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Abstract

Automatic, Run-time and Dynamic Adaptation of Distributed
Applications Executing in Virtual Environments

Ananth Inamti Sundararaj

In the last decade we have seen tremendous increases in computer and network speeds

and performance, resulting in the emergence of wide-area distributed computing. How-

ever, its potential has not been realized, primarily due to lack of security and isolation,

provisioning issues and challenges involved in developing distributed applications.

We present the design, implementation and evaluation of a virtual distributed execution

environment consisting of operating system level virtual machines connected by virtual

networks. Such environments make possible low-level, application-, developer-, and user-

independent adaptation mechanisms such as virtual machine migration, overlay topology

configuration and routing, network and CPU reservations. This dissertation argues that

automatic, run-time and dynamic adaptation in these environments is the key to addressing

issues in traditional distributed computing. In particular, it presents the answer to the ques-

tion, is there a single adaptation scheme that exploits these mechanisms and is effective for

a range of distributed applications.

I formalized the adaptation problem and characterized its complexity and hardness of

approximation. We found the problem to be NP-hard and hard to approximate. In re-

sponse to these results, I designed and implemented fifteen variations of greedy adaptation

schemes that heuristically attempt to optimize objective functions. I designed these adapta-
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tion schemes using insights gained while studying three classes of distributed applications

and evaluated them in the context of a different set of seven application classes. I found

that a single adaptation scheme that does a variation of load balancing to determine mi-

gration of virtual machines and attempts to optimize a function that is a combination of

latency and bandwidth for pairs of communicating virtual machines to be effective for

70% of application classes studied. I present two taxonomies for distributed applications

based on their resource demands and their suitability to automatic adaptation driven by my

suggested adaptation scheme.

This work fills an important gap in distributed systems research by providing an auto-

matic, run-time and dynamic adaptation scheme that leverages the powerful paradigm of

virtualization and is effective for a range of unmodified distributed applications running on

unmodified operating systems without requiring any developer interaction.
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Chapter 1

Introduction

Over the last few years we have seen a tremendous increase in computer and network per-

formance. Despite this, there are many applications in science, engineering, business and

the arts, that cannot be effectively dealt with the current generation of co-located computer

clusters and supercomputers. The popularity of the Internet coupled with the availability

of low cost commodity computers and high-speed networks have enabled a shift in how

computers are used. Computing resources distributed geographically and under different

administrative domains can now be harnessed to provide a wide-area distributed computing

environment, much more flexible and powerful than any single supercomputer. Apart from

supporting high performance computations, a combination of these distributed resources

can also be used to host application services or enterprise services [15]. Variants of this

new approach have been known by several names such as metacomputing, scalable com-

puting, global computing, Internet computing, grid computing [55] or simply as wide-area

distributed computing.

The potential of wide-area distributed computing has not been fully realized due to its

inherent complexity, lack of security and isolation, and because of the challenges involved

in developing applications for it. This dissertation argues that resource virtualization solves

many of these problems and presents opportunities for solving others by providing the
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building blocks to build virtualized wide-area distributed computing environments.

In a virtualized model of distributed computing, computation is hosted inside of operat-

ing system level virtual machines (VMs). These VMs are then connected to each other and

to the outside world via virtual networks. Virtual machines and virtual networks provide

the same abstraction as their physical counterparts (i.e. physical machines and physical

networks). In addition, they also provide security, isolation, flexibility and better utiliza-

tion, important features lacking in their physical counterparts.

What is required beyond virtual machines and virtual networks is an application in-

dependent adaptation scheme that adapts the virtualized distributed computing system to

measured available physical resources such that application performance and/or resource

utilization is improved.

This dissertation describes the design, implementation and evaluation of adaptation

mechanisms, optimization objective functions and heuristic algorithms that provide for an

automatic, run-time and dynamic adaptation scheme that leverages the powerful paradigm

of virtualization and is effective for a range of unmodified distributed applications running

on unmodified operating systems without requiring any developer or user help.

In the remainder of this chapter we first describe the wide-area distributed computing

model in Section 1.1. Section 1.2 discusses some of the major issues in this model that have

prevented it from realizing its full potential thus motivating this research. Virtual machines

and virtual networks, basic building blocks of our system, are described in Sections 1.3

and 1.4. Adaptive virtual execution environments are introduced in Section 1.5 and the

design space for the adaptation problem in such environments is discussed in Section 1.6.

Section 1.7 provides a brief tour of the remainder of this dissertation. In particular, it gives

a high level description of Virtuoso, the adaptive virtualized computing system developed

as part of this dissertation. Secondly, it briefly discusses the design decisions made in

the context of the adaptation problem. Finally, Section 1.8 describes the outline of this
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dissertation.

1.1 Wide-area distributed computing

Under the giant umbrella of wide-area distributed computing, there are different variations

of computing models. But in all these computing models what is common is that they are

comprised of three main entities, resource providers, resource users and the control sys-

tem which coordinates the resource usage. Resource providers make physical resources

such as CPU, memory, hard disk and network devices available by registering them with

the control system.Resource users typically look to execute a distributed computation with

inter-node synchronization or look to deploy a distributed service, such as a hosted web

service or an enterprise-wide service. Such users request for physical resources from the

control system. The control system’s information service locates a match between the

user’s needs and the provided physical resources and allocates an appropriate slice of re-

sources at the abstraction level of an operating system user. The user is then able to connect

to these provided resources and configure them appropriately with libraries, software en-

vironments, etc. Thus deploying their computational task or application service over a

geographically distributed set of computational and networking resources [37].

1.2 Issues with traditional wide-area distributed comput-
ing

However, the full potential of wide-area distributed computing systems has not been ex-

ploited due to a variety of reasons such as complexity of this model, lack of isolation and

security, provisioning issues, and, most importantly, the challenges involved in developing

applications for such environments.
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1.2.1 Complexity in wide-area distributed computing

Wide-area distributed computing aims to seamlessly multiplex, among resource users, dis-

tributed computational and networking resources made available by providers. Operating

systems multiplex resources in traditional computer systems. For example, a time shar-

ing operating system multiplexes a single microprocessor among different competing pro-

cesses. Current wide-area distributed computing systems are built upon the abstraction

of an operating system user. Firstly, this approach suffers from the limitations of tradi-

tional user account models in crossing administrative domain boundaries [129]. Secondly,

there is a lot of complexity on both, the user’s and resource provider’s, ends. Resource

providers have to manage and account for resource usage by remote users and limit the

impact their resource usage can have on the other users. Resource user’s have to deal with

potentially complex middleware solutions. Additionally, users also have to manually con-

figure the provided resources with the correct libraries and associated softwares to support

their computation and/or service. This can become a time sink as the number of compute

resources grow in size and variability of their basic configuration (kernel version, etc.).

1.2.2 Lack of security and isolation

A key to the success of this model of distributed computation on a remote host owned

by a third party provider is to be able to isolate the user’s computational and network

workload from the physical host and from other user’s workloads executing on the same

host and/or over the same network. Otherwise, this model will be feasible only in limited

cases where a two way trust can be established. Without isolation and mutual trust the

integrity of a computation or a service may be compromised by a malicious resource [58],

and, conversely, the integrity of the resource may be compromised by a malicious user [16].

Though operating systems attempt to isolate user processes, these are not sufficient as the
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integrity of the user’s jobs is not completely isolated from the resources multiplexed by

the operating system. Further, if a user’s job requires administrative privileges, there will

be only a few provider nodes, if any at all, that will agree to give administrative privileges

to an unknown user. Finally, this paradigm necessarily involves communication over the

network. Isolation and security are difficult to achieve at the network level without having

complete control over the network [15].

1.2.3 Provisioning issues

Almost all enterprises host mission critical business applications in dedicated compute

clusters or data centers that are geographically distributed from one another [141, 191].

In this model of wide-area distributed computing, the control system, the resource own-

ers and resource users are affiliated to a single organization. Such resources are typically

partitioned into isolated islands, each dedicated to a single business application [191]. Ad-

ditionally, the resources are statically over-provisioned to account for any sudden surges in

the application’s resource demands. More often than not this over provisioning is achieved

manually by dedicated IT staff. All this leads to low utilization and high cost of ownership

for the resources [141, 191].

A second scenario wherein low utilization and cost of ownership become issues are

compute clusters running scientific batch parallel applications. The cluster of machines

could be co-located or spread over a wide area. Currently, such clusters are space shared.

Each batch parallel application is assigned a set of nodes and it is the only application

which runs on those nodes. The reason is that if two applications execute on the same

set of nodes, each with 50% utilization, then there is no guarantee that their performance

will be at least 50% of what it was when they were executing in isolation. The solution

would be to time-share the cluster with performance guarantees and control leading to

better utilization and lower cost of ownership of the resources from the resource owner’s
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perspective. The resource user would get the option of using less resources, costing him

less money, yet assured of performance proportional to the resource usage [11].

1.2.4 Challenges involved in developing applications

The wide range of operating systems, specific versions of supporting software packages

or software environment variations, in general, have made developing truly portable dis-

tributed applications a challenging task. Further, distributed environments are highly het-

erogeneous and experience wide fluctuations in available network and computational re-

sources. This requires each application to continuously adapt to available system resources

to achieve even reasonable performance. Despite many efforts [13, 103, 174, 188], adapta-

tion mechanisms and control are not common on today’s applications. This is because they

tend to be both very application-specific and require considerable user or developer effort.

Custom adaptation by either the application developer (user) or the resource provider is ex-

ceedingly complex as the application requirements, computational and network resources

can vary over time.

1.2.5 Virtualization to the rescue

We believe that one solution to these problems is to adopt a new paradigm to wide-area dis-

tributed computing, namely, virtualized distributed computing, leveraging operating sys-

tem level virtual machine (VM) technology coupled with a virtualized abstraction of the

network. The three inter-related pieces of this paradigm are virtual machines, virtual net-

works and adaptation. Resource providers still provide physical resources such as CPU,

memory, disk and network and resource users still specify their resource requirements as

before. However, the control system, instead of simply providing resource slices at the

level of an operating system user, presents users with the abstraction of virtual machines

interconnected via virtual networks that dynamically adapt to improve application perfor-



CHAPTER 1. INTRODUCTION 33

mance.

1.3 Virtual machines

Virtual machine technology dates back to the 1970s when IBM achieved commercial suc-

cess by introducing virtualization technology thus allowing its mainframes to be used in

a time shared manner [67]. Over the next decade interest in hardware virtualization de-

clined partly due to the introduction of affordable low end computers. Despite this, the

general notion of resource virtualization has existed throughout, addressing computer sys-

tems problems by adding an additional layer of abstraction. Over the past few years we

have seen a resurgence of interest in hardware virtualization technology in the form of

commercial products from VMware [182] and IBM [86] and increased activity in the re-

search community [51]. This is primarily due to two reasons. First, computers today are

more powerful than ever before. Second, the emergence of computational grids and mega

data centers have created a need for security, isolation and better resource utilization that

are best addressed by virtualization [52]

The virtual machine technology relevant to this work is discussed in detail in Chapter 9.

In brief, my work builds on operating-system level virtual machines, more specifically

Virtual Machine Monitors, such as VMware [182] and IBM’s VM [86]. These present an

abstraction identical to a physical machine. For example, VMware provides the abstrac-

tion of an Intel IA32-based PC (including memory, IDE or SCSI disk controllers, disks,

network interface cards, video card, BIOS, etc.). On top of this abstraction, almost any

existing PC operating system environment can be installed and run. The overhead of this

emulation has been shown to be less than 5% deeming this abstraction feasible [52, 164].

Virtualization technology such as VMMs can greatly simplify wide-area distributed

computing by lowering the level of abstraction from the traditional units of work, such as
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jobs, processes, or RPC calls to that of a raw machine. This abstraction makes resource

management easier from the perspective of resource providers and results in lower com-

plexity and greater flexibility for resource users. A virtual machine image that includes

pre-installed versions of the correct operating system, libraries, middleware and applica-

tions can make the deployment of new software and application of patches far simpler.

These reasons motivate the use of virtualization in wide-area distributed computing. The

first detailed case for distributed computing on virtual machines appeared in a previous

paper [52]. We have been developing a middleware system, Virtuoso, for virtual machine

distributed computing [153]. The Virtuoso architecture is described in Section 1.7. Others

have shown how to incorporate virtual machines into the emerging grid standards environ-

ment [102].

1.4 Virtual networks

The term virtual network is a very generic one. For the purposes of this work we define

the relationship between a physical network and a virtual network to be similar to that

between a physical machine and a virtual machine. A virtual network inter-connects virtual

machines and the virtual machines to the outside world. The virtual network abstraction is

invisible to the user.

Distributed computing is intrinsically about using multiple sites, with different network

management and security philosophies, often spread over the wide area [55]. Running a

virtual machine on a remote site is equivalent to visiting the site and connecting a new

machine. The nature of the network presence (active Ethernet port, traffic not blocked,

routable IP address, forwarding of its packets through firewalls, etc.) the machine gets,

or whether it gets a presence at all, depends completely on the policy of the site. Not all

connections between machines are possible and not all paths through the network are free.
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The impact of this variation is further increased as the number of sites is increased and if

we permit the possibility of migrating virtual machines from site to site.

To deal with this network management problem in wide-area distributed computing,

I designed and implemented VNET [169], a data link layer virtual network. VNET is

described in Chapter 3. Using VNET, virtual machines have no network presence on a

remote site. Instead, VNET provides a mechanism to project their virtual network cards

onto another network, which also moves the network management problem from a re-

mote network to another network of the user’s choosing. Because the virtual network is a

data link layer network, a machine can be migrated from site to site without changing its

presence—it always keeps the same IP address, routes, etc. VNET maintains the abstrac-

tion of a physical LAN between a user’s virtual machines and the user’s physical network.

VNET is publicly available.

1.5 An adaptive virtual execution environment

VNET provides a distributed computation or service developer with the abstraction of

multiple physical machines all connected to the user’s network that can be easily man-

aged, while in reality they are virtual machines, hosted in different geographic locations

under different administrative domains. Virtual networks are not just a required means

for providing network connectivity to virtual machines, they have tremendous potential to

become adaptive overlay networks.

The core of this dissertation describes the design, implementation and evaluation of

adaptation mechanisms, adaptation objective functions and heuristic algorithms that pro-

vide for an automatic, run-time and dynamic adaptation scheme that leverages the power-

ful paradigm of virtualization and is effective for a range of unmodified distributed appli-

cations running on unmodified operating systems without requiring any developer or user
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Figure 1.1: The core of a generic adaptive system.

interaction.

1.6 Adaptation problem in virtual execution environments

At a high level, for any system to be adaptive it must comprise of some basic components.

Figure 1.1 illustrates a generic adaptation system with its basic building blocks. In this

section we explore the design space for the different pieces of the adaptation problem.

1.6.1 Application demands

An application will typically place demands on the available computational resources such

as computational speed and utilization, memory, etc. Additionally, it will also make de-

mands on network characteristics such as topology, routing, bandwidth, latency, etc. For

example, an application might say that it requires four computational nodes of certain

computational speeds each with at least 50% utilization. Further, it might demand that the

nodes should be connected via an all-to-all topology wherein the latency among all of them

is below a certain threshold. It may also stipulate the expected bandwidth between some

of the pairs of communicating nodes.

These demands can either be hard demands or soft demands. Hard demands imply

that the specified are essential for the proper operation of the application and that these
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resources are best reserved for the sole use of the application over a specified duration.

Soft demands, as the name implies, are less stringent and act as guidelines that lead to the

best operation of the application. Depending on the nature of the system, there might be an

additional dimension of cost that the application/user is willing to pay for the demanded

resources. Further, these demands could either be explicitly placed by the application/user.

Alternatively, the same could be inferred in an invisible manner by the control system.

The former has the advantage that the demands will be exact, but requires explicit dialog

between the application and the control system. The latter has the advantage that the

control system can be invisible to the application, but the inferred demands may not be

exact.

1.6.2 Available system resources

In any distributed system, the available computational and network resources keep chang-

ing dynamically. It is important for an adaptive system to keep track of all system re-

sources. For a typical distributed system, this has two main components, computational

and network resources. Computational resources include the computational speed of the

node, memory and disk space available and available node utilization for a particular pro-

cess. Network resources include the topology between a set of nodes, latency and band-

width available between pairs of communicating nodes.

The system resource measurement scheme can either be distributed or centralized. A

centralized system typically has scalability issues as the system size grows, however, it

provides a single global view of the system which makes adaptation decisions easier to

make. It should be noted the global view may have a slight lag from the instantaneous

resource measurements as all the data has to be routed to a single point in the system. The

alternative is to collect resource measurements in a distributed way which eliminates the

single point of failure. This allows for a scalable measurement scheme, but the resource
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information available is always local and an aggregated picture of available resources can

be achieved only at a very coarse granularity. Further, the measurements could be made

in an active mode or in a passive mode. The former involves making measurements us-

ing active probes and the latter achieves the goal using naturally occurring computation

and network traffic. Resources, both computational and network, could be available on a

best effort scheme or could be available for reservation. Again, similar to the application

demands, there might be an additional dimension of cost for all resources on a per unit

basis.

1.6.3 Adaptation mechanisms

Beyond the application’s demands and the available system resources, the control system

must have mechanisms at its command which can change the state of the system. In other

words, the system should be inherently adaptable. Adaptation can be either automatic or

application driven, runtime or offline and lastly dynamic or static.

� Automatic or application driven: Automatic implies that the mechanisms are in-

visible to the application and driven by the control system. The alternative is to have

the application direct and drive the adaptation mechanisms. The former requires no

application or user intervention but may not always lead to improved application

performance. The adaptation may also be driven by the user. In this model it is the

user who gives feedback to the application and directs the control system. Lin et al.

showed the effectiveness of user (human) driven adaptation [36, 72, 110, 121].

� Run-time or offline: The adaptation mechanisms can be called into play in either an

online or an offline fashion. In the former the application is never suspended, while

in the latter, the application is suspended for the duration of the issuing and execution

of the adaptation instructions. An online scheme leads to better performance and no
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application downtime, but is significantly more complex than an offline scheme.

� Dynamic or static: A dynamic adaptation scheme performs adaptation as soon as

change in application demands or system resources is detected or alternatively as

soon as adaptation is requested by the application or the user. In a static scheme

the change in demands and resource availability and the adaptation timing are asyn-

chronous. On the other hand a dynamic scheme is always susceptible to oscillatory

behavior. If the application demands or the system resources change at a rate faster

than the reaction time of the adaptation mechanisms, then the system will be driven

to oscillations.

1.6.4 Objective function

An adaptation scheme can be constraint driven or a combination of constraints and an

optimization objective function. The former is computationally much simpler, where the

application places constraints over certain resources and the adaptation system tries to ei-

ther meet those constraints or notifies the application if any of the constraints are violated.

This scheme puts the burden of adaptation on the application with the assumption that the

application knows best. This may or may not be the case. Alternatively, the application

or the system could define constraints based on application demands and also form an ob-

jective function to be optimized. The difference between an application directed objective

function and a control system inferred objective function is that the former is known to

benefit the application, while the latter is an educated guess which remains to be validated.

It should be noted that adaptation is not always about optimizing a function and going

faster. Often times adaptation is performed for different reasons such as server consoli-

dation [142], better resource utilization [11, 15] or to meet user requirements on price for

resources usage [11]. There is a subtle tension between application centered adaptation
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and system centered adaptation. System centered adaptation might lead to higher system

utilization as a whole, but may end up with reduced performance for a specific application.

Reduced per application performance is not always undesired. If the reduction in appli-

cation performance is proportional to the application’s resource usage and is guaranteed,

then it creates an opportunity for the application owner to pay less yet have a guaranteed

performance bound for his application.

1.6.5 Adaptation algorithm

Finally, what is required to build an effective adaptation scheme is an efficient algorithm

that takes into account application demands, system resources and drives the adaptation

mechanisms such that all constraints on system resources are met and a given or inferred

objective function is optimized. This Ultimately leads to better application and/or system

performance.

The specific algorithm is heavily dependent on the exact adaptation problem formu-

lation. Dependent on the problem’s computational complexity and hardness of approx-

imation, it may or may not be possible to efficiently solve the adaptation problem. In

such a case heuristics will need to be leveraged. If adequate computational resources are

available, strategies such as genetic programming or simulated annealing could also be

successfully employed.

1.6.6 Generality of adaptation solution

Adaptation schemes can either be application specific or generic that are applicable to

a range of application classes. The possibility of a single optimization scheme success-

fully applicable for every single, distributed application written or to be written is highly

unlikely. However, a single optimization scheme with tunable parameters might be appli-

cable to a range of applicable classes. There is a clear trade-off between specificity and
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Figure 1.2: Virtuoso front end.

generality. A solution specific to an application is highly potent but not widely applica-

ble. On the other hand, a generic solution is widely applicable but its potency is slightly

mitigated for certain classes of applications.

1.7 Virtuoso: A virtualized distributed computing infras-
tructure

To address the issues in traditional wide-area distributed computing and to realize the full

potential of this powerful computing paradigm, we are developing Virtuoso, a virtualized,

adaptive, distributed computing infrastructure, which we describe next. A user wishing

to perform a computation or looking to deploy a service, instead of purchasing physical

hardware from a vendor such as IBM [85] or Dell [31] or compute time on a computational

grid or a cycle sharing system [166], can now purchase virtual machines from a website.

Figure 1.2 illustrates the Virtuoso web front-end.

In the Virtuoso model of distributed computing, there exists a marketplace for virtual
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Figure 1.3: Resource provider interface in Virtuoso.

machines. The resource provider registers his physical machine(s) and specifies service

rates for its resources such as CPU, memory, disk, etc. on a per unit basis. Figure 1.3

illustrates the interface as seen by a resource provider. A resource user looking to purchase

a virtual machine(s) specifies the constraints for his virtual machine(s) in terms of ser-

vice rates (
�
GBhour, etc). Virtuoso then acts as a broker and matches resource providers

and users based on their specified constraints and hosts the user’s virtual machines on the

matched physical hosts.

1.7.1 User experience in Virtuoso

Virtuoso, for a user, very closely emulates the existing process of buying, configuring, and

using an Intel-based computer or collection of computers from a web site, a process with

which many users and certainly all system administrators are familiar.
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Figure 1.4: Virtuoso user interface.

In our model, the user visits a web site, much like the web site of Dell [31] or IBM [85]

or any other company that sells Intel-based computers. Figure 1.4 illustrates the interface

a user sees. The site allows him to specify the hardware and software configuration of

a computer and its performance requirements, and then order one or more of them. He

receives a reference to the virtual machine which he can then use to start, stop, reset, and

clone the machine. The system presents the illusion that the virtual machine is right next

to the user, in terms of console display, devices, and the network. The console display

is sent back to the user’s machine, the CD-ROM is proxied to the user’s machine’s CD-

ROM, and the virtual machine appears to be plugged into the network side-by-side with the

user’s machine. The user can then install additional software, including operating systems.

The control system is permitted to move a virtual machine from site to site to optimize

its performance or cost, but must preserve the illusion of locality. More details about the

current Virtuoso front-end implementation are available in a previous document [153].
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We use VMware GSX Server [182] running on Linux as our virtual machine monitor.

Although GSX provides a fast remote console, we use VNC [144] in order to remain

independent of the underlying virtual machine monitor. We proxy CD-ROM devices using

Linux’s network block device, or by using CD image files. Network proxying is done

using virtual networks, as described later in this section and in Chapter 3. It should be

noted that VMware is not a requirement of either Virtuoso or any of the work detailed in

this dissertation.

1.7.2 Benefits of Virtuoso’s model of distributed computing

Virtuoso’s model of distributed computing addresses all the issues with traditional wide-

area distributed computing paradigm.

Reduction in complexity

From the resource provider’s perspective, it is simple to sell resources packaged as VMs

to buyers. This abstraction is lower than the current models of RPC, distributed shared

memory, processes, threads and jobs in wide-area distributed computing and cycle steal-

ing [17, 113, 166] systems, hence avoiding software complexity issues at the operating

system level. Now all the required libraries, packages, etc. can be conveniently packaged

into a virtual machine and sold. Further, checkpointing and cloning of virtual machines is

well understood, making creation and customization of virtual machines straightforward.

This abstraction also simplifies life for a resource user. The user does not have to

deal with potentially complex middleware solutions and instead is faced with the familiar

abstraction of a raw machine connected to his local network and administered by his local

network administrator. It is a common belief that lowering the level of abstraction increases

performance while increasing complexity. In this particular case, the rule may not apply.

Our lowered abstraction for the user is identical to his existing model of a machine or a
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group of machines.

Better security and isolation

This model also solves the problem of providing security and isolation. From the resource

provider’s perspective each user is constrained to a virtual machine. Each virtual machine

is isolated from each other via mechanisms provided by typical VMMs [9, 182]. Further,

malicious code trapped inside of a user’s virtual machine now has to break through two

levels of security, VMMs and operating systems. Further, accounting for resources con-

sumed by a user, is also simplified [15]. From the user’s perspective, this provides freedom

from administrative policies at the remote site. The user has administrative privileges and

further, can also ask for virtual machines pre-configured with basic software, alternatively,

can configure one virtual machine and clone it to produce multiple instances and finally

fine-tune each instance as required.

Solution to provisioning issues

Virtuoso allows for resource reservations, both, at the CPU and network levels. The re-

source reservations are coupled with a feedback control system to guarantee the appli-

cation’s performance to be proportional to its resource usage. This allows for the time-

sharing of distributed or co-located compute resources leading to better utilization and

lower cost of ownership of the resources.

The bulk of this dissertation explores adaptation schemes that require no user input.

However, for certain cases, where application needs cannot be inferred, we illustrate how

with minimal application interaction, powerful adaptation schemes can be designed and

implemented.
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Figure 1.5: System overview. Dashed lines indicate control traffic, solid lines denote actual
network traffic. The highlighted boxes are components of Virtuoso.

Automatic, run-time and dynamic adaptation

The core of this dissertation illustrates how automatic run-time and dynamic adaptation

of un-modified applications running on un-modified operating systems helps realize the

full potential of wide-area distributed computing. The onus of adaptation is moved from

the developer/application owner to our control system. This simplifies application devel-

opment and increases the possibility of wide spread adoption of this powerful computing

paradigm in future.

1.7.3 Virtuoso system architecture

We next describe the Virtuoso system architecture. Figure 1.5 illustrates the system schemat-

ically.
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VNET: Virtual network

VNET is the virtual networking component of Virtuoso. It operates at the Ethernet level

and creates the abstraction that all of a user’s machines are on the user’s LAN. The fact that

a user’s virtual machines are hosted on third-party foreign LANs is completely invisible to

the user. VNET is described in Chapter 3.

VTTIF: Virtual topology and traffic inference framework

VTTIF is integrated with VNET and looks at Ethernet packets to infer the communication

traffic matrix. VTTIF can also detect dynamic topology changes and is fitted with mech-

anisms to prevent oscillations when the topology changes at a rate faster than the reaction

time of the adaptation mechanisms. VTTIF is described in Chapter 3 and Appendix A.

Wren: Watching resources from the edge of the network

Wren was developed at College of William and Mary and has been integrated with Virtuoso

to provide network measurement estimates. Wren attempts to use the naturally occurring

traffic between the virtual machines to make passive network measurements. Wren is

described in Chapter 3 and Appendix A.

VADAPT: Adaptation mechanisms

VADAPT is Virtuoso’s adaptation engine. It is a collection of application independent

adaptation mechanisms that are made possible by the virtualization abstraction and an

adaptation scheme to drive them. VADAPT is described in Chapters 3, 7 and 8.

VRESERVE: Network reservations

In the absence of resource reservations, adaptation can be only best effort. VRESERVE

is Virtuoso’s component, that detects if network reservation is available and leverages
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the same when possible to improve and guarantee communication characteristics between

pairs of communicating VMs. VRESERVE is described in Chapter 5.

VSched: Periodic real-time scheduling

VSched is a periodic real-time scheduler that controls the utilization a VM gets by con-

trolling the slice it gets every period seconds. The challenge is to ensure that for an

application, running inside of a VM, its performance is proportional to the utilization it

receives. VSched is described in Chapter 6.

1.7.4 Adaptation in Virtuoso

A system like Virtuoso can be used to execute a variety of computational centric appli-

cations and network and application services. We attempt to infer application demands,

measure available system resources, adapt the system using available adaptation mecha-

nisms and reservation schemes such that application performance is improved (or some

application specified target is met) and/or some objective function is optimized. Figure 1.6

illustrates the Virtuoso adaptation system with its basic building blocks. Notice the simi-

larity with Figure 1.1. This effectively illustrates how Virtuoso has all the building blocks

required of an successful adaptive system. We next describe some of the high level con-

tributions of this dissertation. A detailed discussion of the contributions is presented in

Chapter 9.

Computational complexity

The generic adaptation problem in such virtual execution environment turns out to be quite

complex. This dissertation presents a formalization of the adaptation problem and proofs

that it is NP-hard and NP-hard to approximate within a certain factor of the optimal. As

far as we are aware, this is the first such formalization of a problem that includes both
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Figure 1.6: The core of Virtuoso adaptive system.

mapping and routing components. Additionally, it is also the first attempt at analyzing the

complexity and inapproximability of such problems. This work has the potential to be used

as the basis for reduction and analysis for future adaptation problems in virtual execution

environments.

Resource reservations

Adaptation schemes that take into account network and CPU reservations were studied

in the course of this work. In particular, this dissertation illustrates how Virtuoso can

detect if the underlying network provides network reservation mechanisms and leverage

them to reserve resources between pairs of communicating VMs. Further, I illustrate how

Virtuoso can reserve CPU resources that a particular VM on a physical host gets and ensure

that the application inside a set of VMs experience performance proportional to the CPU

utilization the VMs receive. This work has the potential to improve utilization and reduce

cost of ownership of resources in compute clusters and data centers.

Optimization schemes

In response to the computational complexity results, I have explored the space of heuristic

solutions. In particular, I devised six different incarnations of the generic adaptation prob-

lem, each with a different objective function. I designed and implemented fifteen different

variations of greedy adaptation algorithms that heuristically attempt to optimize the dif-
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ferent objective functions. I evaluated these different optimization schemes in the context

of ten different classes of distributed applications spanning from scientific applications to

transactional web applications to enterprise IT applications. A single optimization scheme

with tunable parameters seems to be most effective for majority of the distributed appli-

cations studied (seven out of ten). This suggested algorithm does a variation of classic

load balancing to determine migration of virtual machines to minimize run-time and load

and then attempts to optimize a function that is a combination of latency and bandwidth

for pairs of communicating virtual machines. This work has the potential to lead a faster

and more wide-spread adoption of the wide-area distributed computing paradigm by mov-

ing the onus of adaptation from the developer to the control system, hence simplifying

application development.

Application taxonomy

This dissertation provides a taxonomy of the distributed applications studied in the con-

text of this work. In particular the applications are classified as those for which a single

optimization scheme is effective (seven out of the ten applications classes studied), those

for which the application needs to provide some feedback/input and those for which a sin-

gle optimization scheme does not work. An additional taxonomy is provided based on

the compute and network requirements of the application classes. This work heavily re-

lies on insights and previous work done at Intel Corporation’s IT Innovation and Research

Group [90]. The results described in this dissertation can be leveraged in the design of

future adaptive systems targeted for specific requirements [15].

Experimentation, simulation and analytical studies

There are three main techniques for evaluating and studying a computer system: experi-

mentation, simulation and analytical modeling. Most studies leverage one or two of these
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techniques. The exact methodology chosen for any case depends on a number of factors:

life-cycle stage in which the system is, time available for evaluation, availability of tools,

level of accuracy desired and allocated cost [93]. With the aim of studying the adapta-

tion problem comprehensively, this dissertation leverages all three of these techniques. A

combination of these techniques is necessitated by the inherent qualities and restrictions of

each of the techniques.

1.8 Outline of dissertation

Virtuoso is a distributed adaptive systems for executing distributed applications. We begin

this dissertation in Chapter 2 by discussing ten diverse classes of distributed applications.

The contents of this chapter draw heavily on insights gained during discussions with re-

searchers at Intel Corporation. We use these application classes to motivate the need for the

search of single adaptation scheme with wide applicability to diverse application classes.

The remainder of this dissertation primarily describes the different Virtuoso compo-

nents depicted in Figure 1.5 moving from the bottom to the top.

Chapter 3 describes the design, implementation and evaluation of our virtual network

VNET. It starts off by providing the motivation and justification for the first generation

VNET. This is followed by some performance analysis of the same. The second generation

of VNET is then described, with particular emphasis on bottleneck elimination, greater

performance and enhanced flexibility. We then describe Virtuoso’s application inference

and network measurement systems, VTTIF and Wren respectively. The focus is on how

these have been integrated with VNET and provide the tools to make automatic adaptation

invisible to the application and user a reality. Further, this chapter also describes some of

the application independent adaptation mechanisms that the abstraction of virtualization

makes possible.
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The problem formulation is presented in Chapter 4. A generic incarnation of the adap-

tation problem applicable to most virtual execution environments is described. It then

analyzes the computational complexity of a simplified version of the problem and pro-

vides proof to show that the problem is NP-hard. It then presents results which show that

the problem is also NP-hard to approximate within a factor of m1 � 2 � δ for any δ � 0, where

m is the number of edges in the virtual network graph.

Chapter 5 describes the design, implementation and evaluation of the VRESERVE

component of Virtuoso. VRESERVE can automatically detect if the underlying network

provides resource reservation mechanisms. In particular we deployed Virtuoso over a real

distributed optical testbed and showed the effectiveness of our approach at a proof of con-

cept level.

Though this dissertation is about automatic adaptation that does not require user or

application interaction, Chapter 6 studies a scenario wherein application inference and

hence automatic adaptation is not possible and what we can still do in such a scenario. In

particular, it studies the case wherein a user or system administrator desires a distributed

application to consume a specified amount of CPU resource defined in terms of utilization.

I tried to answer the question, is it possible to come up with a feedback controlled periodic

real-time scheduling scheme such that the application’s performance measured in some

application defined units is proportional to the utilization its components receive? Though

this work was done in the context of parallel applications executing in tightly coupled en-

vironments such as clusters, it is also applicable to applications executing inside of virtual

machines.

Following up on the complexity and inapproximability results derived in Chapter 4,

Chapter 7 describes six different optimization functions and fifteen different variations of

adaptation schemes driven by greedy heuristics. Out of the ten application classes dis-

cussed in Chapter 2, we used three to design our adaptation schemes. The remainder seven
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were used for evaluating the adaptation schemes (Chapter 8). Further, we also describe

the proof of correctness for some of the algorithms that are not very intuitive. Finally, we

present a detailed comparison of all algorithms against each other and the optimal, where

the performance of each adaptation scheme is measured in terms of optimizing objective

functions.

The bulk of this dissertation’s results are presented in Chapter 8. First, I describe our

physical distributed testbed and present the overheads of our adaptation system. Second, I

describe the experiments conducted on two out of three classes of applications used in the

design of the adaptation schemes. Next, I describe, verify and validate a system simulator

that mimics the real system within certain limits and based on certain assumptions. This

simulator was used to study the effectiveness of the adaptation schemes for the remainder

seven application classes. In this case the performance of the adaptation schemes was mea-

sured in terms of improving values of application specific metrics. I find that an algorithm

with tunable parameters that performs VM migrations based on compute requirements and

demands and modifies the overlay topology and routes to meet latency and bandwidth re-

quirements works well for the majority of the application classes studied (seven out of ten).

I also present two taxonomies for distributed applications and make recommendations for

performing automatic, run-time and dynamic adaptation.

Chapter 9 concludes the dissertation by summarizing the contributions of this disserta-

tion and by comparing and contrasting it against existing literature. It particular I describe

how it relates to other work in this area and how it distinguishes itself from the same. Fur-

ther, we also describe some future work directions. One direction is to relax the notion

of automation and involve an user in the adaptation loop to address some of the applica-

tions which could not be addressed with the single optimization function [110]. Another

direction is to explore combinatorially approximate algorithms with a view to improv-

ing the adaptation quality and at the same time being able to provide some performance
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guarantees. A third possible direction is to create a constraint based system wherein the

application provides all the constraint and the system attempts to either meet the same or

notify the application upon failure [15, 90].

Appendix A describes VTTIF, the Virtual Topology and Traffic Inference Framework

of Virtuoso. In particular, it describes the extensions made to support dynamic topology

changes. VTTIF has been fitted with mechanisms which prevent oscillations when the

topology changes at a rate faster than what Virtuoso can adapt to.

Wren, a passive network measurement tool is described in Appendix B. Wren was

developed by Zangrilli, et al. at the College of William and Mary. Wren has been suc-

cessfully integrated with Virtuoso. Wren uses the naturally occurring traffic of a user’s

VMs to make passive network measurements. Wren has an offline and an online mode of

operation. Appendix B focuses on the online incarnation of Wren.



CHAPTER 2. DISTRIBUTED APPLICATION CLASSES 55

Chapter 2

Distributed application classes

This dissertation has a focus on automatic, run-time and dynamic adaptation of distributed

applications. In the course of this research we have studied ten diverse classes of dis-

tributed applications. These distributed application classes are introduced in this chapter.

We briefly describe these application classes and discuss why adaptation is an important

issue for all these application classes.

These application classes (listed in Table 2.1) fall into three main categories, high per-

formance scientific computations, transactional web e-commerce applications and enter-

prise IT applications. We owe our insights and knowledge about enterprise IT applications

to Intel Corporation’s IT Innovation and Research Group [90] (referred to as Intel IT Re-

search from now onwards). Intel Corporation carried out an extensive study to understand

the resource needs of its top ten IT applications [15]. My research draws upon the results

gained in that study. I held a series of meetings with researchers at Intel Corporation’s

Corporate Technology Group (CTG), Hillsboro, OR and the IT Innovation and Research

Group, Santa Clara, CA. The aim of these discussions was to understand the diversity of

resource demands made by a wide range of distributed application classes.

Virtuoso’s model of distributed computation, described in Chapter 1, fits in well with

the needs of high performance scientific computations. These applications typically make



CHAPTER 2. DISTRIBUTED APPLICATION CLASSES 56

Number Application classes

1. High performance scientific applications
2. Transactional web e-commerce applications
3. Enterprise backup applications
4. DNS
5. SMTP mail application
6. Enterprise wide-area file transfer applications
7. Enterprise compute-intensive simulations
8. Enterprise database applications with small transfers
9. Enterprise database applications with large transfers
10. Enterprise engineering computing applications

Table 2.1: Ten distributed application classes.

giant computation demands which are difficult to meet with a set of co-located computer

clusters. Virtualized, adaptive and distributed execution environments make these com-

putations easier and also create potential to improve performance via dynamic adaptation.

Virtuoso’s model also fits web transactional e-commerce applications as these applications

are currently built using specific orchestrators. Successful adaptation via Virtuoso, we

will remove this burden from the shoulder of the developers decreasing the time taken in

developing such applications.

At first glance, Virtuoso’s model of distributed computation might not seem to fit in

with enterprise application needs. However, this is not true. An enterprise can be looked

upon as a geographically distributed collection of sites and LANs. The current army of

physical machines could be replaced with virtual machines hosted on consolidated servers.

These VMs, though physically hosted in different data centers, would still maintain the

LAN illusion via VNET. In an enterprise setting resource providers and resource users are

typically affiliated with the same organization. Automatic adaptation would complete the

picture and create an IT and computing infrastructure that mirrors the existing setup, but

comes with the added benefits of less complexity, better security and isolation, better server
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provisioning and improved performance. With the recent push towards virtualization in

enterprises [15], a study like this assumes an important role.

We next describe the ten application classes studied and present the high level insights

gained from discussions with researchers at Intel Corporation.

2.1 High performance scientific computations

The paradigm of wide-area distributed computing grew out of the ever increasing computa-

tional needs of the high performance scientific community. Typical scientific applications

and simulations can have computational requirements beyond the capabilities of any sin-

gle co-located, dedicated cluster of computers. An alternative is to harness the unused

computational power of commodity low end computers spread geographically all over the

world to create the abstraction of a single machine much more powerful than any Super-

computer [57, 114, 166]. However, as these compute and network resources spread across

wide-area networks, adaptation issues become prominent again. Virtuoso’s model of dis-

tributed computing is ideally placed to service such applications.

We studied a series of real and synthetic high performance computing benchmarks in-

cluding NASA’s NAS benchmark suite [185], persistence of vision ray tracing benchmark

POVRAY [33] and a home grown synthetic benchmark that models Bulk Syncronous Par-

allel (BSP) [180] applications, called Patterns. We next briefly describe each of these

applications.

