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Abstract

This paper presents an analytical model for support loss in clamped–free (C–F) and clamped–clamped (C–C) micromachined beam
resonators with in-plane flexural vibrations. In this model, the flexural vibration of a beam resonator is described using the beam theory. An
elastic wave excited by the shear stress of the beam resonator and propagating in the support structure is described through the 2D elastic
wave theory, with the assumption that the beam thickness (h) is much smaller than the transverse elastic wavelength (λT). Through the
combination of these two theories and the Fourier transform, closed-form expressions for support loss in C–F and C–C beam resonators
are obtained. Specifically, closed-form expression for the support loss in a C–C beam resonator is derived for the first time. The model
suggests lower support quality factor (Qsupport) for higher order resonant modes compared to the fundamental mode of a beam resonator.
Through comparison with experimental data, the validity of the presented analytical model is demonstrated.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Micromachined beam resonators are of great interest for
a wide range of sensing[1–4] and frequency filtering ap-
plications[5–8]. For these applications, a key determinant
of performance is the mechanical quality factor (Q) of the
resonator, which can be expressed as[2]:

Q = 2π
W

�W
(1)

where�W denotes the energy dissipated per cycle of vibra-
tion andW denotes the maximum vibration energy stored per
cycle. Achieving high quality factor in resonators can im-
prove the sensitivity and resolution of a sensor, or the spec-
tral purity and susceptibility to electronic phase noise of a
filter [9,10]. It is therefore desirable to understand and ana-
lyze the mechanisms of energy loss, not only for improving
the performance of the resonators, but also for establishing
their performance limits.

For a beam resonator operating in vacuum, the sources of
energy loss mainly consist of support loss, thermoelastic loss
and surface loss[4]. Among these losses, the mechanism of
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thermoelastic loss has been studied extensively[9–13]. Yang
et al. [4] and Yasumura et al.[14] have studied surface loss
in beam resonators. As far as support loss, some researchers
have focused on investigating its mechanism through ex-
perimental work[4,14,15]. However, analytical studies on
this subject are few. Jimbo and Itao[16] have provided a
closed-form expression for the support quality factor of the
fundamental mode of a clamped–free beam resonator. Also,
Cross and Lifshitz[17] have derived energy transmission
formula for the elastic wave in a beam propagating into its
support structure based on the two-dimensional elasticity
theory. However, their work treated the vibration of a beam
as an elastic wave; the support loss was not derived from the
viewpoint of the resonant modes of a beam resonator and
hence no explicit expressions were provided.

In this paper, we derive an analytical model for calculat-
ing the support loss in micromachined clamped–free (C–F)
and clamped–clamped (C–C) beam resonators with in-plane
flexural vibrations. Based on the physical mechanism of
support loss in a beam resonator, some assumptions are
made in order to derive closed-form expressions. An ana-
lytical model is developed using the well-established the-
ories of resonant beams and 2D elastic waves. Using the
Fourier transform, closed-form expressions are derived to es-
timate support loss of C–F and C–C beam resonators in their
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Fig. 1. Schematic view of beam resonators connected to their supports.

fundamental and higher order modes. Based on this analyt-
ical solution, the characteristics of support loss with regard
to the design parameters for a beam resonator are discussed.
Finally, through comparison with experimental data, the va-
lidity of the presented analytical model is demonstrated.

2. Physical mechanisms and modeling assumptions

Fig. 1 shows a schematic view of the two general types
of beam resonators, C–F and C–C. The length, width and
thickness of the beam resonator are denoted byL, b andh,
respectively. The beam resonators operate in their in-plane
(x–y plane) flexural vibration modes. Although microma-
chined beams are generally fabricated with their support re-
gions thicker than the beam resonator itself, this difference
in thickness is neglected in our 2D analysis. It is assumed
that the dimensions of the supports in thex–y plane are much
larger than those of the beam resonators. For simplicity, both
the beam resonator and the support regions are assumed to
be made of the same isotropic and homogeneous material.

Support loss, also known as clamping loss, is the vibration
energy of a resonator dissipated by transmission through its
support. During its flexural vibration, a beam resonator will
exert both vibrating shear force and moment on its clamped
ends. Acting as excitation sources, these vibrating shear
force and moment will excite elastic waves propagating into
the support. Therefore, the support structure absorbs some
of the vibration energy of the beam resonator.

