
Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia, USA, June 14-19, 2009

978-1-4244-3553-1/09/$25.00 ©2009 IEEE

Evolution of Recollection and Prediction in Neural Networks

Ji Ryang Chung, Jaerock Kwon, and Yoonsuck Choe

Abstract— A large number of neural network models are
based on a feedforward topology (perceptrons, backpropagation
networks, radial basis functions, support vector machines, etc.),
thus lacking dynamics. In such networks, the order of input
presentation is meaningless (i.e., it does not affect the behavior)
since the behavior is largely reactive. That is, such neural
networks can only operate in the present, having no access to
the past or the future. However, biological neural networks are
mostly constructed with a recurrent topology, and recurrent
(artificial) neural network models are able to exhibit rich
temporal dynamics, thus time becomes an essential factor in
their operation. In this paper, we will investigate the emergence
of recollection and prediction in evolving neural networks.
First, we will show how reactive, feedforward networks can
evolve a memory-like function (recollection) through utilizing
external markers dropped and detected in the environment.
Second, we will investigate how recurrent networks with more
predictable internal state trajectory can emerge as an eventual
winner in evolutionary struggle when competing networks with
less predictable trajectory show the same level of behavioral
performance. We expect our results to help us better under-
stand the evolutionary origin of recollection and prediction in
neuronal networks, and better appreciate the role of time in
brain function.

I. INTRODUCTION

Many neural network models are based on a feedforward
topology (perceptrons, backpropagation networks, radial ba-
sis functions, support vector machines, etc.), thus lacking
dynamics (see [1], and selective chapters in [2]). In such
networks, the order of input presentation is meaningless (i.e.,
it does not affect the behavior) since the behavior is largely
reactive. That is, such neural networks can only operate in the
present, having no access to the past or the future. However,
biological neural networks are mostly constructed with a
recurrent topology (e.g., the visual areas in the brain are not
strictly hierarchical [3]). Furthermore, recurrent (artificial)
neural network models are able to exhibit rich temporal
dynamics [4], [5], [6]. Thus, time becomes an essential factor
in neural network operation, whether it is natural or artificial
(also see [7], [8], [9], [10]).

Our main approach in here is to investigate the emergence
of recollection and prediction in evolving neural networks.
Recollection allows organism to connect with its past, and
prediction with its future. If time was not relevant to the
organism, it would always live in the eternal present.

First, we will investigate the evolution of recollection. We
will see how reactive, feedforward networks can evolve a
memory-like function (recollection), through utilizing exter-
nal markers dropped and detected in the environment. In this

Ji Ryang Chung, Jaerock Kwon, and Yoonsuck Choe are with the
Department of Computer Science and Engineering, Texas A&M Uni-
versity, 3112 TAMU College Station, TX 77843-3112, USA email: jrk-
won@tamu.edu,jchung@cs.tamu.edu,choe@tamu.edu

part, we trained a feedforward network using neuroevolution,
where the network is allowed to drop and detect markers in
the external environment. Our hypothesis is that this kind
of agents could have been an evolutionary bridge between
purely reactive agents and fully memory-capable agents. The
network is tested in a falling-ball catching task inspired by
[6], [11], where an agent with a set of range sensors is
supposed to catch multiple falling balls. The trick is that
while trying to catch one ball, the other ball can go out
of view of the range sensors, thus requiring some sort of
memory to be successful. Our results show that even feed-
forward networks can exhibit memory-like behavior if they
are allowed to conduct some form of material interaction,
thus closing the loop through the environment (cf. [12]).
This experiment will allow us to understand how recollection
(memory) could have evolved.

Second, we will examine the evolution of prediction. Once
the recurrent topology is established, how can predictive
function evolve, based on the recurrent network’s recollective
(memory-like) property? For this, we trained a recurrent
neural network in a 2D pole-balancing task [13], again
using neuroevolution (cf. [14], [15], [16]). Here, the agent
is supposed to balance an upright pole while moving in an
enclosed arena. This task, due to its more dynamic nature,
requires more predictive power to be successful than the sim-
ple ball-catching task. Our main question here was whether
individuals with a more predictable internal state trajectory
have a competitive edge over those with less predictable
trajectory. We partitioned high-performing individuals into
two groups (i.e., they have the same behavioral performance),
those with high internal state predictability and those with
low internal state predictability. It turns out that individuals
with highly predictable internal state have a competitive edge
over their counterpart when the environment poses a tougher
problem [17].