2.1.1 NAS benchmark suite

The NAS (NASA Advanced Supercomputing) benchmark suite was developed to test the

performance of parallel supercomputers. The different components of the benchmark suite

are designed to mimic the computational and data transfer behavior of large scale computa-
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tional fluid dynamics (CFD) based applications. This benchmark consists of the following

components:

� EP: An embarrassingly parallel kernel. It provides an estimate of the upper achiev-

able limits for floating point performance i.e. the performance without significant

interprocessor communication [185].

� MG: A simplified multigrid kernel. It requires highly structured long distance com-

munication and tests both short and long distance data communication [185].

� CG: A conjugate gradient method is used to compute an approximation to the small-

est eigenvalue of a large sparse symmetric positive denite matrix. This kernel is

typical of unstructured grid computations in that it tests irregular long distance com-

munication employing unstructured matrix vector multiplication [185].

� FT: A partial differential equation solution using FFTs. This kernel performs the

essence of many “spectral” codes. It is a rigorous test of long distance communica-

tion performance [185].

� IS: A large integer sort. This kernel performs a sorting operation that is important in

particle method codes. It tests both integer computation speed and communication

performance [185].

We use the PVM [63] implementation of the NAS benchmarks as developed by Sun-

deram et al. [187].

2.1.2 Persistence of vision ray tracer

We also studied POVRAY, a popular ray tracing technique. In particular we used the PVM

version of the popular ray tracer POVRAY [33]. The PVM version gives it the ability to

distribute a rendering across multiple heterogeneous systems [71].
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2.1.3 Patterns

Patterns: is a synthetic workload generator that captures the computation and communi-

cation behavior of Bulk Synchronous Parallel (BSP) [180] programs. Patterns emulates

a BSP program with alternating dummy compute phases and communication phases ac-

cording to the chosen topology operation, and compute/communicate ratio. The reason for

choosing a synthetic benchmark is to allow ourselves the flexibility of quickly changing

parameters to study different scenarios in a short period of time. In particular, we can

vary the number of nodes, the compute/communicate ratio of the application, and select

from communication operations such as reduction, neighbor exchange, and all-to-all on

application topologies. Patterns is described in a previous paper [71].

2.2 Transactional web e-commerce applications

With the ever growing popularity of the web, transactional web e-commerce applications

are increasing in importance. Most web sites serve dynamic content and are built using a

multi-tier model, including the client, the web server front end, the application server(s),

cache(s), and database and image server back-ends. Virtuoso, with its simplified, adaptive

and distributed model of computing in a perfect position to host such applications.

In particular we deployed and studied TPC-W, an industry benchmark for transactional

web ecommerce applications. TPC-W models an online bookstore [157]. We use the Uni-

versity of Wisconsin’s PHARM group’s implementation [79], particularly the distribution

created by Jan Kiefer.

The separable components of a typical can be hosted in separate VMs. Figure 2.1

shows the configuration of TPC-W that we setup, spread over four VMs. Remote Browser

Emulators (RBEs) simulate users interacting with the web site. RBEs talk to a web server

(Apache) that also runs an application server (Tomcat). The web server fetches images
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Figure 2.1: The configuration of TPC-W setup and studied.

from an NFS-mounted image server, alternatively forwarding image requests directly to an

Apache server also running on the image server. The application server uses a back-end

database (MySQL) as it generates content.

2.3 Enterprise backup applications

A typical enterprise, even a modestly sized one, generates tremendous amounts of busi-

ness data on a daily basis. All enterprises backup data from individual computers on to

distributed and replicated backup servers, generally on a daily basis. In large enterprises

such as Intel Corporation [89], backup accounts for majority of the traffic flowing in cor-

porate networks [90].

We studied and modeled a typical enterprise backup application based on insights ob-

tained from Intel IT Research. A typical backup scenario is sketched at a high level in

Figure 2.2. The backup application acts as a client-server system. The system consists of

a single master server, a set of dedicated, replicated backup servers and finally clients that
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Figure 2.2: A schematic model of enterprise backup applications.

sit on a user’s machine. A client communicates with the master server exchanging block

hashes to determine the data to be backed up. The master server assigns each client a slice

of the backup servers where the user’s data is stored in a distributed and replicated fashion.

The master server, for each client, maintains a data structure listing the backup servers

storing its data.

The backup application is different than the previous two classes studied. Though,

it is a critical application, yet it does not affect businesses’ bottom line. Once approach

to backups can be to complete them as quickly as possible, another would be to utilize

networks links such as to avoid network bottlenecks.

2.4 Enterprise DNS

DNS type query services play an important role in an enterprise setting. It has been re-

ported by Intel IT Research that deployment of the DNS service inside Intel typically
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requires multiple network connections to service a query. Intel sites that have only a single

outgoing connection or sites that have less reliable outgoing network connections deploy

a DNS server on site [15]. At any given time DNS might be operating in one of multiple

modes. First, it might simply be replying to a direct query, in which case low latency is

important. Second, it might be servicing a query flowing through a relay of DNS servers,

in this case, low latency over wide area networks is important. Third, DNS servers might

act as masters for some zones and slaves for others by caching and forwarding data for

them. In such a setting, master-slaves often exchange data via zone transfers that requires

high bandwidth. Figure 2.3 sketches these modes of operation at a high level.

2.5 Enterprise mail applications

Over the last decade electronic mail (email) has become one of the most important means

of communication. This is especially true inside of an enterprise, large or small. Figure 2.4

helps to illustrate the setup of a typical enterprise mail application. A client wishing to send

or read mail, contacts an SMTP server. The SMTP server itself talks to DNS and LDAP
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Figure 2.4: A schematic model of an enterprise mail application.

directory services depending on whether it is sending or receiving mail. In the scenario

sketched, a client’s mailbox is distributed across a set of machines. The initial mail pro-

tocol is chatty thus necessitating low latency links. Persistence of TCP connections can

cause performance bottlenecks, bandwidth becomes important for larger mails. One possi-

ble measure of application performance is messages handled per second, other possibilities

are message delays and message queue lengths. Again, the above information is based on

discussions held with Intel IT Research.

2.6 Enterprise wide-area file transfers

Intel Corporation has operations in many different geographical locations, spread all over

the world. Surprisingly, it does not deploy a global file system such as AFS [82]. Instead

when data needs to be accessed from a different location and response time is important,

a wide-area file transfer is effected. Such an application primarily places high bandwidth
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demands [90] and hence can significantly benefited with automatic adaptation.

2.7 Enterprise simulations

Intel Corporation primarily operates in the semiconductor sector. The next generation chip

designs are often preceded by long running stand alone simulations to study performance,

etc. before they are cast in silicon. Our discussions with Intel IT Research revealed that

more often that not, these simulations have high compute requirements.

Intel Corporation uses an in-house wide-area distributed computing system called Net-

Batch [27, 136]. Intel employees submit simulations to the NetBatch pool which manages

idle resources on office workstations and servers. NetBatch includes a hierarchical match-

maker that matches submitted jobs (both engineering computations and simulations) to

available resources [136].

It is a well known and independently recorded fact that many of the deployments of

these systems (such as NetBatch) manage computers located in several administration sites

that are often geographically separated, and are organized in pools containing large num-

ber of machines [136]. Thus, NetBatch operates like a traditional wide-area distributed

computing system and hence suffers from the deficiencies of this approach as detailed in

Chapter 1. This further backs up our statement on the complexities in the traditional model

of wide-area distributed computing.

Virtualizing such applications partially solves the problem of over-provisioning and

isolation. In a scenario, where such applications execute inside of VMs sitting on server

or workstation nodes, there is tremendous potential for performance improvement via au-

tomatic and dynamic adaptations.
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Figure 2.5: A schematic model of an enterprise database application.

2.8 Enterprise database applications - small queries

Database applications are all pervasive. Any organization that stores large amounts of

data has to create an efficient database architecture to access the information. Database

architectures have been extensively studied and are well understood [61]. A typical multi-

tier architecture includes a set of load balanced front end servers, connected to a set of

application logic servers. The data itself is stored in a back-end database server, image

server and a set of file servers. Figure 2.5 illustrates this typical scenario.

Database systems come in two varieties. Some of them come with a built in orchestra-

tion service, which makes resource allocation and provisioning decisions on a stand alone

basis. The second category of systems include those do not come with a built in orches-

tration service. Systems with orchestration services present an interesting challenge for

Virtuoso since adaptation can now occur at two levels, inside the application and outside

the application driven by Virtuoso. These two levels of adaptation, if occurring simulta-

neously, can be mutually destructive resulting in oscillatory behavior. For the purposes of

this study, we ignore applications that come with built-in orchestration services.
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2.9 Enterprise database applications - large queries

This application class is identical to the database application class described above, except

for the amount of data being returned at the end of a query. Enterprise often run compute

and bandwidth intensive queries at the end of each month and financial quarters to create

business summaries [90]. Given the typically tight deadlines associated with such settings,

any benefits in performance via automatic adaptation would be welcome [90].

2.10 Enterprise engineering computations

As expected, an engineering company such as Intel Corporation generates a rather large

number of engineering computing applications. These are different than the enterprise sim-

ulations in the sense that they can have a significant amount of communication between

application components. Such engineering jobs are also submitted to NetBatch. The rea-

son these applications are described as a separate class is that their resource demands are

very different than the enterprise simulations. Network properties also take center-stage

in addition to the computation resources and hence adapting these application presents

a bigger challenge, but at the same promises higher returns (since we are provided with

additional degrees of freedom).

2.11 Conclusions

In this chapter we have introduced ten distributed application classes. These application

classes can be broadly categorized as high performance computing applications, web trans-

actional e-commerce applications and enterprise applications. We notice that applications

in all these classes can significantly benefit by executing in distributed virtual environ-

ments. Intel Corporation has made a significant push towards introducing virtualization in
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enterprises [15]. Based on our discussions with researchers at Intel Corporation, we also

note that these applications have serious adaptation requirements. In the remainder of this

dissertation we study automatic, run-time and dynamic adaptation in the context of these

application classes. In particular we pose the question, does there exist a single adapta-

tion scheme that is effective for a majority of applications that are representative of these

application classes.
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Chapter 3

Virtual networks, inference and
measurements

Three important components of an adaptive virtualized computing system are adaptive

virtual networks, application demand inference and system resource measurements. These

components are the topics of discussion in this chapter.

Virtual networks are not just a means of providing connectivity to virtual machines.

They are a powerful means of providing isolation (security, address and performance iso-

lation) and application independent adaptation mechanisms. We begin this chapter by de-

scribing the evolution of the design, implementation and evaluation of VNET (for Virtual

NETwork), the virtual networking component of Virtuoso. We are currently in the third

generation of VNET design. The first two generations will be the focus of discussion of

this dissertation.

In the Virtuoso model, when a user purchases a set of virtual machines from the web

front-end. The control system places these machines on some foreign provider hosts based

on a match between VM and host characteristics and between the price demanded by the

providers and the amount that the user is willing to pay. As mentioned previously in

Chapter 1, VNET creates the illusion that all of the user’s virtual machines are plugged

into his local area network.
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Section 3.1 describes the design, implementation and evaluation of the first generation

VNET whose sole functionality was to create and maintain this illusion. Each VM hosted

on a foreign host was connected back to a proxy machine on the user’s network, thus

creating a bridge with long wires. The overhead of VNET over the wide-area, for which

it was designed, was negligible, however, it had significant overhead on 10 and 100 Mbit

LANs.

The second generation VNET is described in Section 3.3. In the first iteration of the

design, each VM communicated to the outside world and to each other via the user’s LAN

thus creating a star topology centered on the proxy machine on the user’s LAN. We ob-

served that often there is significant communication between a user’s VMs and while these

VMs might be hosted on the same or close by networks, all traffic first flowed back to the

user’s LAN and then to the recipient VM, resulting in lowered performance. The second

generation design improved on this by allowing, in addition to the star backbone, arbitrary

topologies to be formed between VNET daemons running on foreign hosts. The implemen-

tation of VNET was also improved. The second generation VNET has negligible overhead

on 10 and 100 Mbit LANs. Over a Gigabit LAN it trails the state of the art network virtual-

ization software by only a small margin. It should be noted that VNET operates completely

at user level, so there are a wide range of opportunities to further improve the performance

of VNET, well beyond the state of the art.

Section 3.4.1 describes the application independent adaptation mechanisms made pos-

sible by VMMs and virtual networks including VM migration, virtual topology and routing

changes, and resource reservations. Section 3.5 details Virtuoso’s application topology and

traffic inference framework, VTTIF. VTTIF can infer the traffic load matrices of applica-

tions in an invisible manner by looking at the application Ethernet traffic flowing through

the VNET daemons. Each VNET daemon forms a local view of the application’s traffic

matrix, which is then periodically sent to a centralized location where the application com-
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munication behavior is inferred by using simple normalization and pruning mechanisms.

VTTIF is also fitted with mechanisms to handle scenarios where the application communi-

cation topology changes at a rate faster than what Virtuoso can adapt to. In such scenarios

VTTIF provides a damped view of the changing application communicating behavior thus

preventing itself from being into oscillations.

We describe, in Section 3.6, how a third party passive network measurement scheme,

Wren, has been successfully integrated with Virtuoso. For adaptation to be possible in

Virtuoso, we need some means of measuring the physical network and host characteristics.

There are many tools available that can be used to monitor host characteristics such as

CPU speed, current load, etc. [38, 124]. Wren is a tool developed by Zangrilli et al. at the

College of William and Mary that measures the physical network in a passive manner by

using the naturally occurring VM traffic thus minimizing measurement overheads.

We conclude this chapter in Section 7.7.

3.1 VNET: A virtual network

We are faced with an interesting network management problem in Virtuoso. Unlike tradi-

tional units of work in distributed systems, such as jobs, processes, or RPC calls, a virtual

machine has, and must have, a direct presence on the network at layer 3 and below. We

must be able to communicate with it. VMM software recognizes this need and typically

creates a virtual Ethernet card for the guest operating system to use. This virtual card

is then emulated using the physical network card in the host machine in one of several

ways. The most flexible of these, bridges the virtual card directly to the same network as

the physical card, making the virtual machine a first class citizen on the same network,

indistinguishable from a physical machine.

Within a single site, this works very well, as there are existing mechanisms to provide
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new machines with access. Wide-area distributed computing, however, is intrinsically

about using multiple sites, with different network management and security philosophies,

often spread over the wide area [55]. Running a virtual machine on a remote site is equiva-

lent to visiting the site and connecting a new machine. The nature of the network presence

(active Ethernet port, traffic not blocked, routable IP address, forwarding of its packets

through firewalls, etc.) the machine gets, or whether it gets a presence at all, depends com-

pletely on the policy of the site. The impact of this variation is further complicated as the

number of sites is increased, and if we permit virtual machines to migrate from site to site.

To deal with this problem, I have co-designed VNET, a simple data link layer virtual

network tool. Using VNET, virtual machines have no network presence at all on a remote

site. Instead, VNET provides a mechanism to project their virtual network cards onto

another network, which also moves the network management problem from one network

to another. For example, all of a user’s virtual machines can be made to appear to be

connected to the user’s own network, where the user can use his existing mechanisms to

assure that they have appropriate network presence. Because the virtual network is at the

data link layer, a machine can be migrated from site to site without changing its presence—

it always keeps the same IP address, routes, etc.

The design of VNET has evolved considerably since its conception. VNET is currently

in its third generation of design. As part of my dissertation, I designed and implemented

the first two generations of VNET. Lange et al., at Northwestern University, are currently

working on the third generation VNET design. In the following sections we first describe

VNET’s relationship with the virtual networking built into traditional VMMs. We then

present the evolution of VNET by starting with the design, implementation and evaluation

of the first generation.

As we have developed the first generation VNET, we have come to believe that virtual

networks designed specifically for virtual machine distributed computing can be used for
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much more than simplifying the management problem. This insight led us to design and

implement the second generation VNET. In particular, because they see all of the traffic of

the virtual machines, they are in an ideal position to (1) measure the traffic load and ap-

plication topology of the virtual machines, (2) monitor the underlying network, (3) adapt

application as measured by (1) to the network as measured by (2) by relocating virtual

machines and modifying the virtual network topology and routing rules, and (4) take ad-

vantage of resource reservation mechanisms in the underlying network and at the operating

system level. Best of all, these services can be done on behalf of existing, unmodified ap-

plications and operating systems running in the virtual machines. Later chapters of this

dissertation lay out this argument, formalize the adaptation problem, and describe our ef-

forts to solving it.

3.1.1 VNET and traditional VMM networking

VNET is a simple proxying scheme that works entirely at user level. The primary depen-

dence it has on the virtual machine monitor is that there must be a mechanism to extract

the raw Ethernet packets sent by the virtual network card, and a mechanism to inject raw

Ethernet packets into the virtual card. The specific mechanisms we use are packet filters,

packet sockets, and VMWare’s host-only networking interface.

Though we use VMware, specifically, VMWare GSX Server 2.5, as our Virtual Ma-

chine Monitor, VNET, without modification, has been successfully used with User Mode

Linux [32], the VServer extension to Linux [112] and Xen [9].

3.1.2 VMWare networking

VMWare, in its Workstation and Server variants, can connect the virtual network interface

to the network in three different ways. To the operating system running in the virtual

machine (the VM), they all look the same. By themselves, these connection types are not
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well suited for use in a wide-area, multi-site environment, as we describe below.

The simplest connection is “bridged”, meaning that VMWare uses the physical inter-

face of the Host to directly emulate the virtual interface in the VM. This emulation is not

visible to programs running on the Host. With a bridged connection, the VM shows up

as another machine on the Local environment, the LAN of the Host. This creates a net-

work management problem for the Local environment (What is this new machine that has

suddenly appeared?) and for the User (Will this machine be given network connectivity?

How? What’s its address? Can I route to it?). Furthermore, if the VM is moved to a Host

on a different network, the problems recur, and new ones rear their ugly head (Has the

address to the VM changed? What about all its open connections and related state?)

The next form of connection is the host-only connection. Here, a virtual interface is

created on the Host which is connected to the virtual interface in the VM. When brought

up with the appropriate private IP addresses and routes, this enables programs on the host

to talk to programs on the VM. Because we need to be able to talk to the VM from other

machines on the user’s network and beyond, host-only networking is insufficient. How-

ever, it also has the minimum possible interaction with network administration in the local

environment.

The final form of connection is via network address translation (NAT), a commonly

used technique in border routers and firewalls [44]. Similar to a host-only connection, a

virtual interface on the Host is connected to the virtual interface on the VM, and appro-

priate private IP addresses and routes are assigned. In addition, a daemon running on the

Host receives IP packets on the interface. For each outgoing TCP connection establishment

(SYN), it rewrites the packet to appear to come from the IP address of the Host’s regular

interface, from some unused port. It records this mapping from the IP address and port

on the VM to the address and port it assigned. Mappings can also be explicitly added for

incoming TCP connections or UDP traffic. When a packet arrives on the regular interface
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Term Explanation
User is the owner of a set virtual machines
Client is the machine that the user uses to access his virtual machines
Proxy is a machine for networking on the user’s LAN

Proxy and Client can be the same machine
Host is a machine that host one or more virtual machines
Local environment of a VM is the LAN to which its Host is connected
Remote environment of a VM is the LAN to which the Client and Proxy are connected

Table 3.1: VNET nomenclature.

for the IP and port, it rewrites it using the recorded mapping and passes it to the VM. To the

outside world, it simply appears that the Host is generating ordinary packets. To the VM,

it appears as if it has a direct connection to the Local environment. For our purposes, NAT

networking is insufficient because it is painful to make incoming traffic work correctly as

the mappings must be established manually. Furthermore, in some cases it would be nec-

essary for the IP address of the virtual machine to change when it is migrated, making it

impossible to maintain connections.

3.2 First generation VNET: A bridge with long wires

In the following, we describe the interface of the first generation VNET, and performance

results in the local and wide area. Table 3.1 presents some terminology that is used

throughout the remainder of this chapter. The User is the owner of the virtual machines

(his VMs) which he accesses using his Client machine. The user also has a Proxy machine

for networking, although the Proxy and Client can be the same machine. Each VM runs on

a Host, and multiple VMs may run on each Host. The Local environment of a VM is the

LAN to which its Host is connected, while the Remote environment is the LAN to which

the Client and the Proxy are connected. Figure 3.1 illustrates these relationships.

In essence, VNET provides bridged networking, except that the VM is bridged to the
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Figure 3.1: Relationship between VNET entities.

Remote network, the network of the user. VNET consists of a client and a server. The

client is used simply to instruct servers to do work on its behalf. Each physical machine

that can instantiate virtual machines (a Host) runs a single VNET server. At least one

machine on the user’s network also runs a VNET server. We refer to this machine as the

Proxy. The user’s machine is referred to as the Client. As mentioned above, the Client and

the Proxy can be the same machine. The first generation VNET consists of approximately

4000 lines of C++.

3.2.1 Operation

VNET servers are run on the Host and the Proxy and are connected using a TCP connection

that can optionally be encrypted using SSL. The VNET server running on the Host opens

the Host’s virtual interface in promiscuous mode and installs a packet filter that matches

Ethernet packets whose source address is that of the VM’s virtual interface. The VNET
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Figure 3.2: VNET configuration for a single remote virtual machine with outbound traffic
from the VM.
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server on the Proxy opens the Proxy’s physical interface in promiscuous mode and installs

a packet filter that matches Ethernet packets whose destination address is that of the VM’s

virtual interface or is the Ethernet broadcast and/or (optionally) multicast addresses. To

avoid loops, the packet must also not have a source address matching the VM’s address.

In each case, the VNET server is using the Berkeley packet filter interface [125] as im-

plemented in libpcap, functionality available on all Unix platforms, as well as Microsoft

Windows [126].

When the Proxy’s VNET server sees a matching packet, it serializes it over the TCP

connection to the Host’s VNET server. On receiving the packet, the Proxy’s VNET server

directly injects the packet into the virtual network interface of the Host (using libnet, which

is built on packet sockets, also available on both Unix and Windows) which causes it to

be delivered to the VM’s virtual network interface. Figure 3.2 illustrates the path of such

outbound traffic. When the Host’s VNET server sees a matching packet, it serializes it

to the Proxy’s VNET server. The Proxy’s VNET server in turn directly injects it into

the physical network interface card, which causes it to be sent on the LAN of the Client.

Figure 3.3illustrates the path of such inbound traffic. It should be noted that multiple virtual

machines on the Host are possible, as are multiple hosts. Only a single Proxy is needed,

and it can be the same as the Client.

The end-effect of such a VNET Handler is that the VM appears to be connected to the

Remote Ethernet network exactly where the Proxy is connected. A Handler is identified

by the following information:

� IP addresses of the Host and Proxy

� TCP ports on the Host and Proxy used by the VNET servers

� Ethernet devices used on the Host and Proxy
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� Ethernet addresses which are proxied. These are typically the address of the VM and

the broadcast address, but a single handler can support many addresses if needed.

� Roles assigned to the two machines (which is the Host and which is the Proxy)

A single VNET server can support an arbitrary number of handlers, and can act in either

the Host or Proxy role for each. Each handler can support multiple addresses. Hence, for

example, the single physical interface on a Proxy could provide connectivity for many

VMs spread over many sites. Multiple Proxies or multiple interfaces in a single Proxy

could be used to increase bandwidth, up to the limit of the User’s site’s bandwidth to the

broader network.

Because VNET operates at the data link layer, it is agnostic about the network layer,

meaning protocols other than IP can be used. Furthermore, because we keep the MAC ad-

dress of the VM’s virtual Ethernet adapter and the LAN to which it appears to be connected

fixed for the lifetime of the VM, migrating the VM does not require any participation from

the VM’s OS, and all connections remain open after a migration.

A VNET client wishing to establish a handler between two VNET servers can contact

either one. This is convenient, because if only one of the VNET servers is behind a NAT

firewall, it can initiate the handler with an outgoing connection through the firewall. If

the client is on the same network as the firewall, VNET then requires only that a single

port be open on the other site’s firewall. If it is not, then both sites need to allow a single

port through. If the desired port is not permitted through, there are two options. First, the

VNET servers can be configured to use a common port. Second, if only SSH connections

are possible, VNET’s TCP connection can be tunneled through SSH.
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Command Description
HELLO passwd version Establish Session
DONE Finish Session
DEVICES? Return available network interfaces
HANDLERS? Return currently running handlers
CLOSE handler Tear down an existing handler
HANDLE remotepasswd Establish a handler

local config (Described in text)
local device
remote config
remote address
remote port
remote device
macaddress+

BEGIN local config Establish a handler
local device (Described in text)
remote config
remote device
macaddress+

Table 3.2: First generation VNET interface.

3.2.2 Interface

VNET servers are run on the Host and the Proxy. A VNET client can contact any server

to query status or to instruct it to perform an action on its behalf. The basic protocol is

text-based, making it readily scriptable, and bootstraps to binary mode when a Handler is

established. Optionally, it can be encrypted for security. Table 3.2 illustrates the interface

that a VNET Server presents.

Session establishment and teardown: The establishment of session with a VNET

server is initiated by a VNET client or another server using the HELLO command. The

client authenticates by presenting a password or by using an SSL certificate. Session tear-

down is initiated by the VNET client using the DONE command.

Handler establishment and teardown: After a VNET client has established a ses-

sion with a VNET server, it can ask the server to establish a Handler with another server.
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This is accomplished using the HANDLE command. As shown in Figure 3.2, the argu-

ments to this command are the parameters that define a Handler as described earlier. Here,
�����������	����
�����

and �	��� ��� � �	����
����� refer to the Handler roles. In response to a HANDLE

command, the server will establish a session with the other server in the Handler pair, au-

thenticating as before. It will then issue a BEGIN command to inform the other VNET

server of its intentions. If the other server agrees, both servers will bootstrap to a binary

protocol for communicating Ethernet packets. The Handler will remain in place until one

of the servers closes the TCP connection between them. This can be initiated by a client

using the CLOSE command, directed at either server.

Status Enquiry: A client can discover a server’s available network interfaces (DE-

VICES?) and what Handlers it is currently participating in (HANDLERS?).

3.2.3 Performance of first generation VNET

Our goal for the first generation VNET was to make it easy to convey the network man-

agement problem induced by VMs to the home network of the user where it can be dealt

with using familiar techniques. However, it is important that VNET’s overhead not be

prohibitively high, certainly not in the wide area. From the strongest to the weakest goal,

VNET’s performance should be

1. in line with what the physical network is capable of,

2. comparable to other networking solutions that don’t address the network manage-

ment problem, and

3. sufficient for the applications and scenarios where it is used.

In this chapter we will see that the first generation VNET meets the third goal, the

second generation VNET meets the third and second goals and the third generation VNET
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currently under developed by Lange et al. at Northwestern University, is targeted towards

the first goal.

Metrics

Latency and throughput are the most fundamental measures used to evaluate the perfor-

mance of networks. The time for a small transfer is dominated by latency, while that for a

large transfer is dominated by throughput. Interactivity, which is often dominated by small

transfers, suffers if latencies are either high or highly variable [45]. Bulk transfers suffer if

throughput is low. Our measurements were conducted on working days (Monday through

Thursday) in the early morning to eliminate time-of-day effects.

Latency: To measure latency, we used the round-trip delay of an ICMP echo re-

quest/response pair (i.e., ping), taking samples over hour-long intervals. We computed the

average, minimum, maximum and standard deviation of these measurements. Here, we re-

port the average and standard deviation. Notice that this measure of latency is symmetric.

Throughput: To measure average throughput, we use the ttcp program. Ttcp is com-

monly used to test TCP and UDP performance in IP networks. Ttcp times the transmission

and reception of data between two systems. We use a socket buffer size of 64 KBytes and

transfer a total of 1 GB of data in each test. VNET’s TCP connection also uses a socket

buffer size of 64 KBytes. TCP socket buffer size can limit performance if it is less than the

bandwidth-delay product of the network path, hence our larger-than-default buffers. All

throughput measurements were performed in both directions.

Testbeds

Although VNET is targeted primarily for wide-area distributed computing, we evaluated

performance in both a LAN and a WAN. Because our LAN testbed provides much lower la-

tency and much higher throughput than our WAN testbed, it allows us to see the overheads
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Figure 3.4: VNET test configurations for the local area between two labs in the Northwest-
ern CS Department.
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Figure 3.5: VNET test configurations for the wide area between labs in the Northwestern
and Carnegie Mellon CS Departments.

due to VNET more clearly. The Client, Proxy, and Host machines are 1 GHz Pentium III

machines with Intel Pro/100 adaptors. The virtual machine uses VMware GSX Server 2.5,

with 256 MB of memory, 2 GB virtual disk and RedHat 7.3. The network driver used is

vmxnet.

Our testbeds are illustrated in Figures 3.4 and 3.5. The LAN and WAN testbeds are

identical up to and including the first router out from the Client. This portion is our fire-

walled lab in the Northwestern CS department. The LAN testbed then connects, via a

router which is under university IT control (not ours), to another firewalled lab in our de-

partment which is a separate, private IP network. The WAN testbed instead connects via

the same router to the Northwestern backbone, the Abiline network, the Pittsburgh Su-

percomputing Center, and two administrative levels of the campus network at Carnegie

Mellon, and finally to an lab machine there. Notice that even a LAN environment can ex-

hibit the network management problem. It is important to stress that the only requirement

that VNET places on either of these complex environments is the ability to create a TCP
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connection between the Host and Proxy in some way.

We measured the latency and throughput of the underlying “physical” IP network,

VMWare’s virtual networking options, VNET, and of SSH connections:

� Physical: VNET transfers Ethernet packets over multiple hops in the underlying

network. We measure equivalent hops, and also end-to-end transfers, excepting the

VM.

– Local � Host: Machine on the Host’s LAN to/from the Host.

– Client � Proxy: Analogous to the first hop for an outgoing packet in VNET

and the last hop for an incoming packet.

– Host � Proxy: Analogous to the TCP connection of a Handler, the tunnel

between the two VNET servers.

– Host � Client: End-to-end except for the VM.

– Host � Host: Internal transfer on the Host.

� VMWare: Here we consider the performance of all three of VMWare’s options, de-

scribed earlier.

– Host � VM: Host-only networking, which VNET builds upon.

– Client � V M (Bridged): Bridged networking. This leaves the network admin-

istration problem at the remote site.

– Client � V M (NAT): NAT-based networking. This partially solves the net-

work administration problem at the remote site at the layer 3, but creates an

asymmetry between incoming and outgoing connections, and does not support

VM migration. It’s close to VNET in that network traffic is routed through a

user-level server.
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Figure 3.6: Average latency in the local area.

� VNET: Here we use VNET to project the VM onto the Client’s network.

– Client � VM (VNET): VNET without SSL

– Client � VM (VNET+SSL): VNET with SSL

� SSH: Here we look at the throughput of an SSH connection between the Client and

the Host to compare with VNET with SSL.

– Host � Client (SSH)

3.2.4 Discussion

Average latency:

In Figure 3.6, we see that the average latency on the LAN when using VNET without

SSL is 1.742 ms. It is important to understand exactly what is happening. The Client is

sending an ICMP echo request to the VM. The request is first intercepted by the Proxy,
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Figure 3.7: Average latency over the wide area.
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Figure 3.8: Standard deviation of latency in the local area.
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Figure 3.9: Standard deviation of latency over the wide area.
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Figure 3.10: Bandwidth in the local area.
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Figure 3.11: Bandwidth over the wide area.

then sent to the Host, and finally the Host sends it to the VM (see Figure 3.4). The reverse

path for the echo reply is similar. These three distinct pieces have average latencies of

0.345 ms, 0.457 ms, and 0.276 ms, respectively, on the physical network, which totals

1.078 ms. In the LAN, VNET without SSL increases latency by 0.664 ms, or about 60%.

We claim that this is not prohibitive, especially in absolute terms. Hence we note that

the operation of VNET over LAN does not add prohibitively to the physical latencies. The

VMWare NAT option, which is the closest analog to VNET, except for moving the network

management problem, has about 1/2 of the latency. When SSL encryption is turned on,

VNET latency grows to 11.393 ms, 10.3 ms and a factor of 10 higher than what is possible

on the (unencrypted) physical network.

In Figure 3.7, we note that the average latency on the WAN when using VNET without

SSL is 37.535 ms and with SSL encryption is 35.524 ms. If we add up the constituent

latencies as done above, we see that the total is 37.527 ms. In other words, VNET with or
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without SSL has average latency comparable to what is possible on the physical network in

the WAN. The average latencies seen by VMWare’s networking options are also roughly

the same. In the wide area, average latency is dominated by the distance, and we get the

benefits of VNET with negligible additional cost.

Standard deviation of latency:

In Figure 3.8, we see that the standard deviation of latency using VNET without SSL

in the LAN is 7.765 ms, while SSL increases that to 116.112 ms. Adding constituent

parts only totals 1.717 ms, so VNET has clearly dramatically increased the variability in

latency, which is unfortunate for interactive applications. We believe this large variability

is because the TCP connection between VNET servers inherently trades packet loss for

increased delay. For the physical network, we noticed end-to-end packet loss of approxi-

mately 1%. VNET packet losses were nil. VNET resends any TCP segment that contains

an Ethernet packet that in turn contains an ICMP request/response. This means that the

ICMP packet eventually gets through, but is now counted as a high delay packet instead

of a lost packet, increasing the standard deviation of latency we measure. A histogram

of the ping times shows that almost all delays are a multiple of the round-trip time. TCP

tunneling was used to have the option of encrypted traffic. UDP tunneling reduces the de-

viation seen, illustrating that it results from our specific implementation and not the general

design.

In Figure 3.9, we note that the standard deviation of latency on the WAN when using

VNET without SSL is 77.287 ms and with SSL is 40.783 ms. Adding the constituent laten-

cies totals only 19.902 ms, showing that we have an unexpected overhead factor of 2 to 4.

We again suspect high packet loss rates in the underlying network lead to retransmissions

in VNET and hence lower packet loss rates, but a higher standard deviation of latency.

We measured a 7% packet loss rate in the physical network compared to 0% with VNET.

We again noticed that latencies which deviated from the average did so in multiples of the
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average latency, supporting our explanation.

Average Throughput:

In Figure 3.10, we see that the average throughput in the LAN when using VNET with-

out SSL is 6.76 MB/sec and with SSL drops to 1.85 MB/sec, while the average throughput

for the physical network equivalent is 11.18 MB/sec. We were somewhat surprised with

the VNET numbers. We expected that we would be very close to the throughput obtained

in the physical network, similar to those achieved by VMWare’s host-only and bridged

networking options. Instead, our performance is lower than these, but considerably higher

than VMWare’s NAT option.

In the throughput tests, we essentially have one TCP connection (that used by the ttcps

running on the VM and Client) riding on a second TCP connection (that between the two

VNET servers on Host and Proxy). A packet loss in the underlying VNET TCP connection

will lead to a retransmission and delay for the ttcp TCP connection, which in turn could

time out and retransmit itself. On the physical network there is only ttcp’s TCP. Here,

packet losses might often be detected by the receipt of triple duplicate acknowledgments

followed by fast retransmit. However, with VNET, more often than not a loss in the under-

lying TCP connection will lead to a packet loss detection in ttcp’s TCP connection by the

expiration of the retransmission timer. The difference is that when a packet loss is detected

by timer expiration the TCP connection will enter slow start, dramatically slowing the rate.

In contrast, a triple duplicate acknowledgment does not have the effect of triggering slow

start.

In essence, VNET is tricking ttcp’s TCP connection into thinking that the round-trip

time is highly variable when what is really occurring is hidden packet losses. In general,

we suspect that TCP’s congestion control algorithms are responsible for slowing down the

rate and reducing the average throughput. This situation is somewhat similar to that of a

split TCP connection. A detailed analysis of the throughput in such a case can be found
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elsewhere [170]. The use of encryption with SSL further reduces the throughput.

In Figure 3.11, we note that the average throughput over the WAN when using VNET

without SSL encryption is 1.22 MB/sec and with SSL is 0.94 MB/sec. The average

throughput on the physical network is 1.93 MB/sec. Further, we note that the through-

put when using VMWare’s bridged networking option is only slightly higher than the case

where VNET is used (1.63 MB/sec vs. 1.22 MB/sec), while VMWare NAT is consider-

ably slower. Again, as described above, this difference in throughput is probably due to

the overlaying of two TCP connections. Notice, however, that the difference is much less

than that in the LAN as now there are many more packet losses that in both cases will be

detected by ttcp’s TCP connection by the expiration of the retransmission timer. Again,

the use of encryption with SSL further reduces the throughput.

We initially thought that our highly variable latencies (and corresponding lower-than-

ideal TCP throughput) in VNET were due to the priority of the VNET server processes.

Conceivably, the VNET server could respond slowly if there were other higher or similar

priority processes on the Host, Proxy, or both. To test this hypothesis we tried giving the

VNET server processes maximum priority, but this did not change delays or throughput.

Hence, this hypothesis was incorrect.

We also compared our implementation of encryption using SSL in the VNET server

to SSH’s implementation of SSL encryption. We used SCP to copy 1 GB of data from

the Host to the Client in both the LAN and the WAN. SCP uses SSH for data transfer,

and uses the same authentication and provides the same security as SSH. In the LAN

case we found the SCP transfer rate to be 3.67 MB/sec compared to the 1.85 MB/sec

with VNET along with SSL encryption. This is an indication that our SSL encryption

implementation overhead is not unreasonable. In the WAN the SCP transfer rate was 0.4

MB/sec compared to 0.94 MB/sec with VNET with SSL. This further strengthens the claim

that our implementation of encryption in the VNET server is reasonably efficient.
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Comparing with VMWare NAT: The throughput obtained when using VMWare’s

NAT option was 1.53 MB/sec in the LAN and 0.72 MB/sec in the WAN. This is signifi-

cantly lower than the throughput VNET attains both in the LAN and WAN (6.76 MB/sec

and 1.22 MB/sec, respectively). As described previously in Section 3.1.2, VMWare’s NAT

is a user-level process, similar in principle to a VNET server process. That VNET’s per-

formance exceeds that of VMWare NAT, the closest analog in VMWare to VNET’s func-

tionality, is very encouraging.

3.2.5 Summary

The following are the main points to take away from our performance evaluation of the

first generation VNET:

� Beyond the physical network and the VMWare networking options, VNET gives us

the ability to shift the network management problem to the home network of the

client.

� The extra average latency when using VNET deployed over the LAN is quite low

while the overhead over the WAN is negligible.

� VNET has considerably higher variability in latency than the physical network. This

because it automatically retransmits lost packets. If the underlying network has a

high loss rate, then this will be reflected as higher latency variability in VNET.

Hence, using VNET, in its current implementation, produces a trade: higher vari-

ability in latency for zero visible packet loss. This issues has been addressed in the

second generation VNET.

� VNET’s average throughput is lower than that achievable in the underlying network,

although not dramatically so. This was due to an interaction between two levels of
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TCP connections. This issue was addressed in the second generation VNET

� VNET’s average throughput is significantly better than that of the closest analog,

both in terms of functionality and implementation, in VMWare, NAT.

� Using VNET encryption increases average latency and standard deviation of latency

by a factor of about 10 compared to the physical network. Encryption also decreases

throughput. The VNET encryption results are comparable or faster than those using

SSH.

We find that the overheads of VNET, especially in the WAN, are acceptable given what it

does. The second generation VNET makes them better. Using VNET, we can transport

the network management problem induced by VMs back to the home network of the user,

where it can be. readily solved, and we can do so with acceptable performance.

3.3 Second generation VNET: An adaptive overlay

The second generation VNET improves upon the first in both, design and performance. In

the first iteration, each VM is connected to the outside world and to other VMs through

the user’s local area network. This creates a star topology centered on the Proxy sitting

on the user’s network. This design has a single point of failure. It is also not scalable.

Additionally, it also creates a performance bottleneck which leads to reduced performance

for applications executing inside of the user’s VMs.

We observed that often a user’s VMs communicate heavily among themselves. With

the aim of optimizing the common case, the second generation VNET allows for, in addi-

tion to the star topology, arbitrary topologies to be constructed between the different VNET

daemons. To achieve this we designed and implemented an Ethernet layer routing proto-

col. We also effected a series of performance improvements in this second iteration. We
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Figure 3.12: VNET startup topology.

first describe the design and operation of this second generation VNET in Sections 3.3.1

through 3.3.3. Its interface is described in Section 3.3.4 and finally we detail the perfor-

mance improvement in Section 3.3.5.

3.3.1 Operation

Each physical machine that can instantiate virtual machines (a host) runs a single VNET

daemon. One machine on the user’s network also runs a VNET daemon. This machine

is referred to as the Proxy as before. Figure 3.12 shows a typical startup configuration

of VNET for four hosts, each of which may support multiple VMs. Each of the VNET

daemons running on the foreign hosts is connected by a TCP connection (a VNET link)

to the VNET daemon running on the Proxy. We refer to this as the resilient star backbone

centered on the Proxy. By resilient, we mean it will always be possible to at least make

these connections and re-establish them on failure. It should be noted that the initial setup

of the second generation VNET was the only setup possible in the first generation VNET.

