Available online at www.sciencedirect.com

50
S(HENCE@DIREOT‘ A%%}E\‘ggs

A

PHYSICAL

Sensors and Actuators A 109 (2003) 156-164
www.elsevier.com/locate/sna

An analytical model for support loss in micromachined
beam resonators with in-plane flexural vibrations

Zhili Hao®*, Ahmet Erbil°, Farrokh Ayazf

@ School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive, Atlanta, GA 30332-0250, USA
b school of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430, USA

Received 18 June 2003; received in revised form 22 September 2003; accepted 24 September 2003

Abstract

This paper presents an analytical model for support loss in clamped—free (C—F) and clamped-clamped (C—C) micromachined bear
resonators with in-plane flexural vibrations. In this model, the flexural vibration of a beam resonator is described using the beam theory. An
elastic wave excited by the shear stress of the beam resonator and propagating in the support structure is described through the 2D elas
wave theory, with the assumption that the beam thicknigsis (much smaller than the transverse elastic wavelength Through the
combination of these two theories and the Fourier transform, closed-form expressions for support loss in C—F and C—C beam resonatol
are obtained. Specifically, closed-form expression for the support loss in a C—C beam resonator is derived for the first time. The mode
suggests lower support quality fact@s(,ppory) for higher order resonant modes compared to the fundamental mode of a beam resonator.
Through comparison with experimental data, the validity of the presented analytical model is demonstrated.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction thermoelastic loss has been studied extensj@i¢3]. Yang
et al.[4] and Yasumura et aJ14] have studied surface loss
Micromachined beam resonators are of great interest forin beam resonators. As far as support loss, some researchers
a wide range of sensind—4] and frequency filtering ap-  have focused on investigating its mechanism through ex-
plications[5-8]. For these applications, a key determinant perimental work[4,14,15] However, analytical studies on
of performance is the mechanical quality fact@) ©of the this subject are few. Jimbo and It§b6] have provided a

resonator, which can be expressed2js closed-form expression for the support quality factor of the
1% fundamental mode of a clamped—free beam resonator. Also,
0= Zﬂm 1) Cross and LifshitZ17] have derived energy transmission

formula for the elastic wave in a beam propagating into its
whereAW denotes the energy dissipated per cycle of vibra- sypport structure based on the two-dimensional elasticity
tion andwW denotes the maximum vibration energy stored per theory. However, their work treated the vibration of a beam
cycle. Achieving high quality factor in resonators can im- a5 an elastic wave; the support loss was not derived from the
prove the sensitivity and resolution of a sensor, or the spec-yjewpoint of the resonant modes of a beam resonator and
tral purity and susceptibility to electronic phase noise of a hence no explicit expressions were provided.
filter [9,10]. It is therefore desirable to understand and ana-  |n this paper, we derive an analytical model for calculat-
lyze the mechanisms of energy loss, not only for improving jng the support loss in micromachined clamped—free (C—F)
the performance Of the resonatOI’S, but aISO f0r establishingand C|amped_c|amped (C_C) beam resonators W|th in_p'ane
their performance limits. flexural vibrations. Based on the physical mechanism of
For a beam resonator operating in vacuum, the sources Ofsupport loss in a beam resonator, some assumptions are
energy loss mainly consist of support loss, thermoelastic 10SSmade in order to derive closed-form expressions. An ana-
and surface losgl]. Among these losses, the mechanism of |ytical model is developed using the well-established the-
ories of resonant beams and 2D elastic waves. Using the
* Corresponding author. Tek:1-404-385-0962; fax-1-404-894-4700. Fourier transform, closed-form expressions are derived to es-
E-mail address: zhili.hao@ece.gatech.edu (Z. Hao). timate support loss of C—F and C-C beam resonators in their
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(a) Clamped-free beam (b) Clamped-clamped beam

Fig. 1. Schematic view of beam resonators connected to their supports.