In sum, our results suggest how recollection and prediction
may have evolved. We expect our results to help us better
understand the evolutionary origin of recollection and pre-
diction in neuronal networks, and better appreciate the role
of time in neural network models. The rest of the paper is
organized as follows. Sec. II presents the method and results
from the recollection experiment, and Sec. III, those from
the prediction experiment. We will discuss interesting points
arising from this research (Sec. IV), and conclude our paper
in Sec. V.

II. PART I: EVOLUTION OF RECOLLECTION

In this section, we will investigate how memory-like be-
havior can evolve in a reactive, feedforward network. Below,
we will describe the ball catching task, and the explain in

571

detail our neuroevolution methods for the learning compo-
nent. Next, we will present the details of our experiments
and the outcomes.

A. Task: Catching Falling Balls

The main task for this part was the falling ball catching
task, inspired by [6], [11]. The task is illustrated in Fig. 1.
See the figure caption for details. The task is simple enough,
yet includes interesting dynamic components and temporal
dependency. The horizontal locations of the balls are on
the two different sides (left or right) of the agent’s initial
position. Between the left and right balls, one is randomly
chosen to have faster falling speed (2 times faster than
the other). The exact locations are randomly set with the
constraint that they must be separated far enough to guarantee
that the slower one must go out of the sensor range as the
agent moves to catch the faster one. For example, as shown in
Fig. 1C, when there are multiple balls to catch and when the
balls are falling at different speeds, catching one ball (usually
the faster one) results in the other ball (the slower one) going
out of view of the range sensors. Note that both the left-
left or right-right ball settings cannot preserve the memory
requirement of the task. The vertical location, ball speed, and
agent speed are experimentally chosen to guarantee that the
trained agent can successfully catch both balls. In order to
tackle this kind of situation, the controller agent needs some
kind of memory.

The learning of connection weights of the agents is
achieved by genetic search where the fitness for an agent is
set inversely proportional to the sum of horizontal separations
between itself and each ball when the ball hits the ground.
10 percent of the best-performing agents in a population
are selected for 1-point crossover with probability 0.9 and
a mutation with the rate 0.04.

A
B C

D E

B1

speed = 1

B2

speed = 2

agent

5 distance sensors

θ

Fig. 1. Ball Catching Task. An illustration of the ball catching task is
shown. The agent, equipped with a fixed number of range sensors (radiating
lines), is allowed to move left or right at the bottom of the screen while
trying to catch balls falling from the top. The goal is to catch both balls. The
balls fall at different speeds, so a good strategy is to catch the fast-falling
ball first (B and C) and then the go back and catch the slow one (D and
E). Note that in C the ball on the left is outside of the range sensors’ view.
Thus, a memory-less agent would stop at this point and fail to catch the
second ball.

B. Methods

In order to control the ball catcher agents, we used feedfor-
ward networks equipped with external marker droppers and
detectors (Fig. 2, we will call this the “dropper network”).
The agent had five range sensors that signal the distance to
the ball when the ball comes into contact within the direct
line-of-sight of the sensors. We used standard feedforward
networks with sigmoidal activation units as a controller (see
e.g., [2]):

Hj = σ

(
Nin∑
i=1

vjiIi

)
j = 1, ..., Nhid

Ok = σ

Nhid∑
j=1

wkjHj

 k = 1, ..., Nout (1)

where Ii, Hj and Ok are the activations of the i-th input,
j-th hidden, and k-th output neurons; vji the input-to-hidden
weights and wkj the hidden-to-output weights; σ(·) the
sigmoid activation function; and Nin, Nhid, and Nout are the
number of input, hidden, and output neurons whose values
are 7, 3, and 3 respectively.

The network parameters were tuned using genetic algo-
rithms, thus the training did not involve any gradient-based
adaptation. Two of the output units were used to determine
the movement of the agent. If the agent was moved one
step to the left when O1 > O2, one step to the right when
O1 < O2, and remained in the current spot when O1 = O2.

If these were the only constructs in the controller, the
controller will fail to catch multiple balls as in the case
depicted in Fig. 1C. In order to solve this kind of problem, a
fully recurrent network is needed, but from an evolutionary
point of view, going from a feedforward neural circuit to a
recurrent neural circuit could be nontrivial, thus our question
was what could have been an easier route to memory-like
behavior, without incurring much evolutionary overhead.

