
An Empirical Study of the Complex
Relationships between Requirements

Engineering Processes and Other Processes
that Lead to Payoffs in Productivity, Quality,

and Risk Management
Daniela Damian and James Chisan

Abstract—Requirements engineering is an important component of effective software engineering, yet more research is needed to

demonstrate the benefits to development organizations. While the existing literature suggests that effective requirements engineering

can lead to improved productivity, quality, and risk management, there is little evidence to support this. We present empirical evidence

showing how requirements engineering practice relates to these claims. This evidence was collected over the course of a 30-month

case study of a large software development project undergoing requirements process improvement. Our findings add to the scarce

evidence on RE payoffs and, more importantly, represent an in-depth explanation of the role of requirements engineering processes in

contributing to these benefits. In particular, the results of our case study show that an effective requirements process at the beginning

of the project had positive outcomes throughout the project lifecycle, improving the efficacy of other project processes, ultimately

leading to improvements in project negotiation, project planning, and managing feature creep, testing, defects, rework, and product

quality. Finally, we consider the role collaboration had in producing the effects we observed and the implications of this work to both

research and practice.

Index Terms—Requirements engineering, process improvement, process interactions, empirical investigation.

Ç

1 INTRODUCTION

REQUIREMENTS engineering (RE)—the elicitation, defini-
tion, and management of requirements—is often cited

as one of the most important, but difficult, phases of
software development [4]. Attention to upfront require-
ments activities has been said to produce benefits such as
preventing errors, improving quality, and reducing risk
throughout software development projects [4], [28]. Studies
conducted by the Standish Group [33] found a striking
74 percent project failure rate, while 28 percent of projects
were cancelled completely. The study suggests that the top
factors of failure are related to requirements problems,
including lack of user input, lack of a clear statement of
requirements, and incomplete and changing requirements.

However, this study is based on a survey of past projects

and concrete evidence based on systematic studies of the

role of good RE practice in software development is very

limited [9]. This becomes problematic both for research on

the fundamentals of software engineering and RE research

exchange with practitioners. Panels of researchers and

practitioners at major international conferences on require-
ments engineering have repeatedly considered the topic of
RE research adoption (e.g., [1], [21]). One of the major
issues they identified is the lack of concrete knowledge of
what organizations can gain from applying state-of-the-art
requirements approaches [21].

In this paper, we present research toward filling the gap
between claims in the literature and requirements engineer-
ing practice. We conducted a 30-month explanatory case
study at an organization that had revised its RE process
(REP) and which provided us with the opportunity to
assess the effects of improved RE over an entire project
lifecycle. The evidence collected enabled us to explain how
RE processes played a part in improving developer
productivity, product quality, and project risk management.
The case study was conducted in three separate stages.
Earlier publications of our research report findings from the
first two stages, in particular, the perceived benefits of the
improved RE practice in the early [6] as well as the
downstream [7] stages of development in the studied
organization.

Here, we discuss evidence from the third stage of our
three-stage case study. In this stage of our research, we
sought to understand how the RE process can interact with
other processes and how this interaction may have
contributed to the effects we observed earlier in our study.
We present the evidence from this work in the context of the
entire research study and specifically build on the findings

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 7, JULY 2006 433

. The authors are with the Department of Computer Science, Engineering/
Computer Science Building (ECS), Room 504, University of Victoria, 3800
Finnerty Road, Victoria, BC, Canada V8P 5C2.
E-mail: danielad@cs.uvic.ca, james@chisan.com.

Manuscript received 10 June 2005; revised 17 May 2006; accepted 1 June
2006; published online 9 Aug. 2006.
Recommended for acceptance by N. Maiden.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0179-0605.

0098-5589/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

of the earlier research stages in explaining the role played
by the improved RE practice in producing these benefits.

The contribution of the paper is twofold: 1) We report on
the study of the impact of the RE process and other
processes as practiced at a commercial software develop-
ment organization and 2) we provide a detailed explanation
of how improvements in RE practice can lead to improve-
ments in productivity, quality, and risk management. In
providing this explanation, we construct a map that shows
the perceived benefits as reported in our earlier publica-
tions and the complex interaction between the RE process
and other processes that contributed to the identified
benefits. Specifically, we unveil a rich interaction between
requirements engineering and other development processes
such as project planning, testing, and development,
ultimately leading to payoffs in productivity, quality, and
risk management. We also describe how certain aspects of
the REP improvement have contributed more significantly
to this interaction. Finally, we consider the role of
collaboration in producing the effects we observed and
the implications of this work to both research and practice.

In Section 2, we review the limited evidence that exists
about RE payoffs and, in particular, discuss expected benefits
as a result of rigorous RE practice. Section 3 describes our
overall research question and the methodology we used to
develop an understanding of the relationship between
improved RE processes and improvements in software
development within the organization. Section 4 provides
background information on the organization where we
conducted the research, its revised REP, and the evidence
we collected in our earlier stages of research and which
indicated that improvements in REP were related to gains in
productivity, product quality, and risk management. Sec-
tion 5 explicitly summarizes this evidence. Section 6 describes
the more in-depth investigation of the interaction between the
RE process and other software processes in the organization.
Section 7 discusses in detail how this interaction represents a
complex relationship between the improved REP and
improvements summarized in Section 5. We finally look at
this research’s implications for research and practice in
Section 8. Section 9 discusses the threats to the validity in our
research and issues of generalizability of these findings to
other software organizations.

2 RELATED WORK

In spite of the claims in the literature that requirements
engineering is positively associated with benefits to project
management, downstream development, and software
quality, e.g., [1], [4], empirical evidence of such payoffs in
practice is very limited. Notable exceptions include data
released by NASA suggesting that time spent on
RE activities negatively correlates with project cost and
schedule overruns ([9, p. 45]). However, this study provides
only a high-level statistical comparison, without exploring
how REP may have contributed to these effects during the
development life cycle.

We reviewed the literature on requirements engineering
and found a number of reports on RE process improvement
[5], [10], [16], [18], [19], [20], [29], [35]. These reports provide
details of the improvement process as well as lessons

learned from the improvement initiatives. Kauppinen et al.
[18], [19], [20] report from a study of four Finish organiza-
tions that had introduced requirements engineering to their
product development and discuss the organizations’ suc-
cesses factors and challenges. One of their main insights is
that REP improvement requires culture change in the
organization and not merely a change in process or
supporting technology. Kauppinen et al. also report that
REP implementation is a demanding undertaking whose
success depends on human factors such as motivation,
commitment, and enthusiasm. Similarly, Claus et al. [5]
report on REP improvement at a large German organization
and identify that a key to promoting process acceptance is
the involvement of all project members, including manage-
ment. A more detailed report on REP improvement at
Ericsson Eurolab, by Jacobs [16], describes an REP
improvement that emphasized structuring requirements
and breaking each requirement into subrequirements. This
resulted in a major change in the organization’s attitude
toward requirements engineering. The authors emphasize
not only the change in the designers’ behavior but also an
interaction with other processes in the organization that
could have contributed to this effect. Specifically, as a result
of better understanding the customers’ requests, the process
of communication with customers was improved, as well as
the processes of software inspections being made more
formal and becoming more effective in identifying faults in
the system.

The conclusion we draw from these reports is that
requirements engineering activities are bound tightly with
other system engineering activities and that a complex
interaction between REP and other processes in the
organization may exist. As a result, it becomes difficult to
measure the REP improvement benefits in isolation,
particularly before a project has been completed. It is
difficult to control and understand the effects of REP over
the course of a nontrivial development project, making the
empirical study of RE very difficult. This may also explain
why organizations that implement process improvements
rarely measure the costs and benefits of RE activities—
compounding the scarcity of comparative data [2], [9].

Social factors also play an important role in RE [17].
Project and requirements knowledge is being created and
manipulated through collaboration processes rooted in
social and organizational practices that influence how
information about requirements is communicated and
managed throughout the development life-cycle. Conse-
quently, introducing new or revised RE methods can rest on
promoting cultural change by strategically managing
concerns process adoption [20], [21]. RE practice and its
success thus has to be understood not only from a systems
development perspective, but also from a social and
organizational context. Quantitative assessment of RE
improvements needs to be complemented by qualitative
and subjective assessment based on levels of satisfaction of
developers and managers, as well as clients involved in the
RE practice [5], [20].

A broader examination of the literature on process
improvement suggests that implementing REP improve-
ment can lead to specific beneficial outcomes. These

434 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 7, JULY 2006

outcomes are often described by process improvement
models such as the CMM [31], ISO/IEC 15504 [14], and the
process capability model developed by Sommerville and
Sawyer [32]. These models all suggest that rigorous
requirements engineering processes lead to increases in
productivity, enhanced quality, and improved risk manage-
ment. Unfortunately, they provide few details on how these
benefits are realized or how they can be measured.

For insight on how productivity, quality, and risk
management can be operationalized in the context of REP
improvement, we considered the following work:

Developer productivity is cited often, usually as it
pertains to increases in efficiency, such as preventing the
need for implementation rework or lowering the cost of
development. Lauesen and Vinter [22] consider RE perfor-
mance strictly in terms of hours saved when comparing
particular RE techniques, such as user scenarios and
performance specification. In contrast, Wohlwend and
Rosenbaum [36] provide a much simpler test, reporting
that RE can be considered successful when software
delivery is ontime.

The literature also suggests that enhancing quality
through REP improvements leads to software that is more
likely to be technically correct and satisfactory to customers.
Herbsleb and Goldenson [12] report that mature organiza-
tions, according to the CMM, exhibited significant improve-
ments in product quality and customer satisfaction.
Similarly, after software improvement initiatives at Schlum-
berger, engineering teams that had formally been plagued
with delivering incomplete functionality began to ship
software that was “correct” [36].