The VNET daemons running on the hosts and Proxy open their virtual interfaces in
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For any Ethernet packet multiple rules might be matched at the same time, each 
match has a priority value and the rule with the highest priority is used.

The rule that has the destination address as “none” is the default rule. This rule is 
always matched as long as the source address matches, but has the lowest 
possible priority. The packet would be sent over the TCP connection to the VNET 
daemon on the Proxy.

Figure 3.13: Portion of a routing table stored on the VNET daemon on a host.

promiscuous mode using Berkeley packet filters [125]. Each VNET daemon has a for-

warding table, Figure 3.13 shows one such forwarding table at a VNET daemon. Each

packet captured from the interface or received on a TCP connection is matched against

this forwarding table to determine where to send it, the possible choices being sending it

over one of its outgoing links (TCP / UDP) or writing it out to one of its local interfaces

using libnet, which is built on packet sockets, available on both Unix and Windows. If

the packet does not match any rule then no action is taken. For each packet multiple rules

might be matched at the same time. Each match has a priority value associated with it,

calculated dynamically based on the strength of the match. The stronger the match, the

higher the priority value. For example, a rule matched with the “any” qualifier will have

a lower priority than a rule matched with exact values. The rule with the highest priority

is used. The rule that has the destination address as “none” is the default rule. This rule is

always matched as long as the source addresses match, but has the lowest possible priority.
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Figure 3.14: A VNET link.

If only the default rule is matched then the packet would be sent over the TCP connection

to the VNET daemon on the Proxy.

Figure 3.14 helps to illustrate the operation of a VNET link in its second incarnation.

Each successfully matched packet is also passed to VTTIF to determine the local traf-

fic matrix. Each VNET daemon periodically sends its inferred local traffic matrix to the

VNET daemon on the Proxy. The Proxy, through its physical interface, provides a network

presence for all the VMs on the user’s LAN and makes their configuration a responsibility

of the user.

The first generation of VNET was limited solely to this star topology [169], thus all

traffic among the users’ VMs would be forwarded through the central Proxy, resulting

in extra latency and a bandwidth bottleneck. The star would be used regardless of the

application, as its sole goal was to provide connectivity for the VMs regardless of the

security constraints on the various sites.

The second generation VNET removes this restriction. Now, the star topology is simply
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Figure 3.15: As the application progresses VNET adapts its overlay topology to match that
of the application communication as inferred by VTTIF leading to an significant improve-
ment in application performance, without any participation from the user.

the initial configuration, again to provide connectivity for the VMs. Additional links and

forwarding rules can be added or removed at any time. This makes topology adaptation,

as we describe in this thesis, possible. Figure 3.15 shows a VNET configuration that has

been dynamically adapted. Also the links can either use TCP or UDP.

3.3.2 VNET primitives

A VNET client can connect to any of the VNET daemons to query status or perform an

action. Following are the primitives made available by VNET.

� Add an overlay link between two VNET daemons.

� Delete an overlay link.

� Add a rule to the forwarding table at a VNET daemon.
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� Delete a forwarding rule.

� List the available network interfaces.

� List all the links to and from a VNET daemon.

� List all the forwarding rules at a VNET daemon.

� Set an upper bound on VNET configuration time.

The primitives generally execute in about 20 ms, including client time. On initial

startup VNET can calculate an upper bound on the time taken to configure itself (or change

topology). The last primitive is a means of automatically passing this value to VTTIF, to

be used to determine its sampling and smoothing intervals.

3.3.3 A language and its tools

Building on the primitives, we have developed a language for describing the topology and

forwarding rules. Figure 3.16 defines the grammar for the language. The tools we use here

take the form of scripts that generate or parse descriptions in that language. These tools

provide functionality such as:

� Start up a collection of VNET daemons and establish an initial topology among

them.

� Fetch and display the current topology.

� Fetch and display the route a packet will take between two Ethernet addresses.

� Compute the differences between the current topology with routing rules and a spec-

ified topology with routing rules.
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� Reconfigure the topology and routing rules to match a specified topology and routing

rules.

� Fetch and display the current application topology using VTTIF (described in Sec-

tion 3.5).

3.3.4 Interface

The second generation VNET interface is presented in Table 3.3.

As in the first generation, VNET servers are run on the Host and the Proxy. A VNET

client can contact any server to query status or to instruct it to perform an action on its

behalf.

Session establishment and teardown: The session establishment and teardown mech-

anism is identical to that of the first generation.

Reaction time: After a VNET client has established a session with a VNET server, it

can add/change the recorded time to add/delete a link and its associated routes. This time

is specific to each scenario and is recorded at startup when the star topology is created.

VNET link addition and deletion: A VNET client can request a VNET server to

create a VNET link (TCP or UDP) between itself and another VNET server. The VNET

server then creates this link and updates its and the remote VNET server’s data structures.

As shown in Table 3.3, the arguments this command are the two end points of the VNET

link, its type, TCP or UDP and the password, version and port of the remote VNET server

which acts as the endpoint of this requested link.

VNET route addition and deletion: A VNET client can also request a VNET server

to add a certain route to its Ethernet level routing table. The arguments to this command

are the source and destination Ethernet addresses to be matched, the begining and end point

of the link over which the Ethernet packet encapsulated in IP has to be sent out. Notice
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�
program ����� BEGIN

�
host � � config � END�

host ����� �
host � HOST

�
username � AT

�
machine � � port � � interface ��

ε�
config ����� �

config � � action � � link � � rules � � ε�
action ����� ADD

�
DELET E�

link ����� �
link � LINK

�
link-type � � machine � � machine � � machine ��

ε�
link-type ����� TCP

�
UDP�

rules ����� �
rules � FORWARD

�
rule-type � � machine � � qualifier ��

macaddress � � qualifier � � macaddress � � destination ��
ε�

rule-type � ��� EDGE
�
INT ERFACE�

destination ����� �
machine � � machine � �	� interface ��

qualifier ����� NOT
�
ANY

�
ε�

macaddress � ��� Ethernet address

such as 01 : 02 : 03 : 04 : 05 : 06�
machine ����� Machine name

such as machine1�
username � ��� User account on machine�

port ����� Port where VNET daemon runs�
interface ����� Ethernet interface

such as eth0�
at ���
� AT

Figure 3.16: Grammar defining the language for describing VNET topology and forward-
ing rules.
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Command Description
HELLO passwd version Establish Session
DONE Finish Session
DEVICES? Return available network interfaces
LINKS? Return currently established VNET links
ROUTES? Return existing VNET routes
REACTION? Return adaptation reaction time
CHANGEREACTION new reaction time Change the reaction time
ADDLINK vnet passwd Add a VNET link

begin host
end host
type (TCP or UDP)
end host vnet password
end host vnet version
end host port

DELETELINK vnet passwd Delete a VNET link
begin host
end host
type (TCP or UDP)
end host vnet password
end host vnet version
end host port

ADDROUTE vnet passwd Add a VNET route
src address Ethernet level
dst address Ethernet level
hop begining
hop ending
type (INTERFACE or EDGE)

DELETEROUTE vnet passwd Add a VNET route
src address Ethernet level
dst address Ethernet level
hop begining
hop ending
type (INTERFACE or EDGE)

Table 3.3: Second generation VNET interface.
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that the “link” over which this packet has to sent out could also be an interface onto which

this packet has to be written. This is specified using the type argument which specifies if

the packet is to be sent over a link or is to be written to an interface. If the packet is to be

written to an interface then the begining and end point point of the link are identical and

refer to the specific interface in question.

Status Enquiry: A client can discover a server’s available network interfaces (DE-

VICES?), what Links it is currently participating in (LINKS?), the snapshot of its current

routing table (ROUTES?) and the specific reaction time of the adaptation system (REAC-

TION?).

3.3.5 VNET performance

The overhead of using VNET is mitigated over the wide area. In a 100 Mbps Ethernet

LAN, VNET is as fast as state of the art network virtualization software [182], which in

turn is almost as fast as the native hardware. However, over faster networks, such as optical

networks operating at Giga-bit speeds or higher [91], VNET slightly lagged behind com-

mercial virtual network solutions (in particular VMware GSX Server 2.5.1) [182], which in

turn was a factor of 3 slower than the native hardware. We note that since these evaluations

were conducted, faster commercial virtual networking solutions have been introduced. It

should be noted that VNET currently operates entirely at user level. Hence, there are enor-

mous opportunities to significantly increase VNET’s performance beyond that of commer-

cial virtual networking solutions. Below, we first describe the improvements engineered in

the second generation VNET and then state our future plans for further optimizing VNET

performance.
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Figure 3.17: Average latency over a 100 Mbit switch with different bottlenecks.

Figure 3.18: Standard deviation of latency over a 100 Mbit switch with different bottle-
necks.
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Figure 3.19: Throughput on a 100 Mbit switch with different bottlenecks.

3.3.6 Performance over 100 Mbps Ethernet LAN

In the performance analysis of the first generation VNET, we conducted experiments

wherein a physical Client machine interacted with the. user’s VM. We looked at the av-

erage latency, standard deviation of latency and the throughput experienced for such an

interaction when using different methods of network connectivity.

To evaluate the performance of the second generation VNET, we conducted experi-

ments wherein a single user’s two VMs interacted with each other. For such an interac-

tion we study the average latency, standard deviation of latency and throughput expericed.

We compare three scenarios against each other, connectivity using the IP network, using

VMware bridged networking and via the second generation VNET. The latency studies

were carried out using ping while the throughput studies were carried out using ttcp.

Figure 3.17 compares the average latency experienced between the two VMs for differ-
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ent scenarios. We notice that there is negligible difference between the different solutions.

Figure 3.18 compares the standard deviation of latency for different scenarios. Again we

see that both, VMware bridged networking and VNET have negligible overheads in an

100 Mbit LAN. It should be noted that the second generation VNET eliminates the vari-

ability in latency that the first iteration had introduced. This is due to the use of UDP

links as opposed to the previously used TCP links and is discussed in more detail in Sec-

tion 3.3.7. Finally, Figure 3.19 compares the throughput as seen in the different scenarios.

Once again, we notice that both VMware bridged networking and VNET have virtually no

overheads in a 100 Mbit LAN.

3.3.7 UDP overlay links

In the first version of VNET, all VNET overlay links were TCP connections. The primary

reason was to make it straightforward to support optional SSL encryption. This is not

essential, since a VNET link is a virtual Ethernet layer link and thus needs to provide no

guarantees of delivery, ordering, or corruption.

Running VNET over TCP results in lower than necessary throughput for applications

running inside the VMs. Interaction between the TCP connection at the application layer

and the TCP connection used for the VNET overlay dramatically reduces performance.

A packet loss in the underlying VNET TCP connection will lead to a retransmission and

hence a delay for the application’s TCP connection, which in turn could time out and re-

transmit itself. The application’s TCP connection will always detect a packet loss by the

expiration of the retransmission timer rather than by receipt of triple duplicate acknowl-

edgments. This will then always trigger slow start instead of fast retransmit, leading to

reduced throughput.

VNET now supports creation of overlay links using UDP in addition to TCP. This

increased the throughput seen by application-level TCP by a factor of two.
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Figure 3.20: Throughput on a gigabit switch with different bottlenecks.

3.3.8 Improved forwarding rule lookup

VNET forwards Ethernet packets. When a packet arrives, it must look up the appropriate

forwarding rule based on the packet’s destination address. We have improved the lookup

mechanism through a forwarding rule cache that gives us constant time lookups on average.

This improved performance by a factor of three.

3.3.9 Utilizing memory-mapped I/O support in pcap

VNET performance was substantially improved (factor of two) by utilizing the memory-

mapped I/O support in pcap to deliver more data from the VM to VNET for each context

switch.

3.3.10 Further improving VNET performance

We have improved the performance of VNET, as measured on a dedicated gigabit Ethernet

network, by a factor of ten. However, there is still considerable room for improvement
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and we are a long way from being able to support gigabit speeds in VNET. Figure 3.20

illustrates where we stand. The hardware virtualization software refers to VMware GSX

Server 2.5.1. Some additional possible extensions to VNET are

� To move the forwarding core of VNET into the Linux kernel on the host to avoid

context switches in their entirety.

� To write a device driver for use inside the VM that will more efficiently deliver data

to VNET.

3.4 Third generation VNET: A virtual transport layer

Lange et al., at Northwestern University, are currently working on a third generation

VNET. The third generation VNET includes a framework that makes possible the cre-

ation of a Virtual Transport Layer (VTL). At its heart VTL is a framework for packet

modification and creation, whose purpose is to modify network traffic to and from a VM

in such a way that is undetectable by the VM itself. Lange et al. are currently working on

demonstrating the promise of such techniques.

3.4.1 Application independent adaptation mechanisms

This dissertation argues that virtual distributed computing systems provide application in-

dependent adaptation mechanisms that can then be used to build an automatic, run-time

and dynamic adaptation system. The adaptation engine which drives the adaptation mech-

anisms is called VADAPT. Virtuoso provides for the following non-reservation based adap-

tation mechanisms:

� Virtual machine migration: Virtuoso allows us to migrate a VM from one physical

host to another. Much work exists that demonstrates that fast migration of VMs run-

ning commodity applications and operating systems is possible [107, 134, 137, 146]
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including live migration schemes with downtime on the order of a few seconds [25].

As migration times decrease, the rate of adaptation we can support and my work’s

relevance increases. Note that while process migration and remote execution has a

long history [41, 128, 161, 176, 193], to use these facilities, we must modify or relink

the application and/or use a particular OS. Neither is the case with VM migration.

� Overlay topology modification: VNET allows us to modify the overlay topology

among a user’s VMs at will. A key difference between it and overlay work in the

application layer multicast community [8, 12, 84] is that the VNET provides global

control of the topology, which our adaptation algorithms currently (but not necessar-

ily) assume.

� Overlay forwarding: VNET allows us to modify how messages are routed on the

overlay. Forwarding tables are globally controlled, topology and routing are com-

pletely separated, unlike in multicast systems.

Virtuoso also provides for the following reservations based adaptation schemes:

� Network reservation: The VRESERVE component of Virtuoso allows the control

system to detect when the underlying network provides for network reservations and

then to reserve appropriate networks on behalf of the application for the appropriate

period of time. Adaptation using VRESERVE is detailed in Chapter 5.

� CPU reservation: The VSched component of Virtuoso allows the control system

to reserve CPU resources as a function of period and slice. VSched is a user level

periodic real-time scheduler that can reserve the CPU for slice seconds every period

seconds. Adaptation using VSched is detailed in Chapter 6.
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3.5 VTTIF

The Virtual Topology and Traffic Inference Framework (VTTIF) enables topology infer-

ence and traffic characterization for applications running inside the VMs in the Virtuoso

system. VTTIF infers the application’s communication demands which along with the un-

derlying network measurements guide the adaptation mechanisms. As described earlier,

such inference is important for automated adaptation where the underlying network and

computational resources can be automatically adapted to the application’s needs. VNET

is ideally placed to monitor the resource demands of the VMs. In earlier work [71], Gupta

et al. have demonstrated that it is possible to successfully infer the topology and traffic

load matrix of a bulk synchronous parallel application running in a virtual machine-based

distributed computing environment by observing the low level traffic sent and received by

each VM. VTTIF is integrated with VNET.

VTTIF is configured by three parameters:

� Update rate: The rate at which local traffic matrix updates are sent from the VNET

daemons to the VNET daemon running on the Proxy.

� Smoothing interval: The window over which the global traffic matrix on the Proxy is

aggregated from the updates received from the other VNET daemons. This provides

a low-passed view of the application’s behavior.

� Detection threshold: The fraction of traffic intensity on the highest intensity link that

must be present on any other link before it is considered to be a part of the topology.

Given some configured update rate, smoothing interval, and detection threshold, there

is a maximum rate of topology change that VTTIF can keep up with. Beyond this rate,

VTTIF has been designed to stop reacting, settling into a topology that is effectively a
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union of all the topologies that are unfolding in the network. VTTIF is described in more

detail in Appendix A.

3.6 Wren

To successfully build an adaptive system, in addition to inferring the application commu-

nication demands, we need to be able to measure the underlying network. The virtual

overlay network can then be adapted in the most efficient and productive way. There

is abundant work that suggests that underlying network measurements can be accom-

plished within or without the virtual network using both active [148, 190] and passive

techniques [118, 150, 194]. We have shown that the naturally occurring traffic of an ex-

isting, unmodified application running in VMs can be used to measure the underlying

physical network [73]. In this Section, I will briefly describe this work. Wren is described

in greater detail in Appendix B.

3.6.1 Operation

Network measurement using Wren in VNET is based on Zangrilli et al.’s Wren passive

monitoring and network characterization system [194, 195]. Many applications adapt to

network performance simply by observing the throughput of their own network connec-

tions. VNET’s natural abstraction of the underlying network makes such application-level

adaptation more difficult because the application cannot accurately determine which net-

work resources are in use. However, VNET is in a good position to observe an application’s

traffic itself. Because VNET does not alter that traffic, it can only observe the amount of

traffic naturally generated by the application. Because we are targeting applications with

potentially bursty and irregular communication patterns, many applications will not gen-

erate enough traffic to saturate the network and provide useful information on the current
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bandwidth achievable on the network.

Watching Resources from the Edge of the Network (Wren) is designed to passively

monitor applications’ network traffic and use those observations to determine the available

bandwidth along the network paths used by the application. The key observation behind

Wren is that even when the application is not saturating the network it is sending bursts

of traffic that can be used to measure the available bandwidth of the network. A good

example of such an application is a typical scientific computing BSP-style application that

sends short messages at regular intervals. Even though the application is not using all of

the available bandwidth, we can determine the available bandwidth along that path and use

that information to guide adaptation.

Wren consists of a kernel extension and a user-level daemon. Wren can:

� Observe every incoming and outgoing packet arrivals in the system with low over-

head.

� Analyze these arrivals using state-of-the-art techniques to derive from them latency

and bandwidth information for all hosts that the present host communicates with.

� Collect latency, available bandwidth, and throughput information so that an adapta-

tion algorithm can have a bird’s eye view of the physical network, just as it has a

bird’s eye view of the application topology via VTTIF.

� Answer queries about the bandwidth and latency between any pair of machines in

the virtual network.

3.6.2 Wren and Virtuoso

Figure 1.5 shows Virtuoso’s interaction with Wren. Virtuoso and Wren are integrated by

incorporating the Wren extensions into the Host operating system of the machines running
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VNET [73]. In this position, Wren monitors the traffic between VNET daemons, not

between individual VMs. Both the VMs and VNET are oblivious to this monitoring, except

for a small performance degradation.

It should be noted that Wren requires an operating system kernel modification, while

we claim that our adaptation scheme works for un-modified applications executing on um-

modified operating systems. In the following we explain this contradiction.

Our adaptation scheme relies on Wren only for physical network measurements. While

there are a number of other third party network measurement tools available [159, 190],

we chose Wren due its passive measurement architecture. As mentioned above Wren is

capable of using the naturally occurring traffic inside of VMs to make its measurement es-

timates. Other network schemes, though require no modifications to the operating systems,

perform active measurements resulting in network traffic overhead. Since our adaptation

scheme is not tightly bound to Wren, it can also work with other adaptation schemes that

require no operating system modifications. Wren is described in greater detail in Ap-

pendix A.

3.7 Conclusions

We described the design, implementation and evaluation of VNET, the virtual networking

component of Virtuoso. The evolution of VNET has seen it undergo two generations of

design. The first generation VNET was solely concerned with creating and maintaining

the illusion that all of a user’s VMs are connected to his local area network, where they

can be administered in a familiar fashion by the user’s local network administrator. We

found VNET to have negligible overhead over wide-area networks, but to have significant

overheads over a 100Mbit LAN. The first generation VNET, though sufficient for its initial

intended purpose (extending the LAN abstraction to a user’s VMs), has certain drawbacks.
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All of a user’s VMs’ traffic necessarily flows back through his LAN creating bottlenecks

and a single point of failure. TCP VNET links were the only option and UDP support was

not provided.

The second generation VNET was developed to address the issues in the first genera-

tion VNET. The insight obtained through the first iteration of design was that virtual net-

works are not just a means of providing connectivity to a user’s virtual machines, instead

they have the potential to blossom into an adaptive overlay network supporting application

independent adaptation mechanisms. The second generation VNET allows for arbitrary

topologies to be built between VNET daemons, further UDP support is also provided, thus

completing the LAN abstraction. We also considerably improved the implementation of

VNET. The second generation has no virtualization overhead over a 100Mbit LAN. Over

faster networks operating at gigabit speeds, it only slightly trails the most popular com-

mercial virtual networking solution.

We also described the reservation and non-reservation based application independent

adaptation mechanisms, including virtual machine migration, virtual topology and routing

changes, and network and CPU based reservation schemes.

Beyond virtual machines, virtual networks and application independent adaptation

mechanisms, to achieve successful automatic adaptation, we need some means to infer

application demands and measure available system resources. We describe VTTIF and

Wren designed and implemented by Gupta et al. and Zangrilli et al. respectively. VTTIF

and Wren, both have been integrated with Virtuoso. VTTIF is the topology and traffic in-

ference framework that, while invisible to the application, infers its communication traffic

matrix by looking at Ethernet level traffic flowing between the VNET daemons. Wren is

a passive network measurement tool that uses the naturally occurring traffic inside of the

virtual machines to make physical network measurements. Both, VTTIF and Wren has

been shown to have negligible overheads.
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Chapter 4

Problem formulation

Virtual execution environments, such as Virtuoso, provide an ideal platform for infer-

ring application resource demands and measuring available computational and network

resources. Further, they also make available application independent adaptation mecha-

nisms such as VM migration, overlay network topology and routing changes and resource

reservations. However, the key to success is an efficient algorithm to drive these adaptation

mechanisms as guided by the measured and inferred data. To gain a better understanding

of the adaptation problem and to devise efficient algorithms it is important to first formalize

and characterize the adaptation problem.

As mentioned in Chapter 1, three techniques of evaluating a computer system are ex-

perimentation, simulation and analytical modeling. This dissertation uses all these three

methodologies to study the adaptation problem. This is essential as each technique has its

limitations and is best suited to study different aspects of the adaptation problem. Analyt-

ical characterization of the adaptation problem is the topic of discussion in this chapter.

In this chapter we provide a rigorous formalization of the adaptation problem that oc-

curs in virtual execution environments. We characterize its computational complexity and

hardness of approximation.

Section 4.1 formalizes a real adaptation problem that occurs in virtual execution envi-
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ronments. Though this work has been done in the context of Virtuoso, the formulation is

generic enough to apply to other virtual distributed computing systems as well [15]. To the

best of our knowledge there currently exists no theoretical analysis for real problems that

involve both mapping and routing aspects. Additionally, the formalization is also abstract

and generic enough to allow other adaptation problems in many different contexts, such as

hardware chip design [77], to possibly map onto it.

We explore the computational complexity of the adaptation problem in Section 4.2.

The adaptation problem intuitively appears to be NP-hard. This dissertation takes the intu-

ition all the way through to rigorous formalization and proves that the adaptation problem

in virtual execution environment is indeed NP-hard. This work has the potential to act as

the basis for the analysis of future virtualized adaptive systems. By proving the problem

to be NP-hard we necessitate the search for approximate solutions.

Section 4.3 builds upon the results derived in Section 4.2 by studying the approxima-

bility or inapproximability of the adaptation problem. In particular, it characterizes the

problem’s hardness of approximation by proving that it is NP-hard to approximate within

a factor of m1 � 2 � δ for any δ � 0, where m is the number of edges in the virtual overlay

graph. This shows that the adaptation problem is hard to approximate as well.

4.1 Adaptation problem formulation

VNET monitors the underlying network and provides a directed VNET topology graph,

G � � H � E � , where H are VNET nodes (hosts running VNET daemons and capable of

supporting one or more VMs) and E are the possible VNET links. Note that this may

not be a complete graph as many links may not be possible due to particular network

management and security policies at different network sites. Wren [74] (integrated with

VNET [73]) provides estimates for the available bandwidth and latencies over each link
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in the VNET topology graph. These estimates are described by a bandwidth capacity

function, bw : E � �
, and a latency function, lat : E � �

.

In addition, VNET is also in a position to collect information regarding the space ca-

pacity (in bytes) and compute capacity made available by each host, described by a host

compute capacity function, compute : H � �
and a host space capacity function, size :

H � �
. The set of virtual machines participating in the application is denoted by the set

V M. The size and compute capacity demands made by every VM can also be estimated

and denoted by a VM compute demand function, vm compute : V M � �
and a VM space

demand function, vm size : V M � �
, respectively. We are also given an initial mapping

of virtual machines to hosts, M , which is a set of 3-tuples, Mi � � vmi � hi � yi � , i � 1 � 2 ����� n,

where vmi � VM is the virtual machine in question, hi � H is the host that it is currently

mapped onto and yi �
�
0 � 1 � specifies whether the current mapping of VM to host can be

changed or not. A value of 0 implies that the current mapping can be changed and a value

of 1 means that the current mapping should be maintained. Additionally, we also obtain an

estimate of the execution time remaining for each VM. We denote this by vm time : V M

� �
.

The bandwidth and compute rate estimates do not implicitly imply reservation, they

are random variables that follow a normal distribution with a mean of the estimated value.

As mentioned previously Virtuoso provides for network and CPU reservations, in which

case the estimates are exactly the resources we get as we can reserve the same. Hence for

each edge in E, we define a function nw reserve : E � �
0 � 1 � . If the value associated

with the edge is 0 then we cannot reserve the link and the actual bandwidth has a normal

distribution with a mean of bw � E � and a variance σ2
bw � E � , else the link is reservable and the

actual bandwidth is bw � E � . Similarly for each host we define a function cpu reserve : H

� �
0 � 1 � , where a value of 0 means that the compute capacity made available by the host is

not reservable and the actual value has a normal distribution with a mean of compute � H �
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and a variance σ2
compute � H � . The Gaussian model is based on the ideal error distribution

from a resource prediction service [35].

VTTIF infers the application communication topology in order to generate the traf-

fic requirements of the application, A , which is a set of 4-tuples, Ai � � si � di � bi � li � , i �

1 � 2 ����� m, where si is the source VM, di is the destination VM, bi is the bandwidth demand

between the source destination pair and li is the latency demand between the source des-

tination pair. The bandwidth demand refers to the bandwidth that the application would

like to receive between its source destination pairs. The latency demand refers to the la-

tency that the application would not like exceeded between its communicating VM pairs.

It should be noted that these demands are not explicitly given by the application, but are

inferred.

It should be noted that there is always a cost involved with all the measurements and

adaptation mechanisms. Because the overheads of VNET, VTTIF and Wren have been

shown to be negligible [74] we do not include them in our formalization. However, the

cost of migrating a virtual machine is dependent on the size of the virtual machine, the

network characteristics between the corresponding hosts and the specific migration scheme

used. These estimates are described by a migration function, migrate: VM x H x H �
���

, that provides an estimate in terms of the time required to migrate a virtual machine

from one host to another. There is more than one way to take into account the cost of

migration, one being to keep the costs of migration for each of the VMs below a certain

threshold. Online migration of virtual machines is receiving a lot of interest in the research

community [26, 107, 146]. As the migration times are being continually driven down the

relevance of our work will continue to increase.

The goal then is to find an adaptation algorithm that uses the measured and inferred data

to drive the adaptation mechanisms at hand in order to improve application throughput. In

other words we wish to find
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1. a mapping from VMs to hosts, vmap : V M � H, meeting the size and compute

capacity demands of the VMs within the host constraints and leveraging CPU reser-

vations where available. Further, the new mapping should also reflect the mapping

constraints provided.

2. a routing, R : A � P , where P is the set of all paths in the graph G � � H � E � , i.e.

for every 4-tuple, Ai � � si � di � bi � li � , allocate a path, p
�
vmap � si � � vmap � di ��� , over the

overlay graph, G, meeting the application demands while satisfying the bandwidth

and latency constraints of the network and leveraging network reservations where

available.

Once all the mappings and paths have been decided, we can compute the change in

estimated execution times on this new mapping and denote it by vm time after : VM � �
.

Additionally, each VNET edge will have a residual capacity, rce, which is the bandwidth

remaining unused on that edge, in that direction

rce � bwe � ∑
e � R � Ai �

bi

For each mapped path, R � Ai � , we can also define its bottleneck residual capacity

brc
�
R � Ai ��� � min

e � R � Ai �
�
rce �

and its total latency

tl
�
R � Ai ��� � ∑

e � R � Ai �
�
late �

. Note that here we are making the assumption that the end-to-end latency is the same as

the sum of the individual latencies.

It should be noted that the residual capacity can be spoken of at two levels, at the

level of VNET edges and at the level of paths between communicating VMs. The network
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component of the various objective functions that could be defined would fall into one of

two classes, an edge-level or a path-level objective function.

1. Edge-level: a composite function, f , that is a function of, g, a function of the mi-

gration costs of all the VMs and h, a function of the total latency over all the edges

for each routing and k, a function of the residual bottleneck bandwidths over all the

edges in the VNET graph.

2. Path-level: a composite function, f , that is a function of, g, a function of the mi-

gration costs of all the VMs and h, a function of the total latency over all the edges

for each routing and k, a function of the residual bottleneck bandwidths over all the

paths in the routing.

Table 4.1 provides a description of the terms used in the formulation.

Problem 1 (Generic Adaptation Problem In Virtual Execution Environments (GAPVEE))

INPUT:� A directed graph G � � H � E �� A function bw : E ���� A function lat : E ���� A function compute : H ���� A function size : H ���� A set, VM � � vm1 � vm2 	
	
	 vmn � , n ��� A function vm compute : VM ���� A function vm size : VM ���� A function vm time : VM ���� A function migrate :
�
V M � H � H ������ A function nw reserve : E ��� 0 � 1 �� A function cpu reserve : H ��� 0 � 1 �� A set of ordered 4-tuples A ��� � si � di � bi � li ��� si � di � VM; bi � li ��� ; i � 1 � 	
	
	 � m �� A set of ordered 3-tuples M ��� � vmi � hi � yi ��� vmi � VM; hi � H; yi ��� 0 � 1 � ; i � 1 � 	
	
	 � n �

OUTPUT: vmap : VM � H and R : A � P such that� ∑vmap � vm ��� h � vm compute
�
vm ��� � compute

�
h � , ! h � H
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Symbol Description

G � � H � E � VNET overlay graph
H VNET nodes
E possible VNET links

bw : E � �
bandwidth capacity function

lat : E � �
latency function

compute : H � �
host compute capacity function

size : H � �
host space capacity function

V M set of virtual machines
vm compute : V M � �

VM compute demand function
vm size : V M � �

VM space demand function
M initial mapping of virtual machines to hosts

Mi � � vmi � hi � yi � , i � 1 � 2 ��� � n Initial mapping as a set of 3-tuples
vmi � VM a specific virtual machine in question
hi � H host that a VM is currently mapped onto
yi �

�
0 � 1 � whether the current mapping of VM to host can be changed

vm time : V M � �
execution time remaining for each VM

nw reserve : E � �
0 � 1 � whether an edge can be reserved

bw � E � expected mean of distribution of actual bandwidth
σ2

bw � E � expected variance of distribution of actual bandwidth
cpu reserve : H � �

0 � 1 � whether the CPU can be reserved
compute � H � expected mean of distribution of actual compute capacity
σ2

compute � H � expected variance of distribution of actual compute capacity

A application communication topology
Ai � � si � di � bi � li � , i � 1 � 2 ����� m application communication topology as 4-tuples
di destination VM
si source VM
bi bandwidth demand between source destination pair
li latency demand between source destination pair

migrate: VM x H x H � � �
estimate of migration time

vmap : V M � H final mapping from VMs to hosts
R : A � P final routing from application 4-tuples to paths

p
�
vmap � si � � vmap � di ��� path over overlay graph

vm time after : VM � �
change in estimated execution times

rce residual capacity on VNET edges
rce � bwe � ∑e � R � Ai � bi definition of residual capacity
brc

�
R � Ai � � bottleneck residual capacity for each mapped path

brc
�
R � Ai ��� � mine � R � Ai �

�
rce � definition of bottleneck residual capacity

tl
�
R � Ai � � total latency over each mapped path
tl
�
R � Ai � � � ∑e � R � Ai �

�
late � definition of total latency

Table 4.1: Description of symbols used in the formalization.



CHAPTER 4. PROBLEM FORMULATION 120

� ∑vmap � vm ��� h � vm size
�
vm �
� � size

�
h � , ! h � H� hi � vmap

�
vmi � ! Mi � � vmi � hi � � M if yi � 1� rce

�
0, ! e � E� � ∑e � R � Ai � late � � li, ! e � E� For some functions f � g � h � k and l the function

f
�
g
�
migrate � � h � lat � � k � rce �
� � l � vm time after � is optimized

It should be noted that for this most generic incarnation we have not specified any partic-

ular objective function. The intent of providing this formulation is to provide an abstract

description of all the components of the adaptation problem. We next take a significant

piece of this generic problem and analyze and characterize it in great detail.

Mapping and routing are the two main components of our adaptation problem. With

a view to better understand these two components we define a simpler version wherein

we drop the size, compute and latency constraints. We also neglect the cost of migra-

tion, which is reasonable as recently migration costs as low as a few seconds have been

reported [107]. It should be noted that if the migration is conducted online then the down-

time is virtually zero [26]. We also assume that all the links are reservable and that the

compute capacity made available is reserved as well.

The specific objective function we choose belongs to the second category mentioned

above wherein we consider residual bandwidths of the various paths in the routing. Addi-

tionally, we drop the compute aspect in the objective function and restrict it to the extent

of constraints. The objective is to maximize the sum of residual bottleneck bandwidths

over each mapped path, where residual bottleneck bandwidth is as defined previously in

this Section. The intuition behind this objective function is to leave the most room for the

application to increase its throughput.

Problem 2 (Mapping and Routing Problem In Virtual Execution Environments (MARPVEE))
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INPUT:� A directed graph G � � H � E �� A function bw : E ���� A set, VM � � vm1 � vm2 	
	
	 vmn � , n ��� A set of ordered 3-tuples A ��� � si � di � bi ��� si � di � VM; bi; i � 1 � 	
	
	 � m �� A set of ordered 3-tuples M ��� � vmi � hi � yi ��� vmi � VM; hi � H; yi ��� 0 � 1 � ; i � 1 � 	
	
	 � n �
OUTPUT: vmap : VM � H and R : A � P such that� hi � vmap

�
vmi � ! Mi � � vmi � hi � � M if yi � 1� rce

�
0, ! e � E� ∑m

i � 1 � mine � R � Ai �
�
rce � � , where rce � � bwe � ∑e � R � Ai � bi � , is maximized

From now on when we refer to the adaptation problem we will be referring to MARPVEE.

4.2 Computational complexity of the adaptation problem

We first formulate the decision version of the adaptation problem.

Problem 3 (Mapping and Routing Problem In Virtual Execution Environments (MARPVEED))

INPUT:� A directed graph G � � H � E �� A function bw : E ���� A set, VM � � vm1 � vm2 	
	
	 vmn � , n ��� A set of ordered 3-tuples A ��� � si � di � bi ��� si � di � VM; bi; i � 1 � 	
	
	 � m �� A set of ordered pairs M � � � vmi � hi � � vmi � VM � hi � H; i � 1 � 2 	
	
	 r� r � n �� α � �
OUTPUT:� YES, if there exists a mapping vmap : VM � H and a routing R : A � P such that� hi � vmap

�
vmi � , ! Mi � � vmi � hi � � M� rce

�
0, ! e � E� ∑m

i � 1 � brc
�
R
�
Ai �
� � � α� NO, otherwise
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To establish the hardness of the problem, we consider a further special case of the problem

wherein all the VM to host mappings are constrained by the set of 3-tuples M , leaving us

only with the routing problem.

Since the mappings are pre-defined, we can formulate the problem in terms of only

the hosts and exclude all VMs. Also, as the latency demands have been dropped, the

application 4-tuple reduces to 3-tuple, Ai � � si � di � bi � , si � di � H, bi � �
, i � 1 � 2 ��� � m.

Notice that now si � di � H as VM to host mappings are fixed and VMs are synonymous

with the hosts that they are mapped to.

This further constrained version of the adaptation problem with only the routing com-

ponent is defined as follows.

Problem 4 (Routing Problem In Virtual Execution Environments (RPVEE))

INPUT:� A directed graph G � � H � E �� A function bw : E ���� A set of ordered 3-tuples A ��� � si � di � bi ��� si � di � H; bi � � ; i � 1 � 	
	
	 � m �
OUTPUT: R : A � P such that� rce

�
0, ! e � E ,� ∑m

i � 1 � brc
�
R
�
Ai �
� � is maximized

Further, The decision version of RPVEE can be formulated as follows.

Problem 5 (Decision version of Routing Problem In Virtual Execution Environments

(RPVEED))

INPUT:� A directed graph G � � H � E �� A function bw : E ���
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� A set of ordered 3-tuples A ��� � si � di � bi ��� si � di � H; bi � � ; i � 1 � 	
	
	 � m �� α � �
OUTPUT:� YES, if there exists a routing R : A � P such that� rce

�
0, ! e � E;� ∑m

i � 1 � brc
�
R
�
Ai �
� � � α� NO, otherwise

For the proofs of hardness we will reduce the Edge Disjoint Path Problem to the Routing

Problem in Virtual Execution Environments. The edge disjoint problem has been shown to

be NP-complete [101] and NP-hard to approximate within a factor of m1 � 2 � δ [75].

The edge disjoint path problem can be formulated as follows.

Problem 6 (The Edge Disjoint Path Problem (EDPP))

INPUT:� A graph G � � H � E � , �H � � p, �E � � q� A set of ordered 2-tuples S � � � si � di � � si � di � H; i � 1 � 	
	
	 � k �
OUTPUT:� The maximum numbers of pairs

�
si � di � � S that can be connected via edge disjoint paths

from si to di in G � � H � E �

Further, the decision version of the edge disjoint path problem can be stated as follows.

Problem 7 (Decision version of Edge Disjoint Path Problem (EDPPD))

INPUT:� A directed graph G � � H � E � , �H � � p, �E � � q� A set of ordered 2-tuples S � � � si � di � � si � di � H; i � 1 � 	
	
	 � k �
OUTPUT:� YES, if ! � si � di ��� S there exist edge disjoint paths from si to di in G � � H � E �� NO, otherwise
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Figure 4.1: Reducing EDPPD to RPVEED. The edge weights are bandwidths as specified
by the function bw.

4.2.1 Reduction of the Edge Disjoint Path Problem to the Routing
Problem in Virtual Execution Environments

Given an instance I �
�
S � G � � H � E � � of EDPPD or EDPP we reduce it to an instance R � I �

of RPVEE or the instance RD � I � or RPVEED as follows. Construct a complete directed

graph G � � � H � E � � where bw � � u � v � � � 1
� ε for ε � 1 if � u � v � � E and bw � � u � v � � � 1 if

� u � v ���� E. Further for all � si � ti � � S, let � si � di � 1 � � A (see Figure 4.1) to get the instance

R � I � for RPVEE. Let α � k � ε to get the instance RD � I � for RPVEED. The reductions are

trivially accomplished in O � n2 � time.

Theorem 4.1. MARPVEED is NP-complete.

Proof. Given an instance I �
�
S � G � � V � E � � of EDPPD, construct the instance RD � I � of

RPVEED as described earlier. We now claim that (a) a YES instance of EDPPD yields
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a YES instance of RPVEED; and (b) a NO instance of EDPPD yields a NO instance of

RPVEED;

The proof for (a) is by construction. Given a YES instance of EDPPD, we know that

there exists a set of k edge disjoint paths in G for each of the k � si � di � tuples in S. Construct

the routing R for RPVEED as follows. For every Ai � � si � di � 1 � � A , let R � Ai � be the edge

disjoint path for the corresponding � si � di � pair in the EDPPD instance. For every edge e

included in the routing, bw � e � � 1
� ε. Further, since the routing consists of edge disjoint

paths, each edge is assigned to at most one route. Therefore, rce � � bwe � ∑e � R � A j � b j � � ε

for all edges e � R � Ai ��� i. Thus, ∑k
i � 1

�
mine � R � Ai �

�
rce � � � k � ε � α. Hence, the correspond-

ing instance of RPVEED is a YES instance.