Our answer to this question is illustrated in Fig. 2. The ar-
chitecture is inspired by primitive reactive animals that utilize
self-generated chemical droppings (excretions, pheromones,
etc.) and chemical sensors [18], [19], [20]. The idea is
to maintain the reactive, feedforward network architecture,
while adding a simple external mechanism that would incur
only a small overhead in terms of implementation. As shown
in Fig. 2, the feedforward network has two additional inputs
for the detection of the external markers dropped in the
environment, to the left or to the right (they work in a similar
manner as the range sensors, signaling the distance to the
markers). The network also has one additional output for
making a decision whether to drop an external marker or
not.

As a comparison, we also implemented a fully recurrent
network, with multiple levels of delayed feedback into the
hidden layer. (See [4], [5] for details.) This network was used
to see how well our dropper network does in comparison to
a fully memory-equipped network.

572

I
1

if O3 > θ,

DropMarker = True (1)

else,

DropMarker = False (2)

(1) (2)

I
2

I
3

I
4

I
5

I
6

I
7

H
1

H
2

H
3

O
1

O
2

O
3

Fig. 2. Feedforward Network with Dropper/Detector (“Dropper
Network”). A feedforward network with a slight modification (dropper
and detector) is shown. The basic internal architecture of the network is
identical to any other feedforward network, with five range sensor (I1 to
I5), and two output units that determine the movement (O1 and O2). The
two added input units (I6 and I7) signal the presence of a dropped marker
on the bottom plane, and the one additional output unit (O3) makes the
decision of whether to drop a marker at the current location or not. Note
that there are no recurrent connections in the controller network itself.

C. Experiments and results

The network was trained using genetic algorithms (neu-
roevolution), where the connection weights and the dropper
threshold θ were encoded in the chromosome. The fitness
was inversely proportional to the sum of the distance between
the agent and the ball(s) when the ball(s) contact the ground.
Each individual was tested 12 times with different initial
ball position (which was varied randomly) and speed (1 or
2 steps/time unit), and mixed scenarios with fast left ball vs.
fast right ball. We used one-point crossover with probability
0.9, with a mutation rate of 0.04.

 0

 20

 40

 60

 80

 100

Fast Right BallFast Left Ball

Ca
tc

h
Pe

rfo
rm

an
ce

 (%
)

Fig. 3. Ball Catching Performance. The average ball catching perfor-
mance of the dropper network is presented (gray bar), along with that of the
recurrent network (black bar). The error bars indicate the standard deviation.
The results are reported in two separate categories: fast left ball and fast
right ball. This was to show that the network does not have any bias in
performance. Both networks perform at the same high level (above 90%
of all balls caught). This is quite remarkable for a feedforward network,
although it had the added dropper/detector mechanism. We also tested a
purely feedforward networks, but they were only able to catch 50% of the
balls (catch one, miss one).

It is quite remarkable that feedforward networks can
show an equal level of performance as that of the recurrent
network, although the feedforward networks were equipped
with the dropper/detector. For example, compared to the

recurrent networks, the number of tunable parameters are
meager for the dropper network since they do not have
layers of fully connected feedback. Six additional weights
for input-to-hidden, and three for hidden-to-output, plus a
single threshold parameter (10 in all) is all that is needed.

One question arises from the results above. What kind
of strategy is the dropper network using to achieve such a
memory-like performance? We analyzed the trajectory and
the dropping pattern, and found an interesting strategy that
evolved. Fig. 4 shows some example trajectories. Here, we
can see a curious overshooting behavior.

-60

-40

-20

 0

 20

 40

 60

Right 3Right 2Right 1Left 3Left 2Left 1

po
sit

io
n

Trial (time)

Recurrent Network Dropper Network

Fig. 4. Agent Trajectory. Agent trajectory during six ball catching trials
are shown (gray: dropper network; black: recurrent network). The x axis
represents time, and the y axis the agent position (0 marks the initial location
of the agent). Within each trial, 200 time steps are shown. As the left and
the right ball positions were randomized, the peak of the trajectories differ
in their y values. The first three trials were the “fast left ball” condition
and the last three were the “fast right ball” condition. Both networks are
successful at catching both balls within each trial, but the dropper network
shows a curious overshooting behavior (for example, near the half way point
in each trial). See Fig. 5 for details.

ti
m

e

(1)

(2)

(3)

(4)

(5)

(6)

Fig. 5. Dropper Network Strategy. A strategy that evolved in the
dropper network is shown. (1) Fast ball enters the view. (2&3) Agent moves
toward the fast ball. (4) Agent catches fast ball, lose view of the slow ball,
overshoots, and start dropping markers (black dots). (5) Seemingly repelled
by the markers, the agent moves back to the slow ball, continuously dropping
the markers, and (6) eventually catches it.