When the elastic wavelength of the propagating wave is
much larger than the thickness of the beam (h), the coupling
between the resonant modes of a beam resonator and the
elastic wave modes in its support is very weak[17]. Hence,
the energy transmission from the beam to the support can
be treated as perturbation. It is generally assumed that all
the vibration energy of a beam resonator that enters its sup-
port propagates away to large distances, so that no energy
is returned to the beam resonator[9,14,17]. Based on these
assumptions, the elastic wave in the support will not have
an effect on the resonant modes of the beam. It has been
theoretically justified[17] that zero displacement and zero

slope of the displacement can be assumed at the clamped
ends of a beam resonator. Therefore, the vibration of a beam
resonator can be calculated using the well-established beam
theory. However, both the vibrating shear force and moment
at the clamped ends are non-negligible, which causes energy
transmission from the beam into the support, through exci-
tation of elastic waves in the support. The support loss due
to the vibrating moment has been theoretically proved to be
negligible compared to that incurred by the vibrating shear
force[14,17]. Thus, only the support loss due to the vibrating
shear stress will be considered in this work, which is formu-
lated as the integral of the product of the shear force and its
corresponding displacement in the support over one period.

In order to quantitatively formulate the support loss in a
beam resonator in terms of its geometry and resonant mode,
it is necessary to assume 2D geometry for the support struc-
ture. When the wavelength of the propagating wave is much
larger than the beam thickness, there is noz-direction de-
pendency for both the vibration of a beam resonator and the
elastic wave in its support. Hence, the difference between
the thickness of a beam resonator and its support can be ne-
glected. Furthermore, the supports of a C–F and a C–C beam
can be assumed as semi-infinite[17] and infinite thin plates
[18], respectively. The behavior of the support can hence be
described by the 2D elastic wave theory.

A summary of the assumptions made in our analysis is
given below:

(i) The thickness of the beam resonator is much smaller
than the wavelength of the elastic wave propagating in
its support (λT � h).

(ii) The flexural vibration of a beam resonator is described
using the ideal beam theory.

(iii) The behavior of the support of a beam resonator is
described using the 2D elastic wave theory. The sup-
port of C–F and C–C beam resonators are modeled as
semi-infinite and infinite thin-plate, respectively, with
the same thickness as the beam resonator.

(iv) All the vibration energy of a beam resonator entering
the support structure is considered to be lost. It is the
vibrating shear force that induces this energy loss.
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In the following sections, we briefly review the theories of
resonant beams and 2D elastic waves and explain how these
two theories can be combined by matching the elastic wave
amplitude to the vibrating shear force, to obtain closed-form
expressions for support loss in both C–F and C–C beam
resonators.

3. Analytical model for a beam resonator

The in-plane flexural vibration of the beam resonator of
Fig. 1 can be modeled using the beam theory. The equation
for its resonant motion is given by[19]:

∂4y

∂x4
= −ρS

EI

∂2y

∂t2
(2)

whereE andρ denote Young’s modulus and density of the
beam,I andS are the moment of inertia and cross-section
area of the beam, respectively. The coordinates used in this
analysis are illustrated inFig. 1.

When this beam resonator undergoes time-harmonic vi-
bration, we can assume:

y(x, t) = Y(x)e−ωt (3)

where ω denotes the angular frequency of the vibration.
Substituting (3) into (2), one can obtain:

Y = U

2

{
cosh

(
βπ

x

L

)
− cos

(
βπ
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L

)
+χ

(
sinh

(
βπ

x

L

)
− sin

(
βπ

x

L

))}
(4)

whereβ is the mode constant andU/2 denotes the vibration
amplitude.

χ denotes the mode shape factor and is expressed as:

χn = sin(πβn) − sinh(πβn)

cos(πβn) + cosh(πβn)
(C–F) (5)

χn = sin(πβn) + sinh(πβn)

cos(πβn) − cosh(πβn)
(C–C) (6)

where subscriptn denotes different resonant mode numbers
(n = 1, 2, 3,. . . ). Table 1lists the first 10 mode shape factors
and mode constants for both C–F and C–C beam resonators.