The proof for (b) is by contradiction. Suppose a NO instance of EDPPD yields a

YES instance of RPVEED. We will use the YES instance of RPVEED to construct a YES

instance of EDPPD. Since the weight of every edge in G � is at most 1
� ε and bi � 1� i, an

edge could belong to at most one route. This implies that all the routes in R are disjoint.

Further, since the bottleneck residual capacity for each route (mine � R � Ai �
�
rce � ) could at

most be ε and the total residual capacity is at least α � k � ε, the residual capacity of each

route should be exactly ε. This implies that the bandwidth of each edge in the route is

1
� ε. Therefore, all the edges included in the routing exist in the graph G and the routes

constitute edge disjoint paths in G, thus yielding a YES instance of EDPPD. Hence, the

contradiction.

Since RPVEED is a special case of MARPVEED, the NP-completeness of RPVEED

immediately implies that MARPVEED is NP-complete.
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4.3 Hardness of Approximation

A natural way to cope with NP-completeness is to seek approximate solutions instead of

exact solutions. An algorithm with approximation ratio C computes, for every problem

instance, a solution whose cost is within a factor C of the optimum. In this section, we

investigate the approximability of MARPVEE. We show that unless P=NP, there does not

exist a polynomial approximation algorithm with an approximation ratio better than m1 � 2 � δ

for any δ � 0.

We again use the edge disjoint problem for the purposes of our reduction. It has been

previously shown that the problem is NP-hard to approximate within m1 � 2 � δ [75]. We will

prove an essentially matching hardness result on the optimization version of the routing

problem RPVEE and then use that result to prove the same bounds for MARPVEE.

4.3.1 Hardness of approximation of RPVEE

For establishing the hardness of approximation for RPVEE, we reduce an instance I of

EDPP to instance R � I � of RPVEE as described earlier in Section 4.2.1.

Lemma 4.2. If the value of the optimal solution to an instance I of EDPP is k � then the

value of optimal solution to the instance R � I � of RPVEE is k � � ε.

Proof. Let the value of optimal solution to R � I � be OPT. If there are k � edge disjoint paths

in I the corresponding routes for each of those paths in R � I � will have a bottleneck residual

capacity of ε. Therefore, OPT
�

k � � ε.

Note that for any route in R � I � , the bottleneck residual capacity is either 0 or ε. There-

fore the total bottleneck residual capacity is a factor of ε. Let OPT � z � ε. We then need

to show that z � k � . Since a route with a bottleneck residual capacity of ε consists of only
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the edges in the input graph to I and no two routes share a common edge, there are at least

z disjoint paths in I. Since the value of optimal solution to I is k � , z � k � . Hence, we are

done.

Theorem 4.3. For any δ � 0, it is not possible to approximate RPVEE within a factor of

m1 � 2 � δ unless P=NP.

Proof. We will prove this by contradiction. Let us assume that there exists a polynomial

time approximation algorithm A for RPVEE that achieves an approximation guarantee of

factor m1 � 2 � δ. Using Lemma 4.2, algorithm A in conjunction with the reduction R yields a

polynomial time m1 � 2 � δ-approximation algorithm for EDPP which is not possible unless

P=NP [75].

4.3.2 Hardness of approximation of MARPVEE

We use the inapproximability result obtained above for RPVEE to state the inapproxima-

bility result for MAPRVEE with the same bounds. The proof is by contradiction and

follows very closely the proof for Theorem 4.3.

Corollary 4.4. For any δ � 0, it is NP-hard to approximate MARPVEE within m1 � 2 � δ un-

less P=NP.

4.4 Conclusions

It is important to carry out a rigorous formalization and analytical characterization of the

adaptation problem. Such an analysis is central to understanding the problem better. Ad-
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ditionally, it also provides direction in exploring the solution space. In this chapter we

formalized the adaptation problem in Virtuoso. We also studied its computational com-

plexity. The adaptation problem which occurs in virtual execution environments is NP-

hard. The problem is also NP-hard to approximate within m1 � 2 � δ of the optimal, where m

is the number of edges in the virtual overlay graph.

These results set the tone for the remainder of the experimentation and simulations

carried out in the course of this dissertation. Since it is hard to efficiently solve the problem

and also to approximate it, we explore the space of heuristics solutions. In particular we

study if the heuristics solutions developed, though possibly sub-optimal in certain cases,

work well for majority of the real world cases in practice. In the next two chapters we

consider simplified versions of the adaptation problems and study the effects of introducing

resource reservations.
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Chapter 5

Automatic network reservations

In the previous chapter (Chapter 4) we formalized the complete adaptation problem. Be-

fore we start exploring solutions to the complete problem in Chapters 7 and 8, in this

chapter we study automatic adaptation leveraging network reservations. In particular, we

formulate a simpler version of the adaptation problem and present a simple greedy heuris-

tic that leverages network reservations as a solution to the adaptation problem. We found

that the performance of the application studied (patterns) was significantly improved using

this adaptation scheme that included network reservations.

5.1 Simplified version of adaptation problem

Here we present a simplified version of the adaptation problem. This problem is similar to

RPVEE, in that it only has a routing component. However, it differs from RPVEE in its

objective function. For this simpler version, we wish to maximize application performance.

Problem: Simplified version of adaptation problem

INPUT:� A directed graph G � � H � E �� A function bw : E ���� A set of ordered 3-tuples A ��� � si � di � bi ��� si � di � H; bi � � ; i � 1 � 	
	
	 � m �
OUTPUT: R : A � P such that
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� application performance is maximized

We next describe why exploiting network reservations is important for an adaptive

system.

5.2 Motivation behind this study

Optical networking may dramatically change high performance distributed computing.

One reason is that optical networks can support provisioning dynamically configurable

lightpaths, a form of circuit switching, through reservations. However, to use it (and all

other network reservation mechanisms), the user or developer must modify the application.

In this chapter we describe how the notion of automatic, run-time and dynamic adaptation

can be extended to take into account network reservations.

Recognition of the potential of high speed optical networks has prompted the creation

of private national and international optical networks [19, 130, 131], and the development

of new models for using them. For example, the OptIPuter project [156] uses a dedicated

optical network to interconnect large compute centers, data storage farms, and visualiza-

tion centers.

When used with the traditional packet switching paradigm, optical networks operate

with extremely high bandwidth but also very high latency [22]. This observation has mo-

tivated the optical networking community to investigate supplementing packet switching

with capabilities for optical circuit switching. Circuit switching is strongly tied to resource

reservations. While considerable work has gone into reservation mechanisms for packet

switched networks, there has been little deployment of these mechanisms because of con-

cerns about state size on routers. Circuit switched networks provide an environment that is

potentially more suitable for reservation mechanisms. Since the state required in a circuit

switch is already per-connection, adding per-connection reservations incurs only a constant
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factor increase in state size. Network and CPU reservations are powerful mechanisms for

guaranteeing stable application performance.

Circuit switching requires establishing specific paths and the attributes of those paths,

e.g., such as throughput and latency. Currently, this places a new requirement on either the

user, who must manually reserve the network on behalf of the application, or the developer,

who must specifically call a reservation system API. In either case, manual intervention

is required to determine what circuits are needed and how to provision them. To date

very little work has been done on automatic network reservations based entirely on the

application’s needs at run time.

In this chapter, we show that it is both feasible and relatively straightforward to auto-

matically determine the necessary circuits and reserve them appropriately. Further, we can

do so dynamically, changing circuits and reservations at run-time as the communication

needs of the application change. Finally, as with our other adaptation schemes, this works

with existing, unmodified applications and operating systems with no user or developer

intervention. There is good reason to believe that our work will readily extend to other

network reservation schemes as well.

The idea of dynamically creating overlay networks has an analogue in the paradigm

of creating optical channels between nodes. Instead of creating an overlay network on top

of the existing Internet infrastructure, we request a dedicated light path from the optical

network reservation system. For our system we experimented with ODIN [122] (Optical

Dynamic INtelligent Signaling), a set of optical network services, including provisioning

capabilities, integrated into OMNInet [91] (Optical Metro Network Initiative), an experi-

mental circuit switched optical network. We used VTTIF to monitor the application, and

generated ODIN requests based on the inferred topology and traffic load matrix.

VRESERVE is the optical networking component of Virtuoso. VRESERVE alleviates

the reservation responsibility for both the user and the developer. In fact the environment
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experienced by both is exactly the same as when a network without reservations is used. By

automatically requesting network reservations at run-time we have enabled any application

to transparently and painlessly use dedicated high speed reservable networks to increase

communication performance.

In the following, we begin with a discussion of modern optical networks and their

light path reservation mechanisms (Section 5.3), including a description of the OMNInet

network we use and its ODIN reservation system. Section 8.3 details the experiments

conducted to provide a proof of concept that Virtuoso can automatically and dynamically

leverage network resource reservations. Section 5.6 concludes this discussion.

5.3 Optical networks

Although optical networking has existed since the 1980s, there has been a recent resur-

gence of interest for the following reasons:

� Practical optical domain switching and amplification mechanisms have been devel-

oped, allowing the majority of a network path to be purely optical [22, 183].

� The throughput possible in existing optical fiber has been growing dramatically [140].

As there is much existing “dark fiber”, this means that dedicated or shared wide area

optical networks for high performance computing are becoming feasible [57, 155].

� Deployment of network reservation systems that can be used by an end user has

stalled. The result is that commodity Internet performance has become increasingly

unpredictable, even on dedicated IP networks.

The core of an optical network is built using optical amplifiers, optical switches, and

interconnected using fiber-optic cables. Bits are injected into the network by modulating

a laser beam feeding a cable. The center frequency of the beam is typically referred to as
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Figure 5.1: Physical topology of the OMNInet testbed network.

the “lambda”. An optical amplifier increases the intensity of a range of frequencies. An

optical switch directs light of one frequency (lambda) that arrives on an input port to some

output port, possibly changing its frequency in the process. The mapping from input ports

and frequencies to output ports and frequencies defines the configuration of the switch. By

configuring interconnected switches appropriately, a light path can be established from a

source host to a destination host. Such configuration is analogous to call setup in a circuit

switched network.

Networks such as OMNInet [91], Canarie [19], and NetherLight [131] allow autho-

rized entities to reserve and provision optical lightpaths. Beyond basic connectivity, this

primitive can be used to create logically separate networks (perhaps for different groups)

that share the same underlying physical resources. It could also be used directly by appli-

cations.

5.3.1 OMNInet and ODIN

In our evaluation, we use the OMNInet network and the ODIN light path reservation sys-

tem. Figure 5.1 shows the physical topology of a section of OMNInet. OMNInet is an
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Figure 5.2: Reservation API.

experimental fully connected network that spans several sites in Chicago. We use ma-

chines directly connected to the optical switches at two of the sites. OMNInet is run by the

International Center for Advanced Internet Research (iCAIR).

ODIN is a lightpath provisioning system that iCAIR developed for use on OMNInet.

Figure 5.2 shows the ODIN provisioning interface. ODIN’s interface for establishing a

lightpath is very similar to VNET’s interface for creating an overlay link. ODIN uses IP

addresses to identify network nodes. A path reservation request consists of the source and

destination IP addresses, and the required long term average bandwidth and latency of the

path. Networks are constructed by making a reservation request for each link. ODIN then

uses Ethernet VLANs to ensure that the given network is fully restricted to the hosts in the

network graph.

The time to configure the OMNInet network (create a collection of lightpaths) is rather

large as the expectation is that this will be done infrequently. The average setup time we

observed is E 15 seconds, which includes updating all the switches. Figure 5.3 shows the

ideal and measured (using ping and ttcp) latency and throughput of the path denoted on

Figure 5.1 as compared to a path over the commodity Internet.
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(a) Latency

(b) Throughput

Figure 5.3: Latency and throughput of the optical path as compared to the commodity
Internet.
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5.3.2 Reservations in other networks

It is important to note that our work is intended to generalize to other network reservation

systems, whether they are optical or not. A unifying feature of network reservation systems

is that they require the reserver to provide a model of the traffic that will be sent along a path

and a specification of its latency and throughput requirements [49]. Our system provides

this information, which could be used with, for example, GARA [80].

5.4 Automatic dynamic reservations

A high-level view of the system is shown in Figure 5.4. Each Ethernet packet sent by

the application is diverted by the virtual machine monitor into the VNET overlay network

system. VNET forwards the packet on an overlay link, which may either be realized over

the commodity Internet, or through a network that supports reservations (e.g., OMNInet).

VNET also supplies the packet to our inference system, VTTIF, for inspection. Local
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VTTIF agents collect data on each host and regularly aggregate the information on each

remote VTTIF instance. A lead VTTIF constructs an estimate of the global application

topology among its VMs and the corresponding traffic load matrix. This is passed to the

adaptation system, VADAPT.

VADAPT attempts to improve application performance using a variety of adaptation

mechanisms. One mechanism is to create new overlay links and corresponding overlay

forwarding rules. After VADAPT has chosen a set of new overlay links, it passes it to

VRESERVE which creates lightpaths for every link where this is possible. For each new

light path thus created, VADAPT then changes the forwarding rules to send the data for

the link over the lightpath instead of the commodity Internet.

In the following, we provide more details for VRESERVE.

5.4.1 VRESERVE

After VNET has decided which overlay links to create, but before it has created them,

VRESERVE analyzes each link to determine if it can be better served using a reservation.

Currently this is accomplished through a mapping of default (commodity Internet) inter-

faces (identified by IP addresses) to interfaces that are connected to a reservable network.

If both endpoints of the link share a mapping to the same reservable network, VRESERVE

initiates a reservation request for the path between the two corresponding interfaces. If

the request succeeds, VADAPT configures the overlay link to use the reserved path. If not

successful, the overlay link runs over a path in the commodity Internet.

A key point is that we create an overlay link on top of the reserved path. At first glance

this may seem to be redundant, but it allows us to use VNET to perform routing. Without

the overlay we would be forced to modify the host machines’ routing tables or rewrite the

packet headers. With the overlay in place, however, we can perform routing transparently.

Initially, however, this proved to be a substantial performance bottleneck with the first
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generation VNET. The first generation VNET was designed for the wide area and so did

not perform especially well on these very fast links. We redesigned and reimplemented

several parts of VNET, described in the second generation VNET, to improve performance

enough to warrant the use of the high speed connection. As previously discussed in Sec-

tion 3.3, VNET now has negligible overhead over a 100 Mbit LAN and only slightly trailed

VMware GSX Server 2.5.1 over a Gbit LAN.

The actual implementation of VRESERVE is straightforward. It is a Perl module im-

ported by VNET that implements a procedural interface for the creation and destruction of

optical lightpaths. VRESERVE also tracks any changes to the reservable network’s state

made by a caller. Network reservations are made by interfacing directly to ODIN. ODIN

consists of a server running on a trusted host and a command-line client. VRESERVE

simply constructs and executes command-lines. Because ODIN does not support deferred

scheduling VRESERVE immediately indicates success or failure in creating a lightpath.

5.4.2 An example scenario

A typical execution scenario is as follows. A set of user’s virtual machines V , are started

on a distributed set of hosts. A VNET star topology is created, with a proxy machine p, to

enable communication for every VM in V . A parallel application is then executed inside

each VM in V . All intra-VM communication is routed through p, and a traffic matrix is

aggregated by VTTIF. From that matrix VTTIF derives a communication topology among

the VMs in V . VADAPT uses this topology, combined with the mapping of VMs to hosts,

to define a better topology among the VNET daemons. This topology consists of a set of

overlay links E. We choose k links with the highest bandwidth requirements from E and

place them in H, H � E. VADAPT passes H to VRESERVE for action.

VRESERVE analyzes H and determines a subset of overlay links R for which reser-

vations are possible. VRESERVE then requests reservations for each overlay link in R.
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Links that suffer from path reservation failure are removed from R. VNET then creates the

overlay network. This is accomplished by creating an overlay link for each element in H

and adjusting the forwarding rules to send packets over the reserved paths for the links in R

and over the commodity Internet for H � R. As the communication pattern changes, a new

set H � is created by VADAPT and passed to VNET. VNET and VRESERVE process all

the new links identically as before, generating an overlay network of H � H � . However fol-

lowing the creation process VNET finds the difference H � H � , which corresponds to links

not needed in the new topology. It then removes those links, as well as any reservations

allocated to links in H � H � .
The implementation of VRESERVE is about 400 lines of Perl. Half of this is the VRE-

SERVE module, while the other half interfaces VADAPT to VRESERVE. The majority

of the implementation involves parsing the output from ODIN. Modifications to VADAPT

take the form of VRESERVE API calls and an added IP address mapping service.

5.4.3 Assumptions

To evaluate in isolation, the feasibility and performance of integrating network reserva-

tions with Virtuoso, we created a simplified version of the adaptation problem described in

Chapter 4.

Our heuristic leverages the information provided by VTTIF to make the VNET overlay

topology conform to the inferred application topology by adding and deleting overlay links

and forwarding rules and by using network reservation, where possible.

The simplifying assumptions made are:

� Improving application performance amounts to increasing its throughput.

� All routing on the overlay is shortest path first.

The combined evaluation of all the adaptation mechanisms is provided in Chapter 8.
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Figure 5.5: The configuration-time costs for the two VM scenario shown in Figure 5.1.

5.5 Experiments

To evaluate our system we ran several experiments to determine its performance. In the

following, we first examine the configuration time of our system, and then evaluate the

performance of data transfers through the whole system and the performance of our simple

parallel application benchmark, Patterns. The result is an existence proof: the system

works and there is at least one case where it can lead to enhanced performance.1

5.5.1 Configuration time

Figure 5.5 shows the costs involved in configuring the network using our system. The

primary cost was the time spent in the reservation system itself. Creating a path entails

two delays. The first is a software delay. It took E 2.5 seconds for ODIN to send the

configuration commands to all the switches. The second delay ( E 15 seconds) is the time

needed for the hardware to reconfigure itself and for the path to stabilize. This stabilization

1Our experiments were limited in scope due to a surprise shutdown of the OMNInet network. Further-
more, during the interval in which we were able to use it, only one path could be reserved.
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Figure 5.6: Throughput achieved by ttcp on an optical network. VNET here refers to the
first generation VNET.

delay is constant, regardless of the complexity of the number of switches being configured.

The software delay, however, will grow linearly with the number of switches in a path

because ODIN does not currently support parallel configuration. The time taken to tear

down an optical path was E 12 seconds.

VTTIF is a significant, but smaller contributor to the setup delay. It must observe traffic

for some period of time before it can report a topology. The VTTIF time is a function of a

number of parameters and can be as low as one second. The time to execute VRESERVE

and to create the individual overlay links is lost in the noise.

The total time from the start of network communication to channeling packets over an

overlay link running through a lightpath is � 30 seconds.

5.5.2 VM-to-VM TCP performance

In this experiment, we use the configuration of Figure 5.1 and run the ttcp TCP bench-

marking tool in the two VMs. The VNET referred to in the context of these experiments is
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the first generation VNET. The second generation VNET was still in development at that

point in time. By the time the second generation VNET was operational, OMNInet was

no longer available for our use. Hence we could not compare the throughput of the second

generation VNET with VMware bridged networking over an optical network. However,

Section 3.3 provides a comparison between them over a Gigabit LAN.

In this experiments, the system notices the sudden communication between the VMs

and establishes a lightpath between their hosts. We would expect a dramatic increase of

performance thereafter. The physical network is no longer a bottleneck for the system; it is

the first generation VNET and VMware that become the bottlenecks. Figure 5.6 shows the

results, comparing the raw throughput between the two hosts with the VMware throughput

and the throughput using first generation VNET. While acceptable for communication in

the wide area (first generation VNET’s original design goal), a E 5 MB/s ceiling is far

too low. Note that VMware is the next substantial bottleneck after VNET. As mentioned

previously, this VNET bottleneck has been eliminated in the second generation. Now, over

high speed networks VNET lags only a little behind VMware’s bridged networking.

5.5.3 VM-based BSP benchmark

Here, we use the configuration of Figure 5.1 and run Patters (described in Chapter 2) in

the VMs. Patterns uses an all-to-all communication pattern, and we measure its execution

rate in iterations/second. Figure 5.7 shows the performance improvement from using a

reserved optical network. Performance increases by 170% when the optical path is used.

We also see the first generation VNET bottleneck again.

The upshot of this benchmark and the preceding ttcp benchmark is that our system

can automatically use reservation systems to improve the performance of distributed and

parallel applications.
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Figure 5.7: Increasing the performance of a BSP benchmark with an all-to-all communi-
cation pattern. VNET here refers to the first generation VNET

5.6 Conclusions

We have demonstrated that it is feasible to automatically create network reservations on

behalf of unmodified applications, and that such reservations can improve application per-

formance. Specifically, we reserved lightpaths on behalf of applications running in virtual

machines by observing their communication traffic over an overlay network and recon-

structing their topology from that low-level traffic. Our techniques require no modifica-

tions of the application or help from the user or developer.

One question is to what extent our results can generalize. Must we use VMs and an

overlay network? Can we support other network reservation models? The answer to the

latter question is clearly yes, as the ODIN provisioning model is not qualitatively much

different from other per-flow reservation models. We believe that our work can generalize

beyond VMs and overlays. For example, traffic monitoring and inference could be done in
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the kernel and then used to adjust routing tables.

The assumptions in Section 5.4.3 need to be relaxed to lead to a more general adaptive

environment that includes VM CPU reservations, VM migration, forwarding, and the over-

lay topology itself. Chapter 8 present our evaluations on fast algorithms that can take into

account all the available information and choose among adaptation mechanisms, including

network reservations, to optimize application performance.

We believe there are clear benefits to using configurable and reservable networks in

concert with adaptive overlay network technologies. Adaptive overlays let us seamlessly

integrate new networking technologies into existing applications and into the commodity

Internet.

Because VTTIF can provide a holistic view of the application, an entire topology and

traffic matrix at once instead of just a link at a time, it should be possible for an opti-

cal network reservation system to exploit this higher level, detailed information to sched-

ule reservations across the whole network collectively, providing together with sophisti-

cated time-driven scheduling of the VMs, global communication and computation context

switches [47].
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Chapter 6

Exploiting CPU reservations

Although the core of this dissertation deals with automatic adaptation that requires no user

or application intervention, there are often cases wherein application demands cannot be

inferred. Before we describe and evaluate the solutions to the complete adaptation problem

in Chapters 7 and 8, in this chapter we study a scenario wherein our automatic adaptation

scheme is not applicable due to the lack of automatic and invisible application demand

inference. There are times when the adaptation needs to be performed for reasons other

than speeding up the application, such load balancing and better utilization of the system

as a whole. In other words addressing global scope rather than the local scope of the single

application. In such scenarios, it is difficult to infer what exactly the application, user or

system administrator demands. The goal of this chapter is to explore what can we still do,

in terms of adaptation, in such scenarios.

The specific scenario we study is that of tightly coupled clusters executing batch par-

allel applications. In particular for a set of parallel applications executing in a cluster, we

attempt to constrain the compute utilization for each component of the application on each

executing node while ensuring that each application’s performance is still proportional to

the utilization that the application components receive on the physical hosts. The adapta-

tion mechanism leveraged is CPU reservations. To isolate the focus on CPU reservations,
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we omitted the use of virtual machines and virtual networks. However, these results are

valid even when the applications are executing inside of a user’s VMs hosted on a tightly

coupled cluster. This is due to the fact that in the latter case we can schedule the VMs as

processes instead of scheduling the application processes.

It should be noted that applications do not always desire 100% CPU utilization. If a

user’s utilization on a third party cluster (resource provider)is tied to the amount he pays,

then there can be cases where the user might want to pay less and hence want to use less

than 100% CPU. However, a user will be willing to do this only if they are assured that the

application’s performance is to its CPU resource utilization. Currently, there is no known

existing method achieve this goal.

To avoid stalls, destructive interactions and provide predictable performance for users,

almost all tightly-coupled computing resources today are space-shared. In space-sharing [163],

each application is given a partition of the available nodes, and on its partition, it is the only

application running, thus avoiding the problem altogether by providing complete perfor-

mance isolation between running applications. Space-sharing introduces several problems,

however. Most obviously, it limits the utilization of the machine because the CPUs of

the nodes are idle when communication or I/O is occurring. Space-sharing also makes

it likely that applications that require many nodes will be stuck in the queue for a long

time and, when running, block many applications that require small numbers of nodes.

Finally, space-sharing permits a provider to control the response time or execution rate of

a parallel job at only a very course granularity. Though it can be argued theoretically that

applications can be always built such that computation and I/O overlap all the time, thus

preventing stalls, practically speaking, this is rarely the case.

In this chapter, we propose a new approach to time-sharing parallel applications (run-

ning inside or outside of VMs) on tightly-coupled computing resources like clusters, performance-

targetted feedback-controlled real-time scheduling. The goals of our technique are to pro-
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vide

� performance isolation within a time-sharing framework that permits multiple appli-

cations to share a node, and

� performance control that allows the administrator to finely control the execution rate

of each application while keeping its resource utilization proportional to execution

rate.

Conversely, the administrator can set a target resource utilization for each application and

have commensurate application execution rates follow.

In performance-targetted feedback-controlled real-time scheduling, each node has a pe-

riodic real-time scheduler. The local application thread is scheduled with a � period � slice �
constraint, meaning that it executes slice seconds every period. Notice that slice � period

is the utilization of the application on the node. Our implementation uses and builds upon

a previously described [111] and publicly available VSched tool, developed by Bin et al.

at Northwestern University. VSched is a user-level periodic real-time scheduler for Linux

that was originally developed to explore scheduling interactive and batch workloads to-

gether. Section 6.1 provides an overview.

Once an administrator has set a target execution rate for an application, a global con-

troller determines the appropriate constraint for each of the application’s threads of execu-

tion and then contacts each corresponding local scheduler to set it. The controller’s input

is the desired application execution rate, given as a percentage of its maximum rate on the

system (i.e., as if it were on a space-shared system). The application or its agent period-

ically feeds back to the controller its current execution rate. The controller modifies the

local schedulers’ constraints based on the error between the desired and actual execution

rate, with the added constraint that utilization must be proportional to the target execution

rate.
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In the common case, the only communication in the system is the feedback of the

current execution rate of the application to the global controller, and synchronization of

the local schedulers through the controller is very infrequent. Section 6.2 describes the

global controller in detail.

It is important to point out that our system schedules the CPU of a node, not its physi-

cal memory, communication hardware, or local disk I/O. Nonetheless, in practice, we can

achieve quite good performance isolation and control even for applications making signif-

icant use of these other resources, as we show in our detailed evaluation (Section 6.3.4).

Mechanisms for physical memory isolation in current OSes and VMMs are well under-

stood and can be applied in concert with our techniques. As long as the combined working

set size of the applications executing on the node does not exceed the physical memory of

the machine, the existing mechanisms suffice. Communication has significant computa-

tional costs, thus, by throttling the CPU, we also throttle it. The interaction of our system

and local disk I/O is more complex. Even so, we can control applications with considerable

disk I/O.

6.1 Local scheduler

In the periodic real-time model, a task is run for slice seconds every period seconds. Us-

ing earliest deadline first (EDF) schedulability analysis [115], the scheduler can determine

whether some set of � period � slice � constraints can be met. The scheduler simply uses dy-

namic priority preemptive scheduling with the deadlines of the admitted tasks as priorities.

VSched is a user-level implementation of this approach for Linux that offers soft real-

time guarantees. It runs as a Linux process that schedules other Linux processes. Because

the Linux kernel does not have priority inheritance mechanisms, nor known bounded in-

terrupt service times, it is impossible for a tool like VSched to provide hard real-time guar-
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antees to ordinary processes. Nonetheless, it has been showed in an earlier paper [111],

for a wide range of periods and slices, and under even fairly high utilization, VSched al-

most always meets the deadlines of its tasks, and when it misses, the miss time is typically

very small. VSched supports � period � slice � constraints ranging from the low hundreds of

microseconds (if certain kernel features are available) to days. Using this range, the needs

of various classes of applications can be described and accommodated. VSched allows

changes to task’s constraints within about a millisecond.

VSched is a client/server system. The VSched server is a daemon running on Linux

that spawns the scheduling core, which executes the scheduling scheme described above.

The VSched client communicates with the server over an encrypted TCP connection. In

this work, the client is driven by the global controller and we schedule individual Linux

processes.

The VSched server uses the admissibility test of the EDF algorithm. The scheduling

core is a modified EDF scheduler that dispatches processes in EDF order but interrupts

them when they have exhausted their allocated CPU for the current period. If the server

admits a task, the core can immediately switch to it.

The scheduling core makes use of the three highest priorities of SCHED FIFO, the

highest priority scheduling class in Linux. The scheduling core itself runs as the highest

priority SCHED FIFO process on the system, assuring that when it becomes runnable, it

immediately is given the CPU. The server is run as SCHED FIFO with the next highest

priority so that it will immediately service new requests whenever the scheduling core is

not running. The scheduling core assigns the process that it currently wants to run the

third highest SCHED FIFO priority and (optionally) sends it a SIG CONT. The process

that is being switched away from is assigned an ordinary SCHED OTHER priority. If the

administrator has configured hard limiting on its resource use, it is also sent a SIG STOP,

otherwise VSched operates as a work-conserving scheduler.
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Figure 6.1: Structure of global control.

The performance of VSched has been evaluated on several different platforms. It can

achieve very low deadline miss rates up to quite high utilizations and quite fine resolutions.

VSched can use over 90% of the CPU even on relatively slow hardware and older kernels

(Intel R
�

Pentium R
�

III, 2.4 kernel) and can use over 98% of the CPU on more modern

configurations (Intel R
�

Pentium R
�

4, 2.6 kernel). The mechanisms of VSched and its

evaluation are described in much more detail in an earlier paper [111] and the software

itself is publicly available.

6.2 Global controller

The control system consists of a centralized feedback controller and multiple host nodes,

each running a local copy of VSched, as shown in Figure 6.1. A VSched daemon is re-

sponsible for scheduling the local thread(s) of the application(s) under the yoke of the

controller. The controller sets � period � slice � constraints using the mechanisms described

in Section 6.1. Currently, the same constraint is used for each VSched. One thread of

the application, or some other agent, periodically communicates with the controller using
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non-blocking communication.

6.2.1 Inputs

The maximum application execution rate on the system in application-defined units is

Rmax. The set point of the controller is supplied by the user or the system administra-

tor through a command-line interface that sends a message to the controller. The set point

is rtarget and is a percentage of Rmax. The system is also defined by its threshold for error,

ε, which is given as percentage points. The inputs ∆slice and ∆period specify the smallest

amounts by which the slice and period can be changed. The inputs minslice and minperiod

define the smallest slice and period that VSched can achieve on the hardware.

The current utilization of the application is defined in terms of its scheduled period and

slice, U � slice � period. The user requires that the utilization be proportional to the target

rate, that is, that U � rtarget � ε.

The feedback input rcurrent comes from the parallel application we are scheduling and

represents its current execution rate as a percentage of Rmax. To minimize the modification

of the application and the communication overhead, our approach only requires high-level

knowledge about the application’s control flow and only a few extra lines of code.

6.2.2 Control algorithm

The control algorithm (or simply the algorithm) is responsible for choosing a � period � slice �
constraint to achieve the following goals

1. The error is within threshold: rcurrent � rtarget � ε, and

2. That the schedule is efficient: U � rtarget � ε.

The algorithm is based on the intuition and observation that application performance

will vary depending on which of the many possible � period � slice � schedules corresponding
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to a given utilization U we choose, and the best choice will be application dependent and

vary with time. For example, a finer grain schedule (e.g. (20ms, 10ms)) may result in

better application performance than coarser grain schedules (e.g. (200ms, 100ms)). At any

point in time, there may be multiple “best” schedules.

The control algorithm attempts to automatically and dynamically achieve goals 1 and

2 in the above, maintaining a particular execution rate rtarget specified by the user while

keeping utilization proportional to the target rate.

We define the error as

e � rcurrent � rtarget �

At startup, the algorithm is given an initial rate rtarget . It chooses a � period � slice �
constraint such that U � rtarget and period is set to a relatively large value such as 200 ms.

The algorithm is a simple linear search for the largest period that satisfies our requirements.

When the application reports a new current rate measurement rcurrent and/or the user

specifies a change in the target rate rtarget , e is recomputed and then the following is exe-

cuted:

� If
�
e
�

� ε decrease period by ∆period and decrease slice by ∆slice such that slice � period �

U � rtarget . If period � minperiod then we reset period to the same value as used at

the beginning and again set slice such that U � rtarget .

� If
�
e
�

� ε do nothing.

It should be noticed that the algorithm always maintains the target utilization and

searches the � period � slice � space from larger to smaller granularity, subject to the utiliza-

tion constraint. The linear search is, in part, done because multiple appropriate schedules

may exist. We do not preclude the use of algorithms that walk the space faster, but we have

found our current algorithm to be effective.



CHAPTER 6. EXPLOITING CPU RESERVATIONS 153

6.3 Evaluation

In presenting our evaluation, we begin by explaining the experimental framework in Sec-

tion 6.3.1. Then, in Section 6.3.2, we show the range of control that the scheduling system

has made available. This is followed by an examination of using the algorithm described

above to prevent the inevitable drift associated with simply using a local real-time sched-

uler in Section 6.3.3. Next, Section 6.3.4 examines the performance of the algorithm in a

dynamic environment, showing their reaction to changing requirements. We then illustrate

how the system remains impervious to external load despite the feedback in Section 6.3.7

Next, in Section 6.3.9, show how the system scales as it controls increasing numbers of

parallel applications. Finally, in Sections 6.3.10 and 6.3.11, we examine the effects of local

disk I/O and memory contention.

6.3.1 Experimental framework

As mentioned previously, Bulk Synchronous Parallel (BSP [65]) model is used to charac-

terize many of the batch parallel workloads that run in tightly coupled computing resources

such as clusters. In most of our evaluations we used our synthetic BSP benchmark, Pat-

terns. Patterns is described in more detail in Chapter 2.

In general, we configure Patterns to run with an all-to-all communication pattern on

four nodes of our IBM e1350 cluster (Intel R
�

Xeon R
�

2.0 GHz, 1.5 GB RAM, Gigabit

Ethernet interconnect). Each node runs VSched, and a separate node is used to run the

controller. Note that all of our results involve CPU and network I/O.

We also evaluated the system using an NAS (NASA Advanced Supercomputing) bench-

mark. In particular, we use the PVM implementation of the IS (Integer Sort) benchmark

developed by White et al. [185]. As described in Chapter 2 IS combines integer com-

putation speed and communication with, unlike Patterns, different nodes doing different
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Figure 6.2: Compute rate as a function of utilization for different � period � slice � choices.

amounts of computation and communication.

6.3.2 Range of control

To illustrate the range of control possible using periodic real-time scheduling on the indi-

vidual nodes, we ran Patterns with a compute/communicate ratio of 1:2, making it quite

communication intensive. Note that this configuration is conservative: it is far easier to

control a more loosely coupled parallel application with VSched. We ran Patterns repeat-

edly, with different � period � slice � combinations.

Figure 6.2 shows these test cases. Each point is an execution of Patterns with a different

(period � slice), plotting the execution rate of Patterns as a function of Patterns utilization

on the individual nodes. Notice the line on the graph, which is the ideal control curve

that the control algorithm is attempting to achieve, control over the execution rate of the

application with proportional utilization (rcurrent � rtarget � U ). Clearly, there are choices
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of � period � slice � that allow us to meet all of the requirements.

6.3.3 Schedule selection and drift

Although there clearly exist � period � slice � schedules that can achieve an execution rate

with (or without) proportional utilization, we cannot simply use only the local schedulers

for several reasons:

� The appropriate � period � slice � is application dependent because of differing com-

pute/communicate ratios, granularities, and communication patterns. Making the

right choice should be automatic.

� The user or system administrator may want to dynamically change the application

execution rate rtarget . The system should react automatically.

� Our implementation is based on a soft local real-time scheduler. This means that

deadline misses will inevitably occur and this can cause timing offsets between dif-

ferent application threads to accumulate. We must monitor and correct for these slow

errors. Notice that this is likely to be the case for a hard local real-time scheduler as

well if the admitted tasks vary across the nodes.

Figure 6.3 illustrates what we desire to occur. The target application execution rate is

given in iterations per second, here being 0.006 iterations/second. This is Patterns running

with a 1:1 compute/communicate ratio on two nodes. The lower curve is that of simply

using VSched locally to schedule the application. Although we can see that the rate is

correct for the first few iterations, it then drifts downward, upward, and once again down-

ward over the course of the experiment. The roughly straight curve is using VSched, the

global controller, and the control algorithm. We can see that the tendency to drift has been

eliminated using global feedback control.
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Figure 6.3: Elimination of drift using global feedback control; 1:1 comp/comm ratio.

6.3.4 Evaluating the control algorithm

We studied the performance of the control algorithm using three different compute/communicate

ratios (high (5:1) ratio, medium (1:1) ratio, and low (1:5) ratio), different target execution

rates rtarget , and different thresholds ε. In all cases ∆period � 2 ms, where ∆period is the

change in period effected by VSched when the application execution rate goes outside of

the threshold range, the slice is then adjusted such that U � rtarget .

Figure 6.4 shows the results for high, medium, and low test cases with a 3% threshold.

We can see that the target rate is easily and quickly achieved, and remains stable for all

three test cases. Note that the execution rate of these test cases running at full speed without

any scheduling are slightly different.

Next, we focus on two performance metrics:

� Minimum threshold: What is the smallest ε below which control becomes unstable?
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� Response time: for stable configurations, what is the typical time between when the

target execution rate rtarget changes and when the rcurrent � rtarget � ε ?

Being true for all feedback control systems, the error threshold will affect the perfor-

mance of the system. When the threshold ε is too small, the controller becomes unstable

and fails because the change applied by the control system to correct the error is even

greater than the error. For our control algorithm, when the error threshold is � 1%, the

controller will become unstable. Figure 6.5 illustrates this behavior. Note that while the

system is now oscillating, it appears to degrade gracefully.

Figure 6.6 illustrates our experiment for measuring the response time. The target rate

is changed by the user in the middle of the experiment. Our control system quickly adjusts

the execution rate and stabilizes it. It shows that the response time is about 32 seconds,

or two iterations, for the case of 1:1 compute/communicate ratio. The average response

time over four test cases (1 high, 2 medium, and 1 low compute/communicate ratios) is

30.68 seconds. In all cases, the control algorithm maintains U � rtarget as an invariant by

construction.

6.3.5 Summary of limits of the control algorithm

Figure 6.7 summarizes the response time, communication cost to support the feedback

control, and threshold limits of our control system. Overall we can control with a quite

small threshold ε. The system responds quickly, on the order of a couple of iterations of

our benchmark. The communication cost is minuscule, on the order of just a few bytes per

iteration. Finally, these results are largely independent of the compute/communicate ratio.

The exceptionally low communication involved in performance-targetted feedback-

controlled real-time scheduling is a natural consequence of the deterministic and pre-

dictable periodic real-time scheduler being used on each node.
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(a) high (5:1) comp/comm ratio

(b) medium (1:1) comp/comm ratio

(c) low (1:5) comp/comm ratio

Figure 6.4: System in stable configuration for varying comp/comm ratio.
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Figure 6.5: System in oscillation when error threshold is made too small; 1:1 comp/comm
ratio.

Figure 6.6: Response time of control algorithm; 1:1 comp/comm ratio.
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High (5:1) compute/communicate ratio Medium (1:1) compute/communicate ratio Low (1:5) compute/communicate ratio
Response Threshold Feedback Response Threshold Feedback Response Threshold Feedback
time limit comm. time limit comm. time limit comm.
29.16 s 2 % 32 bytes/iter 31.33 s 2 % 32 bytes/iter 32.01 s 2 % 32 bytes/iter

Figure 6.7: Response time and threshold limits for the control algorithm.

Figure 6.8: Dynamically varying execution rates; 1:1comp/comm ratio.

6.3.6 Dynamic target execution rates

As we mentioned earlier, using the feedback control mechanism, we can dynamically

change the target execution rates and our control system will continuously adjust the real-

time schedule to adapt to the changes. To see how our system reacts to user inputs over

time, we conducted an experiment in which the user adjusted his desired target rate four

times during the execution of the Patterns application. As shown in Figure 6.8, the control

algorithm works well. After the user changes the target rate, the algorithm quickly adjusts

the schedule to reach the target.
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Figure 6.9: Performance of control system under external load; 3:1 comp/comm ratio; 3%
threshold.

6.3.7 Ignoring external load

Any coupled parallel program can suffer drastically from external load on any node; the

program runs at the speed of the slowest node. We have previously shown that the periodic

real-time model of VSched can shield the program from such external load, preventing

the slowdown [111]. Here we want to see whether our control system as a whole can still

protect a BSP application from external load.