573

Fig. 5 shows how this overshooting behavior is relevant
to the task, when combined with the dropping events. The
strategy can be summarized as below: (1) The right ball fall
fast, which is detected first. (2&3) The agent moves toward
the right ball, eventually catching it (4). At this point, the
left ball is outside of the range sensors’ view, it overshoots
the right ball, drops a marker there, and immediately returns
back, seemingly repelled by the marker that has just been
dropped. (5) The agents keeps on dropping the marker which
pushing back to the left, until the left ball comes within
the view of the range sensor. (6) The agent successfully
catches the second ball. This kind of aversive behavior is
quite the opposite of what we expected, but for this given
task it seem to make pretty good sense, since in some way
the agent is “remembering” which direction to avoid, rather
than remembering where the slow ball was (compare to the
“avoiding the past” strategy proposed in [21]).

III. PART II: EVOLUTION OF PREDICTION

In this second part, we will now examine how predictive
capabilities could have emerged through evolution. Here,
we use a recurrent neural network controller in a 2D pole-
balancing task. Usually recurrent neural networks are asso-
ciated with some kind of memory, i.e., an instrument to look
back into the past. However, here we argue that it can also
be seen as holding a predictive capacity, i.e., looking into
the future. Below, we first describe the 2D pole-balancing
task, and explain our methods, followed by experiments and
results. The methods and results reported in this part are
largely based on our earlier work [17].

A. Task: 2D Pole Balancing

Fig. 6 illustrates the standard 2D pole balancing task.
The cart with a pole on top of it is supposed to be moved
around while the pole is balanced upright. The whole event
occurs within a limited 2D bound. A successful controller
for the cart can balance the pole without making it fall,
and without going out of the fixed bound. Thus, the pole
angle, cart position, and their respective velocities become
an important information in determining the cart’s motion in
the immediate next time step.

B. Methods

For this part, we evolved recurrent neural network con-
trollers, as shown in Fig. 7A. The activation equation is the
same as Eq. 1, and again, we used the same neuroevolution
approach to tune the weights and other parameters in the
model. One difference in this model was the inclusion of a
facilitating dynamics in the neuronal activation level of the
hidden units. Instead of using the Hj value directly, we used
the facilitated value

Aj(t) = Hj(t) + r (Hj(t)−Aj(t− 1)) , (2)

where Hj(t) is the hidden unit j’s activation value at time t,
Aj(t) the facilitated hidden unit j’s activation value, and r
an evolvable facilitation rate parameter (see [22] for details).
This formulation turned out to have a smoother characteristic,

θx

θy

x

y

Fig. 6. 2D Pole-Balancing Task. The 2D pole-balancing task is illustrated.
The cart (gray disk) with an upright pole attached to it must move around
on a 2D plane while keeping the pole balanced upright. The cart controller
receives the location (x, y) of the cart, the pole angle (θx, θy), and their
respective velocities as the input, and generates the force in the x and the
y direction.

compared to our earlier facilitation dynamics in [23], [24],
[25].

One key step in this part is to measure the predictability in
the internal state dynamics. That is, given m past values of a
hidden unit Hj (i.e., 〈Hj(t− 1),Hj(t− 2), ...,Hj(t−m)〉),
how well can we predict Hj(t). The reason for measuring
this is to categorize individuals (evolved controller networks)
that have a predictive potential and those that do not, and
observe how they evolve. Our expectation is that individuals
with more predictable internal state trajectory will have
an evolutionary edge, thus opening the road for predictive
functions to emerge. In order to have an objective measure,
we trained a standard backpropagation network, with the past
input vector 〈Hj(t−1),Hj(t−2), ...,Hj(t−m)〉 as the input
and the current activation value Hj(t) as the target value.
Fig. 8 shows a sketch of this approach. With this, internal
state trajectories that are smoother and easier to predict (Fig.
9A) will be easier to train, i.e., faster and more accurate,
than those that are harder to predict (Fig. 9B). Note that
the measured predictability is not used as a fitness measure.
Predictability is only used as a post-hoc analysis. Again,
the reason for measuring the predictability is to see how
predictive capability can spontaneously emerge throughout
evolution.