Although productivity and quality are important factors
in the development of software, Brodman and Johnson [3]
found that many companies seek to implement software
process improvements primarily to reduce their exposure to
risk, rather than to optimize their software production. The
companies they surveyed expressed a clear interest in the
accurate assessment of costs and scheduling and in
decreasing the variability of project success and perfor-
mance. Although costs and scheduling can be considered
productivity concerns, forecasting during the initial stages
of a project is clearly a matter of risk management [13] and
is tightly related to activities of requirements management.
As Paulk [27] notes, both the CMM and ISO share the same
goal, to “consistently improve project performance,” im-
plying that both models reduce variability across projects.

Finally, there is little doubt that these effects, in turn,
have an impact on the people who realize them, exemplify-
ing the importance of perception among engineers. For
example, Wohlwend and Rosenbaum [36] note that, after
successful software improvements, developer morale im-
proved significantly. Others [3] suggest that companies
have also found that less overtime leads to improved
confidence, less turnover, and increased intraorganizational
cooperation. Hall et al. [11] specifically link improved REPs
to better staff retention rates, while Humphrey et al. [13]
found that “Pride [from continuous improvement] feeds on
itself ... leading to success.” However, the details of the
relationship between RE and the benefits ascribed to it are
still an outstanding research question that challenges our

more complete understanding of the role of RE in software
development. Software engineering researchers and practi-
tioners are in need of systematic empirical studies on the
benefits of rigorous RE practice throughout the entire
software life-cycle and they require detailed accounts of
how these benefits were realized as a result of improvements
in RE. The research presented in this paper seeks to answer
this question by providing a detailed account of how REP
affected other development processes and how the entangle-
ment of processes helped produce the perceived benefits in
productivity, quality, and risk management.

3 RESEARCH QUESTIONS AND RESEARCH

METHODOLOGY

The evidence discussed in this paper is from our case study
designed to examine the effects of RE at the Australian
Center for Unisys Software (ACUS), an organization that
improved its software processes with a focus on redefining
their requirements engineering process. The goal of our
research was to study a project through its complete
development cycle immediately following their software
process improvement initiatives. In particular, we designed
an explanatory case study [37] in which existing theories
about the effects of “good” RE in software development,
namely, improvements in productivity, quality, and risk
management, guided our investigation of the role of RE in
software practice. To address the following research
question:

How do improvements in requirements engineering processes relate
to improvements in productivity, quality, and risk management?

we intended to observe how RE affected software develop-
ment at ACUS and explain how these effects were realized.

The case study was conducted over a 30-month period
(August 2001-February 2004) and, due to the extended and
complex nature of the case study, our investigation was
conducted in three separate stages. Although we only
provide detailed findings from the third stage in this paper,
we present here the detailed research questions that guided
each stage, the kind of data collected, and when, within the
software project lifecycle, it was collected. The detailed
explanation we construct in order to answer our overall
research question draws upon data from all three case study
stages. Therefore, providing thorough background informa-
tion about our research methodology is important in
understanding the contributions of this paper.

Although similar data collection methods were used
throughout the study, each stage had unique characteristics
that resulted in slight variations in methods. The methods
used in all stages included questionnaire, interviews, and
document inspection. The requirements process documen-
tation was studied, as well as other (current and historical)
project information. This being the first time the require-
ments process was rigorously defined at ACUS, historical
data was very limited and, instead, we relied on the
extensive professional experience of ACUS engineers to
provide comparison to previous practice. ACUS is a
company with low employee turnover, so most of these
participants were very familiar with the history of the
product and, most importantly, of the requirements

DAMIAN AND CHISAN: AN EMPIRICAL STUDY OF THE COMPLEX RELATIONSHIPS BETWEEN REQUIREMENTS ENGINEERING... 435

management process during the last 15 years. The majority

of the evidence was collected anonymously to protect

respondents from the scrutiny of the organization. In

particular, the names of participants were unknown to

ACUS senior management to allay any concerns partici-

pants may have had about providing honest responses.

Further details about data collection and analysis methods

for each stage are provided in Sections 5 and 6.
The first research stage was designed to answer the

question:

1. How do improvements in the RE practice impact the
early stages of development?

Early in the lifecycle, we expected immediate benefits to

include enhanced estimation ability, project scope negotia-

tion, and increased problem understanding. Data collection

and analysis took place in the first eight project months

before design began.
The second stage was designed to answer the questions:

2. How do improvements in the RE practice impact the
downstream development stages?

3. Which components of the RE process were more
significant in contributing to this impact?

At this stage, we expected benefits to include less

implementation rework, increased product quality, and

reduced exposure to risk. This stage collected and analyzed

data near the end of the project when development was

nearly complete.
Recognizing the complexity of interactions between the

requirements engineering and other development processes

at ACUS, we realized that it would be rather difficult to

attribute these effects solely to the REP. While a systematic

investigation of direct impact of confounding factors was

outside the scope of this study, this stage was designed to

answer the question:

4. How could the interaction between REP and other
processes have contributed to these results?

This final investigation was pursued after product deploy-

ment to customers.
The results of our entire case study are summarized in an

interaction map, of which graphical representation is

presented in Fig. 1. By combining evidence from all stages

in the research, an answer to our main research question

emerged. We identified a complex but positive relationship

between improvements in the RE process and other

processes at ACUS and benefits in the early stages of

development, in downstream development, and in post-

deployment software quality.
We proceed by discussing our research setting: the

company and its RE process improvement program. We

then briefly introduce, in Section 5, the findings from the

first two stages in our research, namely, the perceived

payoffs of the RE practice in early and downstream

development at ACUS (described in detail in [6], [7]). In

this paper, however, the emphasis is placed on providing a

comprehensive explanation of the role that improvements

in REP played in creating these payoffs. Section 6 details the

third stage of our research that investigated the interaction

between the REP and other processes that resulted in the

observed RE payoffs. The evidence from this stage of our

case study is presented for the first time here. It represents

an essential component in constructing an explanation of

the role of requirements engineering in producing these

payoffs. Besides this evidence, the major contribution of this

paper is this explanation (together with the graphical

436 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 7, JULY 2006

Fig. 1. A rich interaction between the REP and other development processes contributed to gains in productivity (communication, rework), quality

(defects), and risk management (estimations, feature coverage, negotiation, requirements creep). Observed payoffs are shown on the periphery.

representation in Fig. 1), which draws upon the analysis of
evidence from all three stages of our research.

4 RESEARCH CONTEXT: THE COMPANY AND ITS

RE PROCESS IMPROVEMENT PROGRAM

In this section, we describe the research setting, the
company, and its program for improving its requirements
engineering processes.

4.1 The Company, Challenges in Requirements
Practice, and a Revised RE Process

This research was conducted at ACUS. ACUS is a
130 employee software development center within a multi-
site organization with product management and marketing
divisions in the US (hereafter referred to as their marketing
unit) and customers worldwide. ACUS has developed a
successful software product line with a 20-year history. It is
a large multiplatform product, approximately 4 million
lines of code, written in various languages, including Java,
C++, Cobol, and Smalltalk. This software is an application
development platform supporting the development of
enterprise-scale, transaction intensive applications. It is
typically customized by customers or third party devel-
opers before being usable by end users. The product has a
core architecture and each new release adds features that
address important customer needs.

For ACUS, new features are normally requested by a US-
based marketing unit which acts as a surrogate customer,
expressing both market needs and strategic corporate
concerns. Although there is no direct access to users during
development, ACUS does provide support and receives
feedback from customers after deployment.

In August 2001, ACUS engaged in a software process
improvement initiative to reach CMM Level 2. RE was
identified as the primary Key Process Area in need of
improvement. Prior to this initiative, ACUS effectively had
no well-defined RE process. Despite having major stake
holders spread across several continents (e.g., North
America, Australia, Europe), the product development
group had limited experience with formal requirements
management processes. As a result, ACUS faced significant
challenges. Projects at ACUS typically suffered from
significant requirements creep, schedule overruns, and cost
overruns. ACUS management had difficulty understanding
the requested features and providing reasonably accurate
development estimates. Managers at ACUS cited ineffective
negotiations between ACUS and their marketing unit.
Ineffective negotiations made it difficult to align develop-
ment capacities and marketing needs. In particular, their
requirements practice suffered in the following ways:

. Requirements were provided to ACUS in the form of
one or two line “system features.”

. Once communicated, there were instances where
features were not fully defined or documented,
providing insufficient information to developers.

. Any collective understanding about features was
largely disseminated by word of mouth.

. Individual designs depended heavily on the de-
signers’ interpretation of those feature requests.

. Inadequate requirements management and control
compounded these problems by enabling the US
marketing unit to demand new features late into the
development cycle.

With strong support from the management, the organiza-
tion developed an RE process that sought to specifically
address these challenges. The revised process defined a
distinct, discrete phase of the project during which
requirements would be elicited, analyzed, and negotiated.
When this requirements phase had ended, requirements
were to have been agreed on, committed to, and then
baselined during project planning. Subsequent require-
ments changes would only be allowed after being approved
in a formal requirements management process. The new
REP consisted of the following components:

1. Feature Decomposition into technical requirements.
Requested features were analyzed in the context of
the existing product architecture and derived into
detailed technical requirements. Each analysis was
led by a designated developer involved with the
design of similar features in the past and moderated
by the project manager in a Group Analysis Session
(as in 3 below).

2. Requirements Traceability. Traceability links from
(technical) requirements to requirements rationale,
design documents, and test scenarios were created in
the Requirements Document by the project manager.
These links were identified and discussed and agreed
upon in Group Analysis Sessions (as in 3).

3. Group Analysis Sessions were organized on a weekly
basis to carry out feature decomposition and
typically attended by 6-10 engineers. They played a
central role in the revised REP, as feature decom-
position, as well as test scenario and traceability
links, were all carried out and/or identified during
these meetings.

4. Cross Functional Teams were formed to participate in
the Group Analysis Sessions.1 These teams were
composed of personnel from different functional
departments (i.e., design, code, test, and product
information).