fundamental and higher order modes. Based on this analyt-slope of the displacement can be assumed at the clamped
ical solution, the characteristics of support loss with regard ends of a beam resonator. Therefore, the vibration of a beam
to the design parameters for a beam resonator are discussedesonator can be calculated using the well-established beam
Finally, through comparison with experimental data, the va- theory. However, both the vibrating shear force and moment
lidity of the presented analytical model is demonstrated.  at the clamped ends are non-negligible, which causes energy
transmission from the beam into the support, through exci-
tation of elastic waves in the support. The support loss due
2. Physical mechanisms and modeling assumptions to the vibrating moment has been theoretically proved to be
negligible compared to that incurred by the vibrating shear
Fig. 1 shows a schematic view of the two general types force[14,17] Thus, only the support loss due to the vibrating
of beam resonators, C—-F and C—-C. The length, width and shear stress will be considered in this work, which is formu-

thickness of the beam resonator are denotedl,dyandh, lated as the integral of the product of the shear force and its
respectively. The beam resonators operate in their in-planecorresponding displacement in the support over one period.
(x=y plane) flexural vibration modes. Although microma- In order to quantitatively formulate the support loss in a

chined beams are generally fabricated with their support re- beam resonator in terms of its geometry and resonant mode,
gions thicker than the beam resonator itself, this difference it is necessary to assume 2D geometry for the support struc-
in thickness is neglected in our 2D analysis. It is assumed ture. When the wavelength of the propagating wave is much
that the dimensions of the supports in #ag plane are much  larger than the beam thickness, there iszdirection de-
larger than those of the beam resonators. For simplicity, both pendency for both the vibration of a beam resonator and the
the beam resonator and the support regions are assumed telastic wave in its support. Hence, the difference between
be made of the same isotropic and homogeneous material. the thickness of a beam resonator and its support can be ne-
Support loss, also known as clamping loss, is the vibration glected. Furthermore, the supports of a C—F and a C—C beam
energy of a resonator dissipated by transmission through itscan be assumed as semi-infinit&] and infinite thin plates
support. During its flexural vibration, a beam resonator will [18], respectively. The behavior of the support can hence be
exert both vibrating shear force and moment on its clamped described by the 2D elastic wave theory.
ends. Acting as excitation sources, these vibrating shear A summary of the assumptions made in our analysis is
force and moment will excite elastic waves propagating into given below:
the support. Therefore, the support structure absorbs some

of the vibration energy of the beam resonator. (i) The thickness of the beam resonator is much smaller
When the elastic wavelength of the propagating wave is than the wavelength of the elastic wave propagating in

much larger than the thickness of the bedun the coupling its support £1 > h).

between the resonant modes of a beam resonator and the(ii) The flexural vibration of a beam resonator is described

elastic wave modes in its support is very wgakK]. Hence, using the ideal beam theory.

the energy transmission from the beam to the support can(iii) The behavior of the support of a beam resonator is

be treated as perturbation. It is generally assumed that all described using the 2D elastic wave theory. The sup-

the vibration energy of a beam resonator that enters its sup- port of C—F and C—C beam resonators are modeled as

port propagates away to large distances, so that no energy  semi-infinite and infinite thin-plate, respectively, with

is returned to the beam resonaf®rl4,17] Based on these the same thickness as the beam resonator.

assumptions, the elastic wave in the support will not have (iv) All the vibration energy of a beam resonator entering
an effect on the resonant modes of the beam. It has been  the support structure is considered to be lost. It is the
theoretically justified17] that zero displacement and zero vibrating shear force that induces this energy loss.
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In the following sections, we briefly review the theories of ~ The stored flexural vibration energy for each resonant
resonant beams and 2D elastic waves and explain how thesenode of a beam resonator can be expressed as:
two theories can be combined by matching the elastic wave W = 19 022 )
amplitude to the vibrating shear force, to obtain closed-form " — 8O- Yn
expressions for support loss in both C—F and C-C beamwhere the angular frequenay,, of the nth resonant mode

resonators. of a beam resonator [49]:
oy = 0 B ®
3. Analytical model for a beam resonator "TL2 \ pS

The in-plane flexural vibration of the beam resonator of !t should be noted thags. (7) and (8are applicable to both
Fig. 1 can be modeled using the beam theory. The equationC—F and C—C beam resonators, with different mode-related

for its resonant motion is given Hg9]: constant values listed iable 1 .
Through its clamped end, a beam resonator exerts a vi-