C. Experiments and results

Fig. 10 shows an overview of our experiment.
The pole balancing problem was set up within a 3 m ×

3 m arena, and the output of the controller exerted force
ranging from -10 N to 10 N. The pole was 0.5 m long, and
the initial tilt of the pole was set randomly within 0.57◦ .
We used neuroevolution (cf. [14]). Fitness was determined by
the number of time steps the controller was able to balance
the pole within ±15◦ from the vertical. Crossover was done
with probability 0.7 and mutation added perturbation with a
rate of ±0.3. The force was applied at a 10 ms interval. The
agent was deemed successful if it was able to balance the
pole for 5,000 steps.

574

.....

A

C

Output

Hidden

Input

feedback

B Activation

x y z
x

y

z
time

y

z

x

Fig. 7. Cart Controller and Its Internal State. A sketch of the cart
controller network is shown. A. The network had 3 hidden units, which was
fed back as the context input with a 1-step delay, to implement a recurrent
architecture. The network had 8 inputs, each corresponding to the measures
listed in Fig. 6. The two output units represents the force to be applied in
the x and the y direction, respectively. B. The activity level of the hidden
units can be seen as the agent’s internal state, which in this case, can be
plotted as a trajectory in 3D (see C).

t+1
t

t−1
t−2

t−3

Fig. 8. Measuring Predictability in the Internal State Trajectory. A
simple backpropagation network was used to measure the predictability of
the internal state trajectory. A sliding window on the trajectory generated a
series of input vectors (N past data points) and the target values (the current
data point) to construct the training set. Those with a smoother trajectory
would be easier to train, with higher accuracy.

For the backpropagation predictors, we took internal state
trajectories from successful controllers, and generated a
training set for supervised learning, using 3,000 data points in
the trajectory data. We generated an additional 1,000 inputs
for validation. Standard backpropagation was used, with a
learning rate of 0.2. For each data point, if the error was
within 10% of the actual value, we counted that as correct,
and otherwise incorrect. With this, for each trajectory we
were able to calculate the predictive accuracy.

We evolved a total of 130 successful individuals, and
measured their internal state predictability. Fig. 11 shows
the predictability in the 130 top individuals, which exhibits
a smooth gradient. Among these, we selected the top 10 and
the bottom 10, and further compared their performance. Note

A. High Predictability B. Low Predictability
Fig. 9. Internal State Trajectories. Typical internal state trajectories
from the hidden units of the controller networks are shown for A. the high
predictability group and B. the low predictability group.

internal state

analysis

internal stateanalysis

All Controllers High−perform.
Controllers

Low ISP

High ISP
selection
process

evolutionary

Fig. 10. Overview of the Experiment. An overview of the experiment is
shown. First, high-performing individuals (capable of balancing the pole for
over 5,000 steps) are collected throughout the generations. Next, the internal
state predictability of the selected ones are measured to separate the group
into high internal state predictability (High ISP) and low ISP groups. The
High and Low ISP groups are subsequently tested in a tougher task.

that since all 130 had excellent performance, the 20 that are
selected in this way by definition have the same level of
performance. The trick here is to put those 20 controllers
in a harsher environment, by making the pole balancing
task harder. We increased the initial pole angle slightly to
achieve this. The results are shown in Fig. 12. The results
show that the high internal state predictability (high ISP)
group outperforms the low internal state predictability (low
ISP) group by a large margin. This is a surprising outcome,
considering that the two types of networks (high ISP vs.
low ISP) had the same level of performance in the task they
were initially evolved in. This suggests that certain internal
properties, although only internally scrutinizable at one time,
can come out as an advantage as the environment changes.
One interesting observation we made in our earlier paper [17]
is that the high performance in the high ISP group is not
due to the simpler, smoother internal state trajectory linearly
carrying over into simpler, smoother behavior, thus giving it
an edge in pole balancing. On the contrary, we found that
in many cases, high ISP individuals had complex behavioral
trajectories and vice versa (see [17] for details). In sum, these
results show how predictive capabilities could have evolved
in evolving neural networks.

575

0

10

20

30

40

50

60

70

80

90

100

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

1
0
3

1
0
6

1
0
9

1
1
2

1
1
5

1
1
8

1
2
1

1
2
4

1
2
7

P
re

d
ic

ti
o

n
 S

u
cc

e
ss

 R
a

te
 (

%
)

Evolved agent sorted by the prediction rate

Internal State Predictability

Fig. 11. Internal State Predictability. Internal state predictability of 130
successful controllers are shown, sorted in increasing order. Adapted from
our earlier work [17].