Table 1
The mode shape factors (χ) and mode constants (β) for C–F and C–C beam resonators

Mode number

1 2 3 4 5 6 7 8 9 10

C–F beam
β 0.597 1.494 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
χ −0.734 −1.019 −0.999 −1 −1 −1 −1 −1 −1 −1

C–C beam
β 1.5056 2.4997 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5
χ −0.983 −1.001 −1 −1 −1 −1 −1 −1 −1 −1

The stored flexural vibration energy for each resonant
mode of a beam resonator can be expressed as:

Wn = 1
8ρSLω2

nU
2
n (7)

where the angular frequency,ωn, of thenth resonant mode
of a beam resonator is[19]:

ωn = π2β2
n

L2

√
EI

ρS
(8)

It should be noted thatEqs. (7) and (8)are applicable to both
C–F and C–C beam resonators, with different mode-related
constant values listed inTable 1.

Through its clamped end, a beam resonator exerts a vi-
brating shear forceΓ n on its support over the regionx =
0, |y| < b/2 for a C–F beam, andx = 0, L, |y| < b/2 for a
C–C beam, respectively:

Γn = EIUn

{
πβn

L

}3

χn (9)

This shear force is assumed to be uniformly distributed
across the clamped end, acting as a source to excite elastic
waves propagating into the support. Hence, the excitation
stress source can be expressed as:


τn =
∣∣∣∣∣

Γn

b · h, for |y| ≤ b/2

0, for |y| > b/2
σn = 0

(10)

whereτn andσn denote the shear and normal stress of the
nth resonant mode, respectively. It is the normal stress that
contributes to the vibrating moment during the vibration
of a beam resonator. Since the support loss caused by the
vibrating moment is negligible (as mentioned previously),
the normal stress is set to zero.

4. Analytical model for the support structure of a beam
resonator

4.1. 2D in-plane elastic waves in a thin-plate

The flexural vibration of a beam resonator excites an
elastic wave propagating in its support with in-plane
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displacement. When the beam thickness is much less than
the elastic wavelength, this wave can be treated as a 2D
elastic wave described by[18]:

∂2ux

∂t2
= c2

L
∂2ux

∂x2
+ c2

T
∂2ux

∂y2
+ (c2

L − c2
T)

∂2uy

∂x∂y
(11)

∂2uy

∂t2
= c2

L

∂2uy

∂y2
+ c2

T

∂2uy

∂x2
+ (c2

L − c2
T)

∂2ux

∂x∂y
(12)

where ux and uy are the displacements along thex- and
y-axis, respectively. The propagation velocities for longitu-
dinal (cL) and transverse waves (cT) are given by:

c2
L = E

ρ(1 − υ2)
(13)

c2
T = E

2ρ (1 + υ)
(14)

The Poisson’s ratio of the thin-plate is denoted byυ. The
longitudinal wavelength and the transverse wavelength can
be expressed as:

λL,T = CL,T

f
(15)

wheref is the frequency of the excitation source, which is
same as the resonant frequency of the beam resonator.

The longitudinal propagation velocity is larger than the
transverse velocity, sinceυ is always less than 0.5. There-
fore, the longitudinal wavelength is larger than the trans-
verse wavelength, and hence the condition for the validity
of the 2D thin-plate analysis for the support region can be
mathematically expressed as:

λT

h
� 1 (16)

By assumingux = ueiωt, uy = veiωt , and using the fol-
lowing definitions:

∆ = ∂u

∂x
+ ∂v

∂y
(17)

Ω = ∂u

∂y
− ∂v

∂x
(18)

Eqs. (11) and (12)can be rewritten as:

−ω2u = c2
L
∂∆

∂x
+ c2

T
∂Ω

∂y
(19)

−ω2v = c2
L
∂∆

∂y
− c2

T
∂Ω

∂x
(20)

The above two equations can be further reorganized as:

c2
L

(
∂2∆

∂x2
+ ∂2∆

∂y2

)
+ ω2∆ = 0 (21)

c2
T

(
∂2Ω

∂x2
+ ∂2Ω

∂y2

)
+ ω2Ω = 0 (22)