34_)’ _ _232_)’ ) brating shear forcd™, on its support over the region =
ox4 El 012 0, |y| < b/2 for a C—F beam, and=0, L, |y| < b/2 for a
whereE and p denote Young’s modulus and density of the C-C beam, respectively:

beam,l and S are the moment of inertia and cross-section 7B 2

area of the beam, respectively. The coordinates used in this/» = ElUx { } Xn (9)

analysis are illustrated iRig. 1
When this beam resonator undergoes time-harmonic vi- This shear force is assumed to be uniformly distributed

bration, we can assume: across the clamped end, acting as a source to excite elastic
o waves propagating into the support. Hence, the excitation
yx,n =Yx)e ®3) stress source can be expressed as:
where w denotes the angular frequency of the vibration. Iy
o . : , forly| <b/2
Substituting (3) into (2), one can obtain: Tw=\|b-h (10)
(0} for|y| > b/2

Y= v {cosh(ﬂn£> - COS(ﬂnﬁ) on =0
2 L L
N X wheret, ando, denote the shear and normal stress of the
+x (sinh(ﬁn—) — sin (ﬁn—))] (4) nth resonant mode, respectively. It is the normal stress that
L L contributes to the vibrating moment during the vibration
whereg is the mode constant andf2 denotes the vibration  of a beam resonator. Since the support loss caused by the
amplitude. vibrating moment is negligible (as mentioned previously),
x denotes the mode shape factor and is expressed as: the normal stress is set to zero.
Sin(nﬁn) - Sinh(”ﬁn)
A= Costmpy) + costapy O & :
4. Analytical modé for the support structure of a beam
i i resonator
o = sin(zB,,) + sinh(zp,,) (€0 ()
cognp,) — coshzf,)
where subscriph denotes different resonant mode numbers
(n=1,2,3,...). Table llists the first 10 mode shape factors The flexural vibration of a beam resonator excites an
and mode constants for both C—F and C-C beam resonatorselastic wave propagating in its support with in-plane

4.1. 2D in-plane elastic waves in a thin-plate

Table 1
The mode shape factorg)(and mode constantg) for C—-F and C-C beam resonators

Mode number

1 2 3 4 5 6 7 8 9 10
C—F beam
B 0.597 1.494 2.5 3.5 4.5 55 6.5 7.5 8.5 9.5
X -0.734 -1.019 —0.999 -1 -1 -1 -1 -1 -1 -1
C-C beam
B 1.5056 2.4997 35 4.5 5.5 6.5 7.5 8.5 9.5 10.5

X —0.983 —1.001 -1 -1 -1 -1 -1 -1 -1 -1
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displacement. When the beam thickness is much less than The shear stress toward tlieaxis and the normal stress
the elastic wavelength, this wave can be treated as a 2Dtoward thex-axis are given by18]:

elastic wave described H¢8]:

Puy  L,Puy  ,%uy 5, 5 u,
912 cL 9x2 T 9y2 (cf —c7) dxdy (11)
Puy  ,Pu, L Pu, o, Py

= - Lt (cf - 12
572 L dy2 T 9x2 (cf —c7) dxdy (12)

whereu, and u, are the displacements along tke and
y-axis, respectively. The propagation velocities for longitu-
dinal (c.) and transverse wavest( are given by:

E
2 _
T a— v 13)
E
2 _
T 2%+ (14)

The Poisson’s ratio of the thin-plate is denoteddyThe

E 0 0
r= 242 23)
14+v\dy ox
E ou ov
_ - = 24
1—2 (8x+U8y) (24)
respectively, which is also rewritten as:
2 2 2 2 a2
72 982 9°A
w_4f = |: 2 3.2 } - % (25)
Jolons ox ay<S2 cf 9xdy
2 2 4 a2 2 4\ a2
0°82 9°A 9°A
Yomof 2 AFe, (-4} 28 e
ch Bxay CT 0x CT CT By

4.2. Fourier transform of the 2D in-plane elastic waves in
a thin-plate

longitudinal wavelength and the transverse wavelength can As mentioned irSection 2 support loss is related to the

be expressed as:

AT = o
f
wheref is the frequency of the excitation source, which is
same as the resonant frequency of the beam resonator.
The longitudinal propagation velocity is larger than the
transverse velocity, since is always less than 0.5. There-
fore, the longitudinal wavelength is larger than the trans-
verse wavelength, and hence the condition for the validity
of the 2D thin-plate analysis for the support region can be
mathematically expressed as:
AT

—>1
A >

(15)

(16)

By assuming:, = u €', u, = ve®, and using the fol-
lowing definitions:

d d
v 17)
ox  dy
d d
=2_% (18)
dy  ox
Egs. (11) and (12%an be rewritten as:
0A 82
—w?u=ct— 42— (29)
ax ay
0A 082
—w’v = CE— — c-zr— (20)
ay 0x

The above two equations can be further reorganized as:

2A  32A
2 240
CL<¥+W>+Q)A_O (22)
322 R
2 20 _
CT(W_FW)_'—Q)‘Q_O (22)

displacement in the support along the direction of the shear
stress. This displacemenmt,has been implicitly expressed by
the 2D in-plane elastic wave theory in the above subsection.
In order to obtain an explicit expression from this theory,
we apply the Fourier transform tgs. (19)-(22), (25) and
(26) [20]. The following equations are obtained:

dAE

—w?up = CEE — iEc22F (27)
de2
w?vg = ciEAF + 2—F (28)
L T
dx
dZAF 2 (1)2
- ——]4=0 29
02 (5 2 F (29)
dZQF 2 Cl)2
— - —— |2=0 30
dx2 (é c% F (30)
w? dZ.QF 5 2 dAE
2 = QF |+ 2L == 31
pclefF |: 32 ¢ Fi|+ léc% oI (31)
w? d2r ¢ d?Ap 2
S g =i LT TR (oL TL ) £2g4p
pC-|4-aF 15 dx C4 dxz C% C?— é: F
(32)

where subscript F denotes the Fourier transformé&isdhe
variable of this transform.
The solutions folEgs. (29) and (303an be expressed as:

Ap = AeVE—@/a)®
QF = BeVE /™
respectively, wherx < 0. A and B are constants related

to the amplitude of the elastic wave and can be specified
by Egs. (31) and (32yith the appropriate excitation stress

(33)

(34)
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source from a beam resonator. Finally, the displacement un- By combining Egs. (1), (7) to (10), (36), and (38)he
der the stress source can be found by substituting the solu-support quality factor of a C—F beam resonator can be ex-

tions (33) and (34) int&q. (28) pressed as:

0.24(1 — v) R
5. Closed-form expressions for support loss in Oc—+@m = A+0v | G2 b (39)
micromachined beam resonators

ComparingEq. (39)with the results obtained by Jimbo and
Itao[16], theQc—r value predicted b¥q. (39)is 4% smaller
The support of a C-F beam resonator is modeled as athan the result of Jimbo and Itao, v.vhic.h .is bas.ed on the.as—
semi-infinite thin plate of thickness in the x-y plane as ~ Sumption of 'the support as alseml-mflm'te' SIOI'Id (assumlng
shown inFig. 2 whereo, andz, are the normal and shear v = 0-25). Since the assumption of semi-infinite thin-plate
stress of thenth in-plane flexural resonant mode of the Versus S(_eml-lnfmlt_e_ solid incurs v_ery_small varlafuon of the
beam resonator, respectively. The stress sources, introduce@ropagation velocities of the longitudinal waves in the sup-

5.1. Clamped-free beam resonators

in (10), are transformed into: port, the difference between the predictions of these two
_ models is trivial. However, for a beam resonator with a large
F = 21, Sin(§(6/2)) x=0 ratio of At/h, it is more practical to assume the support as a
3 (35) semi-infinite thin-plate than a semi-infinite solid.
o =0, x=0

. ) , 5.2. Clamped—clamped beam resonators
By combining (28) to (35) and applying the inverse