We execute Patterns on four nodes with the target execution rate set to half of its max-

imum rate. On one of the nodes, we apply external load, a program that contends for

the CPU using load trace playback techniques [39]. Contention is defined as the average

number of contention processes that are runnable.

Figure 6.9 illustrates the results. At roughly the 15th iteration, an external load is

placed on one of the nodes in which Patterns is running, producing a contention of 1.0.

We note that the combination of VSched and the feedback controller are able to keep the
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Figure 6.10: Running NAS benchmark under control system; 3% threshold.

performance of Patterns independent of this load. We conclude that our control system can

help a BSP application maintain a fixed stable performance under a specified execution

rate constraint despite external load.

6.3.8 NAS IS Benchmark

When we run the NAS IS (Integer Sort) benchmark without leveraging our control system,

we observe that different nodes have different CPU utilizations. This is very different

from the Patterns benchmark, which does roughly the same amount of computation and

communication on each node. In our experiment, for a specific configuration of NAS IS

executing on four nodes, we observed an average utilization of E 28% for two nodes and

E 14% average utilization for the other two nodes.

This variation has the potential to challenge our control system, since in our model

we assume the same target utilization U on each node, and we apply the same schedule



CHAPTER 6. EXPLOITING CPU RESERVATIONS 163

Figure 6.11: Running of two Patterns benchmarks under the control system, 1:1
comp/comm ratio.

on each node. We ran an experiment where we set the target utilization to be half of the

maximum utilization among all nodes, i.e. 14%. Figure 6.10 illustrates the performance in

this case. We can see that the actual execution rate is successfully brought to within ε of

the target rate.

We are currently designing a system in which the global controller is given the freedom

to set a different schedule on each node thus making our control system more flexible.

6.3.9 Time-sharing multiple parallel applications

To see how well we can provide time-sharing for multiple parallel applications, we simul-

taneously execute multiple Patterns benchmarks on the same four nodes of our cluster.

Figure 6.11 shows the results of running two Patterns applications, each configured

with a 1:1 compute/communicate ratio. One was configured with a target rate of 30%,

with the other set to 40%. We can clearly see that the actual execution rates are quickly
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brought to within ε of the target rates and remain there for the duration of the experiment.

Next, we consider what happens as we increase the number of Patterns benchmarks

running simultaneously. In the following, each Patterns benchmark is set to execute with

identical 10% utilization. We run Patterns with a 3:1 compute/communicate ratio. Fig-

ure 6.12 shows our results. Each graph shows the execution rate (iterations/second) as a

function of the iteration, as well as the two 3% threshold lines. Figure 6.12(a) contains two

such graphs, corresponding to two simultaneously executing Patterns benchmarks, (b) has

three, and so on.

Overall, we maintain reasonable control as we scale the number of simultaneously

executing benchmarks. Further, over the thirty iterations shown, in all cases, the average

execution rate meets the target, within threshold.

We do notice a certain degree of oscillation when we run many benchmarks simulta-

neously. Our explanation is as follows. When VSched receives and admits a new schedule

sent by the global controller, it will interrupt the current task and re-select a new task

(perhaps the previous one) to run based on its deadline queue. As the number of parallel

applications increases, each process of an application on an individual node will have a

smaller chance of running uninterrupted throughout its slice. In addition, there will be a

smaller chance of each process starting its slice at the same time.

The upshot is that even though the process will continue to meet its deadlines locally,

it will be less synchronized with processes running on other nodes. This results in the

application’s overall performance changing, causing the global controller to be invoked

more often. Because the control loop frequency is less than the frequency of these small

performance changes, the system begins to oscillate. However, the degradation is graceful,

and, again, the long term averages are well behaved.
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Figure 6.12: Running multiple Patterns benchmarks; 3:1 comp/comm ratio; 3% threshold.
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6.3.10 Effects of local disk I/O

Although we are only scheduling the CPU resource, it is clear from the above that this is

sufficient to isolate and control a BSP application with complex collective communications

of significant volume. Is it sufficient to control such an application when it also extensively

performs local disk I/O?

To study the effects of local disk I/O on our scheduling system, we modified the Pat-

terns benchmark to perform varying amounts of local disk I/O. In the modified Patterns,

each node writes some number of bytes sequentially to the local IDE hard disk during each

iteration. The file is
������
������

ed, assuring that the data is written through to the physical

disk.

In our first set of experiments, we configured Patterns with a very high (145:1) com-

pute/communicate ratio, and 0, 1, 5, 10, 20, 40, and 50 MB per node per iteration of local

disk I/O. Our target execution rate was 50% with a threshold of 3%. Figure 6.13 shows the

results for 10, 20, and 40 MB/node/iter. 0, 1, 5 are similar to 10, while 50 is similar to 40.

For up to 10 MB/node/iter, our system effectively maintains control of the application’s

execution rate. As we exceed this limit, we develop a slight positive bias; the application

runs faster than desired despite the restricted CPU utilization. The dominant part of the

time spent on local disk I/O is spent waiting for the disk. As more I/O is done, a larger

proportion of application execution time is outside of the control of our system. Since the

control algorithm requires that the CPU utilization be equal to the target execution rate, the

actual execution rate grows.

In the second set of experiments, we fixed the local disk I/O to 10 MB/node/iter

(the maximum controllable situation in the previous experiment) and varied the com-

pute/communicate ratio, introducing different amounts of network I/O. We used a tar-

get rate of 50%. We used seven compute/communicate ratios ranging from 4900:1 to
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(a) 10 MB/node/iter I/O

(b) 20 MB/node/iter I/O

(c) 40 MB/node/iter I/O

Figure 6.13: Performance of control system with a high (145:1) comp/comm ratio and
varying local disk I/O.
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(a) high (4900:1) comp/comm ratio

(b) medium (2:1) comp/comm ratio

(c) low (1:3.5) comp/comm ratio

Figure 6.14: Performance of control system with 10 MB/node/iter of disk I/O and varying
comp/comm ratios.
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Figure 6.15: Running two Patterns benchmarks under the control system; high (130:1)
comp/comm ratio. The combined working set size is slightly less than the physical mem-
ory.

1:3.5. Figure 6.14 shows the results for 4900:1, 2:1, and 1:3.5. For high to near 1:1 com-

pute/communicate ratios, our system can effectively control the application’s execution

rate even with up to 10 MB/node/iteration of local I/O, and degrades gracefully after that.

Our system can effectively control the execution rates of applications performing sig-

nificant amounts of network and local disk I/O. The points at which control effectiveness

begins to decline depends on the compute/communicate ratio and the amount of local disk

I/O. With higher ratios, more local disk I/O is acceptable. We have demonstrated control

of an application with a 1:1 ratio and 10 MB/node/iter of local disk I/O.

6.3.11 Effects of physical memory use

Our technique makes no attempt to isolate memory, but the underlying node OS certainly

does so. Is it sufficient?

To evaluate the effects of physical memory contention on our scheduling system, we
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modified the Patterns benchmark so that we could control its working set size. We then ran

two instances of the modified benchmark simultaneously on the four nodes of our cluster.

We configured the first instance with a working set of 600 MB and a target execution rate of

30%, while the second was configured with a working set size of 700 MB and a target rate

of 40%. Both instances had a compute/communicate ratio of around 130:1. The combined

working set of 1.3 GB is slightly less than the 1.5 GB of memory of our cluster nodes.

We used the control algorithm to schedule the two instances, and Figure 6.15 shows

the results of this experiment. We see that despite the significant use of memory by both

instances, our system maintains control of both applications’ execution rates.

Our results suggest that unless the total working set on the machine is exceeded, phys-

ical memory use has little effect on the performance of our scheduling system. It is impor-

tant to point out that most OS kernels, including Linux, have mechanisms to restrict the

physical memory use of a process. These mechanisms can be used to guarantee that the

physical memory pressure on the machine does not exceed the supply. A virtual machine

monitor such as Xen or VMware provides additional control, enforcing a physical memory

limit on a guest OS kernel and all of its processes.

6.4 Conclusions

We have explored automatic, run-time and dynamic adaptation in scenarios wherein it is

not possible to infer application demands. In such cases the application, through a thin

interface, specifies its resource demands. This work has focused on CPU demands and

CPU reservations to study the effectiveness of this adaptation mechanism in isolation. In

particular we have described the design, implementation and evaluation of a new approach

to time-sharing parallel applications on tightly coupled compute resources such as clusters.

This work is also applicable to virtual execution environments. It should be noticed that at



CHAPTER 6. EXPLOITING CPU RESERVATIONS 171

the operating system level, a virtual machine resembles an application process.

Our technique, performance-targetted feedback-controlled real-time scheduling, is based

on the combination of local scheduling using the periodic real-time model and a global

feedback control system that sets the local schedules. The approach performance-isolates

parallel applications and allows administrators to dynamically change the desired appli-

cation execution rate while keeping actual CPU utilization proportional to the application

execution rate. Our implementation takes the form of a user-level scheduler for Linux and

a centralized controller. Our evaluation shows the system to be stable with low response

times. The thresholds needed to prevent control instability are quite reasonable. Despite

only isolating and controlling the CPU, we find that memory, communication I/O, and

local disk I/O follow.
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Chapter 7

Heuristic driven adaptation algorithms

In this chapter and the next (Chapter 8), we present the results of our attempts to solve

the complex adaptation problem as a whole. The adaptation problem in virtual execution

environments is not only NP-hard, but is also NP-hard to approximate. This insight leads

us in the direction of heuristic driven algorithms as solutions to the adaptation problem.

A heuristic typically relies on a rule of thumb or intelligent guesswork. For example, a

greedy heuristic is based on the assumption that if at each decision point we make a greedy

decision then it will ultimately result in global good. A heuristic by definition is sub-

optimal in certain cases. The performance of a heuristic in a certain scenario depends on a

number of variables such as the specific heuristic in question and the details of the scenario

in which it is operating.

A heuristic algorithm could be considered a reasonable solution to a problem if the

following four conditions hold:

� The problem is proven to be NP-hard. This implies that is it not possible to find the

optimal solution in polynomial time.

� The problem is also proven to be NP-hard to approximate within a a certain factor

of the optimal. This implies that combinatorially approximate solutions are not easy
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to design.

� The performance of the heuristic, for the most common cases, is empirically within

a small factor of the optimal. This implies that though the heuristic could produce

sub-optimal solutions at times, for the most common cases, it works pretty well in

practice.

� For typical problem sizes the heuristic should complete in a reasonable and accept-

able amount of time.

Building upon the NP-hardness and inapproximability results of the adaptation prob-

lem in virtual execution environments, in this chapter we introduce a wide range of greedy

heuristics. For these greedy heuristics to be acceptable solutions to the adaptation problem

they must perform well and efficiently in practice for the most common cases.

Our methodology for the design and evaluation of objective functions and heuristic

algorithms has been to study a small set of applications, representative of three of the

application classes described in Chapter 2. Based on these studies we designed six different

objective functions that different applications might want optimized in different scenarios.

Our adaptation problem consists of two main components. First, a VM to host mapping

component and second, a communicating VMs to overlay paths routing component. We

have designed eight different variations of heuristic algorithms for the mapping problem

and six different routing algorithms. Each of these algorithms is heuristically driven by a

greedy strategy. At any decision point, the algorithms always make a greedy choice.

These mapping and routing algorithms can be combined in different ways to produce

fifteen different adaptation schemes (not all of the 48 possible combinations make sense).

It should be noted that not all of the fifteen algorithms attempt to optimize each of the

objective functions. Additionally, not all the objective functions are important for every

distributed application.
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This dissertation studies the effect of these fifteen different adaptation schemes on a

range of distributed applications to answer the question, is any one of these schemes gen-

erally applicable to a range of distributed application classes? It should be noted that the

term “algorithm” is used to refer to the mapping and routing algorithms, while the term

“adaptation scheme” refers to the fifteen combinations developed. In places where there is

no ambiguity, we often use algorithms and adaptation schemes interchangeably.

There are two possible approaches to comparing adaptation schemes against each other.

In the first approach, we define objective functions that the algorithms are attempting to

optimize. We then compare performance in terms of values for the objective functions,

that each of the adaptation schemes can generate. Such an evaluation tells us algorithm

goodness, but only in the context of the objective functions. This evaluation in isolation

comes with the big assumption that optimizing the stated objective function always results

in better application performance for some application defined meaning of performance.

The second approach to evaluating algorithms uses the above as only an initial indicator

step. It follows it up with an evaluation of the adaptation schemes against the applications

where algorithm goodness is directly measured in some application defined terms, this

second component is called “closing the loop”.

In this chapter we compare the fifteen adaptation schemes against each other and

against estimates of optimal solutions in the context of the six objective functions (as op-

posed to comparison in the context of application performance.) In Chapter 8, we “close

the loop” and compare these adaptation schemes for different applications in the context

of application performance.

We begin this chapter in Section 7.1 by describing the methodology we adopted to the

design and evaluation of the objective functions and heuristic algorithms. The objective

functions are described in Section 7.2. Section 7.3 present our mapping algorithms and our

routing algorithms are described in Section 7.4. The fifteen combined adaptation schemes
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are detailed in Section 7.5. Finally, we present a detailed evaluation of these adaptation

schemes in the context of the six objective functions and for a wide range of adaptation

scenarios in Section 7.6. We conclude this chapter in Section 7.7.

7.1 Design and evaluation methodology

In the course of this research we have studied ten diverse classes of distributed applications.

These applications ranged from high performance scientific applications to transactional

web applications to enterprise IT applications. These application classes are listed in Ta-

ble 2.1 and are described in detail in Chapter 2. We divided these ten application classes

into two categories. The first was a small category of three application classes that we

studied extensively to help us understand the needs of distributed applications and conse-

quently help us in the design of objective functions. The second was a larger category of

seven application classes over which we evaluated our fifteen adaptation schemes.

In particular, the first three applications classes listed in Table 2.1 were used to design

our objective functions and heuristic algorithms. The last seven application classes listed

in Table 2.1 were used to close the loop and to evaluate the effectiveness of the proposed

adaptation schemes.

7.2 Objective functions

We designed six different objective functions. Each of these objective functions, individ-

ually or in some combination, are important in terms of optimizing different distributed

application classes. These six objective functions are by no means exhaustive. They were

arrived at as they represent diverse classes of application demands. Further, not all of them

are application centric, one of the objective functions attempts to optimize the system as

opposed to optimizing the application in isolation.
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The two main resources we are trying to optimize for are computational and network-

ing resources. For any application, we would like to reduce the amount of time it spends

doing computations and the amount of time it takes for data to flow across the network.

Depending on the amount of data flowing across, it would either depend on the bandwidth

available or the latency experienced. The six objective functions cover different varia-

tions of computational time, bandwidth and latency. The reason they are representative

of diverse classes of application demands is that the application classes differ from each

other in the computational needs and networks demands (bandwidth and latency) and these

different needs (low compute time, high bandwidth and low latency) are captured by the

objective functions.

The goal of most adaptation schemes operating in the context of virtualized execution

environments is either to optimize the application or to optimize the system or in some rare

cases, both. What does it mean to optimize the application? Does it mean that the appli-

cation must finish earlier? Or does it refer to increased throughput for the application? Or

does it means better response time for interactive applications? It could be all of the above

for different application classes in different scenarios. The best definition of optimizing an

application is to optimize an application defined objective function. Having said that, this

dissertation is about automatic, run-time and dynamic adaptation of applications without

user or developer interaction.

To achieve our goal we design generalized objective functions that are important for

a range of distributed applications. We use these objective functions to design adaptation

schemes. The assumption is that adaptation schemes that optimize a majority of these

objective functions will also optimize a majority of the applications when evaluated based

on application specific metrics and we test this assumption in Chapter 8. Chapter 8 details

the motivation behind the search for a single adaptation scheme that is applicable to a range

of distributed applications. It should be noticed that there are three steps to evaluating the
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adaptation schemes:

1. We evaluate each adaptation scheme’s solution against an estimate of the optimal

solution for each objective function. This gives a general idea regarding the quality

of the adaptation scheme.

2. We evaluate the adaptation schemes to see which works best for a range of objective

functions. The quality is judged based on objective function values achieved for the

different objective functions. This simply gives us an indication as to what might be

the behavior of these adaptation schemes for application specific metrics.

3. We evaluate the adaptation schemes to see which works best for a range of distributed

applications. The quality is judged based on the values of application defined and

application specific metrics.

The specific objective functions defined are stated in Table 7.1 and described below.

Based on the insights gained by studying three classes of applications, the aim was to

devise objective functions that cover the properties most important for a wide range of

application classes. Compute time, bandwidth and latency are three important properties.

Applications either wish to minimize computation time or maximize bandwidth and min-

imize latency such that transfer time is reduced. These objective functions capture such

requirements of application classes.

7.2.1 MEETI: Maximize sum of estimated execution time improve-
ment

This objective function attempts to estimate the benefits of preemptive migration in the sce-

nario of virtual execution environments. A lot of related work has been done on preemptive

migration in the context of process load balancing [78]. Harchol-Balter et al. measured



CHAPTER 7. HEURISTIC DRIVEN ADAPTATION ALGORITHMS 178

Number Name Description

1. MEETI Maximize Sum of Estimated Execution Time Improvement
2. MSPL Minimize Sum of Path Latencies
3. MSRBB Maximize Sum of Residual Bottleneck Bandwidths
4. NSRBB Minimize Sum of Residual Bottleneck Bandwidths
5. MSBBL Maximize Sum of Bottleneck Bandwidth and Latency
6. MSRBBL Maximize Sum of Residual Bottleneck Bandwidth and Latency

Table 7.1: Six defined objective functions.

the distribution of lifetimes of UNIX processes and proposed a functional form that fit that

distribution well. They answered the question, when should migration occur and which

processes should be migrated [78]? The rule of thumb proposed in that work was that the

probability that a process with a CPU age of one second uses more than T seconds of total

CPU time is 1/T [78]. The MEETI objective function is based on this analysis.

In our scenario when adaptation is called into play, the mapping algorithm determines

a new mapping. How do we compare this new mapping to the previous one? Is it better or

worse than the previous mapping? We use the following analysis to determine the MEETI

objective function.

We denote by H the hosts in the virtual execution system. The set of virtual machines

participating in the application is denoted by the set V M. We define an initial mapping

from VMs to hosts, vmap1 : V M � H. We also define a final mapping from VMs to hosts,

vmap2 : V M � H. The compute capacity made available by each host is described by a

host compute capacity function, C : H � �
. The utilization made available by the host

for a VM mapped onto it is represented by a host utilization function, U : H � �
. The

migrate function denoted by, M : V M X H X H � �
, provides an estimate of the cost

of migration of a VM from one host to another. We are also given a threshold value T .

This indicates that we should migrate a VM from one host to another, if and only if the
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reduction in estimated execution time is more than the value of this threshold. We denote

I � � C � vmap2 � VMi � ��� U � vmap2 � VMi � � � � � C � vmap1 � VMi � ��� U � vmap1 � VMi � � �
The value of the MEETI objective function is defined as

m

∑
i � 1

� � W � V Mi � � � I � � M � VMi � vmap1 � VMi � � vmap2 � VMi � � � T

If the value of the MEETI function is greater than zero, than the collective decision

of migrating the VMs has proven to be a positive one from the perspective of reducing

computation time. We want the value of the MEETI function to be as high as possible, i.e.

we wish to maximize the MEETI objective function.

7.2.2 MSPL: Minimize sum of path latencies

The MSPL objective function attempts to study the effect of the adaptation schemes on the

latency between communicating pairs of virtual machines. This is particularly important

for interactive applications and for applications wherein very small amounts of data are

transferred over the network. For each pair of communicating VM, we calculate its path

latency based on the specific path from source to destination. The value of MSPL is the

sum of this value over all pairs of communicating VMs. We want this sum to be as low as

possible, in other words we want to minimize MSPL.

Using the terminology developed in Table 4.1, value of the MSPL objective function is

defined as

m

∑
i � 1

� late � R � Ai � �

and is minimized.
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7.2.3 MSRBB: Maximize Sum of Residual Bottleneck Bandwidths

The MSRBB objective function is designed to study the effect of adaptation schemes on

applications that have high bandwidth demands. Scientific high performance applications

often transfer large amounts of data between different nodes, thereby needing high band-

width. Once all the VMs have been mapped and routes decided. We can calculate the

residual bandwidth left remaining on each link. For each pair of communicating VM, we

can then calculate the minimum residual value along its path. The value of MSRBB is the

sum of this minimum value over all pairs of communicating VMs. We wish to maximize

this value. The intuition is that this allows the application maximum scope to utilize more

bandwidth in the existing configuration.

Using the terminology developed in Table 4.1, value of the MSRBB objective function

is defined as

m

∑
i � 1

�
min

e � R � Ai �
�
rce � �

where

rce � � bwe � ∑
e � R � Ai �

bi �

and is maximized.

7.2.4 NSRBB: Minimize Sum of Residual Bottleneck Bandwidths

The NSRBB objective function has the exact same value as the MSRBB objective func-

tion. However, it is designed to study the effect of minimizing this value as opposed to

maximizing this value. The intuition behind minimizing the sum of the residual bottleneck

bandwidths across all pairs of communicating VMs is to leave maximum room for other

applications to enter the system. Majority of the objective functions are application centric.

The NSRBB objective function, on the other hand, is system centric, looking to increase
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the utilization of the system.

Using the terminology developed in Table 4.1, value of the NSRBB objective function

is defined as

m

∑
i � 1

�
min

e � R � Ai �
�
rce � �

where

rce � � bwe � ∑
e � R � Ai �

bi �

and is minimized.

7.2.5 MSBBL: Maximize Sum of Bottleneck Bandwidth and Latency

The MSBBL objective function was designed to study applications for which latency and

bandwidth are both important. Many database applications fall into this category. Often

times the queries are evenly divided between those where the data returned is very small

making latency important and those that return large amount of data making bandwidth the

bottleneck. Since latency and bandwidth are dimensionally not the same, we introduce a

constant, called the latency constant with units of MB. The sum of latency and bandwidth

can now be represented as bandwidth
� � constant � latency � . The latency constant is a

tunable parameter, larger is its value, larger is the weight assigned to latency. Notice that

when the latency constant is set to zero MSBBL degenerates into MSRBB.

Using the terminology developed in Table 4.1, value of the MSBBL objective function

is defined as

m

∑
i � 1

�
min

e � R � Ai �
�
ble � �

where

ble � � bwe
�

c � late �
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and is maximized.

7.2.6 MSRBBL: Maximize Sum of Residual Bottleneck Bandwidth
and Latency

The MSRBBL objective function, like the MSBBL objective function, attempts to capture

distributed applications for which bandwidth and latency, both are important. The MSBBL

objective function did not take into account the bandwidth and latency demands made by

the application. It simply attempted to find the paths that had the maximum bandwidth

and minimum latency. The MSRBBL on the hand, also takes into account the application

bandwidth and latency demands and attempts to find paths that have high bottleneck band-

width and low latency in relation to the bandwidth and latency demands expressed by the

application.

Using the terminology developed in Table 4.1, value of the MSBBL objective function

is defined as

m

∑
i � 1

�
min

e � R � Ai �
�
ble � �

where

ble � � bwe
�

c � late � ∑
e � R � Ai �

� bi
�

c � li � �

and it is maximized

7.3 VM to physical host mapping algorithms

We have devised eight algorithms driven by greedy heuristics for mapping VMs to hosts.

Table 7.3 provides a listing of these mapping algorithms.

In all the algorithms, VMs are mapped onto physical hosts and the input to the al-

gorithm is the application communication behavior as captured by VTTIF and available
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Number Name Description

1. CLB Computational Load Balancing
2. GOBM Greedy One-pass Bandwidth Map
3. GOBBM Greedy One-pass Bottleneck Bandwidth Map
4. GOELM Greedy One-pass End-end Latency Map
5. GOPLM Greedy One-pass Path Latency Map
6. GOBLM Greedy One-pass Bandwidth Latency Map
7. GOBBLM Greedy One-pass Bottleneck Bandwidth Latency Map
8. GTBM Greedy Two-pass Bandwidth Map

Table 7.2: Eight greedy VM to host mapping algorithms.

bandwidth and latency between each pair of VNET daemons, as reported by Wren, both

expressed as adjacency lists. Further, some of the algorithms (Algorithm 1) also take addi-

tional inputs such as host characteristics like speed and utilization, and a threshold to de-

termine when to start migrating virtual machines. Some of the algorithms (Algorithms 11

and 13) also take a latency constant c as an input. This is to create a objective function

that takes into account, both bandwidth and latency. The constant is used to give weights

to latency and bandwidth measurements.

All of the algorithms are slight variations of greedy algorithms. In each, we order

the VMs or pairs of communicating VMs in increasing or decreasing order of a certain

property. We also order the physical hosts or pairs of physical hosts in increasing or de-

creasing order of the same property and then we start mapping VMs to hosts in a greedy

fashion. The primary difference between the different algorithms is the property used for

ordering and the exact nature of the ordering, increasing or decreasing. The algorithms are

described in English and in pseudo code in Algorithms 1 through Algorithms 16.
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Algorithm 1 Computational load balancing (CLB) in English

Order the VMs in decreasing order of compute demands
Order the VNET daemons in decreasing order of the product of compute capacity and
utilization available
while There are unmapped VMs do

if The VMs has already not been considered for re-mapping then
Map it to the first hosts which currently have no VMs mapped onto them and the
estimated execution time is reduced by at least a certain pre-defined threshold as
detailed in Section 7.2.1

end if
end while
Compute the difference between the current mapping and the new mapping and issue
VM migration instructions to achieve the new mapping.

Algorithm 2 Computational Load Balancing in pseudo code
CLB(VM,VNET,Map,ReverseMap,Util,Speed,T,M,NewMap,NewReverseMap)

Quicksort � VM � 1 � length
�
VM � �

Quicksort � VNET � 1 � length
�
VNET � �

Q � V M
P � V NET
while Q �� /0 do

v � ExtractMax � Q �
R � P
while R �� /0 do

w � ExtractMax � R �
if � � Util � w � � Speed � w � � Util � ReverseMap � v � � � Speed � ReverseMap � v � � � � T

�
M

�
0 � then

NewMap � w ��� v
NewReverseMap � v ��� w
break

end if
end while

end while
Di f f � Map � NewMap �
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Algorithm 3 Greedy one-pass bandwidth map (GOBM) in English

Order the VM adjacency list by decreasing traffic intensity
Order the VNET daemon adjacency list by decreasing throughput
while There are unmapped VMs do

if both the VMs for a communicating pair are not mapped then
Map them to the first pair of hosts which currently have no VMs mapped onto them

else
Map the VM to a VNET daemon such that the throughput estimate between the
VM and its already mapped counterpart is maximum

end if
end while
Compute the difference between the current mapping and the new mapping and issue
VM migration instructions to achieve the new mapping.

7.4 Inter VM routing algorithms

We have devised six algorithms driven by greedy heuristics for mapping pairs of commu-

nicating VMs to paths in the VNET overlay network. Table 7.3 provides a listing of these

routing algorithms.

It should be noted that although for ease of discussion we have broken the adaptation

problem into a mapping and a routing component, it is not necessary that first the mapping

algorithm finishes execution for all VMs and then only the routing algorithm is run. The

mapping and the routing algorithms could also be interleaved with each other. In other

words, there are two modes in which the adaptation algorithms could operate, sequential

or interleaved mode. In the former, all the mappings are effected first and then all the

routing changes are made. In the latter, for each mapping change effected, the routing

change is also made before the next mapping can be changed.



CHAPTER 7. HEURISTIC DRIVEN ADAPTATION ALGORITHMS 186

Algorithm 4 Greedy one-pass bandwidth map in pseudo code
GOBM(VNET,VMD,VNETD,Map,RevereseMap,NewMap,NewReverseMap)

Quicksort � VMD � 1 � length
�
VMD � �

Quicksort � VNET D � 1 � length
�
VNET D � �

P � V NET
while V MD �� /0 do

w � ExtractMax � VMD �
if � � NewReverseMap � w � i � � � � /0 � and � NewReverseMap � w � j � � � � /0 � � then

while P �� /0 do
v � ExtractMax � P �
if � � NewMap � v � i � � � � /0 � and � NewMap � v � j � � � � /0 � � then

NewReverseMap � w � i � ��� v � i �
NewReverseMap � w � j � � � v � j �
NewMap � v � i � � � w � i �
NewMap � v � j � ��� w � j �
break

end if
end while

else if � NewReverseMap � w � i � � �� /0 � then
NewReverseMap � w � j � ��� MAX � NewReverseMap � w � i � � � VNET �
NewMap � MAX � NewReverseMap � w � i � � � VNET ��� w � j �

else
NewReverseMap � w � i � ��� MAX � NewReverseMap � w � j � � � VNET �
NewMap � MAX � NewReverseMap � w � j � � � VNET ��� w � i �

end if
end while
Di f f � Map � NewMap �
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Algorithm 5 Greedy one-pass bottleneck bandwidth map (GOBBM) in English

Order the VM adjacency list by decreasing traffic intensity
Extract an ordered list of VMs from the above with a breadth first approach, eliminating
duplicates
For each pair of VNET daemons, find the maximum bottleneck bandwidth (the widest
path) using the adapted Dijkstra’s algorithm described in Section 7.4.2
Order the VNET daemon adjacency list by decreasing bottleneck bandwidth
Extract an ordered list of VNET daemons from the above with a breadth first approach,
eliminating duplicates
Map the VMs to VNET daemons in order using the ordered list of VMs and VNET
daemons obtained above
Compute the differences between the current mapping and the new mapping and issue
migration instructions to achieve the new mapping

Algorithm 6 Greedy one-pass bottleneck bandwidth map in pseudo code
GOBBM(G,B,VNET,VMD,VNETD,Map,RevereseMap,NewMap,NewReverseMap)

Quicksort � VMD � 1 � length
�
VMD � �

P � BFS � VMD �VMD
�
0 � � i � �

for all vnetd in VNETD do
vnetd � b � i � j � k � � � vnet � i � � vnet � j � � adapted di jkstra � G � B � vnet � i � �

end for
Quicksort � VNET D � B � 1 � length

�
VNET D � B � �

Q � BFS � VNET D � B � VNET D � B
�
0 � � i � �

for all p[i] in P do
NewReserveMap � p

�
i � � � q

�
i �

NewMap � q � i � � � p
�
i �

end for
Di f f � Map � NewMap �
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Algorithm 7 Greedy one-pass end-end latency map (GOELM)

Order the VM adjacency list by increasing traffic latency a
Order the VNET daemon adjacency list by increasing latency
while There are unmapped VMs do

if both the VMs for a communicating pair are not mapped then
Map them to the first pair of hosts which currently have no VMs mapped onto them

else
Map the VM to a VNET daemon such that the latency estimate between the VM
and its already mapped counterpart is minimum

end if
end while
Compute the difference between the current mapping and the new mapping and issue
VM migration instructions to achieve the new mapping.

Number Name Description

1. OHR Overlay Hop Reduction
2. WBP Widest Bandwidth Path
3. NBP Narrowest Bandwidth Path
4. WBLP Widest Bandwidth Latency Path
5. WRBLP Widest Residual Bandwidth Latency Path
6. STLP Shortest Total Latency Path

S Sequential ordering of mapping and routing algorithms
I Interleaved ordering of mapping and routing algorithms

Table 7.3: Six greedy communicating VM pairs to VNET overlay network paths routing
algorithms.
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Algorithm 8 Greedy one-pass end-end latency map
(GOELM)(VNET,VMD,VNETD,Map,RevereseMap,NewMap,NewReverseMap)

Quicksort � VMD � 1 � length
�
VMD � �

Quicksort � VNET D � 1 � length
�
VNET D � �

P � V NET
while V MD �� /0 do

w � ExtractMin � VMD �
if � � NewReverseMap � w � i � � � � /0 � and � NewReverseMap � w � j � � � � /0 � � then

while P �� /0 do
v � ExtractMin � P �
if � � NewMap � v � i � � � � /0 � and � NewMap � v � j � � � � /0 � � then

NewReverseMap � w � i � ��� v � i �
NewReverseMap � w � j � � � v � j �
NewMap � v � i � � � w � i �
NewMap � v � j � ��� w � j �
break

end if
end while

else if � NewReverseMap � w � i � � �� /0 � then
NewReverseMap � w � j � ��� MIN � NewReverseMap � w � i � � � VNET �
NewMap � MAX � NewReverseMap � w � i � � � VNET ��� w � j �

else
NewReverseMap � w � i � ��� MIN � NewReverseMap � w � j � � � VNET �
NewMap � MAX � NewReverseMap � w � j � � � VNET ��� w � i �

end if
end while
Di f f � Map � NewMap �
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Algorithm 9 Greedy one-pass path latency map (GOPLM)

Order the VM adjacency list by increasing traffic latency
Extract an ordered list of VMs from the above with a breadth first approach, eliminating
duplicates
For each pair of VNET daemons, find the minimum latency path (the shortest path)
using Dijkstra’s shortest paths algorithm
Order the VNET daemon adjacency list by increasing path latencies
Extract an ordered list of VNET daemons from the above with a breadth first approach,
eliminating duplicates
Map the VMs to VNET daemons in order using the ordered list of VMs and VNET
daemons obtained above
Compute the differences between the current mapping and the new mapping and issue
migration instructions to achieve the new mapping

Algorithm 10 Greedy one-pass path latency map in pseudo code GO-
PLM(G,L,VNET,VMD,VNETD,Map,RevereseMap,NewMap,NewReverseMap)

Quicksort � VMD � 1 � length
�
VMD � �

P � BFS � VMD �VMD
�
0 � � i � �

for all vnetd in VNETD do
vnetd � l � i � j � k � � � vnet � i � � vnet � j � � di jkstra � G � L � vnet � i � �

end for
Quicksort � VNET D � L � 1 � length

�
VNET D � B � �

Q � BFS � VNET D � L � V NET D � L
�
0 � � i � �

for all p[i] in P do
NewReserveMap � p

�
i � � � q

�
i �

NewMap � q � i � � � p
�
i �

end for
Di f f � Map � NewMap �
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Algorithm 11 Greedy one-pass bandwidth latency map (GOBLM)

Order the VM adjacency list by decreasing traffic intensity, where traffic intensity is
calculated as a function of latency and bandwidth (bandwidth + c/latency)
Order the VNET daemon adjacency list by decreasing function of latency and bandwidth
while There are unmapped VMs do

if both the VMs for a communicating pair are not mapped then
Map them to the first pair of hosts which currently have no VMs mapped onto them

else
Map the VM to a VNET daemon such that the bandwidth latency function estimate
between the VM and its already mapped counterpart is maximum

end if
end while
Compute the difference between the current mapping and the new mapping and issue
VM migration instructions to achieve the new mapping.

7.4.1 Algorithms OHR, WBP and STLP

We use greedy heuristic algorithms to determine a path for each pair of communicating

VMs. As above we use VTTIF and Wren outputs expressed as adjacency lists as inputs.

Algorithm OHR is a simple hop reduction algorithm that tries to create direct overlay

links between communicating source-destination VMs based on their host mappings. The

algorithm is described in Algorithm 17. It should be noted that we make the simplifying

assumption that all direct paths are possible. However, in reality, this may not always be

the case. In such cases the current version of the algorithm would simply fail. A more

robust way of accounting for such cases would be to build a policy aware routing scheme.

Such a scheme would have the following pieces of functionality, first, detecting if some

policy exists, second, finding a workaround the same.

Algorithm STLP is similar to algorithm OHR, except that instead of connecting the

source and destination VMs by a direct path, we connect them via a path which has the

lowest latency. In other words, we find the shortest path. We use Dijkstra’s shortest path

algorithm for the same [28]. The algorithm is described in Algorithm 19.
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Algorithm 12 Greedy one-pass bandwidth latency map in pseudo code
GOBLM(VNET,VMD,VNETD,Map,RevereseMap,NewMap,NewReverseMap)

Quicksort � VMD � 1 � length
�
VMD � �

Quicksort � VNET D � 1 � length
�
VNET D � �

P � V NET
while V MD �� /0 do

w � ExtractMax � VMD �
if � � NewReverseMap � w � i � � � � /0 � and � NewReverseMap � w � j � � � � /0 � � then

while P �� /0 do
v � ExtractMax � P �
if � � NewMap � v � i � � � � /0 � and � NewMap � v � j � � � � /0 � � then

NewReverseMap � w � i � ��� v � i �
NewReverseMap � w � j � � � v � j �
NewMap � v � i � � � w � i �
NewMap � v � j � ��� w � j �
break

end if
end while

else if � NewReverseMap � w � i � � �� /0 � then
NewReverseMap � w � j � ��� MAX � NewReverseMap � w � i � � � VNET �
NewMap � MAX � NewReverseMap � w � i � � � VNET ��� w � j �

else
NewReverseMap � w � i � ��� MAX � NewReverseMap � w � j � � � VNET �
NewMap � MAX � NewReverseMap � w � j � � � VNET ��� w � i �

end if
end while
Di f f � Map � NewMap �
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Algorithm 13 Greedy one-pass bottleneck bandwidth latency map (GOBBLM)

Order the VM adjacency list by decreasing traffic intensity where traffic intensity is
calculated as a function of latency and bandwidth (bandwidth + c/latency)
Extract an ordered list of VMs from the above with a breadth first approach, eliminating
duplicates
For each pair of VNET daemons, find the maximum bottleneck function of latency and
bandwidth (the widest path taking into account both latency and bandwidth) using a
variant of the adapted Dijkstra’s algorithm described in Section 7.4.2
Order the VNET daemon adjacency list by decreasing bottleneck function of latency
and bandwidth
Extract an ordered list of VNET daemons from the above with a breadth first approach,
eliminating duplicates
Map the VMs to VNET daemons in order using the ordered list of VMs and VNET
daemons obtained above
Compute the differences between the current mapping and the new mapping and issue
migration instructions to achieve the new mapping

Algorithm 14 Greedy one-pass bottleneck bandwidth latency map in pseudo code GOB-
BLM(G,BL,VNET,VMD,VNETD,Map,RevereseMap,NewMap,NewReverseMap)

Quicksort � VMD � 1 � length
�
VMD � �

P � BFS � VMD �VMD
�
0 � � i � �

for all vnetd in VNETD do
vnetd � bl � i � j � k � � � vnet � i � � vnet � j � � adapted di jkstra variant � G � BL � vnet � i � �

end for
Quicksort � VNET D � BL � 1 � length

�
VNET D � BL � �

Q � BFS � VNET D � BL � V NET D � BL
�
0 � � i � �

for all p[i] in P do
NewReserveMap � p

�
i � � � q

�
i �

NewMap � q � i � � � p
�
i �

end for
Di f f � Map � NewMap �
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Algorithm 15 Greedy Two-pass Bandwidth Map (GTBM)

Order the VM adjacency list by decreasing traffic intensity
Order the VNET daemon adjacency list by decreasing throughput
/* First pass */
while There is a pair of VMs neither of which has been mapped do

Locate the first pair of communicating VMs such that neither of them have been
mapped
Map them to the first pair of hosts which currently have no VMs mapped onto them

end while
/* Second pass */
while There is an unmapped VMs do

Locate a VM that have not been mapped
Map the VM to a VNET daemon such that the throughput estimate between the VM
and its already mapped counterpart is maximum.

end while
Compute the difference between the current mapping and the new mapping and issue
VM migration instructions to achieve the new mapping.

Algorithm WBP tries to find for each pair of communicating VMs, the widest path

defined in terms of the residual bottleneck bandwidth. We have adapted Dijkstra’s shortest

path algorithm [28] that now finds the widest path for an unsplittable network flow.

7.4.2 Adapted Dijkstra’s algorithm

We use a modified version of Dijkstra’s algorithm [28] to select a path for each 4-tuple that

has the maximum bottleneck bandwidth. This is the “select widest” approach.

We adapt Dijkstra’s algorithm for single source shortest path to find the maximum

bottleneck bandwidth between each VNET daemon and to find for each 3-tuple A � si � di � ci � ,

the widest path p � i � j � with respect to the residual capacity.