The shear stress toward they-axis and the normal stress
toward thex-axis are given by[18]:

τ = E

1 + υ

(
∂u

∂y
+ ∂v

∂x

)
(23)

σ = E

1 − υ2

(
∂u

∂x
+ υ

∂v

∂y

)
(24)

respectively, which is also rewritten as:

ω2

ρc4
T

τ =
[
∂2Ω

∂x2
− ∂2Ω

∂y2Ω

]
− 2

c2
L

c2
L

∂2∆

∂x∂y
(25)

ω2

ρc4
T

σ = −2
∂2Ω

∂x∂y
− c4

L

c4
T

∂2∆

∂x2
+
(

2
c2

L

c2
T

− c4
L

c4
T

)
∂2∆

∂y2
(26)

4.2. Fourier transform of the 2D in-plane elastic waves in
a thin-plate

As mentioned inSection 2, support loss is related to the
displacement in the support along the direction of the shear
stress. This displacement,v, has been implicitly expressed by
the 2D in-plane elastic wave theory in the above subsection.
In order to obtain an explicit expression from this theory,
we apply the Fourier transform toEqs. (19)–(22), (25) and
(26) [20]. The following equations are obtained:

−ω2uF = c2
L

d∆F

dx
− iξc2

TΩF (27)

ω2vF = c2
L iξ∆F + c2

T
dΩF

dx
(28)

d2∆F

dx2
−
(
ξ2 − ω2

c2
L

)
∆F = 0 (29)

d2ΩF

dx2
−
(
ξ2 − ω2

c2
T

)
ΩF = 0 (30)

ω2

ρc4
T

τF =
[

d2ΩF

dx2
+ ξ2ΩF

]
+ 2iξ

c2
L

c2
T

d∆F

dx
(31)

ω2

ρc4
T

σF = 2iξ
dΩF

dx
− c4

L

c4
T

d2∆F

dx2
−
(

2
c2

L

c2
T

− c4
L

c4
T

)
ξ2d∆F

(32)

where subscript F denotes the Fourier transform andξ is the
variable of this transform.

The solutions forEqs. (29) and (30)can be expressed as:

∆F = Ae
x
√

ξ2−(ω/cL )
2·x

(33)

ΩF = B e
x
√

ξ2−(ω/cT)
2·x

(34)

respectively, whenx ≤ 0. A and B are constants related
to the amplitude of the elastic wave and can be specified
by Eqs. (31) and (32)with the appropriate excitation stress
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source from a beam resonator. Finally, the displacement un-
der the stress source can be found by substituting the solu-
tions (33) and (34) intoEq. (28).

5. Closed-form expressions for support loss in
micromachined beam resonators

5.1. Clamped–free beam resonators

The support of a C–F beam resonator is modeled as a
semi-infinite thin plate of thicknessh in the x–y plane as
shown inFig. 2, whereσn andτn are the normal and shear
stress of thenth in-plane flexural resonant mode of the
beam resonator, respectively. The stress sources, introduced
in (10), are transformed into:
 τF = 2τn sin(ξ(b/2))

ξ
, x = 0

σF = 0, x = 0
(35)

By combining (28) to (35) and applying the inverse
Fourier transform, the average displacement along they-axis
and over the source region can be expressed as:

v(x=0) = 4bτn
πE

1 + υ

1 − υ
Ψ (36)

where

Ψ=
∫ ∞

0

√
ζ2 − (cL/cT)2{

2ζ2 − (cL/cT)2
}2 − 4ζ2 ·√ζ2 − (cL /cT)2 ·

√
ζ2 − 1

dζ

(37)

andζ = ξcL/ω. The imaginary part of the integral of (37),
which will contribute to support loss, can be numerically
calculated to be 0.336 (assumingυ = 0.28).

After the displacement incurred by the shear stress over
the source region is determined, the amount of energy loss
per cycle from the support of a beam resonator can be ex-
plicitly calculated as:

�W = πΓnv(x=0) (38)

where the coefficientπ is due to the time-harmonic nature
of the shear force and its corresponding displacement.

Fig. 2. A semi-infinite thin-plate with excitation source from a C–F beam
resonator.