Fig. 12. Pole Balancing Performance. The performance (number of pole
balancing steps) of the controller network is shown for the high ISP group
(black bars) and the low ISP group (white bars). For this task the initial pole
angle was increased to within (θx, θy) = (0.14◦, 0.08◦). In all cases, the
high ISP group does better, in many cases reaching the 5,000 performance
mark, while those in the low ISP group show near zero performance. Note
that these are new results, albeit being similar to our earlier results reported
in [17].

IV. DISCUSSION

The main contribution of this paper is as follows. We
showed how recollection and prediction can evolve in neural
circuits, thus linking the organism to its past and its future.

Our results in Part I suggest an interesting linkage between
external memory and internalized memory (cf. [26], [27]).
For example, humans and many other animals use external
objects or certain substances excreted into the environment as
a means for spatial memory (see [12] for theoretical insights
on the benefit of the use of inert matter for cognition).
In this case, olfaction (or other forms of chemical sense)
serves an important role as the “detector”. (Olfaction is
one of the oldest sensory modalities, shared by most living
organisms [28], [29], [30].) This form of spatial memory
resides in the environment, thus it can be seen as external
memory. On the other hand, in higher animals, spatial
memory is also internalized, for example in the hippocampus.
Interestingly there are several different clues that suggest
an intimate relationship between the olfactory system and
the hippocampus. They are located nearby in the brain, and
genetically they seem to be closely related ([31], [32] showed
that the Sonic Hedgehog gene controls the development of
both the hippocampus and the olfactory bulb). Furthermore,
neurogenesis is most often observed in the hippocampus and
in the olfactory bulb, alluding to a close functional demand

[33]. Finally, it is interesting to think of neuromodulators
[34] as a form of internal marker dropping, in the fashion
explored in this paper.

Prediction (or anticipation) is receiving much attention
lately, being perceived as a primary function of the brain
[35], [36] (also see [37] for an earlier discussion on an-
ticipation). Part II of this paper raises interesting points of
discussion regarding the origin and role of prediction in
brain function. One interesting perspective we bring into
this rich on-going discussion about prediction is the possible
evolutionary origin of prediction. If there are agents that
show the same level of behavioral performance but have
different internal properties, why would evolution favor one
over the other? That is, certain properties internal to the brain
(like high ISP or low ISP) may not be visible to the external
processes that drive evolution, and thus may not persist (cf.
“philosophical zombies” [38]). However, our results show
that certain properties can be latent, only to be discovered
later on when the changing environment helps bring out the
fitness value of those properties. Among these properties we
found prediction.

There are several promising future directions. For Part
I, recollection, it would be interesting to extend the task
domain. One idea is to allow the agent to move in a
2D map, rather than on a straight line. We expect results
comparable to those reported here, and also to those in [21].
Furthermore, actually modeling how the external memory
became internalized would be an intriguing topic (a hint from
the neuromodulation research such as [34] could provide
the necessary insights). Insights gained from evolving an
arbitrary neural network topology may also be helpful [39],
[40]. As for Part II, prediction, it would be helpful if a
separate subnetwork can actually be made to evolve to predict
the internal state trajectory (as some kind of a monitoring
process) and explicitly utilize the information.

V. CONCLUSION

In this paper we have shown how recollection and pre-
diction could have evolved in neural network controllers
embedded in a dynamic environment. Our main results are
that recollection could have evolved when primitive feed-
forward nervous systems were allowed to drop and detect
external markers (such as chemicals), and that prediction
could have evolved naturally as the environment changed
and thus conferred a competitive edge to those better able to
predict. We expect our results to provide unique insights into
the emergence of time in neural networks and in the brain:
recollection and prediction, past and future.

ACKNOWLEDGMENTS

Sec. III was partly based on our earlier report in [17]. We
would like to thank the anonymous reviewers who provided
constructive criticism.

REFERENCES

[1] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford
University Press, 1995.

576

[2] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
Upper Saddle River, NJ: Prentice-Hall, 1999.

[3] D. J. Felleman and D. C. V. Essen, “Distributed hierarchical processing
in primate cerebral cortex,” Cerebral Cortex, vol. 1, pp. 1–47, 1991.

[4] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14,
pp. 179–211, 1990.