5. Structured Requirements. The requirements documen-
tation included information on the requested fea-
tures and their associated detailed technical
requirements (as derived during the group analysis
sessions). Each requirement specified its rationale,
test scenario(s), and traceability links to rationale
and test scenario(s). These documents were drafted
and maintained in Rational’s RequisitePro by the
Project Manager and accessible by all engineers.

6. Testing According to Requirements. Test scenarios were
defined for each detailed technical requirement so as
to accommodate testing against requirements during
the system test. They were defined during the Group
Analysis Sessions with the instrumental contribution
of the testing personnel.

Additionally, the revised practice placed more emphasis
on the process of requirements change management as part

DAMIAN AND CHISAN: AN EMPIRICAL STUDY OF THE COMPLEX RELATIONSHIPS BETWEEN REQUIREMENTS ENGINEERING... 437

1. And were responsible for subsequent implementation.

of the broader change management processes at ACUS.
Each “change request” followed a formal process that
required a documented description and analysis, review,
and approval by a change control board.

5 PAYOFFS OF THE RE PRACTICE AT ACUS

Our pursuit of the first three research questions in the first
two stages of the case study, namely:

1. How does the RE practice impact the early stages of
development?

2. How does RE practice impact the downstream
development stages?

3. Which components of the RE process were more
significant in contributing to this impact?

provided us with evidence of perceived RE payoffs at
ACUS. A report of this evidence has been published before
[6], [7] and Table 1 summarizes conclusions from this data:
It outlines the perceived payoffs, their operationalization at
ACUS (i.e., the factors examined to measure these payoffs,
as suggested in the literature surveyed in Section 2), and
data from the study participants, implying REP’s role in
producing these effects. In summary, having a rigorous REP
was perceived as having provided a strong foundation for
improvements in developer productivity, product quality,
and risk management.

This evidence represents important background infor-
mation for our investigation into how these payoffs were
realized at ACUS, which is the main focus of this paper.
Our intention is to provide here the detail that is necessary
in constructing the map of interaction between REP and
other processes at ACUS in producing these payoffs, as
shown in Fig. 1.

5.1 Data Collection and Analysis Methods

During these first two stages in the case study, on-site
observations of requirements analysis and negotiation
sessions were possible as one researcher was on site for
12 months of the project. To answer the first research

question, 34 members of the software engineering, manage-
ment, and product information departments were invited to
participate in the study. A questionnaire elicited input
about the perceived effectiveness of the REP and, in
particular, about the immediate benefits of the revised
REP before the design and coding stages.

Pursuing second and third research questions in the
second stage, 31 project members from the same func-
tional departments were invited. Interviews and a
questionnaire were designed to determine perceptions of
how the REP impacted downstream development stages.
In particular, how engineers used requirements and
which components of the REP were perceived as having
impacted their work. Additionally, change requests
documents, project development estimation data, and
entries within the requirements management tool (Ra-
tional Requisite Pro) were analyzed during this stage.
These questionnaires and interview questions are avail-
able at: http://vigilant.segal.uvic.ca/acus.

5.2 Evidence of RE Payoffs in Early and
Downstream Stages of Development

An analysis of data from the first two stages of investigation
indicates perceived improvements in productivity, quality,
and risk management directly attributable the revised REP.
We observed both tangible and intangible effects of the
improved REP at ACUS. First, developers perceived that
the “soft” aspects of their work were improved, such as
their ability to understand the customers’ requests, devel-
opers’ ability to make more informed decisions, and the
quality of their communication. Second, the findings also
indicated significant perceived improvements in project
estimations and forecasting. These effects were perceived as
the result of the revised REP as respondents’ opinions
indicate, as summarized in the last column of Table 1.
Finally, perhaps the most compelling result was in product
quality: The data indicates a significant reduction in
support requests and postdeployment defects compared
to previous releases, suggesting that users encountered far

438 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 7, JULY 2006

TABLE 1
Summary of Observed REP Payoffs during Development

2. This data became available six months after release, during the third stage in our case study.

fewer difficulties with the product that had been produced
under the revised REP.

5.2.1 Increased Developer Productivity

A variety of observed effects indicated that productivity
significantly increased after the revised REP had been
implemented in the organization. Having a rigorous REP
was perceived as having improved problem understanding,
leading to informed decisions, reduced rework, and greatly
improving the quality of communication among engineers
in the organization.

Problem understanding, to some extent, forms the basis
by which all other aspects were improved. Engineers,
including designers, programmers, testers, and documen-
ters, all indicated that the REP was vital for them because
requirements revealed details, dependencies, and complex-
ities of features early on (positive responses: 100 percent).
When respondents were asked how they utilized detail
revealed to them during the requirements, 91 percent of
engineers indicated that it allowed them to make informed
decisions. Engineers make micro-decisions throughout their
work that reflect their understanding of customer needs.
These decisions have a long-lasting impact on a myriad of
manifestations from design decisions to effort estimations.
In part, this may explain why rework during the project,
according to 65 percent of respondents, had decreased
significantly compared to similar past projects.

Furthermore, evidence indicates that project communi-
cation patterns changed in significant ways after the
improvement. Engineers felt that open, effective dialog
which had been engendered during group analysis sessions
early in the project continued to foster improved commu-
nication across functional groups within the organization
(positive responses: 57 percent). Superfluous communica-
tion that had formerly been necessary when seeking
clarifications, reiterating information, and coordinating
among developers decreased significantly, saving devel-
oper time. Requirements acted as a common ground during
the project lifecycle, enabling engineers to use requirements
artifacts to refamiliarize themselves with feature details
(positive responses: 85 percent). In short, rather than engage
in costly face-to-face synchronization with peers, engineers
were able to more efficiently rely on information contained
in the requirements to accomplish this task.

5.2.2 Improved Product Quality

Evidence that became available during stage three of the
investigation suggests that product quality and end-user
experience has been greatly improved compared to pre-
vious projects. Although developer sentiment had hinted
that quality was higher, concrete measurements were
sought. The organization carefully tracked user-reported
deficiencies and product defects after release, both of which
show a marked decline compared to comparable past
releases.

User-reported deficiencies (URD) typically include any
instance where users have reported having difficulty using
the product, either due to legitimate defect, missing
functionality, or user error. Company statistics indicate
the there have been 45 percent fewer URDs compared to the
past two releases, suggesting that users encountered fewer

far difficulties using the product that had been produced
under the revised REP. Similarly, defects reported during
the same period show a decrease of 55 percent compared to
defect rates of the same past projects. As reported by team
leaders involved with previous product releases, this
release was similar to the previous two in terms of the
number and complexity of the requested features.

5.2.3 More Effective Risk Management

Managers were also able to leverage requirements to greatly
enhance their ability to manage risk. Although the most
striking improvements were made in project estimations and
forecasting, managers indicated that they were able to more
effectively negotiate project scope, curtail requirements
creep, and confidently assure feature implementation.

An analysis of project estimations made before and after
the requirements analysis phase indicated significant
improvements in the accuracy of effort estimations. The
estimations were performed by using an expert-judgment
bottom-up feature estimation method by experienced team
leaders in consultation with the individual developers
responsible for the implementation of particular features.
A comparison of the actual effort required and effort
estimations at the beginning of the project before and after
requirements analysis shows a 50 percent reduction in the
total estimation error. Respondents reported unanimously
that this improvement was due to more thorough under-
standing of the features as a result of the detail developed in
the software requirements.

The revised REP was directly linked to improvements in
feature coverage. The new practice of testing against
requirements had provided evidence to managers and
SQA personnel that requirements were indeed implemen-
ted and delivered. The only features that were fully or
partially dropped were agreed upon as part of the change
management process. Worth noting is the unanimous
positive response from the managers with regard to the
direct relationship between the revised REP and project
negotiations.

5.3 The Role of Collaboration

During these early stages, we also asked engineers to
consider which particular improvements of the REP
affected their software development activities (i.e., design,
implementation, documentation, and testing). The relative
responses are shown in Fig. 2, indicating that not all REP
improvements were perceived as equally important to
development at ACUS.3 To our surprise, a strong impact
by cross-functional teams and group analysis sessions was
perceived. Collaboration is inherent in both of these
components, leading us to consider the importance it plays
in achieving the payoffs we observed.

5.4 The Need for Further Investigation

From the analysis of the qualitative data collected during
stage one and two (and some quantitative data on
estimations and user-reported defects), it quickly became
apparent that the relationship between REP and its payoffs
was more complex than expected. Evidence of how the REP

DAMIAN AND CHISAN: AN EMPIRICAL STUDY OF THE COMPLEX RELATIONSHIPS BETWEEN REQUIREMENTS ENGINEERING... 439

3. Note that this inquiry did not refer to all REP components as in Box 3.

led to these payoffs was required and motivated the third
stage in our research. Comments by respondents indicated
the REP may have additionally interacted with other
development processes at ACUS in leading to these payoffs.
Table 2 contains a sample of comments made by respon-
dents which suggest that some factors in Table 1 (e.g.,
“estimations” and “rework” included on black background)
were affected by the revised REP as well as other
development processes such as “cross-functional teams,”
“sizing,” and “peer-review.” The comments are arranged in
Table 2 according to the “payoffs” (white on black). The
processes listed in the left-hand column indicate which
affected-process was named or implied by the comment.
For example, “estimation” as one item in our operationa-
lization of risk management has been positively affected by
the process of “feature sizing,” which in turn was aided by
the revised REP: in one developer’s words, by “less
guesswork, more mechanical and mathematical.”

This led us to believe that the payoffs we had observed
may have been caused, in part, by REP’s interaction with
other development processes. The remainder of the paper
describes in detail our third research stage. We consider the
effect of the REP on other development processes at ACUS,
as well as identify which particular components of the REP
contributed most significantly to this interaction.