By combiningEqs. (1), (7) to (10), (36), and (38), the
support quality factor of a C–F beam resonator can be ex-
pressed as:

QC–F(n) =
[

0.24(1 − υ)

(1 + υ)Ψ

]
1

(βnχn)2

[
L

b

]3

(39)

ComparingEq. (39)with the results obtained by Jimbo and
Itao[16], theQC–F value predicted byEq. (39)is 4% smaller
than the result of Jimbo and Itao, which is based on the as-
sumption of the support as a semi-infinite solid (assuming
υ = 0.25). Since the assumption of semi-infinite thin-plate
versus semi-infinite solid incurs very small variation of the
propagation velocities of the longitudinal waves in the sup-
port, the difference between the predictions of these two
models is trivial. However, for a beam resonator with a large
ratio ofλT/h, it is more practical to assume the support as a
semi-infinite thin-plate than a semi-infinite solid.

5.2. Clamped–clamped beam resonators

For a C–C beam resonator, the support is modeled as an
infinite thin-plate of thicknessh in the x–y plane as shown
in Fig. 3, and the stress sources are distributed over two
regions atx = 0, |y| < b/2 andx = L, |y| < b/2:
 τF = 2τn · sin(ξ · b/2)

ξ
, x = 0, L

σF = 0, x = 0, L
(40)

By combining (28)–(34) and (40) and applying the inverse
Fourier transform, the average displacement alongy-axis
over the source regionx = 0, |y| ≤ b/2, can be expressed
as:

vx=0 = b · τn
16 · E · (3 − υ) · (1 + υ) + b · τn

4 · π · E · Π (41)

where

Π = (1 − υ2)

∫ 1

0

ξ2√
1 − ξ2

cos

(√
1 − ξ2ωL

cL

)
dξ

+ 2(1 + υ)

∫ 1

0

√
1 − ξ2cos

(√
1 − ξ2ωL

cT

)
dξ (42)

Fig. 3. An infinite thin-plate with excitation source from a C–C beam
resonator.
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It should be noted that the displacement expressed by
Eq. (41)is only the imaginary part of the average displace-
ment. The first and second terms inEq. (41)are incurred by
the stress sources atx = 0 andL, respectively. The second
term is always smaller than the first term, which can be ex-
plained by the fact that the stress source atx = 0 induces
larger displacement over its own adjacent region.

Due to the symmetry of the C–C beam aroundx = L/2,
the displacement alongy-axis over the source regionx =
L, |y| ≤ b/2 can also be calculated usingEq. (41). Thus,
the support quality factor of a C–C beam resonator can be
expressed as:

QC–C(n) =
{

2.43

(3 − υ)(1 + υ)
+ 1.91

Π

}
1

(βnχn)2

[
L

b

]3

(43)

When the elastic wavelength is very large compared to
the beam length (L), the second term in the square braces is
approximately equal to the first term. It is worth mentioning
that the values ofβ andχ are mode-related and different for
Eqs. (39) and (43), since they represent different types of
beam resonators.

5.3. Discussions

The analytical model for the support loss derived in this
paper provides insight into the design of microresonators,
which are summarized as below:

(i) Dimensional dependency: The support quality factor
(Qsupport) is proportional to the cubic power of the ratio
of the beam length to the beam width (L/b)3, indepen-
dent of the beam thickness (h).

Fig. 4. The coefficients{0.24(1− υ)/(1+ υ)Ψ }{1/(βnχn)
2} and {2× 2.43/(3− υ)(1+ υ)}{1/(βnχn)

2} of the predicted support quality factors of a C–F
and a C–C beam resonator.

(ii) Material properties: While the support quality factor of
a beam resonator is independent of the Young’s mod-
ulus of the resonator’s material, it is dependent on the
Poisson’s ratio of the resonator’s material. The influ-
ence of the Poisson’s ratio is introduced by the tran-
sition of 1D vibration in the beam resonator into 2D
elastic wave propagation in the support structure.

(iii) Vibration amplitude: The support quality factor has no
dependency on the vibration amplitude, as long as the
vibration amplitude of the beam resonator is kept in the
linear range.