Fourier transform, the average displacement along-idds For a C—C beam resonator, the support is modeled as an
and over the source region can be expressed as: infinite thin-plate of thicknesé in the x-y plane as shown
4bt, 1+ v in Fig. 3 and the stress sources are distributed over two
Ve=0) = — 0 1 U‘I’ (36) regions att =0, |y| < b/2 andx =L, |y| < b/2:
21, -Sin(é-b/2)
where _ —
TE = E , x=0,L (40)
w_/oo VE2 = (cL/er)? dr or =0, x=0,L
- 2 _ 202 _ g2, [72 2. [2
0 {27~ (ecfer?)” — a2 I~ fen? - VP -1 By combining (28)—(34) and (40) and applying the inverse
(37) Fourier transform, the average displacement algraxis
over the source region = 0, |y| < b/2, can be expressed

and¢ = &c| /w. The imaginary part of the integral of (37),

which will contribute to support loss, can be numerically as.
calculated to.be 0.336 (as.sumingz 0.28). Veo = b-t, B—v) - (1+v)+ b-tn by (41)
After the displacement incurred by the shear stress over 16-E 4.7 FE

the source region is determined, the amount of energy loss,yhere
per cycle from the support of a beam resonator can be ex-

=" 1 g2 I
plicitly calculated as: mT=1- UZ)/ § cos( /1_ 2‘“_) d
0 /1—§&2 : cL g

AW = nl,v=0) (38)

1 L
/1_ g2 [1_ £2%%
where the coefficient is due to the time-harmonic nature +2d+ U)/O 1-¢ COS( 1-¢ cT ) d (42
of the shear force and its corresponding displacement.

4 Infinite thin-plate

LSS

y

%
/] %
/]
LY - ____ _ p
_________ n
On [ b an_i‘cn Tb rnI:a .
4
o F R v P = X
Semi-infinite A L 7
thin-plate /

4 S

Fig. 2. A semi-infinite thin-plate with excitation source from a C-F beam Fig. 3. An infinite thin-plate with excitation source from a C—C beam
resonator. resonator.
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It should be noted that the displacement expressed by (ii) Material properties: While the support quality factor of

Eqg. (41)is only the imaginary part of the average displace- a beam resonator is independent of the Young’s mod-
ment. The first and second termskn. (41)are incurred by ulus of the resonator’s material, it is dependent on the
the stress sources at= 0 andL, respectively. The second Poisson'’s ratio of the resonator’'s material. The influ-
term is always smaller than the first term, which can be ex- ence of the Poisson’s ratio is introduced by the tran-
plained by the fact that the stress source at 0 induces sition of 1D vibration in the beam resonator into 2D
larger displacement over its own adjacent region. elastic wave propagation in the support structure.

Due to the symmetry of the C—C beam aroung L/2, (iif) Vibration amplitude: The support quality factor has no
the displacement along-axis over the source regian = dependency on the vibration amplitude, as long as the
L,|y| < b/2 can also be calculated usii. (41) Thus, vibration amplitude of the beam resonator is kept in the
the support quality factor of a C—C beam resonator can be linear range.
expressed as: (iv) Mode order: The support quality factor of a microma-

chined C-F or C—C beam resonator decreases as its
3 mode order increases. lllustratedriy. 4 are the plots

2.43 + 1_91} 1 [E} (43 of the coefficients ofl(/b)3 in Egs. (39) and (43yer-
B-v)d4+v) M | Buxw)? b sus resonant mode orders, assuming a Poisson’s ratio
of 0.28. The difference between the first and second
terms inEq. (43)is neglected in this figure.

Oc—cm) = {

When the elastic wavelength is very large compared to
the beam lengthl(), the second term in the square braces is ) o
approximately equal to the first term. It is worth mentioning 6. Experimental verification
that the values of and y are mode-related and different for
Egs. (39) and (43)since they represent different types of 6.1. Thermoelastic damping and surface loss related
beam resonators. quality factors