6 A MORE IN-DEPTH ANALYSIS OF THE

INTERACTION BETWEEN REP AND OTHER

PROCESSES

6.1 Data Collection and Analysis Methods

A total of 20 managers, team-leaders, and senior engineers
from the software engineering, product management, and
product information departments were invited to partici-
pate in the third stage of our case study. Their positions as
managers or team-leads made them uniquely qualified to
assess the subtle process interactions which we sought to
understand. From these 20 invitations, 15 participated in the
questionnaire. These participants were familiar with the
history of the product and, most importantly, of the
requirements process in place during the last 15 years.

To collect participant opinion about the effects of REP on
other processes, a Web-based questionnaire was used.
Although a sample is included in Appendix A, the full

version of the Web form can be found at http://vigilant.

segal.uvic.ca/acus/. The questionnaire was designed to

determine the impact (positive or negative) of the revised

REP on other major development process areas at ACUS

and to determine which component of the REP most

contributed to that impact. The process areas and the REP

components investigated are listed in Box 2 and 3,

respectively (shown in Fig. 3).
The questionnaire asked respondents to rate, on a scale

from -3 to 3, the impact of the REP on each of the five major

processes and their constituent subprocesses. Respondents

were instructed that a positive response indicated a positive

impact, while a negative response would indicate hindrance

of the process by the REP. For example, for project

planning, a respondent might indicate +2, suggesting that

the REP had a moderately positive impact on project

planning in general.

440 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 7, JULY 2006

Fig. 2. Perceived importance of REP in relation to stages of the

development practice.

TABLE 2
Sample Comments about an Interaction between RE Process

and Other Processes in Leading to the Observed Benefits

Second, for each process and subprocess, respondents

could also specify which component of the revised REP

they felt was particularly responsible for the effect on that

process. The REP components that were included in the

questionnaire were a simplified set of the same REP

components investigated earlier in the study (see Fig. 2).

For example, respondents may have chosen feature decom-

position to indicate that this particular REP component

contributed to project planning more than any other. So, for

each development process and subprocess, participants

rated the impact and then chose which REP improvement

most significantly contributed to the impact. To simplify the

questionnaire, rationale traceability and traceability to test

were combined into requirements traceability.

6.2 Findings: The REP Interactions

6.2.1 REP Impact on other Processes

Fig. 4 shows the average responses regarding REP’s impact
on each of the five major development processes (as
outlined in Box 2: Proj Plan = Project Planning; SQA =
Software Quality Assurance; SCM =Software Configuration
Management; Dev = Development and Testing). As the
questionnaire allowed impact responses in the range
between -3 to 3 inclusively, 3.0 represents the maximum
possible value. A negative impact indicated that the REP
hindered the performance of the respective process or
subprocess. The ratios shown in brackets report the number
of responses which were greater than or equal to 2, relative
to the total number of responses, to emphasize the ratio of
responses on high REP impact. Although 15 practitioners
participated in the questionnaire, each question received
between 10 and 11 responses. Although there were only a
few negative responses over the entire survey, we did not
conduct follow-up interviews with respondents who
provided outlying responses. Such interviews would have
provided further insight into the rationale behind indivi-
dual responses.

Similarly, Fig. 5 shows the average response regarding
REP’s perceived impact on the individual subprocesses
grouped according to process area (standard deviations in
brackets for each subprocess). For example, within the
testing process area, the Requirements validation subpro-
cess received, on average, the most positive responses: 1.85
out of a possible 3.0, which indicated that this process area
was positively affected by the revised REP. The chart shows
high REP impact in the areas of project planning, testing,
and, to some degree, development.

A chi-square test has been performed to compare the
number of “positive-effect” responses with the number of
“no-effect” together with “negative-effect” responses. In
other words, to see whether the number of responses
indicating positive REP impact was statistically significant
from the other responses. In calculating the test, the number

DAMIAN AND CHISAN: AN EMPIRICAL STUDY OF THE COMPLEX RELATIONSHIPS BETWEEN REQUIREMENTS ENGINEERING... 441

Fig. 3. Box 2 and Box 3. 4A description of these processes and

subprocesses is included in Appendix B. 5Although requirements

validation is typically an RE activity and refers to whether requirements

express customers’ needs, at ACUS, this term was used to refer to the

use of test scenarios defined during the requirements analysis stage.
6Traceability was investigated as two separate components indicated

during questionaire 2, but more generally in questionaire 3.

Fig. 4. REP impact on process areas (responses >=2 shown in

brackets).

of positive-effect responses was set to equal the number of
responses indicating there was a positive impact by the REP
and compared to the number of all other responses
(negative or zero). The processes for which the REP impact
was significant (p < 0.05) are Project planning with its
constituent subprocess Feature sizing, SQA with its con-
stituent subprocess project tracking, Development with its
constituent subprocesses Team reorganization and Specifi-
cation conformance, and Testing with its constituent
subprocesses Requirements Validation and Peer review.
While Appendix C provides raw data showing all re-
sponses regarding REP impact, Table 5 in Appendix D
shows all results of the statistical test.

6.2.2 A Closer Look at the REP Improvement and

Impact

It is also worth considering data which illustrates which
components of the improved REP most significantly
contributed to the impact on these processes. In addition
to assessing REP impact on particular subprocesses,
respondents were asked to consider which components of
the revised REP contributed to the effects they perceived.
Respondents were informed that, by selecting an REP
component, they were indicating that that component was
predominantly responsible for effects on the process in
question.

Then, due to the strong relationship between component
identification and perceived impact, component responses
were weighted accordingly. For example, if a respondent
selected decomposition and indicated a value of 3 for REP
impact, we would record a score of 3 in favor of
decomposition for that particular subprocess. In the same
way, for another respondent who makes the same compo-
nent selection, but indicates a value of 1 as REP impact, we

would record a score of 1 in favor of decomposition for that
particular subprocess. All component responses, weighted
in this manner, were added to produce a single score for
each component in each process. Tables 6 and 7 in
Appendix E show the number of responses for each
process/subprocess, per REP component, raw, and
weighted responses, respectively.

Table 3 summarizes the component responses for the
four most affected subprocesses from the chi-square test
and which we included in Fig. 1. Below each subprocess

442 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 7, JULY 2006

Fig. 5. REP impact on subprocesses according to process area (average of responses -3 and 3).

TABLE 3
REP Impact Component Responses
for Highest-Scoring Subprocesses

heading, the REP impact score is indicated, together with
the number of responses contributing to this score. It is
apparent that participants believed that feature decomposition
(DE) had the greatest impact on improving sizing. Likewise,
traceability (TR) positively contributed to both tracking and
peer-review. Under the development process area, con-
formance (implementing specification conformant code)
was equally affected by both decomposition and traceability.

7 PUTTING IT ALL TOGETHER: A COMPLEX

RELATIONSHIP BETWEEN RE PROCESS AND

EXPECTED PAYOFFS

Having completed our study, we are able to step back and
consider the complex relationship between the RE process
and its tangible benefits. It is now feasible to answer the
question our study had originally sought to answer: How do
improvements in requirements engineering processes relate to
improvements in productivity, quality, and risk management?

By combining evidence presented in detail here and earlier
evidence summarized in Section 5.2, an answer becomes
apparent. The cumulative results illustrate how the REP both
directly and indirectly, through the interaction between REP
and other development processes, contributed to the ob-
served payoffs. This relationship is illustrated in Fig. 1.

By interpreting the detailed evidence presented in this
paper, we provide an explanation of how REP, through the
interaction with other processes at ACUS, was perceived as
having contributed to the payoffs observed earlier in our
research. Specifically, data from Table 1, Table 2, Table 3,
and Fig. 5 represent the evidence that connects the elements
in Fig. 1. In the center of the diagram, the REP is connected
to the subprocesses on which we found a statistically
significant REP impact (as described in Box 2 in Fig. 3 and
Section 6.2.1), which connect to the observed payoffs (as in
Table 1), shown as terminal nodes around the periphery of
the diagram. We did not include the subprocesses called
“scheduling” and “resource planning” because they are a
directly related to feature sizing which is already included.
The numerical value on the arrows (also shown as their
width) from the REP node indicates the strength of the
REP’s positive contribution to intermediate processes (as in
Fig. 5). The REP components specified in brackets on the
arrows indicate which REP improvement primarily con-
tributed to that impact (as in Table 3). Arrows connecting
subprocesses processes to the observed payoffs are justified
by the qualitative evidence from Table 2.

The discussion of how REP was related to each of the
observed payoffs is organized as follows: 1) risk management
in terms of accurate estimations, improved feature coverage,
effective project negotiations, and reduced requirements
creep, 2) quality in terms of fewer defects, and 3) productivity
in terms of improved project communication and reduced
rework. In particular, each heading below indicates how the
REP and its particular components interacted with the other
development processes at ACUS in leading to the payoffs on
the periphery of the diagram in Fig. 1.

Feature decomposition, sizing, and change manage-

ment led to more accurate estimates. Accurate project
estimations were primarily the result of accurate feature

effort sizings conducted by engineers who could make
extensive use of technical requirements. Interestingly,
ACUS achieved this improvement without the use of
elaborate estimations methods, such as function points as
proposed in [15]. By bringing clarity and focus to its
requirements, ACUS was able to leverage its engineers’
extensive technical knowledge and experience of the
product to produce far more accurate project estimations.

Individual technical requirements, estimated by the
engineers assigned to analyze and later implement them,
were aggregated to construct feature estimations and
ultimately guide project planning and project estimations.
The revised REP facilitated a thorough understanding of
requirements to aid feature sizing: As one team-lead put it,
”time spent during requirements analysis to get fine detail
made it possible to have better estimates earlier on.”
Furthermore, the structured RE document could be used
effectively during the change management process. Once
schedule allocations were established, careful control of
change requests prevented project corrections while ensur-
ing the currency of the original estimations. As one
manager said, estimations remained on-target via change
management because “the process reduced the number of
changes sneaking into the product.”