Dijkstra’s algorithm solves the single-source shortest paths problem on a weighted,

directed graph G � � H � E � . We have created a modified Dijkstra’s algorithm that solves

the single-source widest paths problem on a weighted directed graph G � � H � E � with a
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Algorithm 16 Greedy Two-pass Bandwidth Map in pseudo code
GTBM(VNET,VMD,VNETD,Map,RevereseMap,NewMap,NewReverseMap)

Quicksort � VMD � 1 � length
�
VMD � �

Quicksort � VNET D � 1 � length
�
VNET D � �

P � V NET
while V MD �� /0 do

w � ExtractMax � VMD �
if � � NewReverseMap � w � i � � � � /0 � and � NewReverseMap � w � j � � � � /0 � � then

while P �� /0 do
v � ExtractMax � P �
if � � NewMap � v � i � � � � /0 � and � NewMap � v � j � � � � /0 � � then

NewReverseMap � w � i � ��� v � i �
NewReverseMap � w � j � � � v � j �
NewMap � v � i � � � w � i �
NewMap � v � j � ��� w � j �
break

end if
end while

end if
end while
while V MD �� /0 do

w � ExtractMax � VMD �
if � NewReverseMap � w � i � � �� /0 � then

NewReverseMap � w � j � ��� MAX � NewReverseMap � w � i � � � VNET �
NewMap � MAX � NewReverseMap � w � i � � � VNET ��� w � j �

else
NewReverseMap � w � i � ��� MAX � NewReverseMap � w � j � � � VNET �
NewMap � MAX � NewReverseMap � w � j � � � VNET ��� w � i �

end if
end while
Di f f � Map � NewMap �
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Algorithm 17 Overlay hop reduction (OHR)

Order the set A of VM to VM communication demands in descending order of commu-
nication intensity (VTTIF traffic matrix entry)
while There are unmapped 4-tuple in A do

Map it to a direct single hop path from the host that source VM is mapped to, to the
host that destination VM is mapped on to

end while

Algorithm 18 Overlay hop reduction in pseudo code OHR(A,Path,NewPath,ReverseMap)

Quicksort � A � 1 � length
�
A � �

while A �� /0 do
w � ExtractMax � A �
NewPath � w � i � � w � j � � � � ReverseMap � w � i � � � ReverseMap � w � i � � �

end while
Di f f � Path � NewPath �

Algorithm 19 Shortest total latency path(STLP)

Order the set A of VM to VM communication demands in ascending order of latencies
(VTTIF traffic matrix entry)
while There are unmapped 4-tuple in A do

Map it to the shortest path (minimum path latency) from the host that source VM is
mapped to, to the host that destination VM is mapped on to, using Dijkstra’s shortest
path algorithm

end while

Algorithm 20 Shortest total latency path in pseudo code
STLP(G,L,A,Path,NewPath,ReverseMap)

Quicksort � A � 1 � length
�
A � �

while A �� /0 do
w � ExtractMax � A �
NewPath � w � i � � w � j � � � di jkstra � G � L � w � i � �

end while
Di f f � Path � NewPath �
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Algorithm 21 Widest bandwidth path (WBP)

Order the set A of VM to VM communication demands in descending order of commu-
nication intensity (VTTIF traffic matrix entry)
while There are unmapped 4-tuple in A do

Map it to the widest path possible, using an adapted version of Dijkstra’s algorithm
described in Section 7.4.2
Adjust residual capacities in the network adjacency list to reflect the mapping

end while

Algorithm 22 Widest bandwidth path in pseudo code
WBP(G,B,A,Path,NewPath,ReverseMap)

Quicksort � A � 1 � length
�
A � �

while A �� /0 do
w � ExtractMax � A �
NewPath � w � i � � w � j � � � adapted di jkstra � G � B � w � i � �

end while
Di f f � Path � NewPath �

weight function c : E � �
which is the available bandwidth in our case.

As in Dijkstra’s algorithm we maintain a set U of vertices whose final widest-path

weights from source u have already been determined. That is, for all vertices v � U , we

have b
�
v � � γ � u � v � , where γ � u � v � is the widest path value from source u to vertex v. The

algorithm repeatedly selects the vertex w � H � U with the largest widest-path estimate,

inserts w into U and relaxes (we slightly modify the original Relax algorithm) all edges

leaving w. Just as in the implementation of Dijkstra’s algorithm, we maintain a priority

queue Q that contains all the vertices in H � U , keyed by their b values. This implementa-

tion too assumes that graph G is represented by adjacency lists.

Similar to Dijkstra’s algorithm we initialize the widest path estimates and the prede-

cessors by the procedure described in Algorithm 23.

The modified process of relaxing an edge � w � v � consists of testing whether the bottle-
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Algorithm 23 Initialize(G,u)

for each vertex v � H
�
G � do

b
�
v � � 0

π
�
v � � NIL

end for
b
�
u � � ∞

neck bandwidth decreases for a path from source u to vertex v by going through w, if it

does, then we update b
�
v � and π

�
v � . This procedure is described in Algorithm 24

Algorithm 24 ModifiedRelax(w,v,c)

if b
�
v � � min � b �w � � c � w � v � � then

b
�
v � � min � b �w � � c � w � v � �

π
�
v � � w

end if

We can very easily see the correctness of ModifiedRelax. After relaxing an edge � w � v � ,

we have b
�
v � �

min � b �w � � c � w � v � � . As, if b
�
v � � min � b �w � � c � w � v � � , then we would set b

�
v �

to min � b �w � � c � w � v � � and hence the invariant holds. Further, if b
�
v � �

min � b �w � � c � w � v � � ini-

tially, then we do nothing and the invariant still holds.

Algorithm 25 is the adapted version of Dijkstra’s algorithm to find the widest path for

a single tuple.

7.4.3 Correctness of adapted Dijkstra’s algorithm

At first glance the correctness of the adapted Dijkstra’s algorithm is not intuitive. Hence,

we present a proof of correctness. Similar to the proof of correctness for Dijkstra’s shortest

paths algorithm, we can prove that the adapted Dijkstra’s algorithm is correct by proving
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Algorithm 25 AdaptedDijkstra(G,c,u)

Initialize � G � u �
U � /0
Q � H

�
G �

while Q �� /0 do
�
loop invariant: � v � U , b � v � � γ � u � v � �

w � ExtractMax � Q �
U � U � w
for each vertex v � Ad j

�
w � do

Modi f iedRelax � w � v � c �
end for

end while

by induction on the size of set U that the invariant, � v � U , b
�
v � � γ � u � v � , always holds.

Base case: Initially U � /0 and the invariant is trivially true.

Inductive step: We assume the invariant to be true for
�
U
�

� i.

Proof: Assuming the truth of the invariant for
�
U
�

� i, we need to show that it holds

for
�
U
�

� i
�

1 as well.

Let v be the � i � 1 � th vertex extracted from Q and placed in U and let p be the path

from u to v with weight b
�
v � . Let w be the vertex just before v in p. Since only those paths

to vertices in Q are considered that use vertices from U , w � U hence by the inductive step

we have b
�
w � � γ � u � w � .

Next, we can prove that p is the widest path from u to v by contradiction. Let us assume

that p is not the widest path and instead p � is the widest path from u to v. Since this path

connects a vertex in U to a vertex in H � U , there must be a first edge, � x � y � � p � where

x � U and y � H � U . Hence the path p � can now be represented as p1 � � x � y � � p2. By the
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inductive hypothesis b
�
x � � γ � u � x � and since p � is the widest path, it follows that p1 � � x � y �

must be the widest path from w to y, as if there had been a path with higher bottleneck

bandwidth, that would have contradicted the optimality of p � . When the edge x was placed

in U , the edge � x � y � was relaxed and hence b
�
y � � γ � u � y � . Since v was the � i � 1 � th vertex

chosen from Q while y was still in Q, it implies that b
�
v � �

b
�
y � . Since we do not have any

negative edge weights and γ � s � v � is the bottleneck bandwidth on p � , that combined with

the previous expression gives us bottleneck bandwidth of p � � b
�
v � which is the bottleneck

bandwidth of path p. This contradicts our first assumption that path p � is wider than path

p.

Since we have proved that the invariant holds for the base case and that the truth of the

invariant for
�
U
�

� i implies the truth of the invariant for
�
U
�

� i
�

1, we have proved the

correctness of the adapted Dijkstra’s algorithm using mathematical induction.

7.4.4 Complexity of adapted Dijkstra’s algorithm

Similar to Dijkstra, it can be shown that the running time of the adapted Dijkstra’s algo-

rithm is O � H2 � E � . This bound can be reduced by a faster implementation of the data

structures.

7.4.5 Algorithms NBP, WBLP and WRBLP

Algorithms NBP, WBLP and WRBLP, all use slightly different variants of the adapted

Dijkstra’s algorithm. We next describe these variations.

Variation on adapted Dijkstra for NBP

The adapted Dijkstra version used in NBP is slightly more complex than the Adapted Di-

jkstra’s widest path algorithm. In the widest path algorithm as more nodes are discovered,

the estimate of the width of a path from a source to destination is changed, if by going
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through an additional node actually increases the bottleneck width of the path. But, in

the adapted Dijkstra version for NBP, the aim is to find the narrowest path from source to

destination, such that the width of the path is greater, than the bandwidth demand made by

those pairs of communicating nodes. So now when we walk the path discovering nodes,

the estimate of the width of a path from a source to destination is changed, if by going

through an additional node actually decreases the width of the path, as long as this width

is greater than the demand placed by those pairs of communicating nodes. Further, we

also constantly check if we have created a loop in the path. Another time when we change

the width estimate is if the current estimate is less than the bandwidth demand and going

through a node actually increases the width beyond the bandwidth demand. Again we also

constantly check to see if we have created any loops.

Variation on adapted Dijkstra for WBLP and WRBLP

The variation on the adapted Dijkstra for WBLP and WRBLP is identical. Adapted Dijk-

stra finds the widest path from a single source to all the destinations. The width of a link is

defined as its bandwidth. This variation on the adapted Dijkstra is identical in all but one

respects to adapted Dijkstra’s algorithm. The width of a link, instead of being bandwidth,

is now the function � bandwidth
�

c � latency � .

Algorithm 26 Narrowest bandwidth path (NBP)

Order the set A of VM to VM communication demands in descending order of commu-
nication intensity (VTTIF traffic matrix entry)
while There are unmapped 4-tuple in A do

Map it to the narrowest path possible, using a variant of the adapted version of Di-
jkstra’s algorithm, the algorithm now finds the narrowest path instead of the widest
path
Adjust residual capacities in the network adjacency list to reflect the mapping

end while
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Algorithm 27 Narrowest bandwidth path in pseudo code
NBP(G,B,A,Path,NewPath,ReverseMap)

Quicksort � A � 1 � length
�
A � �

while A �� /0 do
w � ExtractMax � A �
NewPath � w � i � � w � j � � � adapted di jkstra variant NBP � G � B � w � i � �

end while
Di f f � Path � NewPath �

Algorithm 28 Widest bandwidth latency path (WBLP)

Order the set A of VM to VM communication demands in descending order of commu-
nication intensity (VTTIF traffic matrix entry)
while There are unmapped 4-tuple in A do

Map it to the widest path possible, using a variant of the adapted version of Dijkstra’s
algorithm, the width of path is now defined as a function of both bandwidth and
latency (bandwidth + c/latency)

end while

Algorithm 29 Widest bandwidth latency path in pseudo code
WBLP(G,BL,A,Path,NewPath,ReverseMap)

Quicksort � A � 1 � length
�
A � �

while A �� /0 do
w � ExtractMax � A �
NewPath � w � i � � w � j � � � adapted di jkstra variant WBLP � G � BL � w � i � �

end while
Di f f � Path � NewPath �

Algorithm 30 Widest residual bandwidth latency path (WRBLP)

Order the set A of VM to VM communication demands in descending order of commu-
nication intensity (VTTIF traffic matrix entry)
while There are unmapped 4-tuple in A do

Map it to the widest path possible, using a variant of the adapted version of Dijkstra’s
algorithm, the width of path is now defined as a function of both bandwidth and
latency (bandwidth + c/latency)
Adjust residual capacities in the network adjacency list to reflect the mapping

end while
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Algorithm 31 Widest residual bandwidth latency path in pseudo code WR-
BLP(G,BL,A,Path,NewPath,ReverseMap)

Quicksort � A � 1 � length
�
A � �

while A �� /0 do
w � ExtractMax � A �
NewPath � w � i � � w � j � � � adapted di jkstra variant WBLP � G � BL � w � i � �
Modi f y � BL � w � k � � w � l � �

end while
Di f f � Path � NewPath �

7.5 Combinations of mapping and routing algorithms

Since our adaptation problem has a mapping and routing component, we came up with

fifteen different adaptation schemes, each with a different combination of mapping and

routing algorithms. Table 7.4 lists fifteen adaptation schemes. For each scheme we list the

mapping algorithm, routing algorithm and the objective functions targetted.

Since we are combining our mapping algorithms with the routing algorithm and be-

cause we have 8 mapping algorithms and 6 routing algorithms, the natural question to ask

is why were 48 adaptation schemes not studied? Why only fifteen? The reason these 15

fifteen adaptation schemes were chosen were that these alone made sense. For example,

one theoretically possible combination could have been GOBM + STLP. If we had chosen

this algorithm than what we would be doing would be migrating VMs to hosts that are

connected via high bandwidth links and then trying to find low latency paths among them.

This is not meaningful for either locating high bandwidth paths, nor is it suitable for lo-

cating low latency paths and nor is it suitable for locating high bandwidth and low latency

paths. Hence we ignored considering such possibilities.

The computational complexity of the adaptation schemes listed in Table 7.4 is pre-

sented in Table 7.5. The running times of the algorithms can be improved by using better

data structures.
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Number Name Targetted objective function

0. BF Brute force optimal
1. OHR -
2. CLB MEETI
3. CLB + OHR MEETI
4. GOBM + OHR -
5. GOBM + WBP + S MSRBB
6. GOELM + STLP MSPL
7. GOBM + NBP NSRBB
8. GOBLM + WBLP MSBBL
9. GOBBM + WBP MSRBB
10. GOBBLM + WRBLP MSRBBL
11. GOPLM + STLP MSPL
12. CLB + WBLP MEETI + MSBBL
13. GOBM + WBP + L MSRBB
14. GTBM + WBP + S MSRBB
15. GTBM + WBP + I MSRBB

Table 7.4: Fifteen different adaptation schemes.
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Number Name complexity

0. BF -
1. OHR O � LlgL �
2. CLB O � NlgN

�
HN �

3. CLB + OHR O � HN
�

LlgL �
4. GOBM + OHR O � EL

�
ElgE �

5. GOBM + WBP + S O � ElgE
�

H2L �
6. GOELM + STLP O � EL

�
H2 �

7. GOBM + NBP O � ElgE
�

H2L �
8. GOBLM + WBLP O � ElgE

�
H2L �

9. GOBBM + WBP O � ElgE
�

H2L �
10. GOBBLM + WRBLP O � ElgE

�
H2L �

11. GOPLM + STLP O � EL
�

H2L �
12. CLB + WBLP O � ElgE

�
H2L �

13. GOBM + WBP + L O � ElgE
�

H2L �
14. GTBM + WBP + S O � ElgE

�
H2L �

15. GTBM + WBP + I O � ElgE
�

H2L �
Table 7.5: Computational complexity of the fifteen adaptation schemes. The numbers
(H,E,N,L) refer to the number of VNET hosts, number of edges in VNET graph, number
of VMs and number of edges in VM graph, respectively.
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7.6 Evaluation

Here, we are interested in evaluating two different aspects of the adaptation schemes. First,

in Section 7.6.2 we wish to compare the adaptation schemes against each other and against

estimates of the optimal. All evaluation in this chapter is in the context of the objective

functions. We are trying to answer the question: which adaptation scheme works the

best for a wide range of objective functions and adaptation scenarios? This will give us

an indication of which adaptation scheme might be effective for a range of distributed

applications, where effectiveness is measured in terms of application defined metrics.

Second, in Section 7.6.3, we want to study the time taken for the different adapta-

tion schemes to execute under different scenarios. Table 7.5 lists the complexity of the

adaptation schemes. However, beyond this, we also want to get a sense of the empirical

executions of the adaptation schemes. This will indicate the feasibility and practicality of

the solution (and specific implementation). The reason we have directed our attention to

heuristics is since for reasonably large adaptation scenarios, generating optimal solutions

is an intractable problem. Hence, the heuristic solutions must not suffer from the same

failings.

7.6.1 Generating random adaptation scenarios

In this chapter, we use synthetically constructed adaptation scenarios. The reason is that

we would like to study the behavior of the adaptation schemes for many different cases

spanning from small setups to large scenarios. It is challenging to get real applications

running on a large scale in a distributed test bed that is not completely under our control.

Further, though constructing synthetic traces for large scenarios is possible, validating and

verifying the can get to be a challenging task. Hence, to study the effectiveness of the

adaptation schemes in a wide range of adaptation scenarios, we randomly generate them.
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The random adaptation scenario generator is modeled on our experience with real ap-

plications and measurements of physical systems. It consists of a physical system mea-

surements generator (to mimic Wren and Ganglia [124]/RPS’s [38] output), an application

demand generator (to mimic VTTIF output coupled with computational demands) and an

initial mapping generator (to mimic Virtuoso’s default mapping and routing through the

Proxy).

The physical system measurements generator generated CPU speed measurements be-

tween 1.2 and 3.6 with a normal distribution with a mean at 2.6. It generated utilizations

with a normal distribution with a mean at 50%. The latency estimates between hosts were

generate were generated to be between 0.00004 and 0.01 seconds with a uniform distribu-

tion. The bandwidth estimates between the hosts were generated to between 200 KB/sec

and 21 MB/sec with an uniform distribution. The application demand generator generated

compute demands in the range of 2 and 21 Giga operations with a normal distribution. The

latency demands were in the range 0.00009 and 0.05 seconds with a normal distribution

and the bandwidth demands were in the range 100 KB/sec and 11 MB/sec, also with an

uniform distribution. We assumed a moderately fast migration scheme that on an average

took 300 seconds to migrate a 1 GB VM [153]. This is a reasonable assumption based on

the recent progresses made on virtual machine migration schemes [107, 134, 137, 146]. In

all the scenarios described in this chapter, application communication topology is all-to-all

with both compute and network demands. Further, the physical network is also assumed to

be completely connected with all paths through it possible. We also make the assumption

that we have complete information with regard to physical resource measurements.

However, it should be carefully noted that we still need to close the loop by carrying

out evaluations with real applications, real application traces and synthetic, verified and

validated, application traces. This is the topic of discussion in Chapter 8.
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7.6.2 Comparison of adaptation schemes

As mentioned above, we randomly constructed adaptation scenarios involving 4 VMs 8

Hosts, 8 VMs 16 Hosts, 16 VMs 32 Hosts, 32 VMs 64 Hosts, 64 VMs 128 Hosts and 128

VMs 256 Hosts. In this section we present results for these scenarios. We also constructed

and studied larger scenarios up to 1024 VMs and 2048 Hosts.

It should be noted that Virtuoso’s adaptation engine is centralized in nature. Though

this provides the most accurate global system and hence allows for the most effective

system, it is important to understand the subtleties involved in a centralized system. For

very large scenarios, even an efficient adaptation algorithm can take long periods to com-

plete. Then the system is faced with the question: should the adaptation scheme be run?

A decentralized adaptation scheme that localizes many of the adaptation decisions makes

adaptation possible for very large scales (thousands of nodes), however, the potency of the

adaptation scheme reduces with the loss of centralized and global control.

MEETI: Maximize Sum of Estimated Execution Time Improvement

Figure 7.1 shows the performance of all the adaptation schemes as measured against the

MEETI objective function. For smaller scenarios up to 32 hosts, we were also able to

calculate an estimate of the optimal. We did this using a brute force approach. We kept

generating random configurations and always kept track of the best value so far for the

MEETI objective function. We ran the optimal solution estimator in parallel on 10 different

machines on our cluster for 72 hours. It should be noted that these are simply estimates

of the optimal, due to the explosion of possibilities as the adaptation scenarios grow, the

estimates of the optimal might be sub-optimal themselves and in certain cases lower than

what the greedy heuristic driven algorithms can achieve. From the figures we notice that

the best performing adaptation schemes find the optimal solution. We notice CLB, CLB +
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(a) 4 VMs 8 Hosts

(b) 8 VMs 16 Hosts

(c) 16 VMs 32 Hosts

(d) 32 VMs 64 Hosts

(e) 64 VMs 128 Hosts

(f) 128 VMs 256 Hosts

Figure 7.1: Comparison of adaptation schemes for different scenarios, in the context of
MEETI objective function. Higher is better.
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OHR and CLB + WBLP are the adaptation schemes that perform consistently well. This

should not come as a surprise since the MEETI objective function is all about reducing

the computational time and CLB, CLB + OHR and CLB + WBLP share this objective.

We note that OHR has a zero value for MEETI objective function as it does not have a

mapping component and hence no VMs get migrated.

Another interesting observation is that when performance is measured in terms of the

MEETI objective function, it is very easy for a network centric adaptation scheme to do

the “wrong” thing, migrating VMs to hosts resulting in an increase in computation time.

The values of MEETI that are less than zero indicate the total increase in computation time

overall migrated VMs. Since computation is central to many distributed applications, a

generally applicable adaptation scheme must take it into consideration.

MSPL: Minimize Sum of Path Latencies

Figure 7.2 shows the performance of all the adaptation schemes as measured against the

MSPL objective function. We notice that OHR, CLB + OHR, GOBBM + OHR perform

reasonably well in most cases. GOELM + STLP and GOPLM + STLP perform the best

as they are specifically targeted to scenarios where minimizing latency is of prime impor-

tance. These achieve values very close to the optimal. We also notice CLB + WBLP to

perform well, though sub-optimal. Notice that for the 16 VM 32 Host scenario, the MSPL

value generated by the optimal estimator is worse than what the best adaptation schemes

can achieve. This is due to the fact the optimal generator is simply an estimator and in

this case it did not find the optimal. Adaptation schemes which have a bandwidth bias

do not do that well, with the exception of CLB + WBLP, which has both, a latency and a

bandwidth component.
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(a) 4 VMs 8 Hosts

(b) 8 VMs 16 Hosts

(c) 16 VMs 32 Hosts

(d) 32 VMs 64 Hosts

(e) 64 VMs 128 Hosts

(f) 128 VMs 256 Hosts

Figure 7.2: Comparison of adaptation schemes for different scenarios, in the context of
MSPL objective function. Lower is better.
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(a) 4 VMs 8 Hosts

(b) 8 VMs 16 Hosts

(c) 16 VMs 32 Hosts

(d) 32 VMs 64 Hosts

(e) 64 VMs 128 Hosts

(f) 128 VMs 256 Hosts

Figure 7.3: Comparison of adaptation schemes for different scenarios, in the context of
MSRBB objective function. Higher is better.
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MSRBB: Maximize Sum of Residual Bottleneck Bandwidths

Figure 7.3 shows the performance of all the adaptation schemes as measured against the

MSRBB objective function. This objective function has a bias towards adaptation schemes

that optimize bandwidth. MSRBB is very receptive to GOBBM + WBP + S, GOBBM +

WBP + I, GTBM + WBP + S and GTBM + WBP + I. These algorithms have a significant

bandwidth component. The objective function values these algorithms achieved were very

close to those generated by optimal solution estimator. Indicating that these adaptation

schemes, though sub-optimal at times, work well in practice. We were surprised to notice

the poor performance of CLB + WBLP. CLB + WBLP optimizes for both bandwidth and

latency. Our explanation is that for the particular value of the latency constant, the adap-

tation scheme chose a low bandwidth, low latency path, thus resulting in a lower value for

the MSRBB function. It should be noted that algorithms which generate a negative value

for this objective function will not be always able to find a mapping and a routing.

NSRBB: Minimize Sum of Residual Bottleneck Bandwidths

We present the performance of the adaptation schemes as measured against the NSRBB

objective function in Figure 7.4. The GOBM + NBP adaptation scheme performs the best

in this context. This adaptation scheme was specifically designed to study the effect of

minimizing the sum of the residual bottleneck bandwidths. We also notice that some of the

schemes that attempt to maximize it also perform reasonably well. The values achieved

by GOBM + NBP are very close to those generated by the optimal estimator. Again, we

notice that CLB + WBLP suffers from choosing paths which a lower latency, but also a

lower bandwidth.
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(a) 4 VMs 8 Hosts

(b) 8 VMs 16 Hosts

(c) 16 VMs 32 Hosts

(d) 32 VMs 64 Hosts

(e) 64 VMs 128 Hosts

(f) 128 VMs 256 Hosts

Figure 7.4: Comparison of adaptation schemes for different scenarios, in the context of
NSRBB objective function. Lower is better.
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(a) 4 VMs 8 Hosts

(b) 8 VMs 16 Hosts

(c) 16 VMs 32 Hosts

(d) 32 VMs 64 Hosts

(e) 64 VMs 128 Hosts

(f) 128 VMs 256 Hosts

Figure 7.5: Comparison of adaptation schemes for different scenarios, in the context of
MSBBL objective function. Higher is better.
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MSBBL: Maximize Sum of Bottleneck Bandwidth and Latency

Figure 7.5 shows the performance of all the adaptation schemes as measured against the

MSBBL objective function. This objective function tests the effectiveness of adapta-

tion schemes that attempt to optimize both, latency and bandwidth. The two adaptation

schemes that consistently perform well are GOBLM + WBLP and CLB + WBLP. Both

these algorithms optimize both, latency and bandwidth, based on a tunable constant, which

is used to assign weights to latency and bandwidth measures. Additionally, we also notice,

that latency centric algorithms perform reasonably well. The values achieved by GOBLM

+ WBLP and CLB + WBLP are very close to those calculated optimal solution estimator.

MSRBBL: Maximize Sum of Residual Bottleneck Bandwidth and Latency

We present the performance of the adaptation schemes as measured against the MSRBBL

objective function in Figure 7.6. The MSRBBL objective function taken into account,

both, latency and bandwidth. Further, it also takes into account the latency and bandwidth

demands made by the application. We find the GOBBLM + WRBLP adaptation scheme to

perform the best. Notice that algorithms which generate a negative value for this objective

function will not be always able to find a mapping and a routing.

7.6.3 Execution time of adaptation schemes

The main motivation for exploring the space of heuristic algorithms was that even for small

scenarios, optimal solution generation is an intractable problem. Hence, it is important to

study the execution times of these proposed heuristics to ensure that for reasonably large

adaptation scenarios, they complete in an acceptable amount of time. We have already

presented the complexities of all the adaptation schemes in Table 7.5.

Figure 7.7 shows the algorithm completion times for different scenarios from 4 VMs

and 8 physical hosts to 32 VMs and 64 physical hosts. These experiments were conducted
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(a) 4 VMs 8 Hosts

(b) 8 VMs 16 Hosts

(c) 16 VMs 32 Hosts

(d) 32 VMs 64 Hosts

(e) 64 VMs 128 Hosts

(f) 128 VMs 256 Hosts

Figure 7.6: Comparison of adaptation schemes for different scenarios, in the context of
MSRBBL objective function. Higher is better.
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(a) 4 VMs 8 Hosts

(c) 16 VMs 32 Hosts

(b) 8 VMs 16 Hosts

(d) 32 VMs 64 Hosts

Figure 7.7: Execution time of different adaptation schemes for different scenarios.
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on one node of our IBM e1350 cluster, whose nodes are dual 2.0 GHz Intel R
�

Xeon R
�

with

1.5 GB RAM running Red Hat Linux 9.0 The algorithms themselves were implemented in

Perl 5.8.

We notice that, even for the largest scenarios, almost all the algorithms complete in less

than one minute. GOBLM + WBLP, GOBBM + WBP, GOBBLM + WRBLP and GOPLM

+ STLP take significantly longer to complete than their counterparts. Even among these

GOBLM + WBLP and GOBBLM + WRBLP take over 20 minutes to complete. These

two algorithms have the same complexity as some of the others, yet they take longer to

complete. It is my opinion that this is an artifact of our specific implementation of these

algorithms

It should be noted that the change that these adaptation schemes are reacting to must

persist for at least 20 minutes to make this adaptation meaningful. These algorithm com-

pletion times can be significantly reduced by using faster implementations of data struc-

tures. Additionally, it should be noted that these algorithms have been implemented in Perl.

By moving this implementation to C++ and optimizing it, we expect to achieve significant

performance improvements.

But the key point is that even by very conservative standards (Perl, unoptimized, code,

etc.) for a reasonably large Virtuoso setup, the adaptation scheme completion times are on

the order of a few seconds.

7.7 Conclusions

Building upon the inapproximability results of Chapter 4, we explored the space of heuris-

tically driven adaptation algorithms. We analyzed some distributed applications ranging

from high performance distributed applications to enterprise IT applications to web e-

commerce transactional applications. In particular we studied the resource demands made
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by these application classes. Based on the information gathered, we devised six different

objective functions to cover a wide range of distributed application classes. Each objective

function represents a metric important for some application is some scenario. The natural

question that then arises is, is there a single adaptation scheme that works well for a range

of applications? This question also translates to, is there a single adaptation scheme that

works well for a range of objective functions. This second question was the center of our

evaluation in this chapter.

Since the adaptation problem consists of both, a mapping and a routing component,

we designed and implemented eight different greedy mapping algorithms and six different

routing algorithms. We then combined these in different combinations to form fifteen

different adaptation schemes.

We presented a detailed evaluation comparing the fifteen adaptation schemes among

themselves and to an estimate of the optimal (for small input sizes). Different adaptation

algorithms target different objective functions. However, we found that on the whole CLB

+ WBLP adaptation scheme was most widely applicable. Further, even for cases where

its performance was sub-par, it could easily be improved by changing the values of its

tunable parameters. However, it remains to be seen if this adaptation scheme has wide

applicability in the context of real application traces where the goodness measure is in

application defined terms (and not in terms of objective functions). This is the focus of

Chapter 8.

Based on the evaluations performed in this chapter the adaptation scheme CLB +

WBLP, because it is fast (empirically measured), scales (linearithmic scaling) and cov-

ers the widest range of objective functions.
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Chapter 8

Experimentation and simulation

This dissertation studies automatic, run-time and dynamic adaptation of distributed appli-

cations executing in virtual environments. This scheme, in the most part (see Chapter 6),

requires no interaction with the application, developer or user, and works on un-modified

applications executing on un-modified operating systems. This is achieved via applica-

tion independent adaptation schemes, application demand inference and physical resource

measurement schemes, that are all invisible to the application.

In response to the complexity and inapproximability of the adaptation problem, we

have explored the space of greedy heuristic driven adaptation algorithms. In particular we

have devised fifteen different adaptation schemes. Each of these schemes is applicable to

a set of distributed application classes in different scenarios.

At the highest level, this dissertation answers the question, does there exist a single

adaptation scheme that is applicable for a wide range of distributed applications? The

reason this question is important is that in the past there have been numerous attempts at

performing application dependent or application driven adaptation that expect active par-

ticipation from the application/developer/user [13, 103, 174, 188]. Despite all these efforts

adaptation mechanisms and control are not common in today’s applications. This is in

part due to the complexity of such approaches. When computation and communication is
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spread over wide-area networks, complex adaptation needs to be manually performed by

the developer or user. The reason for this is that resource availability varies considerably

over the wide-area. Our approach to this problem is to hide the complexity from the appli-

cation/developer/user and maintain the simple local area abstraction that users are familiar

and comfortable with today. A natural culmination of this effort is an answer to this thesis

question.

8.1 Evaluation methodology

In this chapter we leverage both, physical experiments and simulations, to answer the

question posed above. In Chapter 2 we stated the different application classes studied

in the course of this dissertation (Table 2.1). We divided these applications into two cate-

gories. The first category, consisting of the first three application classes listed in Table 2.1,

were used in designing and implementing the objective functions and the fifteen adapta-

tion schemes. We closed the loop and tested the effectiveness of all the adaptation schemes

developed against each of the remaining seven application classes.

For two of the three application classes used to develop the adaptation schemes, we

present some of the results that led us to the design of these fifteen adaptation schemes.

These evaluations were conducted on our physical real-world distributed testbed. The

“closing the loop” evaluations were conducted in simulation using a verified and validated

virtualized system simulator.

Our evaluation is divided into the following three categories:

� System overheads: We carried out a series of experiments to understand the over-

heads of the system in general and in particular the overheads associated with the

application independent adaptation schemes.

� Experimentation results: We conducted a series of adaptation experiments using
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two different classes of applications. These experiments were conducted on our

physical wide-ares testbed to better understand automatic, run-time and dynamic

adaptation. We used the knowledge gained in the course of these experiments to

design the fifteen adaptation schemes.

� Simulation results: We finally closed the loop and evaluated the fifteen adaptation

schemes against the remainder application classes that were not used in the design

and development of the algorithms. Due to practical problems in getting these di-

verse application classes to execute in our wide-area testbed, we conducted this part

of the evaluation in simulation using a verified and validated simulator.

Section 8.2 details the overheads of our adaptation system, in particular the application

independent adaptation schemes. We detail, in Section 8.3, evaluation results obtained via

physical experimentation for two classes of distributed applications and how these results

provided insights that led to the development of the adaptation schemes. Since our “clos-

ing the loop” evaluations were conducted in simulation, we introduce our independently

verified and validated virtualized system simulator in Section 8.5. The evaluation of the

fifteen adaptation schemes against diverse application classes is described in Section 8.6.

We conclude the chapter in Section 8.7 by summarizing our evaluation results.

8.2 System overheads

We carried out a series of experiments to understand the overheads of our adaptive system.

In particular we studied the following:

� Overheads of the migration system

� Overheads of the network reservation system (Results discussed in Chapter 5 (Fig-

ure 5.5))
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Figure 8.1: Time to set up the backbone star configuration and to add fast path links for
different (inferred) topologies.

� Overheads of the CPU reservation system (Results discussed in Chapter 6).

� Overheads of the non-reservation adaptation mechanisms (Results discussed in Chap-

ter 5 (Figure 5.5).

� Configuration times for setting up some common topologies

In this section we discuss the overheads of our migration system (Section 8.2.2) and

the configuration times for setting up some common topologies representing application

communication behaviors (Section 8.2.1).

8.2.1 Configuration times for setting up some common topologies

We present some more results for the configuration times of our adaptive system.

Figure 8.1 shows the time required to create different VNET topologies among eight

VNET daemons each hosting a single VM. Here, all the hosts are in single cluster (our
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IBM e1350 cluster described in Section 8.3). The Proxy and the user are located on a

network separated by a metropolitan area network (MAN). This setup helps emphasize

overheads and eliminate other factors such as wide area latency, etc.

It takes 0.94 seconds to create the resilient star topology among the VNET daemons,

including time to add the links and populate the forwarding tables. It takes a further 1.6

seconds to add all the fast path links and corresponding forwarding rules for an all-to-all

topology. Adding fast path links for a bus topology takes longer (3.23 seconds), even

though there are fewer links. This is because VNET does not use hierarchical routing.

Since VNET operates at the link layer, virtual machine migration would punch holes in

hierarchical routing tables. Hence, VNET forwards packets based on a source and des-

tination address match rather than just the destination address match, which leads to an

increase in the number of forwarding rules for some topologies such as the bus topology.

8.2.2 Overheads of the migration system

Virtuoso allows us to migrate a VM from one physical host to another. Though our mi-

gration scheme is not the fastest, much work exists that demonstrates that fast migration

of VMs running commodity applications and operating systems is possible [107, 134, 137,

146], including live migration schemes with downtime on the order of a few seconds [25].

As migration times decrease, the rate of adaptation we can support and my work’s rele-

vance increases.

8.3 Physical experimentation results

Out of the ten application classes studied in the course of this research, we used the first

three (High performance computing applications, transactional web e-commerce applica-

tions and IT backup) to design our fifteen adaptation schemes. We studied the first two of



CHAPTER 8. EXPERIMENTATION AND SIMULATION 226

CMU

VM 7
University 
of Chicago

VM 8

Northwestern

VM 1

DOT Network

VM 6

VM 5 …

Proxy

Figure 8.2: Wide area testbed.

these extensively, carrying out numerous evaluations on our physical wide-area testbed.

Since, these three applications classes were used as an aid to designing the adaptation

schemes, it is not very meaningful to extensively evaluate the performance of these appli-

cations in the context of all the fifteen adaptation schemes. However, in this section we

do discuss the physical experiments conducted in the context of the first two application

classes (high performance computing (Section 8.3.1) and web e-commerce transactional

applications (Section 8.3.2)).

Our experimental testbed, as illustrated in Figure 8.2, is spread across four sites. At

Northwestern University, IL, we have two clusters and some additional machines spread

across the campus network. The first cluster is a IBM e1350 cluster, whose nodes are dual

2.0 GHz Intel R
�

Xeon R
�

with 1.5 GB RAM running Red Hat Linux 9.0 and VMware GSX

Server 2.5, connected by a 100 Mbit switched network. The second is a slightly slower

cluster, whose nodes are dual 1 GHz (Intel R
�

Pentium R
�

III with 1 GB RAM running Red

Hat 7.3 and VMware GSX Server 2.5, connected by a 10 Mbit switched network. These

two clusters are inter-connected via two firewalls and a campus network. Performance

diverse machines at Carnegie Mellon University (CMU), PA, University of Chicago, IL

and the DOT research network [40] make up the remainder of the testbed.
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Figure 8.3: All-to-all topology with eight VMs, all on the same cluster.

8.3.1 Adaptation of high performance computing applications

We present results for the cases where we adapt using only topology based adaptation

schemes (topology and routing changes) and cases where we leverage both, VM migration

and topology centric adaptation schemes.

Topology centric adaptation

If we add c of the n inferred links using the OHR adaptation scheme, how much do we

gain in terms of throughput, measured as iterations/second of patterns? We repeated this

experiment for a variety of physical configurations. Additionally, we also experimented

with different application topology and communication patterns such as neighbor exchange

on a bus, ring, 2D mesh, and all-to-all. In the following, we show representative results.

Figure 8.3 gives an example for the single cluster configuration (all VMs on the IBM



CHAPTER 8. EXPERIMENTATION AND SIMULATION 228

Figure 8.4: Bus topology with eight VMs, spread over two clusters over a MAN.

e1350 cluster), here running an 8 VM all-to-all communication. Using only the resilient

star, the application has a throughput of E 1.25 iterations/second, which increases to E 1.5

iterations/second when the highest priority fast path link is added. This increase continues

as we add links, improving throughput by up to factor of two.

Figure 8.4 illustrates the worst performance we measured, for a bus topology among

machines spread over our two clusters separated by a MAN. Even here, our adaptation

scheme did not decrease performance.

Figure 8.5 shows performance for 8 VMs, all-to-all, in the WAN scenario, with the

hosts spread over the WAN (3 on the IBM e1350 cluster at Northwestern, 2 in slower

cluster at Northwestern, one in a third Northwestern campus network, one at University of

Chicago, and one at CMU). The Proxy and the user are located on a separate network at

Northwestern. Again, we see a significant performance improvement as more and more
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Figure 8.5: All-to-all topology with eight VMs, spread over a WAN.

fast path links are added.

Based on the learnings gained in these studies we designed the remainder of the routing

algorithms detailed in Chapter 7. The most important insight was that maybe we can do

better than IP routes, by routing intelligently over the VNET overlay. This idea was first

introduced in the Resilient Overlay Network (RON) project [4].

Adaptation schemes based on multiple adaptation mechanisms

For the patterns application, we studied the following scenarios:

1. Adapting to compute/communicate ratio: Patterns was run in 8 VMs spread over

the WAN (4 on Northwestern’s IBM e1350 cluster, 3 on the slower Northwestern

cluster, and 1 at CMU). The compute/communicate ratio of patterns was varied.

2. Adapting to external load imbalance: Patterns was run in 8 VMs, all on Northwest-
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Figure 8.6: Effect on application throughput of adapting to compute/communicate ratio.

ern’s IBM e1350 cluster. A high level of external load was introduced on one of the

nodes of the cluster. The compute/communicate ratio of patterns was varied.

In both cases, patterns executed an all-to-all communication pattern and we compare

results for when we performed no adaptation, topology only adaptation, migration only

adaptation and combined topology and migration based adaptation. It should be carefully

noted that in the first scenario, topology only adaptation is OHR, migration only adaptation

is GOBM, combined topology and migration adaptation is GOBM + OHR. In the second

scenario, topology only adaptation is OHR, migration only adaptation is CLB, combined

topology and migration adaptation is CLB + OHR.

For an application with a low compute/communicate ratio, we would expect that mi-

grating its VMs to a more closely coupled environment would improve performance. We

would also expect that it would benefit more from topology adaptation than an application

with a high ratio.
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Figure 8.7: Effect on application throughput of adapting to external load imbalance.

Figure 8.6 illustrates our scenario of adapting to the compute/communicate ratio of the

application. For a low compute/communicate ratio, we see that the application benefits the

most from migration to a local cluster and the formation of the fast path links. In the WAN

environment, adding the overlay links alone doesn’t help much because the underlying

network is slow. Adding the overlay links in the local environment has a dramatic effect

because the underlying network is much faster.

