for i, j =1 :2. Now, the local displacements have to be related to

the global vector of displacements ũh . This is done by means of two matrices, A�
1
and A�

2
, of

dimensions (2,6×E):⎛
⎝u

�1
1 −u�1

1

u
�1
2 −u�1

2

⎞
⎠= A�

1
ũh,

⎛
⎝u

�2
1 −u�2

1

u
�2
2 −u�2

2

⎞
⎠= A�

2
ũh (A17)
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Finally, doing the necessary algebra, (A16) results in the following expression:

(ũh)
T ((A�

1
)T(A�

2
)T)

⎛
⎝(B�

11
)T (B�

12
)T

(B�
12

)T (B�
22

)T

⎞
⎠

︸ ︷︷ ︸
Aeq2

�

⎛
⎜⎜⎜⎜⎜⎜⎝

t1,�1′

t1,�2′

t2,�1′

t2,�2′

⎞
⎟⎟⎟⎟⎟⎟⎠=(ũh)

TAeq2
�

t�h (A18)

Expression (A18) gives the contribution of the edge �e
′
e to term (2). The last step is to sum over

all the internal edges as follows:

∑
�e

′
e ∈EO

(ũh)
TAeq2

�e
′
e

t
�e

′
e

h =(ũh)
T Ãeq2th (A19)

where Ãeq2 is a (6×E,4×|EO|) global matrix and th is a 4×|EO| vector collecting the nodal
tractions for each interior edge.

Finally, considering (A11), (A12) and (A19), the discretization of the equilibrium constraint
(A10) takes the following form:

(ũh)
T Ãeq1�̃h+(ũh)

T Ãeq2th =�(ũh)
T F̃ h

eq ∀ũh ∈YUB
h (A20)

Since (A20) must hold for all uh in YUB
h , the displacement vector can be removed from the

equation, thereby obtaining

Ãeq1�̃h+ Ãeq2th =�F̃ h
eq (A21)
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