Upfront test scenario definition, requirements valida-

tion, and peer-reviews led to improved feature coverage.
Although testing leads to the prevention of defects, it also
plays an important role in assuring that the product
contains the required features. Many questionnaire re-
sponses and comments recorded during interviews suggest
that testing was significantly improved due to the test-
scenarios conceived during requirements analysis. For
example, one tester indicated that the REP had helped by
“creating a starting point for us as to what to test, there was
more of a focus on the actual requirements and not just the
feature.” Likewise, another tester specifically identified the
REP’s role in improving their testing: “test scenarios
provided a good base to start writing test cases with.”

Another indicated that test scenarios were used to
validate specific test cases: “We could review the test case
to see whether it has met the requirements and what we
should be testing.” Although these comments indicate a
direct impact by the requirements process, some believed
other processes were, at least in part, responsible for the
apparent payoffs. Respondents also cited the peer-review of
test cases and the emphasis on testing features according to
requirements as factors contributing to assuring feature
coverage.

Testing conducted by ACUS toward the end of the
project not only served to detect defects before deployment,
but also to validate that the baselined features had been
implemented in the software product. The anticipation of
such testing likely encouraged developers to assure feature
coverage throughout the development project. Developers
commented that “the use of rationale and test scenarios
gave a broader conceptual view of what was required and
how we were to demonstrate that we had met the
requirement.”

Further, peer-review inspections of test cases contributed
to the testers’ ability to test coverage. Testing was successful

DAMIAN AND CHISAN: AN EMPIRICAL STUDY OF THE COMPLEX RELATIONSHIPS BETWEEN REQUIREMENTS ENGINEERING... 443

in part because “reviews [were] done with designers and
test case authors to validate the ‘how’ of each test case.” The
outcomes of these reviews were potentially enlightening to
both parties and, according to the respondents, these
reviews were successful in revealing issues: “[during]
reviews, test specs came under [scrutiny], the resulting
issues were sometimes abundant.”

Enhanced feature understanding, change management,

and project tracking led to managed requirements creep.
Change management was instrumental in preventing
unconstrained requirements creep. The success of ACUS’
software control board, an integral part of this achievement,
confirms the board’s role as a means to control software
change [30]. Merely by virtue of implementing a formal
change management process, engineers were dissuaded
from making discretionary changes. Traceability estab-
lished within the requirement specifications which were
used by project tracking to monitor resources helped to
prevent creep from significantly affecting progress.

The structured nature of requirements artifacts helped
enable change management, ultimately giving project
managers control of requirements creep. Requirements
churn, which had been so common in past projects, was
controlled by relying on a rigorous requirements change
process that limited all but the most critical changes. One
engineer reported that the approval process itself was
significant: “[it] had a big impact: it made people analyze
and think twice about the changes they were considering.”

When changes were necessary, change requests were
considered in the context of project progress. Respondents
indicated that improvements in project tracking that had
occurred because of the revised REP enabled “identification
of schedule risks,” making it “easier to forecast resource
crunches.” Managers said they could effectively assess
change requests and that the management process provided
“firm control and visibility.”

Change management and feature sizing led to effective
project scope negotiation. By being able to better estimate
resources required to implement proposed features and
through careful control of committed-to requirements,
ACUS enjoyed far more effective feature negotiations. In
this project, the project negotiation was made into a discrete
project phase approximately eight months long, in contrast
to previous projects when negotiations with external
business and marketing units had been conducted, to some
degree, throughout the development life-cycle. The require-
ments process enabled development managers to refine
feature requests from the marketing unit into more reason-
able chunks and then immediately analyze requests for
obvious shortcomings. One team-lead commented that
“having requirements done early. It became obvious we
could not deliver all of the expected functionality, so we
agreed to cut them. Previously, we would not have known
until it was too late and then everyone would have to go
into a mad rush.” This empowered managers to understand
requests and provide rigorous justification for rejecting or
accepting feature commitments. Meanwhile, customers
were also motivated to negotiate in the face of tight change
management controls, effective after the requirements
phase.

Further, it was understood by both stakeholders at the
outset of the project that the revised REP would prevent
major features changes after the negotiated requirement set
had been committed to. The threat of limited change
motivated ACUS to seek detailed information before
commitment and motivated marketing to prioritize their
needs in light of ACUS’ finite capabilities. This new
understanding led to “more effective expectation manage-
ment” or, as one manager put it, “made it much easier to get
everyone singing from the same sheet.” Change control not
only worked in ACUS’ favor: The change management
process invited participation from the marketing unit who
were permitted to comment on change proposals.

Traceability links, peer-reviews, and requirements

validation led to fewer defects. At ACUS, defect rates
appeared to have changed significantly under their revised
RE practice. Both internal, predeployment defects (system
test bugs) and postdeployment defects showed marked
decreases (see Table 1). One engineer, after being informed
there had been fewer internal defects, appeared genuinely
surprised. His explanation illustrates the long-term ramifi-
cations of more accurate estimations/scheduling and hints
at the wide-ranging holistic effects of process change:
“Wow—I’m impressed if that is the case as there has been
much better testing. Process changes have made engineers
more aware of how their piece fits in with the rest. I also feel
that the schedules were more realistic so there was no
temptation to ‘bang it in’ and move on to the next
task—each change was more rigorously unit tested before
being integrated.” However, one respondent did indicate
that defect entry was made more difficult under the new
process as requirements engineers had to “... fill in several
documents. People are reluctant to enter defects, knowing it
will only add to their workload.” Notwithstanding this
observation, postdeployment defect rates and customer
satisfaction suggest that product quality had increased.

In the same way that the peer-review improved testing
efficacy, assuring feature coverage, more effective testing
also improved defect statistics. When respondents were
asked why defects in this project were lower compared to
projects in the past, participants suggested that the project
had benefited form “improved peer review” and due to
“the review process and testing inspections related to
requirements, which were done as part of the revised REP.”

Common ground and cross-functional teams in feature

development led to more effective communication. Many
engineers praised the apparent improvement in commu-
nication during this project compared to the past. In many
cases, they attributed these effects directly to the revised
requirements process. For example, one engineer noted that
the process had helped him by “reducing meetings and
promoting good communication to other teams”; another
noted that they “felt freer to talk to others.” Open and
effective dialog which had been engendered during group
analysis sessions continued to foster improved communica-
tion across the different functional groups. Requirements
acted as common ground during development, eliminating
superfluous communication that had formerly been neces-
sary to seek clarifications and coordinate among devel-
opers. In the revised REP, there was “good communication

444 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 7, JULY 2006

with other teams” and “more consistency across functional
groups.”

Feature decomposition, specification conformance, and
team reorganization led to reduced rework. The decom-
position of features into detailed requirements resulted in
specifications which engineers could rely on and conform
to. These specifications were now used consistently to
reflect an understanding common to members of the cross-
functional teams. Engineers make micro-decisions through-
out their work that reflect their understanding of customer
needs. In the past, confusing unreliable specifications led to
rework due to implementation of unwanted features when
engineer interpretations diverged from each other.

Basing technical specifications, such as designs or test
cases, on more accurate requirements specifications pro-
vided consistent and informative direction for engineers.
Clarifying claims of reduced rework. One engineer attrib-
uted “better designs ... design does get rid of stupidities.”
Another said that “less functionality was missed due to
constant reinforcement of requirements in [specifications],”
in effect saving the team from having to refit existing
development to add missed features.

Further, the organization of teams into cross-functional
units contributed to cross-pollination of ideas and informa-
tion; on the rework issue, one manager indicated that cross-
functional teams provided “more changes to expose people
across the product to everything. More eyes on design and
code.” In clarifying his position on reduced work, one
manager indicated that the “involvement across teams had
positive effects. In the past we worked in silos.”

8 IMPLICATIONS FOR RESEARCH AND PRACTICE

This research has a number of important implications for
both researchers and practitioners. First, we believe that our
case study has made an important step in increasing the
understanding of the relationship between requirements
engineering theory and industrial practice. Investigating the
payoffs of requirements practice and the relationship
between RE processes and improvements in productivity,
quality, and risk management as the literature suggests has
proven to be a difficult but worthwhile task. According to
evidence collected during our study, both quantitative
project metrics and qualitative engineer perceptions show
how requirements engineering practice was perceived as
having produced long term benefits that have had an
impact throughout the project. Not only were improve-
ments in the REP linked to improved productivity, better
quality, and effective risk management, but it also enhanced
other development practices such as testing, peer-review,
and project tracking. Moreover, the REP appears to have
improved collaboration and may have led to cultural
change that values cooperation, quality, and customer
satisfaction. These findings generate interesting new direc-
tions for research.

This work should encourage future research to further
understand the relationship between REP and improve-
ments in other processes. Our study, in the attempt to
understand the particular effects of changes in software
processes as a result of the revised RE practice, suffered
from the lack of proven instruments for gauging such

interactions. Thus, valuable topics for future research
include the development of instruments for more objec-
tively assessing and measuring the interactions between
REP and other processes such as change management, peer
review, and testing. What are the relevant and meaningful
criteria to judge improvements in peer reviews, for
example, as a result of better RE processes?

We also identified that some of the REP components had
more impact on these results and research should focus on
investigating them more closely. In particular, those REP
components that emphasize collaboration may be critical to
producing the successful effects we have documented.

In this direction, to determine whether individual REP
components had different effects, we added the REP
component scores (scoring described in Section 6.1) across
all processes and subprocesses. These combined scores
suggest that certain REP improvements dominated in their
contributions to other processes. In particular, the compo-
nent scores show that traceability and decomposition domi-
nated other components. Surprisingly, group analysis sessions
and cross-functional teams showed by far the lowest scores
compared to the other four components. This contrasts with
the earlier results which suggested the overwhelming
importance of these two components, as presented in
Section 5.3. The respondents’ opinions appear to have
shifted, suggesting the importance of technical outcomes of
the RE process: rating traceability, requirements validation,
and decomposition very highly.