[5] ——, “Distributed representations, simple recurrent networks, and
grammatical structure,” Machine Learning, vol. 7, pp. 195–225, 1991.

[6] R. D. Beer, “Dynamical approaches to cognitive science,” Trends in
Cognitive Sciences, vol. 4, pp. 91–99, 2000.

[7] C. von der Malsburg and J. Buhmann, “Sensory segmentation with
coupled neural oscillators,” Biological Cybernetics, vol. 67, pp. 233–
242, 1992.

[8] Y. Choe and R. Miikkulainen, “Contour integration and
segmentation in a self-organizing map of spiking neurons,”
Biological Cybernetics, 2004, in press. [Online]. Available:
http://faculty.cs.tamu.edu/choe/ftp/publications/choe.bc03.pdf

[9] R. Miikkulainen, J. A. Bednar, Y. Choe, and J. Sirosh, Computa-
tional Maps in the Visual Cortex. Berlin: Springer, 2005, uRL:
http://www.computationalmaps.org.

[10] C. Peck, J. Kozloski, G. Cecchi, S. Hill, F. Schürmann, H. Markram,
and R. Rao, “Network-related challenges and insights from neuro-
science,” Lecture Notes on Computer Science, vol. 5151, pp. 67–78,
2008.

[11] R. Ward and R. Ward, “2006 special issue: Cognitive conflict without
explicit conflict monitoring in a dynamical agent,” Neural Networks,
vol. 19, no. 9, pp. 1430–1436, 2006.

[12] L. M. Rocha, “Eigenbehavior and symbols,” Systems Research, vol. 13,
pp. 371–384, 1996.

[13] C. W. Anderson, “Learning to control an inverted pendulum using
neural networks,” IEEE Control Systems Magazine, vol. 9, pp. 31–37,
1989.

[14] F. Gomez and R. Miikkulainen, “2-D pole-balancing with recurrent
evolutionary networks,” in Proceedings of the International Confer-
ence on Artificial Neural Networks. Berlin; New York: Springer-
Verlag, 1998, pp. 425–430.

[15] H. Lim and Y. Choe, “Facilitating neural dynamics for
delay compensation and prediction in evolutionary neural
networks,” in Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation, GECCO-2006,
M. Keijzer, Ed., 2006, pp. 167–174. [Online]. Avail-
able: http://faculty.cs.tamu.edu/choe/ftp/publications/lim.gecco06-
reprint.pdf

[16] ——, “Compensating for neural transmission delay using extrapolatory
neural activation in evolutionary neural networks,” Neural Information
Processing–Letters and Reviews, vol. 10, pp. 147–161, 2006. [Online].
Available: http://faculty.cs.tamu.edu/choe/ftp/publications/lim.niplr06-
reprint.pdf

[17] J. Kwon and Y. Choe, “Internal state predictability as an
evolutionary precursor of self-awareness and agency,” in Proceedings
of the Seventh International Conference on Development and
Learning. IEEE, 2008, pp. 109–114. [Online]. Available:
http://faculty.cs.tamu.edu/choe/ftp/publications/kwon.icdl08.pdf

[18] D. L. Wood, “The role of pheromones, kairomones, and allomones in
the host selection and colonization behavior of bark beetles,” Annual
Review of Entomology, vol. 27, pp. 411–446, 1982.

[19] J. A. Tillman, S. J. Seybold, R. A. Jurenka, and G. J. Blomquist,
“Insect pheromones - an overview of biosynthesis and endocrine
regulation,” Insect Biochemistry and Molecular Biology, vol. 29, pp.
481–514, 1999.

[20] M. R. Conover, Predator-Prey Dynamics: The Role of Olfaction. CRC
Press, 2007.

[21] T. Balch, “Avoiding the past: a simple but effective strategy for
reactive navigation,” in Proceedings of the 1993 IEEE Ineternational
Conference on Robotics and Automation. IEEE, 1993, pp. 678–685.

[22] J. Kwon and Y. Choe, “Enhanced facilitatory neuronal
dynamics for delay compensation,” in Proceedings of the
International Joint Conference on Neural Networks. Piscataway,
NJ: IEEE Press, 2007, pp. 2040–2045. [Online]. Avail-
able: http://faculty.cs.tamu.edu/choe/ftp/publications/kwon.ijcnn07-
preprint.pdf

[23] H. Lim and Y. Choe, “Facilitatory neural activity compensating
for neural delays as a potential cause of the flash-lag effect,” in
Proceedings of the International Joint Conference on Neural Networks.