As we move towards high compute/communicate ratios, migration to a local environ-

ment results in significant performance improvements. The hosts that we use initially have

diverse performance characteristics. This heterogeneity leads to increasing throughput dif-

ferences as the application becomes more compute intensive. Because BSP applications

run at the speed of the slowest node, the benefit of migrating to similar-performing nodes

increases as the compute/communicate ratio grows.
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No topology adaptation Topology only adaptation (OHR)
No migration based adaptation 1.216 1.76
Migration only adaptation (CLB) 1.4 2.52

Figure 8.8: Web throughput (WIPS) with image server facing external load under different
adaptation approaches.

Figure 8.7, shows the results of adapting to external load imbalance. We can see that

for low compute/communicate ratios, migration alone does not help much. The VMs are

I/O bound here and do not benefit from being relieved of external CPU load. However,

migrating to a lightly loaded host and adding the fast path links dramatically increases

throughput. After the migration, the VM has the CPU cycles needed to drive network

much faster.

As the compute/communicate ratio increases, we see that the effect of migration quickly

overpowers the effect of adding the overlay links, as we might expect. Migrating the VM

to a lightly loaded machine greatly improves the performance of the whole application.

The results from this study indicated that it is important to study diverse adaptation

schemes for diverse application scenarios. Section 8.6 is the topic of such a discussion.

8.3.2 Transactional web e-commerce applications

The purpose of this study was to understand the effectiveness of our approach for non-

parallel applications. In particular we carried out studies on the TPC-W benchmark. TPC-

W models an online bookstore and we have described it in Chapter 2. The separable

components of the site can be hosted in separate VMs. We run the browsing interaction

job mix (5% of accesses are order-related) to place pressure on the front-end web servers

and the image server.

The primary TPC-W metric is the WIPS (Web Interactions Per Second) rating. Fig-

ure 8.8 shows the sustained WIPS achieved under different adaptation approaches. We
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are adapting to a considerable external load being applied to the host on which the image

server is running. When we migrate this VM to another host in the cluster, performance

improves. Reconfiguring the topology also improves performance as there is considerable

traffic outbound from the image server. Using both adaptation mechanisms simultaneously

increases performance by a factor of two compared to the original configuration.

8.4 Scaling

We tested topology adaptation scenarios with all-to-all traffic among up to 28 VMs, the

maximum possible on a single one of our clusters. We used a pre-defined VM to host

mapping to study the scalability of the overlay adaptation. While the cost of VM migration

to meet an adaptation goal grows with the number of VMs, the number of links in the

overlay topology can grow with the square of the number VMs, thus the system will scale

as VNET scales, not as migration scales. The number of forwarding rules per node can

also grow with the square of the number of VMs, although the worst topology for this is a

linear one, which is unlikely to be used. For an all-to-all, it grows linearly with the number

of VMs.

At 28 VMs, we can create our initial star topology in about about 2.9 seconds, with

84% of the time spent loading forwarding rules into VNET daemons. The total number

of links and forwarding rules in the system for a star grows linearly with the number

of VMs. Adding the full all-to-all topology takes 20.5 seconds, of which 67% involves

loading forwarding rules. The inference time remains roughly the same as with the smaller

scenarios we described previously.

Not surprisingly, the benefit of adapting the topology to the application grows as the

number of VMs grows.
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8.5 Virtualized system simulator

Analytical modeling, physical experimentation and simulations are three means of study-

ing computer systems. In the course of this dissertation we have extensively used all three

techniques. In particular, we have used these techniques in a sequential manner. First, we

analytically modeled the adaptation problem. We found the problem to be hard to solve

and approximate. This analysis suggested that we study heuristic driven algorithms as so-

lutions rather than attempt theoretical combinatorially approximate solutions. Following

this insight we carried out extensive physical experiments to study different aspects of our

adaptation mechanisms and problem. We used the insights obtained from these studies to

design fifteen different adaptation schemes as possible solutions to the adaptation problem.

Beyond this, we experienced a lot of problems in maintaining our wide-area testbed lim-

iting our productivity. To carry out a more extensive evaluation of our system we turned

our attention to simulations. Simulations when carried out using a verified and validated

simulator can provide powerful indications. In the remainder of this section we present the

design, implementation, verification and validation of our virtualized system simulator.

8.5.1 Assumptions and limitations

These simulation results are not a substitute for experimental results, but should be used in

conjunction with the modeling and experimental results. The simulator described in this

section is modeled on the Virtuoso system. The simulator is written in Perl and consists of

approximately 5000 lines of code. The high level design (described next) is generic and

we hope that such a design with minor modifications would also be applicable to other

virtualized execution environments [15].

As with any simulator, we need to be cognizant of its limitations. The simulator does

not model computer system memory or disks, what it models is computation, communica-
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tion and the computation costs of communication. The simulator uses real world network

measurements as input data, however, it does not uses a real model for time of day effects.

Though the simulator takes into account cross traffic, it does not account for sudden instan-

taneous spikes in CPU or network traffic (unless fed in at the begining of the simulation).

Despite its limitations the simulator can be useful in multiple ways:

� It allows us to study scenarios that are difficult or impossible to setup in the physical

world.

� Since it operates in virtual time, it reduces the time to complete adaptation studies,

thereby allowing us to study many more scenarios than otherwise possible.

� Provides means for creating a plug and play system to study the effects of different

CPU and network traffic models, and adaptation schemes.

� Simulation studies help us understand the adaptation problem better and in certain

cases can also provide insights that can be used to further refine its physical deployed

counterpart.

� With minor modifications, it can simulate multiple systems.

8.5.2 Simulator design

The simulator at the highest level consists of two components, an application execution

component and an adaptation component. Figure 8.9 helps to explain the structure and

working of the simulator.

Simulator input

The simulator takes in four categories of inputs:

Application trace:
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Figure 8.9: Working of the virtual system simulator.

An application trace is an event graph represented as a directed acyclic graph (DAG).

Figure 8.10 shows a visual representation of a very tiny trace generated for a tiny run of

patterns executing on three VMs (named A, B and C). Trace generation is described in

Section 8.5.3. The event graph consists of nodes and edges. It starts at a node called start

and ends at a node called end. The progression of each application component executing

inside a VM is represented by a series of nodes connected by plain or annotated edges. In

Figure 8.10, each such application component is enclosed in a rectangular box.

There are four possible types of edges in the event graph:

1. Compute edge: Such an edge is labeled with the amount of compute operations

that are to be performed on that node starting at that point in time. The origination

node of the edge represents the VM state before the start of the computation and

the destination node of the edge represents the state of the VM at the end of the

computation.
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Figure 8.10: Input application trace for a tiny patterns application.
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2. Communicate edge: This edge is labeled with the amount of bytes that are to be

sent from one VM to another. Again, the origination node represents the state of the

sending VM before it starts sending the data and the destination node represents the

state of the receiving VM after it has received all the data.

3. Communication overhead edge: This edge captures the computation overhead of

communication. The amount of time between starting of “send” operation on a VM

until its completion.

4. Plain edge: Some of the edges are not annotated (are instead plain). These edges

simply make the graph visually understandable. They are ignored by the simulator.

Physical system measurement data: In our physical system, tools such as Wren and

Ganglia [124] can provide system resource measurements. One of the inputs to the simula-

tor is a file containing such data. The file is populated with previously measured data. On

the network end, it contains bandwidth and latency measurements between VNET hosts

in the system. It also contains the CPU speed and utilization that a VM gets on that host.

This information can change at any point in time to reflect a change in available system

resources.

Initial VM to host mapping and routing information: Since, the simulator models

the Virtuoso system, it is fed with an initial VM to host mapping and the star topology rout-

ing. As the application progresses and the system performs adaptation, this information is

modified to reflect the latest mapping and routing.

Command line parameters: The simulator also takes in a few command line parame-

ters to specify the adaptation algorithm to be used, values for certain algorithm parameters

among others. The interface to the simulator is described in Table 8.1.
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Command line parameters Description

a Specifies adaptation related parameters
adapt at 0 means no adaptation, else time of first adaptation
interval periodic intervals (from adapt at), 0 means no repetitions
times number of periodic adaptation

s [0 or 1] 0 means execute in one step, 1 means execute in multiple steps
p [0 or 1] 0 means print results to file, 1 means print to screen and file
m measurement file specifies file containing physical host and network measurement
g mapping file file containing initial mapping
b vttif file file containing VTTIF data
i input file file containing application trace
o output file file containing application specific output
l log file file containing complete system simulator log
c cost file file containing parameters for costs of adaptation
r algorithm adaptation algorithm to be used
v [0 or 1] 0 means offline adaptation, 1 means online adaptation
t threshold threshold in seconds for algorithms CLB and CLB

�
OHR

y latency constant constant for algorithms GOBLM
�

WBLP

Table 8.1: Virtualized system simulator interface.



CHAPTER 8. EXPERIMENTATION AND SIMULATION 240

Simulator data structures

During the course of its operation, the simulator maintains three main data structures.

Incoming edges priority queue: At startup the simulator reads in the input event

graph. It creates a priority queue containing all the nodes in the graph. The priorities are

the number of incoming edges in the input application event graph. Lower the number of

incoming edges, higher is the priority of that node. Nodes with the highest priority are

serviced first.

Event priority queue: The simulator also maintains a priority queue containing events

to be executed. These events correspond to one of the three annotated edges in the event

graph. An event can either be a computation event, a communication event or a compu-

tation overhead of communication event. The events in this priority queue are indexed by

their estimated completion times. Earlier is the completion time of an event, higher is its

priority. Events with the highest priority are serviced first

Application state hashes: As the simulator executes the application, for each applica-

tion component executing inside of a VM, we maintain state. This consists of time spent by

the component computing (user time), time spent in system overheads (system time), time

spent waiting for other events (idle time). A global wallclock for the entire application is

also maintained. The efficiency of an application component inside of a VM is calculated

as e f f iciency � usertime � wallclock.

Simulator operation

At startup the simulator loads in the application event graph. It performs a topological sort

on the nodes and creates the incoming edges priority queue. The pseudo code shown in

Figure 8.11 is at the core of the simulator.

The simulator walks the event graph looking for nodes that have zero incoming edges.
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This means that the node has no existing dependencies and that we can process all its

outgoing edges. For each out going edge, based on whether it is compute, communicate

or compute overhead of communicate, we calculate its estimated completion time. This

calculation is based on the current VM to host mapping and overlay routing, and the phys-

ical system measurement data. We add an event to the event priority queue indexed by

this estimated completion time. If the outgoing edge is a plain edge, we then reduce that

particular node’s incoming edge count by one. Adding an event to the event queue implies

that it has started execution (or communication), but has not yet completed. If the event is

a communication event, then we modify the physical system measured data to account for

the application’s own communication.

When we have no nodes with zero incoming edges to process, we execute the next

event in the event priority queue. We increment the wallclock to represent the progression

in time and we also modify the application data structures (user time, system time, etc.)

based on the specifics of the event executed. The incoming edge count of the concerned

node is decreased by one. Further, for a communication event we modify the physical

system measured data to reflect the completion of this communication event.

We then go back to see if we have “enabled” any nodes, i.e. if any nodes have zero

incoming edges and then repeat the above mentioned steps.

Once we finished walking the entire graph, we execute the remaining events in the

event priority queue and perform the associated actions as above.

Adaptation model

We have described at a very high level the basic functioning of the system simulator. Here

we present a description of the simulator’s adaptation model. As shown in Table 8.1, times

at which adaptation is requested is supplied from the command line at the begining of the

simulation. Before execution of any event from the event priority queue, we check to see if
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Figure 8.11: The simulator core.
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the adaptation time is enabled. If so, then based on the adaptation scheme specified on the

command line (Table 8.1), we execute the related adaptation algorithms. The algorithms

modify the then current mapping and routing, thus creating a new mapping and routing.

The remainder of the application now has to execute on this new mapping and routing.

It should be noted that the events already present in the event queue were estimated to

finish at their respective times based on the previous mapping. For each such event in the

priority queue, we break up its execution into two components. First, from the time they

started until the end of the previous mapping. Second, from the time the new mapping

takes into effect until their completion time as calculated on the new mapping. We finish

executing the first component and the second component is added to the event queue to

replace this event’s previous entry.

The simulator has the option of performing the adaptation offline or online. In offline

adaptation, we assume the application to stall until the adaptation completes. For example,

an adaptation scenario where we perform VM migration. The migration semantics could

be suspend-resume, where the application stalls for during migration. On the other hand,

online adaptation assumes that the application continues execution while adaptation is per-

formed. In this model, until the adaptation is in progress the application executes on the

old configuration (mapping and routing). Once the adaptation is complete, the application

continues execution without interruption, but now on the new mapping.

Simulator output

In Virtuoso, VTTIF infers the application’s network resource demand inference. In simula-

tion, inferring application resource demand is tremendously simplified as the simulator has

access to the application trace and hence knows the ground truth. The simulator mimics

VTTIF’s behavior in that when it detects a change in application demands, it records the

same which is then available as input for the adaptation schemes. At the end of a simulator
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Figure 8.12: A portion of the log file for the execution of a patterns application.
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Figure 8.13: XPVM output for PVM patterns application executing on 18 hosts.

run, we print out the user time, system time, idle time and efficiency for each application

component executing in a VM. In addition, we also print out application specific metrics,

such as iterations per second (throughput) for the patterns application, messages per sec-

ond for a mail application, etc. Additionally, we also maintain a detailed log that records

everything that happens in the lifetime of the simulator. Figure 8.12 shows a portion of

such a log file.

8.5.3 Real trace generation

Our simulator is a trace driven simulator. The idea is to collect traces of real applications

under a tightly controlled setup and then to replay the traces under real world scenarios to

study effects of adaptation. The tightly controlled setup refers to our IBM e1350 cluster.

We use isolated and unloaded nodes interconnected via a Gigabit switch.

Since we use PVM versions of high performance computing applications, we were
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Figure 8.14: XPVM output for PVM NAS IS benchmark executing on 4 hosts.

able to obtain application trace data using the XPVM [105] tracing facility. XPVM is a

tracing facility and tool for PVM [63]. The XPVM tracing system supports a buffering

mechanism to reduce the perturbation of user applications caused by tracing, and a more

flexible trace event definition scheme which is based on a self-defining data format. The

tracing instrumentation is built into the PVM library [105].

Figure 8.13 shows a snapshot of the XPVM trace for the patterns application executing

on eighteen nodes of our cluster. Figure 8.14 is a snapshot of the XPVM trace for the NAS

IS benchmark executing on four nodes of our cluster. We converted the raw XPVM traces

into the input format accepted by the simulator.

8.5.4 Verification and validation

Verification refers to the process of ensuring that the simulator is implemented correctly

and validation refers to the process of ensuring that it is representative of the real system.
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The verification and validation was performed independently by a person who was familiar

with the idea behind this simulator, but was not directly involved in the development of the

simulator.

Verification

The simulator was independently verified using the following techniques [93]:

� Structured walk-through: I explained the code of the simulator in detail to multiple

people. Several bugs were identified and addressed through this process.

� Running simplified cases: A synthetic small trace constructed by hand was used as

input. We compared the output of the simulator with the manually calculated output.

They were very similar in terms of the wall-clock time, total computation time and

communication time. In addition, the log file of the simulator was carefully checked

line by line to catch and fix errors.

� Antidebugging: We included additional checks and outputs in the simulator and the

log file respectively to point out bugs.

� Degeneracy tests: We checked the working of the simulator for extreme values

(multiple VMs mapped on same hosts, applications with only computation or only

communication, adaptation completing instantaneously, adaptation taking a long

time to completion, etc.).

� Consistency tests: To verify the adaptation functionality of the simulator, the phys-

ical system measurement file was modified by adding two idle nodes with higher

bandwidth and associated all-to-all routes while we reduced the utilization limits on

two nodes that initially hosted VMs. The application trace executed was for a pat-

terns application executing on four nodes of our cluster. The result showed that both
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VMs were correctly migrated with routes among VMs being changed correctly. As

the result of the adaptation, both computation and communication time decreased

when compared with the case of no adaptation.

Validation

The simulator was validated using the following techniques [93]:

� Expert intuition: This is the most practical and common way to validate a model [93].

Multiple brainstorming meetings of people knowledgeable about virtualized execu-

tion systems were called. Some of these meetings were at Northwestern University

and others were help at Intel Corporation (where parts of this research was con-

ducted). We validated the assumptions, inputs and outputs.

� Real system measurements: This is the most reliable and preferred way to val-

idate a simulation model [93]. Using XPVM [105] and our task-graph converter

(to convert XPVM trace to a form compatible with our simulator), we gathered a

patterns trace on 4 nodes of our cluster. According to patterns output, the ratio of

computation over communication was high. The trace contained 5 iterations and the

communication pattern was set to be all-to-all. The data in the measurement file

was collected via physical measurement tools such as ttcp, ping and top to reflect

the current state of the cluster nodes and the isolated network between them. The

comparison between patterns output and the simulator output showed that the simu-

lator correctly and closely simulates the running of the trace. We then modified the

measurement file by reducing the utilization limits on 2 of those 4 nodes from 100%

to 50%. Then, as expected, the total computation time in the output of the simu-

lator nearly doubles, which is what we expect since the entire patterns application

is slowed down to the speed of the slowest node. This result also agreed with the
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output of patterns, with the utilization being throttled using VSched. A validation

was also carried out for a slightly larger application executing among 6 VMs with a

low computation to communication ratio.

8.5.5 Synthetic trace construction

We were able to obtain, using XPVM, real traces for applications belonging to the high

performance computing class. For the seven classes of applications that were used to

evaluate the effectiveness of the adaptation schemes, we constructed synthetic traces by

hand. These traces were constructed and verified in our discussions with Intel’s Corporate

Technology Group and Intel Corporation’s IT Innovation and Research Group from June

2006 until November 2006. The last six months of this research was conducted on site at

Intel Corporation’s Corporate Technology Group, Hillsboro, OR.

Over the past two years, Intel Corporation, has conducted extensive studies to under-

stand enterprise application resource demands. This study was conducted specifically with

a view to understand the applicability of virtualizing these enterprise applications in oper-

ating system virtual machines connected via virtual networks [15].

The aim of our discussions was to better understand the previously conducted study [15],

to build application traces that were modeled on the application demands as understood by

the above study and to discuss these constructed traces so as to establish if they were rea-

sonable representatives of real applications. This process included brainstorming sessions

with a group of researchers, reading Intel technical journals and reports, one on one dis-

cussions with researchers in Hillsboro OR and Santa Clara, CA, conducting measurement

studies on the Intel IT Research Overlay [15], and individual interviews conducted with

the researchers.

The constructed traces have the same syntax as real XPVM traces, but differ signifi-

cantly in their computation and communication behaviors.
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8.6 Evaluations to close the loop

Up and until now, we collected application classes, studied a subset of those and used the

insights gained therein to design fifteen different adaptation schemes. We evaluated these

adaptation schemes against each other and against estimates of the optimal in terms of op-

timizing the different objective functions. However, based on the evaluations presented so

far, we do not know the effectiveness of these adaptation schemes in terms of application

specific metrics. In other words, we know what these adaptation schemes can do for spe-

cific objective functions, but we do not know what these adaptation schemes can do for the

applications.

We fill this gap and close the loop for our adaptation studies by studying the effective-

ness of our fifteen adaptation schemes for application traces that model typical applications

for the application classes listed in Table 2.1. In particular we try to find the answer to the

question we posed in the begining of this dissertation, is there a single adaptation scheme

that has wide applicability among a diverse range of application classes.

Though the simulator can model offline and online adaptation schemes, in this section

the model of adaptation is online, unless stated otherwise. In the fast few years, there

have been significant efforts in reducing migration times and in realizing the ideal case of

fast live migrations [25, 107, 134, 137, 146]. Migration times have a number of variables,

such as the size of the VM in question, the network and path from the source host to the

destination host, the amount of caching at the destination VM, etc. Currently, there are

no published models that predict migration times, given values for this set of parameters.

We make a simplifying assumption and use a single migration time to be representative of

the average of the migration times for different scenarios. In particular, we model a live

migration time of 50 seconds.The cost of network adaptation is modeled on our previously

measured adaptation configuration times. The migration threshold was set to 50 seconds
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and the latency constant was set to 0.001 MB.

Over a period of time while building and maintaining our distributed testbed, we made

extensive physical system measurements. We complemented these by making additional

measurements on Intel Corporation’s IT Research Overlay Network. This overlay net-

work extends between ten sites spread geographically across the US. The sites that we had

access to were in Hillsboro, OR, Santa Clara, CA and Hudson, MA. The network measure-

ment data fed as input to the simulator represents the statically measured physical network

(latency using ping and bandwidth using ttcp) between all these hosts spread across the

testbed. The CPU utilization that each VM on a host got was synthetic data to create the

notion of multiple users per host. This was done, as at the time of the measurements,

almost all the nodes were lightly loaded. The synthetic utilization was created using the

generator described in Chapter 7.

In all our evaluations we compare the algorithms against each other and also against

the case where we do not perform adaptation. The initial VM to host mapping and routing

through proxy is created randomly. This (the concept of an initial mapping and not the fact

that it is randomly generated for these simulations) mimics Virtuoso’s front-end’s behavior

while acting as a broker of virtual resources. The initial mapping has a significant impact

on the improvement brought about by the adaptation algorithm. If the initial mapping is

not suited to the application then the adaptation algorithms will improve application per-

formance significantly. However, if the initial mapping is perfectly suited to the needs of

the adaptation, then the adaptation schemes will seem to be ineffective. What is important

from the point of view of adaptation is, if the initial mapping is not good, or if physical

conditions change such that the current mapping is no longer well suited, then in such

cases are the adaptation schemes able to change things for the better.

In this section, we present our evaluation results and in the following section (Sec-

tion 8.7), we present a summary of our results and a set of recommendations.
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Figure 8.15: Performance of adaptation schemes for an application trace modeling an
adaptive DNS.

8.6.1 Application trace representative of an enterprise DNS service

Figure 8.15 shows the effectiveness of the different adaptation schemes for an application

trace modeling an enterprise DNS service. The trace is representative of a series of query

response pairs between end host VMs and VMs hosting DNS servers and a set of zone

transfers. The interactions presented represent a mixture of:

� Host queries DNS server and the server responds directly (small queries with quick

small replies).

� Host queries DNS server and the DNS server, in turn, queries another DNS server,

creating a relay, before response gets back to the host (small queries with more

delayed replies).
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� A DNS server acts as a master server for one zone, but as a slave server, caching

contents for a second zone, at periodic intervals of time the master server for a zone

conducts a mapping transfer with the slave servers for that zone (bulk transfers).

The application specific metric that we are interested in is the average query response

time. From Figure 8.15 we notice that CLB + WBLP provides us with the lowest average

query response times. The trace contains a mixture of interactions which are affected

negatively by high latency and low bandwidth paths. CLB + WBLP attempts to find paths

that have low latencies and high bandwidths. We also notice that algorithms that do not take

latency into account (such as GOBM + NBP, GOBBM + WBP) result in higher average

query response times. The performance of CLB is better than expected. This application

does not have a significant computation component, hence one would expect that migrating

VMs to improve execution time would not reduce the average query response time. One

possible explanation is that the high compute capacity nodes that the VMs were migrated

to also connected using low latency and high bandwidth links. We notice that GOELM

+ STLP and GOPLM + STLP also significantly reduce the average query response times.

These algorithms are latency centric and since low latency is an important factor for such

applications we see the improvement in performance. Finally, note that all the algorithms

provide some improvement over the case wherein we rely on Virtuoso’s default mapping

and perform no adaptation.

8.6.2 Application trace representative of an enterprise mail service

Enterprise mail application is an important application with multiple dependencies be-

tween different components. Our trace is representative of three mail servers, each speak-

ing to a directory service, a machine hosting mailboxes and a DNS server. The application

specific metric that is kept track of is messages per second handled by the overall system.
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Figure 8.16: Performance of adaptation schemes for an application trace modeling a typical
mail server setup.

The trace begins with a collection of chatty protocols interspersed with large data transfers

representative of large mails flowing through the system.

Figure 8.16 shows the effectiveness of the adaptation schemes in terms of the appli-

cation defined metric. Algorithms GOBLM + WBLP and GOBBLM + WRBLP perform

the best in terms of increasing the average number of messages handled. Algorithm CLB

+ WBLP also performs reasonably well. These algorithms look to optimize both latency

and bandwidth. Since different stages have different needs, optimizing for one, but not the

other does not lead to significant performance improvement. It is interesting to note that

adaptation schemes that optimize only latency and those that optimize for only bandwidth,

perform very similarly. Though the number of large transfers handled is only a small frac-

tion of the number of smaller chattier interactions, the payback of optimizing for the same

is larger. We also see that a single pass mapping performs the same as a two pass mapping
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Figure 8.17: Performance of adaptation schemes for an application trace modeling an
enterprise wide-area file transfer.

(GOBM + WBP + S and GTBM + WBP + I), further, we do not see any specific gains of

interleaving mapping and routing (GOBM + WBP + S and GOBM + WBP + I). The use of

GOBM + NBP actually reduces the performance of the application as compared to the case

where we perform no adaptation. This is unexpected, as the mapping for the no adaptation

case is not suitable for the application and GOBM + NBP manages to create a mapping and

routing, which is even worse. One explanation is that GOBM + NBP performs adaptation

such that more applications can enter the system. However, our comparison is based on

metrics that measure the performance of only a single application in isolation.

8.6.3 Application trace representative of an enterprise wide-area file
transfer

The application trace constructed here models wide-area file transfer of large files. In-

tel Corporation, currently, does not implement a wide-area file system such as AFS [82]
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between its different geographic locations. Intel Corporation’s engineering and research

groups are often spread across geographic sites thus creating virtual teams. Hence when

files have to be accessed, wide-area file transfers are often used to create copies which can

then be accessed locally. We are, at this point in time, not quite sure of how wide-spread

this practice is in other large enterprises. However, we constructed a trace modeling this

class as these file transfers are quite prevalent inside Intel Corporation. The trace is very

simple to construct, it consists of large data transfers between a set of VMs.

Figure 8.17 illustrates the effectiveness of different adaptation schemes measured in

terms of application completion times. Lower the completion times, better it is for the

application. We note that all the bandwidth centric adaptation schemes (GOBM + OHR,

GOBM + WBP + S, GOBM + WBP + I, GTBM + WBP + S and GTBM + WBP + I)

perform well and reduce the completion time of the transfers. Latency centric adaptation

schemes do not have as significant an effect in decreasing the completion times. The links

being chosen by these algorithms (GOELM + STLP and GOPLM + STLP) are probably

low latency but also low bandwidth. It is very interesting to note that wide-area file trans-

fers are very similar to VM migration. These applications can not only be speeded up

by ensuring that bottleneck links are bypassed, but can also be significantly improved by

leveraging some of the VM migration schemes. In particular, exploiting the block level

commonality in data to reduce the amount of data sent over the wire would be particularly

helpful [137].

8.6.4 Application trace representative of an enterprise simulation

Intel Corporation primarily operates in the semiconductor industry. Before chip designs

are cast in silicon, extensive simulations are carried out to better understand the expected

performance and bottlenecks. Such simulations are typically stand-alone, running on a

single machine. We were not able to hold discussions with people closely associated with
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Figure 8.18: Performance of adaptation schemes for an application trace modeling com-
pute intensive enterprise simulations.

such simulations. We were able to obtain only an indirect input on the nature of these

applications. However, these applications are very important in the context of large engi-

neering companies such as Intel Corporation and hence we constructed a trace for the same

and carried out adaptation studies. We used our experience with high performance com-

puting applications to construct this trace. In particular we likened this application to an

embarrassingly parallel (EP) application executing on a single node. Such an application

has no network demands, only CPU based demands.

Figure 8.18 presents the results of the adaptation studies comparing the fifteen dif-

ferent adaptation schemes in the context of simulation completion times. The only three

adaptation schemes that have any effect are CLB, CLB + OHR and CLB + WBLP. The

common algorithm component in all these adaptation schemes is CLB. CLB is the classic

load balancing algorithm wherein, we migrate a VM to a new host, if we estimate a shorter

execution time on the new node. This objective very closely ties in with what the appli-
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Figure 8.19: Performance of adaptation schemes for an application trace modeling a
database application with high bandwidth requirements.

cation wants. All the other algorithms are optimizing the network aspects of the recourse

demands, but in this case, the application makes no network based resource demands and

hence executing these adaptation schemes has no effect. The key point here is prediction

of how long the application will continue executing on the current mapping. This parallels

load balancing in process migration systems [78] for which there exists an accepted model

to predict the process lifetimes for UNIX process. Currently, no such model exists for

virtualized execution systems.

8.6.5 Application trace representative of an enterprise database ap-
plication with high bandwidth requirements

Database applications are all pervasive. Hence, it should come as no surprise that these

constitute an important class of applications in enterprises. We have divided our study
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of such applications into two classes. First, in response to a query, significant amount

of computation is performed and the data returned is very large. Second, in response to a

query, a small amount of computation is performed and the data returned is small. We study

the former in this section and the latter in Section 8.6.6. These database applications are

also similar to the web transactional e-commerce applications studied and discussed earlier

in this chapter (Section 8.3.2). However, they differ in how they are deployed. Enterprise

database applications (as opposed to applications deployed by web commerce companies)

are mostly for housekeeping purposes. We have constructed a trace that models enterprise

database applications that perform significant amounts of computation and returns large

amounts of data. In enterprises such as Intel Corporation, such queries are especially

common at the end of each month and at the end of financial quarters. We model a three

tier architecture, with a set of four front-ends, three application logic servers and two back-

ends. Each query transmits a small amount of data, which flows through different paths

ultimately resulting in a significant amount of computation at the back end. The result of

the query is then ferried back to the origination point of the query.

Figure 8.19 illustrates the effectiveness of the fifteen adaptation schemes in terms of

improving application performance. The application specific metric of interest in this case

is average query response time. The algorithm CLB + WBLP performs the best. This

application trace has small amounts of communication, large data transfers and significant

amounts of computation. Hence we notice that the algorithm that covers all three (CLB

+ WBLP) performs the best. We also notice that latency centric applications (GOELP +

STLP and GOPLM + STLP) also performed reasonably well. However, it should be noted

that even for adaptation schemes that perform the best, the improvement over the scenario,

where no adaptation is performed, is not significant. This is due to a strong initial mapping

of VMs to host.
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Figure 8.20: Performance of adaptation schemes for an application trace modeling a
database application with low latency requirements. Average query response time is mea-
sured in milli seconds.

8.6.6 Application trace representative of an enterprise database ap-
plication with low latency requirements

This is the second half of the studies on enterprise database applications. Here we fo-

cus on applications that comprise of short queries and short responses. The architecture

represented is similar to the one described in Section 8.6.5. Figure 8.20 represents the per-

formance of the adaptation schemes when measured using average query response time.

We see that CLB + WBLP performs the best. The average query response time is re-

duced from 220 milli seconds to about 110 milli seconds. Bandwidth centric adaptation

schemes such as GOBM + OHR + S and GTBM + OHR + I also improve the application

performance. The application, however, does not make large bandwidth demands. Hence

the benefit seen in that case is due to the choosing of links with high bandwidth and low
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Figure 8.21: Performance of adaptation schemes for an application trace modeling an
engineering computation application.

latency, and hosts with better utilization. However, what is extremely surprising is that,

latency centric adaptation schemes such as GOELP + STLP and GOPLM + STLP do not

perform that well as compared to the other algorithms. This seems a little counter-intuitive,

as latency seems to be the property that is most important to the application. We believe

that this behavior is to do with the computation component of the trace. The latency centric

algorithms have found hosts with low latencies between them but, the utilization available

to the VMs is low, resulting in longer compute times and lower average response times.

8.6.7 Application trace representative of an enterprise engineering
computing application

It should come as no surprise that engineering computation applications are an important

class of applications at engineering companies such as Intel Corporation. We have con-
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structed a trace that models a typical engineering computation application. The trace mim-

ics an application that executes inside of sixteen virtual machines, hosted across the wide

area on four different sites. It consists of computation and communication between these

VMs. Though disk accesses are a big part of such an application, our simulator does not

models disks and hence we ignore this aspect. To a certain degree these traces look similar

to the high performance computing application traces generated using XPVM. The differ-

ence is that in the former, there is no clear communication pattern between the VMs, while

the latter typically exhibits well known communication patterns such as two-dimensional

bus and two-dimensional ring topologies.

Figure 8.21 shows the benefits of the different adaptation schemes in such a scenario.

We see that algorithms CLB, CLB + OHR and CLB + WBLP perform the best. These

algorithms optimize the computation time and also attempt to locate paths that find maxi-

mum bandwidth between communicating source and destination VM pairs. However, we

notice that the benefits obtained by these adaptation schemes is not significant as compared

to the case with no adaptation. We explain this as follows, by the time the adaptation en-

gine decides to perform migration of certain VMs and completes the same, a significant

lifetime of the application has completed. After this though the application is executing on

an improved mapping, its lifetime is much shorter than its lifetime while executing on the

previous mapping and routing. Latency centric algorithms such as GOELM + STLP and

GOPLM + STLP are significantly effective.

8.6.8 Real application trace from the patterns application

Patterns belongs to the high performance computing application class, which was used to

devise the objective functions and then to design the adaptation algorithms. Hence, the

adaptation schemes are expected to perform well in general, designating this scenario as

a biased scenario. However, since we have already presented evaluation of the adaptation
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Figure 8.22: Performance of adaptation schemes for a real patterns application trace.

schemes for seven different application classes that were not used in the design of the

algorithms, we argue that we have effectively closed the evaluation loop. Patterns is an

application for which we have been able to collect a real trace (as opposed to synthetic

traces for the previously evaluated classes of application), we present our evaluation of the

adaptation schemes in the context of patterns. In other words, we expect the adaptation

schemes to perform well for patterns, here we check to see if that is indeed the case. In

this particular scenario, patterns is configured with an all-to-all communication topology

and is executing among 18 VMs distributed geographically across six sites. The compute

to communicate ratio is one. The application specific metric used was the number of

iterations completed per second.

Figure 8.22 shows the performance of the different adaptation schemes in this context.

At the outset we see that almost all the algorithms improve the performance of patterns

as opposed to the case with no adaptation by at least a factor of two. Algorithms CLB +

OHR and CLB + WBLP improve performance by more than a factor of three. The adap-
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tation scheme CLB improves performance by the least amount. CLB does not optimize

for communication and since the compute to communication ratio is one, its effects on

performance improvement are somewhat limited. Overall, as expected, all the adaptation

schemes significantly improve application performance.

8.7 Summary, recommendations and taxonomies

This dissertation answers the question, is there a single adaptation scheme that is effective

for a wide range of distributed applications? In this section we provide the answer to

this question based on all the analysis, evaluations and simulations conducted. We also

present two application taxonomies and recommendations for performing adaptation for

distributed applications executing in virtual environments.

8.7.1 Answer to the question posed in this dissertation

The answer to the question, is there a single optimization scheme that is effective for a

range of distributed applications, is provided here. Based on all the studies conducted and

evidence presented in this dissertation, we state that the CLB + WBLP adaptation scheme

has wide applicability among the ten different application classes studied. In addition to

the empirical results, we also provide intuitive justification for the same.

Empirically, we have seen that in seven of the ten (hence 70%) application classes

studied, the CLB + WBLP adaptation scheme was either the best or very close to the best.

These seven classes of applications were high performance computing applications, DNS

type applications, enterprise mail applications, enterprise compute intensive simulations,

both the enterprise database categories and the engineering computation applications. CLB

+ WBLP does not perform well for applications that fall in the enterprise backup category.

The reason for this is that the specific metric being optimized, reducing bottlenecks and
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leaving maximum scope for other applications to enter and thrive in the system. CLB +

WBLP is an application centric adaptation scheme. GOBM + NBP, on the other hand is

system centric adaptation scheme, whose aim is more in line with the objective function

most relevant for enterprise backup applications. CLB + WBLP is also not suited for wide-

area file transfer that are common in some enterprises. Pure bandwidth centric adaptation

schemes such as GOBM + WBP + S, GOBM + WBP + I, GTBM + WBP + S and GTBM

+ WBP + I perform the best. The reason for this behavior is that though CLB + WBLP

has a bandwidth focus, it also optimizes for other properties such as compute times and

path latencies. These dimensions shift the eventual mapping from those that provide the

best end-to-end throughput. For the web transactional e-commerce application class, CLB

+ WBLP is effective, but not as good as some of the other algorithms such as GOELM

+ STLP and GOPLM + STLP. The reasoning for this follows the same line of reasoning

as for the enterprise wide-area file transfer class. However, even for this category, when

we create a scenario with external load imbalance, physical experiments illustrate that

algorithms that optimize for multiple properties are most effective.

We provide the following intuitive reasons for why CLB + WBLP has the widest appli-

cability. CLB + WBLP optimizes for multiple properties. It attempts to move computation

to hosts which are faster and make available higher utilization rates. Further, it tries in a

greedy fashion to locate high bandwidth links that also have low latencies. We found that

majority of the application classes have multiple dependencies on optimization of differ-

ent compute and network properties. Intuitively, it seems logically that case, that CLB +

WBLP would have the widest applicability. The empirical evaluation backs this intuition

and illustrates that the specific algorithms driving CLB + WBLP, though sub-optimal, are

indeed effective in moving computation to lightly loaded hosts and in locating high band-

width and low latency paths. Finally, it should be noted again that CLB + WBLP comes

with three tunable parameters which can be tweaked to better suit different scenarios.
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Single scheme works Require application interaction Single scheme does not work

High performance scientific Orchestrated web services Transactional web ecommerce
DNS based Orchestrated database Enterprise backup
Enterprise mail Application specific overlays Enterprise file transfers
Enterprise simulations Set of batch parallel applications Security centric
Enterprise DB (small transfers)
Enterprise DB (large transfers)
Enterprise Engg. computing

Table 8.2: Taxonomy of application classes based on our recommended single adaptation
scheme.

Application classes Computation Bandwidth Latency

High performance scientific applications Yes Yes No
Transactional web e-commerce applications No Yes Yes
Enterprise backup applications Yes Yes No
DNS No No Yes
Enterprise mail applications No Yes Yes
Enterprise wide-area file transfers No Yes No
Enterprise compute-intensive simulations Yes No No
Enterprise database applications with small transfers Yes Yes No
Enterprise database applications with large transfers Yes No Yes
Enterprise engineering computing applications Yes Yes Yes

Table 8.3: Taxonomy of application classes based on resource requirements.

8.7.2 Application taxonomies

Based on our studies and insights gained from our discussions with Intel IT we present

two application taxonomies in Tables 8.2 and 8.3. Table gives a taxonomy of applications

categorizing them in one of the following three categories.

1. Application classes for which my single optimization scheme is most effective. All

the applications in this category have been extensively studied. It should be noted

that this category contains the largest number of application classes.
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2. Application classes for which automatic adaptation invisible to the application is

not suitable unless the adaptation scheme is provided some application specific de-

tails up front and during execution. Due to the lack of automatic and application

invisible adaptation schemes, many enterprise applications are built with specific or-

chestrators to perform dynamic adaptation and improve performance. One approach

to these applications is to say that in the presence of my adaptation system, such

applications no longer need to be constructed with orchestrators. However, keep-

ing in mind the legacy applications already built with such orchestrators and which

might execute inside of Virtuoso, there needs to be some means of a dialog between

the application specific orchestrator and Virtuoso’s adaptation engine. Adaptation

at two levels can be mutually destructive and the dialog would be an to attempt to

make this dialog constructive. This category also includes the class of applications

that we studied in Chapter 6, namely, multiple batch parallel applications executing

in tightly coupled computing environment. In such a setting, it may not always be

possible to infer resource demands as they need to be supplied by humans and hence

cannot be automatically inferred.

3. Application classes for which my suggested single adaptation scheme does not work.

Though I have not empirically evaluated security centric applications, I have dis-

cussed the same with Intel IT Research in the context of my adaptation schemes.

Applications that spend a considerable amount of time performing multiple authen-

tications care about packet loss rates. The adaptation schemes discussed in this dis-

sertation do not directly take into account packet loss rates along the different links

and paths.

Table 8.3 provides a taxonomy of applications based on their demands for computa-

tional resources, network bandwidth and latency. This taxonomy was based on our discus-
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sions with Intel IT Research. A preliminary version of such analysis has been previously

published by Intel Corporation [15]. It should be noted that applications in many of these

application classes can operate in multiple modes, where each mode makes different re-

source demands. For example, DNS type applications have been classified as mostly caring

about latency. However, as discussed previously, bandwidth becomes the bottleneck in the

context of DNS zone transfers. Further, it should be noted that the CLB + WBLP adap-

tation scheme covers all these three aspects and hence has the widest applicability among

distributed application classes.