Perhaps this shift can be attributed to the passage of time
between questionnaires. It is possible that respondents to
the early questionnaire were more aware of the “soft”
components of the REP, while the tangible end results of the
process were more memorable in minds of our latest
subjects. Furthermore, it is possible that the tangible
outputs of the REP were perceived as having the greatest
impact on other subprocesses which used those REP
outputs as inputs. These difficulties highlight the subtle
difference in our data, one that addresses the effect on the
engineer’s ability to accomplish work, the other that
addresses the effect on other processes. Alternatively, it is
possible that, during the passage of time between ques-
tionnaires, the collaborative habits promoted by the soft
REP components were adopted as part of a cultural change
within ACUS, making respondents less sensitive to the
components’ true impact.

However, we believe that the constant that pervaded the
progress made at ACUS is collaboration, which emerged as
a powerful theme in many of the improvements that have
been discussed so far. Compared to the isolated, siloed
work culture that had previously dominated, the changes in
the new RE process have served to join the organization in a
united effort. Reorganizing teams cross-functionally
allowed for open lines of communication. Effective interac-
tions between ACUS and their marketing unit produced
manageable commitments and realistic expectations. Teams
brought together during feature analysis sessions devel-
oped the requirements that were so critical later in the
project. The requirements themselves provided a basis for
communication, coordination, and work. Peer-reviews
helped to assure high product quality.

DAMIAN AND CHISAN: AN EMPIRICAL STUDY OF THE COMPLEX RELATIONSHIPS BETWEEN REQUIREMENTS ENGINEERING... 445

It is not surprising that an improved software develop-
ment project, dependent on the team building it, should
exhibit improved team behavior. If it was possible to
separate the effects of human improvement from that of
technical improvement, we might see that the greater part
of improvement had been due to more effective collabora-
tion throughout the project.

For software practice, these insights provide practitioners
with further incentives for adopting RE processes and offer
more concrete guidance for such initiatives. Our case study
provides evidence of how such a process could be used to
optimize development activities by tailoring REP improve-
ments to address specific weaknesses in their existing
processes.

In this direction, it is encouraging how much progress
ACUS was able to achieve despite making relatively
inexpensive, straightforward changes to their process.
ACUS did not use any sophisticated RE methodologies,
instead depending on structured negotiations, engineer
estimations, and a well-defined change management
procedure.

Perhaps the real challenge is identifying these problem
areas. Organizations may not be fully aware of their own
dysfunction until they try different approaches and care-
fully reflect upon their own development practices. We
describe here a number of strategies that could establish a
foundation for effective customer-supplier cooperation and
help promote mutual expectations while encouraging the
development and validation of accurate requirements:

Iterative Feature Decomposition. Committing to high-
level features from customers without consideration from
the development organization is likely an invitation for
unrestrained feature creep and missed deadlines. Instead,
both stakeholders should understand that provision of
high-level features is only the beginning. A process should
promote systematic feature analysis and decomposition by
the development team, who can then seek clarifications
from and provide effort estimations to marketing. This is an
iterative processes that empowers both stakeholders to
reach an agreeable outcome despite their geographical
separation.

Frequent Negotiation Sessions. Understanding the
needs of the customer and the limits of the supplier are
prerequisites to reaching an agreement. A requirements
process that facilitates frequent negotiations among remote
stakeholders is an effective way to overcome mistrust and
power struggles. Rigorous effort estimations can empower
the development organization to inform requirement
prioritization to align development capability with corpo-
rate strategy and market needs.

Change Management. Change is inevitable, but process
can assure that change affects the project in a controlled
manner. A process can motivate stakeholders to get
appropriate requirements established by specifying an
approval process which takes effect when the project scope
is agreed to and baselined. Requiring stakeholder approval,
irrespective of location, ensures that all parties will remain
fully informed of requirements change.

Early test scenarios. Test scenarios are necessary for
conducting system testing and requirements validation

over the development period. But, conceiving test scenarios
as early as possible during the development and analysis of
requirements assures that the final realization of the
requirements is considered early. This practice can expose
developers to validation issues and testers to development
issues, helping to flush out potential problems earlier,
leading to high quality software.

Cross-functional requirements analysis sessions. Ana-
lyzing requirements is a necessary component of any
requirements process. Conducting such an analysis as a
group helps to ensure sufficient exploration of ideas.
Attendance by representatives from major functional
departments establishes a common understanding among
groups, helps break down social barriers, and ensures that
requirements are considered from a variety of perspectives.
Cooperation and collaboration within the organization
promotes a productive team environment.

These strategies represent a small but important con-
tribution toward providing detailed advice to practitioners.
By providing supporting empirical evidence, these strate-
gies are framed by the context in which they are known to
have been successful. One hopes that this comprehensive
coupling of strategy, evidence, and contact provides
effective, adoptable approaches to improving software risk
management, quality, and productivity.

9 THREATS TO VALIDITY

Any research results grounded in empirical study need to
be understood within the strengths and limitations of the
particular research methodology. Whereas case study
research is invaluable in obtaining the rich insights
presented in this paper, it inevitably suffers from threats
to the validity of its results. Three types of validity are
discussed in the next sections: construct validity and
internal and external validity, respectively.

9.1 Construct Validity

Construct validity refers to the degree to which inferences
can legitimately be made from the operationalizations in a
study to the theoretical constructs on which those oper-
ationalizations were based [34]. Constructs are chosen as
“labels” of attributes of people or aspects in the phenom-
enon under study, based on theoretical considerations, and
the important questions are whether the constructs are
appropriately chosen so as to measure what is intended to
be measured. Intentional and representational validity of
constructs are discussed next.

Intentional validity: Do the constructs we chose capture
what we intended to study?

The goal of our research was to study improvements in
the organization as a result of improvements in the RE
process. In our exploratory and explanatory case study, we
used reports from the literature to guide our observations of
improvements and chose, as discussed in Section 2, to look
for expected benefits in the areas of developer productivity,
software quality, and risk management. To operationalize
these concepts, we chose constructs that we learned from
the literature, for example, decreases in rework for
productivity, decreases in the number of defects for quality,
and increases in estimation ability for risk management,

446 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 7, JULY 2006

respectively. In addition to guidance from the literature, we
also considered the particular context of our subject
organization. We specifically investigated what manage-
ment and engineers at ACUS would consider as improve-
ments in productivity, quality, and risk management. To
this end, early interviews with management and developers
led us to choose the constructs outlined in Table 1 (second
column) to operationalize productivity, quality, and risk
management. Furthermore, in some cases, we could
identify subconstructs for these constructs: for example,
that problem understanding depended on the engineers’
ability to reveal details, dependencies, and complexities of
features, as discussed in Section 5.2.1. Similarly, we found
that improvements in communication were not limited to
“more effective communication,” but also reduced super-
fluous communication. Further, increased feature coverage,
decreased feature creep, and higher quality project negotia-
tions were all perceived as measures of improved risk
management.

Representation validity. Do the constructs we chose
translate well into observable phenomena?

This was the first time the RE process was rigorously
defined at ACUS and historical data was very limited.
Where possible, this research endeavored to collect and
analyze quantitative data. For example, data was collected
on project estimation, where estimations were collected
before and after the RE process was revised. We were also
able to consider product quality in terms of support
requests and postdeployment defects, both of which were
carefully measured in both this project and in past projects.
For many aspects, however, no such data had ever been
collected. Instead, we relied on the extensive experience of
the ACUS engineers and managers to assess the impact of
the REP improvements and to provide comparison to
previous practice. Our dependence on the respondents’
perception and recollection is undeniable although un-
avoidable. However, this is not unusual: Organizations that
seek to implement RE process improvements typically lack
quantitative data concerning their existing RE practice [20].
Moreover, practitioner opinion has value as it is a reflection
of the satisfaction of process implementation and indicates
the extent to which the process will be adopted. RE process
improvements depend on the adoption of new processes to
work. Such adoption has to happen at the individual level
before it will be apparent in the project or organization [20].
Clearly then, perceptions among practitioners is a key issue,
as are the operationalizations based on those perceptions.

Likert and Likert [23] explain the significance of
perceptions:

People act on the basis of what they perceive the situation to
be, whether the perceptions are accurate or grossly
inaccurate. Since behavior is based on perceptions, the
existence of each of them is a fact to be considered. Similarly,
the frustrations, attitudes, loyalties, and hostilities felt by
each member and the information and misinformation
possessed by each are facts as is their evaluation of the
merits and desirability of each particular course of action
under consideration.

9.2 Internal Validity

Whereas a discussion about internal validity is most often
made in experimental design, it is important in case study

research whenever inferences of the cause and effect
relationship are made. Thus, internal validity refers to the
degree to which we are successful in eliminating confound-
ing variables within the study itself and is concerned with
the question:

Are the values of the dependent variable solely the result
of the manipulations of the independent variable?

The results of our case study suggest that that significant
improvements in the organization were related to improve-
ments in the RE practice and the improvements in the
organization can be regarded as changes in the dependent
variable (state of practice in the software organization) as a
result of changes in the RE practice (independent variable).
In critically assessing our results, we list here three other
possible alternative theories to the observed changes in the
dependent variable (software practice at ACUS), which can
be thought of as confounding variables. First, it is possible
that new management at ACUS, a change which occurred
just prior to the software process improvement, was in fact
responsible for the majority of changes at ACUS, rather than
any particular process. There is no question that the change
in management at ACUS, namely, of their project and
product manager at the beginning of the project before the
software process improvement initiative had started, was
an important factor of success at ACUS. Strong manage-
ment support and the credible promise of change that
comes with new management was most likely instrumental
in ensuring that the new requirements process was adopted
by engineers, as found in another study of REP improve-
ment [20]. But, although new management helped to assure
process adoption, there is no reason to believe these new
managers could assure process efficacy. In fact, this is
evident from the difficulties ACUS encountered during
their subsequent project in which they changed their
processes again with a result that was far less successful.