Piscataway, NJ: IEEE Press, 2005, pp. 268–273. [Online]. Available:
http://faculty.cs.tamu.edu/choe/ftp/publications/lim.ijcnn05-reprint.pdf

[24] ——, “Delay compensation through facilitating synapses and STDP:
A neural basis for orientation flash-lag effect,” in Proceedings of
the International Joint Conference on Neural Networks. Piscataway,
NJ: IEEE Press, 2006, pp. 8385–8392. [Online]. Available:
http://faculty.cs.tamu.edu/choe/ftp/publications/lim.ijcnn06.pdf

[25] ——, “Delay compensation through facilitating synapses and its
relation to the flash-lag effect,” IEEE Transactions on Neural
Networks, vol. 19, pp. 1678–1688, 2008. [Online]. Available:
http://faculty.cs.tamu.edu/choe/ftp/publications/lim.tnn08-preprint.pdf

[26] A. Clark, Supersizing the Mind: Embodiement, Action, and Cognition,
2008.

[27] M. T. Turvey and R. Shaw, “The primacy of perceiving: An ecological
reformulation of perception for understanding memory,” in Perspec-
tives on Memory Research: Essays in Honor of Uppsala University’s
500th Anniversary, L.-G. Nilsson, Ed. Hillsdale, NJ: Lawrence
Erlbaum Associates, Publishers, 1979, ch. 9, pp. 167–222.

[28] J. G. Hildebrand, “Analysis of chemical signals by nervous systems,”
Proceedings of National Academy of Sciences, USA, vol. 92, pp. 67–
74, 1995.

[29] P. Vanderhaeghen, S. Schurmans, G. Vassart, and M. Parmentier,
“Specific repertoire of olfactory receptor genes in the male germ cells
of several mammalian species,” Genomics, vol. 39, pp. 239–246, 1997.

[30] G. O. Mackie, “Central circuitry in the jellyfish aglantha digitale iv.
pathways coordinating feeding behaviour,” The Journal of Experimen-
tal Biology, vol. 206, pp. 2487–2505, 2003.

[31] R. Machold, S. Hayashi, M. Rutlin, M. D. Muzumdar, S. Nery, J. G.
Corbin, A. Gritli-Linde, T. Dellovade, J. A. Porter, S. L. Rubin,
H. Dudek, A. P. McMahon, and G. Fishell, “Sonic hedgehog is
required for progenitor cell maintenance in telencephalic stem cell
niches,” Neuron, vol. 39, pp. 937–950, 2003.

[32] V. Palma, D. A. Lim, N. Dahmane, P. Sánchez, T. C. Brionne, C. D.
Herzberg, Y. Gitton, A. Carleton, A. Álvarez Buylla, and A. R. Altaba,
“Sonic hedgehog controls stem cell behavior in the postnatal and adult
brain,” Development, vol. 132, pp. 335–344, 2004.

[33] J. Frisén, C. B. Johansson, C. Lothian, and U. Lendahl, “Central
nervous system stem cells in the embryo and adult,” CMLS, Cellular
and Molecular Life Science, vol. 54, pp. 935–945, 1998.

[34] J. L. Krichmar, “The neuromodulatory system: A framework for
survival and adaptive behavior in a challenging world,” Adaptive
Behavior, vol. 16, pp. 385–399, 2008.

[35] R. R. Llinás, I of the Vortex. Cambridge, MA: MIT Press, 2001.
[36] J. Hawkins and S. Blakeslee, On Intelligence, 1st ed. New York:

Henry Holt and Company, 2004.
[37] R. Rosen, Anticipatory Systems: Philosophical, Mathematical and

Methodological Foundations. New York: Pergamon Press, 1985.
[38] D. J. Chalmers, The Conscious Mind: In Search of a Fundamental

Theory. New York and Oxford: Oxford University Press, 1996.
[39] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through

augmenting topologies,” Evolutionary Computation, vol. 10, pp. 99–
127, 2002.

[40] ——, “Efficient evolution of neural network topologies,” in Proceed-
ings of the 2002 Congress on Evolutionary Computation (CEC’02).
Piscataway, NJ: IEEE, 2002, in press.

577

	Main Menu
	Table of Contents
	Conference Program
	Author Index
	Search This CD-ROM
	Print This Paper
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	IJCNN CD-ROM Help