(iv) Mode order: The support quality factor of a microma-
chined C–F or C–C beam resonator decreases as its
mode order increases. Illustrated inFig. 4are the plots
of the coefficients of (L/b)3 in Eqs. (39) and (43)ver-
sus resonant mode orders, assuming a Poisson’s ratio
of 0.28. The difference between the first and second
terms inEq. (43)is neglected in this figure.

6. Experimental verification

6.1. Thermoelastic damping and surface loss related
quality factors

For a beam resonator operating in vacuum, the overall
quality factor (Q) can be expressed as:

1

Q
= 1

Qsupport
+ 1

QTED

+ 1

Qsurface
(44)

whereQsupport, QTED, andQsurfacedenote the quality factors
due to the three energy loss mechanisms of support loss,
thermoelastic damping, and surface loss, respectively. The
losses due to any other sources are assumed negligible in
this work. In order to experimentally verify the analytical
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Table 2
Material properties of highly-doped single-crystal silicon

Property Symbol Value

Density (kg/m3) ρ 2330
Young’s modulus for Si[1 0 0] (Pa) E 1.3×1011

Poisson’s ratio for Si[100] υ 0.28
Thermal expansion coefficient (K) αT 2.6×10−6

Specific heat (J/(K m3)) Cp 1.63×106

Thermal conductivity (W/(m K)) κ 90
Environmental temperature (K) T0 300

model for support loss derived in this paper, bothQTED and
Qsurfacecomponents of the measured overall quality factor
need to be quantified.

TheQTED can be expressed as[12]:

1

QTED
= E · αT2·T0

Cp·ρ
·
{

6

ς2
− 6

ς3
· sinh(ς) + sin(ς)

cosh(ς) + cos(ς)

}
(45)

whereαT andCp denote thermal expansion coefficient and
specific heat at constant pressure of the material used for the
beam, respectively;T0 is the environmental temperature;ς

is expressed as:

ς = b

√
ωρCp

2κ
(46)

whereκ denotes thermal conductivity of the beam material
andω denotes the angular frequency of the beam resonator.

Yang et al.[4] suggests the following expression for the
Qsurface:

Qsurface= bh

3b + h

E

2Edsδ
(47)

whereδ denotes the characterized thickness of the surface
layer andEds is a constant related to the surface stress. If the
C–F beam and C–C beam resonators are fabricated using the
same process, we can argue thatδ should be the same for
both C–F and C–C while theEds of a C–F beam resonator is
smaller than that of a C–C beam resonator, in that only one
end of a C–F beam is constrained. Since it is very difficult
to characterize the values ofδ andEds, we will choose the
best-fit values ofEdsδ to minimize the error between the
model and the experimental data in the following subsection.

6.2. Comparison with experimental data

In order to demonstrate its validity, this analytical model
is compared with the experimental data detailed in the

Table 3
Comparison between measured quality factors and calculated support quality factors of the fundamental mode of different sizes of single crystal silicon
C–C beam resonators without surface treatment (the first data point was taken from[22], which used the same fabrication technology as[13])

Length (�m) Width (�m) Measured frequency (kHz) λT/h Qsupport QTED Qsurface Qanalytical Qmeasured

900 7.9 74.8 3120 248470 116590 173760 54476 53600
700 5.15 80.3 2907 421980 254010 139464 74201 74000
500 3.8 117 1995 382800 322520 116178 69831 67000
300 3.4 288.4 809 115440 162280 108079 41533 43000

literature[13]. The C–F and C–C beam resonators in[13]
were made of highly-doped single-crystal silicon, which is
an anisotropic material. The model developed in this pa-
per is for isotropic material. However, since the boundary
planes of the fabricated beam resonators of[13] are all
[1 0 0], we can use the material properties of single crystal
silicon along the〈1 0 0〉 orientation for the model[21]. The
material properties used in this work are listed inTable 2
[13]. The beam thickness is 20�m for all the measured
silicon resonators. Due to its critical role in estimating the
support loss, the “mask-drawn” beam widths listed in[13]
have been slightly modified in our calculations to match
the “measured” resonant frequencies of the resonators and
account for lithography and fabrication error. Only the data
points that satisfy theλT/h � 1 condition (2D analysis)
were considered.