A second possibility, implied in the comments of some
engineers, is that evident payoffs were due to the product’s
maturity, rather than improvements in process. The ques-
tioning of engineers occasionally elicited obviously skep-
tical responses. Of these responses, many identified product
maturity as playing a major role in producing the payoffs in
question. For example, there were suggestions that this
project had fewer defects than previous projects because,
during past projects, inherent defects in the underlying
architecture had been addressed. However, this project was
the third point release of their product since its last major
revision. Selected managers were specifically asked to
compare the significance of this project compared to
previous projects and, by all accounts, this project repre-
sented a comparable degree of feature additions and
complexity. The consistency in defect rates between the
first and second point releases indicated limited variability
between at least the first two point releases, suggesting
relatively constant defect insertion and removal rates. To
accept this theory, however, would require dismissing all
other engineer responses that strongly attribute much of
ACUS’ success to the revised requirements process. In the
end, it is impossible to completely discount the effect of
code maturity without significant analysis of code changes
between previous versions.

Third, it is possible that other process changes,
unrelated to requirements or change management, could
have been accountable for the positive changes. Although

DAMIAN AND CHISAN: AN EMPIRICAL STUDY OF THE COMPLEX RELATIONSHIPS BETWEEN REQUIREMENTS ENGINEERING... 447

requirements management had been identified as the most
deficient of ACUS’ process area, ACUS did make revisions
to some of its other processes. However, an inspection of
the process documents suggests that these changes pale in
comparison to the far more sweeping changes made
related to requirements engineering. Some changes only
required documentation of what had formerly been
without record, for example, many project management
processes were altered to require explicit status documen-
tation and report production. In other cases, many
relatively minor process changes were made to support
the revised requirements process. For example, the
formulation of the software change control board was
made a subprocess of the SCM process area; however, the
board’s purpose was to officiate change requests made
necessary by the revised requirements process.

And, fourth, the Hawthorne or placebo effect may have
affected engineer opinion. We believe, however, that the
respondents, knowledgeable about ACUS processes over
the last 15 years (in particular, managers), were critical of
the process change. Not only had the project members
shown resistance to the revision of the RE process at ACUS
[6], but interview data after project completion indicates the
respondents’ ability to critically reflect on their experiences
with the process change. Exposure to subsequent projects in
which the requirements processes varied again appears to
have given the respondents further perspective and insight
about the effects of the RE practice and process interactions
discussed here.

9.3 External Validity

Do the results of this study generalize beyond the
organization studied?

In addressing this issue, we believe that ACUS is
representative of a fairly large class of software develop-
ment organizations. Software companies that we expect to
benefit from similar results on process improvement when
following the RE process described here would have similar
characteristics to ACUS, as follows:

First, ACUS staff is at about 150 members, working in
small teams led by a team lead and technical managers, all
headed by a project manager and a product manager. In
obtaining information on product features, ACUS main-
tains a strong relationship with the corporate marketing

department, who plays the role of customers. This
customer relationship is similar to organizations that
receive requirements and funding from separate or
internal corporate entities as well as organizations that
build custom solutions for a single customer. ACUS’s
software itself forms the basis of a mature product line
that is highly customizable. Overall, we believe that these
attributes are very characteristic of many other software
development organizations.

Second, the challenges experienced by ACUS can be
summarized by: ineffective customer negotiations, teams
within the organization who operated autonomously and
independently of each other, and requirements that were
routinely revised without regard to the impact on develop-
ment. Many companies that would be assessed at CMM
level 1 would, by definition, be enduring similar difficulties.
In other words, the evidence collected from ACUS is clearly
relevant to organizations which are burdened by similar
concerns and wish to improve their internal communica-
tion, customer negotiations, change control, and quality
control in testing and inspections.

In contrast, companies that are considerably smaller may
not suffer from internal communication issues merely by
virtue of their compact size. This may in part explain why
rigorous RE processes do not appear to produce beneficial
effects as readily in small organizations as in large. For
example, El-Emam and Birk [8] provide evidence that REP
maturity correlates with an organization’s software quality;
however, the relationship is only true for medium to large
organizations.

Finally, requirements management and control comes at
a price, costing added overhead in considering change
requests and dampening the software’s rate of change. This
is a desirable outcome for an established software product
where features can be included in one version or another.
But, for a from-scratch speculative software project, such
demands may suffocate the development necessary to
produce an innovative new solution.

In summary, these results are likely very applicable to
industrial developers who share many of the same
organizational and software characteristics and who also
suffer from some of the same problems that ACUS does. Of
course, it may appear self-evident that the solution to the
problem is generalizable to others with the same problem;

448 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 7, JULY 2006

Fig. 6. Snapshot of the Web-questionnaire used in stage 3 of the case study.

the challenge is identifying the problem. Companies may
not be fully aware of their own dysfunction until they try
different approaches and carefully reflect upon their own
development practices. It is in this direction that our
research attempted to unveil the rich and beneficial
interaction between RE and other processes in one
particular organization, while making the best effort to
describe the details of the RE practice as well as the
organization such that practitioners are able to make
decisions of how to use these insights in their own
organization.

10 CONCLUSIONS

While challenging, the empirical study into the practice of
requirements engineering at ACUS has proven very bene-
ficial in unveiling details that are much needed though
lacking in our software engineering research and practice. To
add to the inherent difficulties of field research, our study had
to overcome the challenges of a lack of a well-defined

theoretical base in the area of process interactions and ways

of operationalizing the aspects under study. It is our belief

that our systematic study has appropriately addressed the

threats to validity and our results will benefit both research

and practice of software development.

APPENDIX A

A snapshot of the Web questionnaire used in stage 3 of the

case study is shown in Fig. 6. Each line indicates a process

and its constituent subprocesses. The full Web form and

instructions for completion can be found at http://

vigilant.segal.uvic.ca/acus/.

APPENDIX B

Description of the development processes and its con-

stituent subprocesses. The following provides a description

of each process area and descriptions for each of the area’s

constituent subprocesses. Some subprocesses are followed

DAMIAN AND CHISAN: AN EMPIRICAL STUDY OF THE COMPLEX RELATIONSHIPS BETWEEN REQUIREMENTS ENGINEERING... 449

TABLE 4
Perceived Impact of the REP on the Other Processes and Their Constituent Subprocesses

by an abbreviated short name in brackets; this short name is
used in the charts and tables provided in Section 4.

Project Planning and Tracking: This process area is
largely a managerial responsibility wherein the software
project is initially planned, schedules formulated, resources
allocated, and milestones determined. Once the project is
under way, subsequent tracking and monitoring of the
project progress also falls within this process area. Seven
subprocesses of project planning and tracking were
identified:

. Feature sizing: Estimations of required effort to
design, test, document, and implement features or
requirements.

. Risk assessment: Determination of the technical risk
of implementing particular components of the soft-
ware system.

. Scheduling: Planning the length of time for specific
project phases to complete.

. Resource planning: Allocating developers to speci-
fic features and project roles.

. Change management: Review and control of change
requests from developers.

. Responsibility allocation: Assigning lead roles for
the implementation of particular features.

. Requirements tracing: Ensuring that traceability
links between requirements and other design arti-
facts are maintained.

Software Quality Assurance: This process area’s role is
to track software design and development, specifically with
respect to ensuring a high standard of quality is maintained.
Four subprocesses were identified:

. Tracking: Monitoring the progress of implementa-
tion and feature testing.

. SQA team (teams): The formation of a team
responsible for SQA.

. Meetings and reports (meetings): Regular meetings
and reports are conducted and produced by the SQA
team regarding software quality during development.

. Deviations: Review and control of process and
major project deviations during development.

Software Configuration Management: This process
area’s role is to maintain consistency of project artifacts
and, in particular, to assure effective software configuration
management (SCM). Artifacts subject to management not
only include source code artifacts, but all formal project
documents, including project plans, reports, designs, test
cases, etc.

. Baselining: Determine base software versions and
milestone feature sets.

. Code Change management: Review and control of
change requests from developers.

. Change metrics (metrics): Provide rudimentary
measure and extent of change in code artifacts.

. Role adherence (roles): Monitor and ensure that
development roles are being fulfilled, particularly
with respect to those responsible for the SCCB (see
below) and managerial issues.

. Software change control board (SCCB): This group
of people was created to review, discuss, and
approve developer change requests.

. SCM tools: Prescribe the use of a tool or set of tools
to manage version control on intermediate develop-
ment artifacts such as documents and source code.

Development: This process area constitutes all aspects
concerning the design and implementation of the software
product, but does not include documentation or testing,
which are both addressed separately.

. Team reorganization (teams): Development staff
were reorganized into teams responsible for imple-
mentation of requirements.

450 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 7, JULY 2006

TABLE 5
Results of the Chi-Square Test

The highlighted values indicate statistical significance at p<0.05.

. Split leads: Organizationally, lead development
responsibility is shared by two separate individuals,
one responsible for managerial issues and one
responsible for technical issues.

. Planning: Emphasize and follow plans used to
direct software development.

. Specification Conformance: Software developers
and designers are expected to follow and be guided
by feature proposals, requirements specifications,
and design specification.

. Code Inspection: Development artifacts, such as
source code, are inspected for defects.

Testing: Processes related to testing are responsible for

the development test scenarios, test plans, and test execu-

tion to ensure quality and validate software products.

. Automation: Some testing was conducted in an
automated fashion.

. Requirements Validation (validation): Test scenar-
ios and detailed test cases were written against
requirements to validate promised functionality.

. Peer-Review: Test artifacts such as test scenarios and
tests themselves were peer reviewed.