8.7.3 Adaptation recommendations

Finally, we would like to make some recommendations which can be used as a rule of

thumb when performing adaptation for distributed applications executing in virtual exe-

cuting environments. In particular when faced with the challenging task of performing

adaptation for applications whose resource demands are not supplied by the application,

user or developer, we recommend the use of the CLB + WBLP adaptation scheme. This

scheme optimizes for lower execution times, and high bandwidth, low latency links. Fur-

ther, as described in Chapter 7, it comes with three tunable parameters, which can be

tweaked to better suit individual scenarios. If the application in question belongs to an

application class for which CLB + WBLP is known to be ineffective, then based on, tax-

onomy in Table 8.3 and some additional information about the application (obtained from

previous dry runs), one of the other fifteen adaptation schemes can be used.
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Chapter 9

Conclusions

This dissertation recommends building virtual execution environments consisting of op-

erating system level virtual machines connected by virtual networks as a means to real-

ize the full potential of wide-area distributed computing. Currently, wide-area distributed

computing is plagued by unnecessary complexity, lack of isolation and security, provi-

sioning issues and challenges in developing applications for such environments. Virtuoso

is the prototype virtualized distributed adaptive system jointly developed as part of this

dissertation that addresses the current issues obstructing the wide-spread adoption of this

computing paradigm.

The core of this dissertation describes the design, implementation and evaluation of

adaptation mechanisms, optimization objective functions and heuristic algorithms that pro-

vide for an automatic, run-time and dynamic adaptation scheme that leverages the powerful

paradigm of virtualization and is effective for a range of unmodified distributed applica-

tions running on unmodified operating systems without requiring any developer or user

help.

This dissertation answers the question, is there a single adaptation scheme that is ef-

fective for a range of distributed applications. In the context the ten application classes

studied, we found a single adaptation scheme with tunable parameters that performs VM
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migrations based on compute requirements and demands, and modifies the overlay topol-

ogy and routes to meet latency and bandwidth requirements works well for the majority of

the application classes studied (seven out of ten).

In response to complexity and inapproximability results for the adaptation problem,

we explored the space of greedy heuristic driven adaptation algorithms as solutions to it.

We used three of the ten application classes to design fifteen adaptation schemes and the

remainder seven to evaluate the adaptation schemes. Parts of this study were carried out

in collaboration with Intel Corporation’s Corporate Technology Group and IT Innovation

and Research Group.

This work has the potential to fill an important gap in distributed systems research.

Building virtualized adaptive distributed computing systems addresses the main issues with

traditional wide-area distributed computing and will hopefully lead to faster and wide-

spread adoption of this powerful computing paradigm.

In the remainder of this chapter, we summarize the steps and contributions of this

dissertation, discuss related work and identify directions for future research.

9.1 Summary and contributions

In this section we describe the contributions made in this dissertation. We also describe the

insights gained along the way. Among other things, the contributions include a physical

working distributed system, optimization models, algorithms, system simulator, evalua-

tions and artifacts.

� VNET: I co-designed and co-implemented VNET, an Ethernet layer virtual network

tool that creates and maintains the networking illusion, that the user’s VMs are on

the user’s local area network (Chapter 3).
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� Language for describing VNET topology: I have designed a language for describ-

ing the VNET topology and forwarding rules. I defined a context free grammar for

the language (Chapter 3, [167]).

� Parser for the VNET language: I implemented a parser to parse descriptions in the

VNET language. I have also implemented a variant of the parser that takes in high-

level user requirements and generates a VNET topology description and associated

forwarding rules in the VNET language (Chapter 3).

� VNET tools: I designed and implemented a set of VNET tools that perform diverse

functions such as setup, reconfigurations and create visualizations of the current state

of the system (Chapter 3).

� VNET Evaluation: I have carried out a detailed evaluation of VNET. To the best

of my knowledge, this is the only existing detailed performance evaluation of such

virtual network.

� VNET performance: I have evaluated VNET’s performance with respect to through-

put and latency. I carried out this evaluation for two separate cases, one with SSL

encryption and one without. I compared its performance to the raw physical hard-

ware and to a commercially available virtualization software. This was done for

both LAN and WAN settings [169]. I adapted VNET for high speed networks by

supporting creation of overlay links using UDP and by improving the forwarding

rule lookup mechanism through a forwarding rule cache that gives us constant time

lookup on average. All these enhancements have lead to a factor of three perfor-

mance improvement, though there is still room for improvement (Chapter 3).

� VNET overheads: I have also quantified the VNET overheads such as its setup and

reaction times (Chapter 3).
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� Scaling: I have evaluated VNET to study how it scales with the increase in the

number of VNET daemons and VMs serviced by them in terms of its overhead and

the benefits of adaptation (Chapter 8). My important findings were, VNET scales

in terms of the number of VNET links, forwarding rules and overheads with the

number of VNET daemons and VMs supported by them. The cost of migration

does not scale with the number of VMs in the system. The benefit of adapting the

topology to the adaptation grows as the number of VMs grow.

� Vision for adaptive environment: We detailed the steps towards an adaptive virtual

overlay network wherein un-modified applications running on top of un-modified

operating systems could be adapted to available computational and network resources

without the need for any user intervention [169].

� Application independent adaptation mechanisms: I have designed and imple-

mented a second generation VNET, which includes support for arbitrary topologies

and routing, and provides adaptive control of the overlay (Chapter 3).

� Formalized generic adaptation problem: I have designed a framework for for-

malization of the generic incarnation of the adaptation problem occurring in virtual

execution environments (Chapter 4, [172]).

� Defined a specific case of the generic adaptation problem: I have a defined a

specific case of the generic adaptation problem where some of the constraints and

requirements have been relaxed and a particular objective function used as an aid to

gain better understanding of the problem (Chapter 4).

� Analyzed its computational complexity: I have carried out an analysis of the com-

putational complexity of the above mentioned specific problem and found it to be

NP-hard (Chapter 4, [172]).
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� Analyzed the hardness of approximation: I have carried out an analysis of the

hardness of approximation for the above mentioned specific problem and have pre-

sented inapproximability results for the same (Chapter 4, [173]).

� Adaptation metrics: I have proposed and evaluated six different metrics for the

adaptation problem in adaptive virtual environments (Chapter 7).

� Adaptation heuristics: I have proposed and evaluated fifteen greedy heuristic driven

adaptation algorithms as solutions to the adaptation problem (Chapter 7).

� Adaptation Evaluation: I studied benefits of the adaptation mechanisms made

available by virtual machines connected via virtual networks. I found that for differ-

ent applications the effectiveness of the adaptation mechanisms varied, but overall,

the combined effect was significantly enhanced application performance (Chapter 8).

� Evaluation using applications: I have studied the effectiveness of the adaptation

mechanisms in a physical system in the context of the following two classes of ap-

plication:

– BSP applications: I found that for BSP applications the performance could be

enhanced to up to a factor of two (Chapter 8).

– Multi-tier web sites: I studied the benefits of adaptation in the context of

non-parallel applications, specifically an industry benchmark for multi-tier web

sites. The results indicate that considerable performance gains are possible

(Chapter 8).

� Automatic dynamic run-time optical network reservations: To date very little

work has been done on automatic network reservations based entirely on the ap-

plications needs at run time. I have shown that it is both feasible and relatively
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straightforward to automatically determine the necessary paths and reserve them

appropriately on behalf of un-modified applications running in virtual execution en-

vironments. We showed that this considerably improved application performance

(Chapter 5, [109]).

� Integrated a passive network measurement tool with VNET: I have shown that

it is possible and feasible to monitor the performance of the underlying physical

network by using the application’s own traffic to automatically and cheaply probe it

(Chapter 3 and Appendix B, [74]).

� Virtuoso system simulator: I have designed and implemented a simulator that sim-

ulates the entire Virtuoso system. It comprises of an application execution compo-

nent, an application inference component, a system resource characterization com-

ponent and an adaptation engine that supports plug and play adaptation algorithms.

The simulator is also being used by others to study different variations of the adap-

tation problem (Chapter 8).

� Answer to the question posed in the thesis statement The most important contri-

bution of my work is an answer to the question posed in the thesis statement in my

thesis proposal [168]. I found that a single adaptation scheme with tunable parame-

ters that performs VM migrations based on compute requirements and demands and

modifies the overlay topology and routes to meet latency and bandwidth require-

ments works well for the majority of the application classes studied (seven out of

ten) (Chapter 8).

� Taxonomy of distributed applications: I studied a range of distributed applications

and have presented two taxonomies for the same (Chapter 8).



CHAPTER 9. CONCLUSIONS 275

� A working adaptive system: I have built a working adaptive virtual execution envi-

ronment consisting of virtual machines connected via virtual networks. In addition

to executing applications, it also provides myself and others with a working setup to

experiment and evaluate diverse research ideas related to adaptive virtual environ-

ments. I have also played a part in integrating the different Virtuoso components

into one single working system.

9.2 Related work

In this section we discuss related work in wide-area distributed computing, virtual machine

technology, virtual networks, adaptive overlay networks, virtual machine migration, mea-

surement and inference, adaptation mechanisms and control, feedback based gang schedul-

ing schemes, network reservations and network optimization problems.

9.2.1 Wide-area distributed computing

Recently there has been a great deal of interest in wide area distributed computing, primar-

ily due to the substantial increase in commodity computer and network performance. This

has allowed computational resources geographically distributed under different adminis-

trative domains and connected via wide area networks to be harnessed thus providing the

illusion of a single unified computing resource. This is most commonly known as Grid

computing [55]. Globus provides software infrastructure and services required to construct

a computational grid [54, 56].

Legion is an object-based meta-system developed at the University of Virginia [69].

It provides the software infrastructure for a system of heterogeneous, geographically dis-

tributed high-performance computers to interact seamlessly. WebFlow is a computational

extension of the “web” model that can act as a framework for wide-area distributed com-
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puting [2]. Its main design goal was to build a seamless framework for publishing and

reusing computational modules on the web. NetSolve is a client/server application de-

signed to solve computational science problems in a distributed environment [20]. It

searches for computational resources on the network, chooses the best one available, solves

the problem and returns the answer to the user. Condor is a high throughput computing

environment that can deliver large amounts of processing capacity over long periods of

time by harnessing large collections of distributively owned heterogeneous computing re-

sources.

Much grid middleware and application software is quite complex. Recently, interest

in using OS-level virtual machines as the abstraction for distributed computing has been

growing [52, 62, 76, 97]. Our group made the first detailed case for grid computing on vir-

tual machines [52]. Being able to package a working virtual machine image that contains

the correct operating system, libraries, middleware, and application can make it much eas-

ier to deploy something new, using relatively simple middleware that knows only about

virtual machines. We have been developing a middleware system, Virtuoso, for virtual

machine grid computing [153]. Others have shown how to incorporate virtual machines

into the emerging grid standards environment [102].

In-VIGO is a companion project to Virtuoso run by Prof. José A.B. Fortes and Prof.

Renato Figueiredo at the University of Florida, Gainesville [53]. In-VIGO is a virtual-

ization based grid computing system. It uses virtualization technologies, grid computing

standards and other Internet middleware to create dynamic pools of virtual resources that

can be aggregated on-demand for application-specific user-specific grid-computing [1].

9.2.2 Virtual machine technology

My work builds on operating-system level virtual machines, of which there are essentially

two kinds. Virtual machine monitors, such as VMware [182], IBM’s VM [86], and Mi-
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crosoft’s Virtual Server [127] present an abstraction that is identical to a physical machine.

For example, VMWare, which we use, provides the abstraction of an Intel IA32-based PC

(including one or more processors, memory, IDE or SCSI disk controllers, disks, network

interface cards, video card, BIOS, etc.) On top of this abstraction, almost any existing PC

operating system and its applications can be installed and run. The overhead of this emu-

lation can be made to be quite low [52, 164]. Our work is also applicable to virtual server

technology such as UML [32], Ensim [46], Denali [184], and Virtuozzo [181]. Here, exist-

ing operating systems are extended to provide a notion of server id (or protection domain)

along with process id. Each OS call is then evaluated in the context of the server id of the

calling process, giving the illusion that the processes associated with a particular server id

are the only processes in the OS and providing root privileges that are effective only within

that protection domain. In both cases, the virtual machine has the illusion of having net-

work adaptors that it can use as it sees fit, which is the essential requirement of our work.

VNET, without modification, has been successfully used with User Mode Linux [32] and

the VServer extension to Linux [112].

9.2.3 Virtual networks

The Stanford Collective is seeking to create a compute utility in which “virtual appli-

ances” (virtual machines with task-specialized operating systems and applications that are

intended to be easy to maintain) can be run in a trusted environment [62, 145]. Part of the

Collective middleware is able to create “virtual appliance networks” (VANs), which essen-

tially tie a group of virtual appliances to an Ethernet VLAN. My work is similar in that I

also, in effect, tie a group of virtual machines together as a LAN. However, my work differs

in that the collective middleware attempts also to solve IP address and routing, while we

remain completely at the link layer and push this administration problem back to the user’s

site. Another difference is that I target the wide area environment in which remote sites
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are not under our administrative control. Hence, we make the administrative requirements

at the remote site extremely simple and focused almost entirely on the machine that will

host the virtual machine. Finally, because the nature of the applications and networking

hardware in grid computing tend to be different (parallel scientific applications running

on clusters with very high speed wide area networks) from virtual appliances, the nature

of the adaptation problems and the exploitation of resource reservations made possible by

VNET are also different. However, I should point out that one adaptation mechanism that

I have used, migration, has been extensively studied by the Collective group [147].

Perhaps closest to VNET is that of Purdue’s SODA project, which aims to build a

service-on-demand grid infrastructure based on virtual server technology [97] and virtual

networking [98]. Similar to VANs in the Collective, the SODA virtual network, VIOLIN,

allows for the dynamic setup of an arbitrary private link layer and network layer virtual

network among virtual servers. In contrast, VNET works entirely at the link layer and with

the more general virtual machine monitor model. Furthermore, our model has been much

more strongly motivated by the need to deal with unfriendly administrative policies at

remote sites and to perform adaptation and exploit resource reservations. I have conducted

a detailed performance analysis for VNET such results currently do not exists, to the best

of our knowledge, for VAN or VIOLIN.

IPOP [59] is a system that leverages P2P technology in a different way than its tradi-

tional use. In the past, P2P networks have been built for specific applications. IPOP allows

for the creation of virtual IP networks on top of a P2P network. ViNE [179] on the other

hand, builds IP overlays on top of the Internet. Its operation is similar to that of traditional

VPNs, but solves some of the issues with traditional VPNs such as the VPN firewall re-

quiring a static publicly visible IP address. VNET differs fundamentally from IPOP and

ViNE in that it operates at the Ethernet level. VNET provides the abstraction of a virtual

LAN, while IPOP and ViNE both build virtual IPs on top of P2P networks and IP Internet
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respectively.

VNET is a virtual private network (VPN [48, 66, 92]) that implements a virtual local

area network (VLAN [87]) spread over a wide area using link layer tunneling [177].

9.2.4 Adaptive overlay networks

I have extended VNET to act as an adaptive overlay network [3, 18, 83, 94] for virtual

machines as opposed to for specific applications. The adaptation problems introduced are

in some ways generalizations (because we have control over machine location as well as

the overlay topology and routing) of the problems encountered in the design of and routing

on overlays [152]. Further, VNET allows us to modify the overlay topology among a

user’s VMs at will. A key difference between it and overlay work in the application layer

multicast community [8, 12, 84] is that the VNET provides global control of the topology,

which our adaptation algorithms currently (but not necessarily) assume.

WOW is a distributed system that combines virtual machine, overlay networking and

peer-to-peer techniques to create scalable wide-area networks of virtual workstations for

high-throughput computing [60]. WOW’s approach to adaptation is fundamentally differ-

ent than VNET’s in that nodes join and leave the overlay in a decentralized, self-organizing

fashion. Virtuoso’s control system is centralized and adaptation instructions are issued

from this centralized location.

9.2.5 Virtual machine migration

Virtuoso allows us to migrate a VM from one physical host to another. Much work ex-

ists that demonstrates that fast migration of VMs running commodity applications and

operating systems is possible [107, 134, 137, 146], including live migration schemes with

downtime on the order of a few seconds [25]. As migration times decrease, the rate of

adaptation we can support and our work’s relevance increases. Note that while process
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migration and remote execution has a long history [41, 128, 161, 176, 193], to use these fa-

cilities, we must modify or relink the application and/or use a particular OS. Neither is the

case with VM migration. Although Virtuoso supports plug-in migration schemes, of which

we have implemented copy using SSH, synchronization using rsync [178], and migration

by transferring redo logs in a versioning file system [29]. In my work up till now, I have

used rsync. I have still not decided as to the migration mechanism that I will use in my

thesis.

9.2.6 Measurement and inference

At a very high level we adapt the application to the network and in the case of network

reservations adapt the network to the application. In either case we need to have some

means of inferring the application demands and measuring the underlying network.

I use the Virtual Topology and Traffic Inference Framework (VTTIF), developed by my

fellow graduate student, Ashish Gupta [71]. VTTIF integrates with VNET to automatically

infer the dynamic topology and traffic load of applications running inside the VMs in the

Virtuoso system. There are many well known mechanisms to measure available compute

rate of the hosts [34, 124, 189].

There is abundant work that suggests that underlying network measurements can be

accomplished within or without the virtual network using both active [148, 190] and pas-

sive techniques [118, 150, 194]. In joint work, I have shown that the naturally occurring

traffic of an existing, unmodified application running in VMs can be used to measure the

underlying physical network [73].

9.2.7 Adaptation mechanisms and control

An application running in some distributed computing environment must adapt to the (dy-

namically changing) available computational and networking resources to achieve stable
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high performance. Over the years there have been numerous attempts at adaptation in

different settings such as load balancing in networks of shared processors [30, 78, 188],

solutions to workflow problems, component placement problems and support for heavy-

weight applications in computational grids [13, 103, 116], adaptation, load balancing and

fault tolerance in message passing and parallel processing systems spread over heteroge-

neous resources [5, 68, 117, 154], distributed mobile applications [133], automated runtime

tuning systems [174] and extensions to commercial standards such as CORBA [196].

Despite these efforts adaptation and control mechanisms are not common in today’s

distributed computing environments as most of the approaches are very application-specific

and require considerable user or developer effort. We have shown that adaptation using

the low-level, application-independent adaptation mechanisms made possible by virtual

machines interconnected with a virtual network is highly effective [109, 167, 171]. Fur-

thermore, our adaptation mechanisms can be controlled automatically without developer

or user help.

9.2.8 Feedback-based gang scheduling

Our work in Chapter 6 ties to gang scheduling, implicit co-scheduling, real-time sched-

ulers, and feedback control real-time scheduling. As far as we aware, we are the first to

develop real-time techniques for scheduling parallel applications that provide performance

isolation and control. We also differ from these areas in that we show how external control

of resource use (by a cluster administrator, for example) can be achieved while maintain-

ing commensurate application execution rates. That is, we can reconcile administrator and

user concerns.

The goal of gang scheduling [95, 135] is to “fix” the blocking problems produced by

blindly using time-sharing local node schedulers. The core idea is to make fine-grain

scheduling decisions collectively over the whole cluster. For example, one might have
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all of an application’s threads be scheduled at identical times on the different nodes, thus

giving many of the benefits of space-sharing, while still permitting multiple applications

to execute together to drive up utilization, and thus allowing jobs into the system faster.

In essence, this provides the performance isolation we seek, while performance control

depends on scheduler model. However, gang scheduling has significant costs in terms

of the communication necessary to keep the node schedulers synchronized, a problem

that is exacerbated by finer grain parallelism and higher latency communication [100]. In

addition, the code to simultaneously schedule all tasks of each gang can be quite complex,

requiring elaborate bookkeeping and global system knowledge [162].

Implicit co-scheduling [6] attempts to achieve many of the benefits of gang schedul-

ing without scheduler-specific communication. The basic idea is to use communication

irregularities, such as blocked sends or receives, to infer the likely state of the remote,

uncoupled scheduler, and then adjust the local scheduler’s policies to compensate. This is

quite a powerful idea, but it does have weaknesses. In addition to the complexity inherent

in inference and adapting the local communication schedule, the approach also doesn’t re-

ally provide a straightforward way to control effective application execution rate, response

time, or resource usage.

The feedback control real-time scheduling project at the University of Virginia [23,

119, 120, 160] had a direct influence on our thinking in Chapter 6. In that work, concepts

from feedback control theory were used to develop resource scheduling algorithms to give

quality of service guarantees in unpredictable environments to applications such as online

trading, agile manufacturing, and web servers. In contrast, we are using concepts from

feedback control theory to manage a tightly controlled environment, targeting parallel ap-

plications with collective communication.

There are a wide range of implementations of periodic real-time schedulers [24, 43,

99, 132, 138], including numerous kernel extensions for Linux [42, 81, 88, 149, 192]. The
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theory of periodic real-time scheduling dates to the 70s [115].

9.2.9 Network reservations

Much work has been done on simulating distributed applications and their communication

behavior. Tools such as GridSim [165], SimGrid [21], and Prophesy [175] were developed

by the grid community to model an application’s behavior with the goal of understanding

its computational and communication requirements. Using these models network reserva-

tions can be made before the application starts, using simulation results as predictors for

network traffic requirements. Our system of Chapter 5 provides a true run-time reservation

service that does not require any application simulations. Our system also alleviates the

requirement that the user explicitly request advance reservations on behalf of the applica-

tion.

Run-time adaptation of optical networks to ISP level traffic has been previously demon-

strated [64]. Our work takes place at the opposite end of the spectrum; we measure and

adapt for individual applications. The other work also treats the optical network as a closed

topology, most often seen in the backbone infrastructure of large ISPs. The network topol-

ogy was modified to reach an optimized state by measuring flow characteristics over the

entire ISP. Our project complements this work because we simply make reservations on an

optical network and do not care about the physical topology, so long as our bandwidth and

latency requirements are met, while their work demonstrates a method of optimizing the

physical topology to better meet collective demands.

Advance reservations [158] can be incorporated into optical and other kinds of net-

works to enhance application and network performance. VRESERVE can easily coexist

with advance reservations because on-demand reservation requests are a special case of

advance reservations [50]. An early version of VRESERVE specifically targeted operation

with deferred reservation requests. While VRESERVE is able to accept deferred reserva-
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tions, it is unable to make advance reservation decisions as it would have to predict, not

just measure, application demands, a service that we have not yet developed

To the best of our knowledge no previous work exists that demonstrates on-demand

run-time reservations for unmodified applications. Our system alleviates the need for ap-

plication developers and/or users to directly interface with the reservation system. Reser-

vation requests are made at run time and are dependent on the applications current com-

munication requirements.

9.2.10 Network optimization problems

I have formulated the generic adaptation problem in virtual environments that aims to

maximize the sum of the residual bottleneck bandwidths over all the mapped paths. A

lot of related work exists in optimizing network flows. The closest work to mine is the

unsplittable-flow problem (UFP) [104]. One of the motivations for formulating UFP is

to address the problem of allocating bandwidth for traffic with different bandwidth re-

quirements in heterogeneous networks. The UFP is MAXSNP-hard [75]. Approxima-

tion algorithms for the UFP and related problems have been presented in several prior

works [10, 75, 104, 106]. Kleinberg [104] provides a comprehensive background on these

problems. Baveja and Srinivasan [10] provided a O ��� m � , where m is the number of edges

in the graph, approximate algorithm by an LP-based algorithm. Azar and Regev [7] gave

a simpler, combinatorial algorithm with the same approximation guarantee. Kolliopoulos

and Stein [106] presented the first nontrivial approximation, O � logm � m � , for a more gen-

eral version of the UFP in which each request has an associated profit pi and the goal is to

maximize the total profit of accepted requests (UFP with profits). Further, my adaptation

problem also has a strong connection to parallel task graph mapping problems [14, 108].

To the best of my knowledge no prior theoretical works exists that includes both the map-

ping and network flow components.
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9.3 Future work

This dissertation describes the design, implementation and evaluation of automatic, run-

time and dynamic adaptation of un-modified applications executing in virtualized dis-

tributed computing environments. At a high level we intend to build upon this dissertation

by generalizing Virtuoso to be applicable to an even larger class of applications than it

already is.

9.3.1 Making VNET faster

As detailed in this dissertation, VNET has no virtualization overhead in a 100Mbit LAN

environment and that it only slightly trails the leading commercial virtual network soft-

ware. However, both VNET and commercial softwares significantly lag behind the per-

formance of the raw hardware couple with standard software such as TCP/IP. There are a

number of applications which demand throughput in Gigabytes as opposed to Megabytes,

for Virtuoso to be applicable in such environments, it is essential that we further increase

VNET’s performance. It should be noted that currently VNET operates completely at user

level. We can significantly speed up VNET by moving the forwarding core of VNET into

the Linux kernel on the host to avoid context switches in their entirety. Another direction

to explore would be writing a device driver for use inside the VM that will more efficiently

deliver data to VNET.

9.3.2 Uncoupling application component schedules

Another direction of future work is to generalize the global controller in our feedback based

control system. In our current design, we make the assumption that each component of an

application has the same CPU utilization in the absence of any scheduling. However, there

are many applications such as the NAS benchmarks, wherein, the different application
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components have different CPU utilizations. We are currently designing a system in which

the global controller is given the freedom to set a different schedule on each node thus

making our control system more flexible.

9.3.3 Widening the scope of adaptation

This dissertation studies automatic, run-time and dynamic adaptation. But as we reported

this scheme, though applicable to a range of application classes, is not applicable to all

application classes. It would be interesting to study if involving the user in the adaptation

loop will help solve problems that are suitably targeted by automatic adaptations. In such

a scenario the adaptation would be driven by the user. In this model it is the user who

gives feedback to the application and directs the control system. Lin et al. have done some

preliminary work to study the effectiveness of user (human) driven adaptation [36, 72, 110,

121].

There already exists a large class of distributed applications which have an adaptation

engine built into it. For the wide-spread adoption of automatic adaptation, there has to be

some means of reconciling the adaptive system with the orchestrated applications. This is a

very challenging problem, but one that has to be faced and solved. One possible approach

to this problem is to open up a dialog between the two, in particular to provide some

means for the adaptive system to provide monitoring data to the application. Further, the

application will also need to be provided with some means of telling the adaptive system

to not perform adaptation on its behalf.

9.3.4 Combinatorially approximate solutions

Another direction is to explore combinatorially approximate algorithms with a view to im-

proving the adaptation quality while reducing the algorithm computational time. What is

missing in the greedy heuristic solutions proposed in this chapter, is some form of perfor-
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mance guarantees. It would be interesting to explore efficient approximate solutions for

which we can provide some performance guarantees.

9.3.5 Constraint-based approach to adaptation

Another approach to adaptation is to create a constraint based hierarchical system wherein

the application provides all the constraint and the system attempts to either meet the same

or notify the application upon failure. Intel Corporation is currently designing such a

system [15, 90]. Such an approach creates a trade-off between the ease of feasibility of

adaptation versus the benefits obtained from performing the adaptations.
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Appendix A

VTTIF: Topology and Traffic Inference

The Virtual Topology and Traffic Inference Framework integrates with VNET to automati-

cally infer the dynamic topology and traffic load of applications running inside the VMs in

the Virtuoso system. In earlier work [70], Gupta et al. have demonstrated that it is possible

to successfully infer the behavior of a BSP application by observing the low level traffic

sent and received by each VM in which it is running. Here we describe how VTTIF’s

reactions can be smoothed such that adaptation decisions made on its output cannot lead

to oscillations.

A.1 Operation

VTTIF works by examining each Ethernet packet that a VNET daemon receives from a

local VM. VNET daemons collectively aggregate this information producing a global traf-

fic matrix for all the VMs in the system. The application topology is then recovered from

this matrix by applying normalization and pruning techniques [70]. Since the monitoring

is done below the VM, it does not depend on the application or the operating system in any

manner. VTTIF automatically reacts to interesting changes in traffic patterns and reports

them, driving the adaptation process. Figure A.1 illustrates VTTIF.

VTTIF can accurately recover common topologies from both synthetic and application
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Figure A.1: An overview of the dynamic topology inference mechanism in VTTIF.

Figure A.2: The NAS IS benchmark running on 4 VM hosts as inferred by VTTIF.



APPENDIX A. VTTIF: TOPOLOGY AND TRAFFIC INFERENCE 308

benchmarks like the PVM-NAS benchmarks. For example, Figure A.2 shows the topology

inferred by VTTIF from the NAS benchmark Integer Sort [186] running on VMs. The

thickness of each link reflects the intensity of communication along it. VTTIF adds little

overhead to VNET. Latency is indistinguishable while throughput is affected by E 1%.

A.2 Performance

VTTIF runs continuously, updating its view of the topology and traffic load matrix among

a collection of Ethernet addresses being supported by VNET. However, in the face of

dynamic changes, natural questions arise: How fast can VTTIF react to topology change?

If the topology is changing faster than what VTTIF can react to, will it oscillate or provide

a damped view of the different topologies? VTTIF also depends on certain configuration

parameters which affect its decision whether the topology has changed. How sensitive is

VTTIF to the choice of configuration parameters in its inference algorithm?

The reaction time of VTTIF depends on the rate of updates from the individual VNET

daemons. A fast update rate imposes network overhead but allows a finer time granularity

over which topology changes can be detected. In the current VTTIF implementation, at

the fastest, these updates arrive at a rate of 20 Hz. At the Proxy, VTTIF then aggregates

the updates into a global traffic matrix. To provide a stable view of dynamic changes, it

applies a low pass filter to the updates, aggregating the updates over a sliding window and

basing its decisions upon this aggregated view.

Whether VTTIF reacts to an update by declaring that the topology has changed depends

on the smoothing interval and the detection threshold. The smoothing interval is the sliding

window duration over which the updates are aggregated. This parameter depends on the

adaptation time of VNET, which is measured at startup, and determines how long a change

must persist before VTTIF notices. The detection threshold determines if the change in
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Figure A.3: VTTIF is well damped.

the aggregated global traffic matrix is large enough to declare a change in topology. After

VTTIF determines that a topology has changed, it will take some time for it to settle,

showing no further topology changes. The best case settle time measured is one second,

on par with the adaptation mechanisms.

Given an update rate, smoothing interval, and detection threshold, there is a maximum

rate of topology change that VTTIF can keep up with. Beyond this rate, VTTIF has been

designed to stop reacting, settling into a topology that is a union of all the topologies that

are unfolding in the network. Figure A.3 shows the reaction rate of VTTIF as a function

of the topology change rate and shows that it is indeed well damped. Here, the scenario

is that that application’s communication rapidly keeps switching between two seperate

topologies. When this topology change rate exceeds VTTIF’s configured rate, the reported

change rate settles and declines. The knee of the curve depends on the choice of smoothing

interval and update rate, with the best case being E 1 second. Up to this limit, the rate and
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Figure A.4: VTTIF is largely insensitive to the detection threshold.

interval set the knee according to the Nyquist criterion.

VTTIF is largely insensitive to the choice of detection threshold, as shown in Fig-

ure A.4. However, this parameter does determine the extent to which similar topologies

can be distinguished. Note that appropriate settings of the VTTIF parameters are deter-

mined by the adaptation mechanisms, not the application.
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Appendix B

Wren online: Network resource
measurment

In this chapter we describe Wren, watching resources from edge of the network, a passive

network measurement tool. Wren was developed by Zangrilli et al. at the College of

William and Mary. Wren has been successfully integrated with Virtuoso [73].

Many applications adapt to network performance simply by observing the throughput

of their own network connections. VNET’s natural abstraction of the underlying network

makes such application-level adaptation more difficult because the application cannot ac-

curately determine which network resources are in use. However, VNET is in a good

position to observe an application’s traffic itself. Because VNET does not alter that traffic,

however, it can only observe the amount of traffic naturally generated by the application.

Since there are many applications with potentially bursty and irregular communication

patterns, these applications will not generate enough traffic to saturate the network and

provide useful information on the current bandwidth achievable on the network.

Watching Resources from the Edge of the Network (Wren) is designed to passively

monitor applications’ network traffic and use those observations to determine the available

bandwidth along the network paths used by the application. The key observation beind

Wren is that even when the application is not saturating the network it is sending bursts
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Figure B.1: Wren architecture.

of traffic that can be used to measure the available bandwidth of the network. A good

example of such an application is a typical scientific computing BSP-style application that

sends short messages at regular intervals. Even though the application is not using all of

the available bandwidth, we can determine the available bandwidth along that path and use

that information to guide adaptation.

The Wren architecture is shown in Figure B.1. The key feature Wren uses is kernel-

level packet trace collection. These traces allow precise timestamps of the arrival and

departure of packets on the machines. The precision of the timestamps is crucial because

the passive available bandwidth algorithm relies on observing the behavior of small groups

of packets on the network. A user-level component collects the traces from the kernel.

Run-time analysis determines available bandwidth and the measurements are reported to
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other applications through a SOAP interface. Alternatively, the packet traces can be filtered

for useful observations and transmitted to a remote repository for analysis.

The key observation behind Wren is that even when the application is not saturating the

network, it is sending bursts of traffic that can be used to measure the available bandwidth

of the network.

The analysis algorithm used by Wren is based on the self-induced congestion (SIC) al-

gorithm [139, 143]. Active implementations of this algorithm generate trains of packets at

progressively faster rates until increases in one-way delay are observed, indicating queues

building along the path resulting from the available bandwidth being consumed. A similar

analysis is applied to passively collected traces, but the key challenge is identifying appro-

priate trains from the stream of packets generated by the TCP sending algorithm. ImTCP

integrates an active SIC algorithm into a TCP stack, waiting until the congestion window

has opened large enough to send an appropriate length train and then delaying packet trans-

missions until enough packets are queued to generate a precisely spaced train [123]. Wren

avoids modifying the TCP sending algorithm, and in particular delaying packet transmis-

sion.

The challenge Wren addresses compared to ImTCP and other active available band-

width tools is that Wren must select from the data naturally available in the TCP flow.

Although Wren has less control over the trains and selects shorter trains than would delib-

erately be generated by active probing, over time the burstiness of the TCP process pro-

duces many trains at a variety of rates [96, 151], thus allowing bandwidth measurements

to be made. There are elements in common with TCP Vegas, Westwood, and FastTCP,

but those approaches deliberately increase the congestion window until one-way delay

increases, whereas we do not require the congestion window to expand until long-term

congestion is observed and can detect congestion using bursts at slower average sending

rates.



APPENDIX B. WREN ONLINE: NETWORK RESOURCE MEASURMENT 314

B.1 Online analysis

Wren’s general approach, collection overhead, and available bandwidth algorithm have

been presented and analyzed in previous papers [194, 195]. Wren has negligible effect on

throughput, latency, or CPU consumption when collecting packet header traces. To sup-

port Virtuoso’s adaptation, however, two changes are required. First, previous implemen-

tations of Wren relied on offline analysis. We describe here the online analysis algorithm

used to report available bandwidth measurements using a SOAP interface. Second, Wren

has previously used fixed-size bursts of network traffic. The new online tool scans for

maximum-sized trains that can be formed using the collected traffic. This approach results

in more measurements taken from less traffic.

The online Wren groups outgoing packets into trains by identifying sequences of pack-

ets with similar interdeparture times between successive pairs. The tool searches for

maximal-length trains with consistently spaced packets and calculates the initial sending

rate (ISR) for those trains. After identifying a train, the ACK return rate for the matching

ACKs is calculated. The available bandwidth is determined by observing the ISR at which

the ACKs show an increasing trend in the RTTs, indicating congestion on the path. This

algorithm has been previously described in more detail [195].

The first step in the one-sided algorithm is to group packets into trains. The relationship

between the interdeparture times of sequential data packets is then analyzed. If interde-

parture times of successive pairs are similar, then the packets are departing the machine at

approximately the same rate. Let ∆0 be the interdeparture time between data packets 0 and

1. To form a train, the interdeparture times ∆i between each successive pair of packets i

and i
�

1 in the train must satisfy the requirement that mini � log � ∆i � � � max j � log � ∆ j � � � α,

essentially requiring consistent spacing between the packets. For these experiments, we ac-

cepted trains where α � 1. Because of the bursty transmission of packets within any TCP
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flow [151], interdeparture times typically vary by several orders of magnitude even during

bulk data transfers, therefore this approach selects only the more consistently spaced bursts

as valid trains. A minimum length of 7 packets is imposed for valid trains.

The first step in processing a train is to use a pairwise comparison test to determine the

trend in the RTTs of the packets in that train. If � i : RT Ti � RT Ti � 1 then the train has an

increasing trend. Otherwise, the train trend is labeled as non-increasing. Next, the initial

sending rate (ISR) is calculated by dividing the total number of bits in the train by the

difference between the end time and the start time. If the train has a non increasing trend,

it is known that the train ISR did not cause queuing on the path. Therefore, the ISR is

reported as the lower bound available bandwidth measurement when the trend of the train

is non increasing. Conversely, if a train presents an increasing trend, its ISR is an upper

bound for the available bandwidth.

All available bandwidth observations are passed to the Wren observation thread. The

observation thread provides a SOAP interface that clients can use to receive the stream of

measurements produced using application traffic. Because the trains are short and repre-

sent only a singleton observation of an inherently bursty process, multiple observations are

required to converge to an accurate measurement of available bandwidth.

B.2 Performance

The variable train-length algorithm was evaluated in a controlled-load/controlled latency

testbed environment because validating measurements on real WANs is difficult due to

the lack of access to router information in the WAN. For this experiment, iperf generated

uniform CBR cross traffic to regulate the available bandwidth, changing at 20 seconds and

stopping at 40 seconds, as shown by the dashed line of Figure B.2.

The application traffic monitored sent 20 200KB messages with 0.1 second inter-
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Figure B.2: Wren measurements reflect changes in available bandwidth even when the
monitored application’s throughput does not consume all of the available bandwidth.
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Figure B.3: Wren measurements from monitoring application on simulated WAN accu-
rately detect changes in available bandwidth. The cross traffic in the testbed is created by
on/off TCP generators.
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message spacings, paused 2 seconds, 10 500KB messages with 0.1 second inter-message

spacings, paused 2 seconds, and then sent 10 4MB messages with .1 second inter-message

spacings. This pattern was repeated twice followed by 500KB messages sent with random

inter-message spacings. The throughput achieved is shown by the solid line of Figure B.2.

In the first 40 seconds of Figure B.2, it can be seen that the throughput of the traffic gen-

erator varies according to the size of message being sent. The last 5 seconds of this graph

show that the throughput of the generator also depends on the inter-message spacings.

Figure B.2 shows that the algorithm produces accurate available bandwidth measurements

even when the throughput of the application being monitored is not saturating the available

bandwidth, as seen particularly well at the beginning and 20 seconds into the trace. The

reported available bandwidth includes that consumed by the application traffic used for the

measurement.

In the next experiment, a WAN environment was simulated using Nistnet to increase the

latencies that the cross traffic and monitored application traffic experienced on the testbed.

The on/off TCP traffic generators were used to create congestion on the path, with Nistnet

emulating latencies ranging from 20 to 100ms and bandwidths from 3 to 25Mbps for the

TCP traffic generators. The application traffic that was monitored sent 700K messages with

0.1 second inter-message spacing, with Nistnet adding a 50ms RTT to that path. SNMP

was used to poll the congested link to measure the actual available bandwidth. Figure

B.3 demonstrates how the Wren algorithm can measure the available bandwidth of larger

latency paths with variable cross traffic.

It has been shown that online Wren can accurately measure available bandwidth by

monitoring application traffic that does not consume all of the available bandwidth. Fur-

thermore, Wren can be used to monitor available bandwidth on low latency LANs or high

latency WANs [73].

A fixed-rate UDP stream is generated that shares the same link as the traffic between
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Figure B.4: The results of applying the Wren to bursty traffic generated on a testbed with
a controlled level of available bandwidth.

the machines. iperf is used to generate TCP traffic on this link, reporting its throughput at 1

second intervals. Figure B.4 illustrates the resulting observations. Wren is able to measure

the available bandwidth on the link throughout the experiment regardless of whether iperf

is currently saturating the link.

B.3 Monitoring VNET application traffic

To validate the combination of Wren monitoring an application using VNET a simple BSP-

style communication pattern generator was executed. Figure B.5 shows the results of this

experiment, with the throughput achieved by the application during its bursty communica-

tion phase and Wren’s available bandwidth observations. Although the application never

achieved significant levels of throughput, Wren was able to measure the available band-

width. Validating these results across a WAN is difficult, but iperf achieved approximately

24Mbps throughput when run following this experiment, which is in line with the expecta-
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Figure B.5: Wren observing a neighbor communication pattern sending 200K messages
within VNET.

tions based on Wren’s observations and the large number of connections sharing W&M’s

150Mbps Abilene connection.