Table 3lists the measured quality factors (Qmeasured) and
calculated support quality factors (Qsupport) of the fundamen-
tal mode of different sizes of single crystal silicon C–C beam
resonators without surface treatment. TheQanalytical is the
overall quality factor calculated usingEq. (44). Also listed
in Table 3are theQTED and theQsurfacewith Edsδ equal to
1.38, calculated fromEq. (45) and (47), respectively.Table 4
compares theQmeasuredwith the calculated quality factors of
the fundamental mode of different sizes of C–C beam res-
onatorswith surface treatment (to reduce surface roughness,
the beams were oxidized and the oxide was subsequently
removed). Since our calculation shows that the surface
treatment makesQsurfacenegligible compared toQTED and
Qsupport, theQsurfaceis not listed in this table. The calculated
and measured quality factors are in good agreement for both
with and without surface treatment. Especially, for C–C
beam resonatorswith surface treatment, errors introduced
by surface loss are greatly alleviated and hence the com-
parison between the developed model and the experimental
data is much more reliable.

Table 5 compares theQmeasuredand calculatedQsupport
of the fundamental mode of different sizes of single crystal
silicon C–F beam resonators without surface treatment. It
is found thatEdsδ = 0.81 works well for the C–F beam
resonators. As expected, the value ofEdsδ for a C–F beam
resonator is smaller than that of a C–C beam resonator, and
the calculated and measured values of quality factor are
agreeable.

The comparison between theQmeasuredand calculated
Qsupport for the third resonant mode of different size single
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Table 4
Comparison between measured quality factor and calculated support quality factor of the fundamental mode of different sizes of single crystal silicon
C–C beam resonators with surface treatment

Length (�m) Width (�m) Measured
frequency (kHz)

λT/h Qsupport QTED Qanalytical Qmeasured

500 5.35 164.5 1419 130280 115870 61327 60400
500 6.45 198 1179 74345 66523 35108 35000
500 7.1 217 1076 56933 51264 26975 27000
700 8 125.5 1860 106920 68302 41678 39400

Table 5
Comparison between measured quality factor and calculated support loss quality factor of the fundamental mode of different sizes of single crystal silicon
C–F beam resonators without surface treatment

Length (�m) Width (�m) Measured
frequency (kHz)

λT/h Qsupport QTED Qsurface Qanalytical Qmeasured

700 6.45 15.94 14642 2662600 821910 262262 185006 173800
500 4 19 12284 4068400 1758100 200000 171981 178000
500 5 24.59 9492 2083000 900180 228571 167617 157400
500 6.2 30.14 7744 1092500 472190 256995 144420 154800

Table 6
Comparison between measured quality factor and calculated support quality factor of the 3rd resonant mode of different sizes of single crystal silicon
C–C beam resonators with surface treatment

Length (�m) Width (�m) Measured
frequency (MHz)

λT/h Qsupport QTED Qanalytical Qmeasured

700 8.7 0.74 315 17365 13768 7660 8000
500 6.1 1.03 227 18357 17142 8864 10700
500 7.2 1.21 193 11177 19476 7102 8300

crystal silicon C–C beam resonators with surface treatment
is shown inTable 6. Our model overestimates the support
loss in this case. This difference may be attributed to the
ratio of λT/h not being large enough to validate the 2D as-
sumption in the support region. As emphasized throughout
the paper, our 2D analytical model is valid only under the
condition that the transverse wavelength is much larger than
the beam thickness. For a beam resonator with a small ratio
of λT/h, 3D geometry should be included in the analytical
model to predict support loss.

7. Conclusion

Support loss in micromachined beam resonators has been
modeled based on the well-established theories of resonant
beams and 2D elastic waves. Using the Fourier transform,
closed-form expressions for the support quality factor are
obtained, enabling performance trade-off for specific appli-
cations of beam resonators. This analytical model is appli-
cable to both C–C and C–F micromachined beam resonators
with in-plane flexural vibration and very large ratio of trans-
verse wavelength to beam thickness (λT/h). The validity of
this model has been demonstrated through comparison with
experimental data. Further study on support loss in 3D ge-

ometry will overcome the application limit of this 2D ana-
lytical model.
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