. Repeated Test (repeated): Many tests were repeat-
edly conducted to validate the maintenance of
functionality (i.e., regression testing).

APPENDIX C

The perceived impact of the REP on the other processes and

their consituent subprocesses is shown in Table 4.

APPENDIX D

The results of the chi-square test are shown in Table 5.

APPENDIX E

The raw responses on the REP component that contributed

most to the REP impact on the process and its associate

subprocesses are shown in Table 6 and the weighted/

scored responses on the REP component that contributed

most to the REP impact on the process and its associated

subprocesses are shown in Table 7.

DAMIAN AND CHISAN: AN EMPIRICAL STUDY OF THE COMPLEX RELATIONSHIPS BETWEEN REQUIREMENTS ENGINEERING... 451

TABLE 6
Raw Responses on the REP Component that Contributed Most to the REP Impact on the Process and Its Associated Subprocesses

ACKNOWLEDGMENTS

The authors thank the ACUS participants in the study, as
well as Janice Singer, Stuart Faulk, Dan Berry, Susan Sim,
Brian Gaines, Jim Brosseau, Elizabeth Hargreaves, and
Adrian Damian for comments on drafts of the paper, as well
as the anonymous reviewers who provided feedback on
earlier version of this paper. Thank you also to Carolyn
Campbell for her editorial assistance.

REFERENCES

[1] D. Berry, D. Damian, A. Finkelstein, D. Gause, R. Hall, and A.
Wassyng, “To Do or Not to Do: If the Requirements Engineering
Payoff Is So Good, Why Aren’t More Companies Doing It?” Proc.
Requirements Eng., 2005.

[2] A. Borjesson and L. Mathiassen, “Successful Process Implementa-
tion,” IEEE Software, pp. 35-44, July/Aug. 2004.

[3] J. Broadman and D. Johnson, “Return on Investment from
Software Process Improvement as Measured by U.S. Industry,”
Crosstalk, vol. 9, no. 4, pp. 23-29, 1996.

[4] F. Brooks, “No Silver Bullet: Essence and Accidents of Software
Engineering,” Computer, vol. 20, no. 4, pp. 10-19, Apr. 1987.

[5] C. Claus, M. Freund, M. Kaiser, and R. Kneuper, “Implementing
Systematic Requirements Management in a Large Software
Development Programme,” Proc. Fifth Int’l Workshop Requirements
Eng.: Foundation of Software Quality, pp. 33-42, 1999.

[6] D. Damian, D. Zowghi, L. Vaidyanathasamy, and Y. Pal, “An
Industrial Case Study of Immediate Benefits of Requirements
Engineering Process Improvement at the Australian Center for
Unisys Software,” Int’l J. Empirical Software Eng., vol. 9, nos. 1-2,
pp. 45-75, Mar. 2004.

[7] D. Damian, J. Chisan, L. Vaidyanathasamy, and Y. Pal, “Require-
ments Engineering and Downstream Software Development:
Findings from a Case Study,” Int’l J. Empirical Software Eng.,
vol. 10, no. 3, 2005.

[8] K.E. El-Emam and A. Birk, “Validating the ISO/IEC 15504
Measure of Software Requirements Analysis Process Capability,”
IEEE Trans. Software Eng., vol. 26, no. 6, pp. 541-566, Nov./Dec.
2000.

[9] K. Fosberg and H. Mooz, “System Engineering Overview,”
Software Requirements Eng., R. Thayer and M. Dorfman, eds.,
pp. 44-72, 2000.

[10] A.F. Hutchings and S.T. Knox, “Creating Products: Customers
Demand,” Comm. ACM, vol. 38, no. 5, pp. 72-80, 1995.

[11] T. Hall, S. Beecham, and A. Rainer, “Requirements Problems in
Twelve Software Companies: An Empirical Analysis,” IEE Proc.—
Software, vol. 149, no. 5, 2002.

[12] J. Herbsleb and D. Goldenson, “A Systematic Survey of CMM
Experience and Results,” Proc. Int’l Conf. Software Eng., pp. 323-
330, 1996.

452 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 7, JULY 2006

TABLE 7
Weighted/Scored Responses on the REP Component that Contributed Most to the REP Impact

on the Process and Its Associated Subprocesses

[13] W. Humphrey, T. Snyder, and R. Willis, “Software Process
Improvement at Hughes Aircraft,” IEEE Software, vol. 8, no. 4,
pp. 11-23, 1991.

[14] ISO/IEC TR 15504-1:1998, Information Technology—Software Process
Assessment, ISO, 1998.

[15] C. Jones, “Strategies for Managing Requirements Creep,” Compu-
ter, vol. 29, no. 6, pp. 92-94, June 1996.

[16] S. Jacobs, “Introducing Measurable Quality Requirements: A Case
Study,” Proc. Fourth Int’l Symp. Requirements Eng., pp. 172-179,
1999.

[17] M. Jirotka and J. Goguen, Requirements Engineering: Social and
Technical Issues. Academic Press, 1994.

[18] M. Kauppinen and S. Kujala, “Starting Improvement of Require-
ments Engineering Processes: An Experience Report,” Proc. Third
Int’l Conf. Product Focused Software Process Improvement (Profes),
pp. 196-209, 2001.

[19] M. Kauppinen, S. Kujala, T. Aaltio, and L. Lehtola, “Introducing
Requirements Engineering: How to Make a Cultural Change
Happen in Practice,” Proc. IEEE Joint Int’l Requirements Eng. Conf.
(RE ’02), pp. 43-51, 2002.

[20] M. Kauppinen, M. Vartiainen, J. Kontio, S. Kujala, and R. Sulonen,
“Implementing Requirements Engineering Processes throughout
Organizations: Success Factors and Challenges,” Information and
Software Technology, vol. 46, no. 14, pp. 937-953, 2004.

[21] H. Kaindl, S. Brinkkemper, J.A. Bunenko, B. Farbey, S. Greenspan,
C. Heitmeyer, J.C. Leite, N. Mead, J. Mylopolous, and J. Siddiqi,
“Requirements Engineering and Technology Transfer: Obstacles,
Incentives and an Improvement Agenda,” Requirements Eng. J.,
vol. 7, pp. 113-123, 2002.

[22] S. Lauesen and O. Vinter, “Preventing Requirement Defects: An
Experiment in Process Improvement,” Requirements Eng. J., vol. 6,
pp. 37-50, 2001.

[23] R. Likert and J.G. Likert, New Ways of Managing Conflict, p. 165.
New York: McGraw-Hill, 1976.

[24] K.R. Linberg, “Software Developer Perceptions about Sofware
Project Failure: A Case Study,” Systems and Software, vol. 49,
pp. 177-192, 1999.

[25] E. Mayo, The Human Problems of an Industrial Civilization. New
York: Macmillan Co., 1933.

[26] B.A. Nuseibeh and S.M. Easterbrook, “Requirements Engineering:
A Roadmap,” The Future of Software Eng., A.C.W. Finkelstein, ed.,
IEEE CS Press, 2000.

[27] M. Paulk, “A Comparison of ISO 9001 and the Capability Maturity
Model for Software,” CMU/SEI-94-TR-12, 1994.

[28] J. Procaccino, J. Verner, S. Overmyer, and M. Darter, “Case Study:
Factors for Early Prediction of Software Development Success,”
Information and Software Technology, vol. 44, pp. 53-62, 2002.

[29] B. Regnell, P. Beremark, and O. Eklundh, “A Market-Driven
Requirements Engineering Process—Results from an Industrial
Process Improvement Programme,” Requirements Eng. J., vol. 3,
no. 2, pp. 121-129, 1998.

[30] S. Robertson and J. Robertson, Mastering the Requirements Process.
Addison-Wesley, 1999.

[31] SEI, 1995: Software Eng. Inst., The Capability Maturity Model:
Guidelines for Improving the Software Process. Addison Wesley, 1995.

[32] I. Sommerville and P. Sawyer, Requirements Engineering: A Good
Practice Guide. John Wiley & Sons, 1997.

[33] T.S. Group, “The CHAOS Report,” The Standish Group Interna-
tional, 2003, www.standishgroup.com.

[34] W. Trochim, “Research Methods Knowledge Base,” http://www.
socialresearchmethods.net/kb/, 17 May 2006.

[35] J.A. Villanlon, G.C. Augustin, T.G. San Feliu, and A.A. Seco,
“Experiences in the Application of Software Process Improvement
in SMEs,” Software Quality J., vol. 10, no. 3, pp. 261-273, 2002.

[36] H. Wohlwend and S. Rosenbaum, “Software Process Improve-
ment in an International Company,” Proc. Int’l Conf. Software Eng.,
pp. 212-220, 1993.

[37] R.K. Yin, Case Study Research: Design and Methods. Thousand Oaks,
Calif.: Sage Publications, 1994.

Daniela Damian is an assistant professor at the
University of Victoria, Canada, where she leads
research at SEGAL, the Software Engineering
Global interAction Laboratory. Her research lies
at the intersection of software engineering,
computer supported cooperative work, and hu-
man computer interaction. Her current projects
are in the areas of requirements and software
processes in geographically distributed teams
and the development of collaborative tools to

support global software teams. She has recently acted as a guest editor
of an IEEE Software special issue on global software development and
as program cochair for the First International Conference on Global
Software Engineering.

James Chisan received the MS degree in
computer science in 2005 from the University
of Victoria and the BS degree in computer
science in 2001 from the University of Calgary.
His fields of interest are requirements engineer-
ing, software process improvement, and global
software development. He has worked as a
software developer for IBM’s Database Tech-
nologies group and as a senior analyst for HSBC
Bank. Currently, he is practicing intellectual

property law as a technology specialist at Fish & Richardson.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DAMIAN AND CHISAN: AN EMPIRICAL STUDY OF THE COMPLEX RELATIONSHIPS BETWEEN REQUIREMENTS ENGINEERING... 453