For a beam resonator operating in vacuum, the overall

5.3. Discussions .
quality factor Q) can be expressed as:

The analytical model for the support loss derived in this 1 1 n 1 n 1 (a4)
paper provides insight into the design of microresonators, Q9 Osupport  Qrep Osurface

which are summarized as below:

whereQsupport Qrep, andQsurfacedenote the quality factors
(i) Dimensional dependency: The support quality factor  due to the three energy loss mechanisms of support loss,
(Qsuppor) is proportional to the cubic power of the ratio  thermoelastic damping, and surface loss, respectively. The

of the beam length to the beam widih/lf)3, indepen- losses due to any other sources are assumed negligible in
dent of the beam thickneshk)( this work. In order to experimentally verify the analytical
2.5 0.7
, ——C-F beam 1 o6
- =& - -C-C beam los
=
£ 151 Los 8
@ ' 5
= 1
L‘) 1 + 0.3 @]
+02
0.5
+ 0.1
0 b ST NS 0
0 2 4 6 8 10 12
Mode order
Mode order 1 2 5] 4 5 6 7 8 9 10

C-Fbeam | 2.081 | 0.173 | 0.064 | 0.033 | 0.020 | 0.013 | 0.009 | 0.007 | 0.006 | 0.004
C-CBeam | 0.638 | 0.223 | 0.114 | 0.069 | 0.046 | 0.033 | 0.025 | 0.019 | 0.015 | 0.013

Fig. 4. The coefficient$0.24(1 — v) /(1 + V)¥}{1/(Bn xx)%} and {2 x 2.43/(3 — v) (1 4+ v)}{1/ (B, x»)?} of the predicted support quality factors of a C—F
and a C—C beam resonator.
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Table 2 _ ' _ - literature[13]. The C—F and C—C beam resonatordif]
Material properties of highly-doped single-crystal silicon were made of highly-doped single-crystal silicon, which is
Property Symbol Value an anisotropic material. The model developed in this pa-
Density (kg/) P 2330 per is for |sotrop|c.mater|al. However, since the boundary
Young’s modulus for Si[100] (Pa) E 1.3x 101 planes of the fabricated beqm resona.tors[lcﬂ]. are all
Poisson’s ratio for Si[100] v 0.28 [100], we can use the material properties of single crystal
Thermal expansion coefficient (K) of 2.6x10°° silicon along the(1 0 0 orientation for the moddgR1]. The
?E:rcr':; '(‘:z":‘]td(JC’t(_K_f))(W/(m ) Cp ;-063“06 material properties used in this work are listedTable 2
uctivity K . .
Environmental temperature (K) T 300 [13]. The beam thickness is 20n for all the measured

silicon resonators. Due to its critical role in estimating the
support loss, the “mask-drawn” beam widths listed 18]
model for support loss derived in this paper, bQftp and  have been slightly modified in our calculations to match
Qsurface cOMponents of the measured overall quality factor the “measured” resonant frequencies of the resonators and

need to be quantified. account for lithography and fabrication error. Only the data
The Qrep can be expressed §2]: points that satisfy the.t/k > 1 condition (2D analysis)
1  E-opT |6 6 sinh(¢) 4 sin(c) 45 were cons_idered. _

Otep Cpp 12 3 cosh¢) + cog<) (45) Table 3lists the measured quality factoi®easurey and

) o calculated support quality factor®4,ppor) of the fundamen-
whereat andC, denote thermal expansion coefficient and {5 mode of different sizes of single crystal silicon C—C beam
specific heat at constant pressure of the material used for thgeggnators without surface treatment. Tantical is the
beam, respectivelylo is the environmental temperature;  gyerall quality factor calculated usirieg. (44) Also listed

is expressed as: in Table 3are theQrep and theQsyriaceWith Egsd equal to
C 1.38, calculated froriq. (45) and (47)respectivelyTable 4
@pLp . .
c=b o (46) compares th©measuredith the calculated quality factors of

the fundamental mode of different sizes of C—C beam res-
onatorswith surface treatment (to reduce surface roughness,

the beams were oxidized and the oxide was subsequently
removed). Since our calculation shows that the surface

wherex denotes thermal conductivity of the beam material
andw denotes the angular frequency of the beam resonator.
Yang et al.[4] suggests the following expression for the

Qsurface treatment makeQsurface Negligible compared tQ@rep and
__bh E Qsupport theQsurfaceis ot listed in this table. The calculated
qurface— (47) . .
3b + h 2E4s8 and measured quality factors are in good agreement for both

with and without surface treatment. Especially, for C-C
beam resonatorwith surface treatment, errors introduced

wheres denotes the characterized thickness of the surface
layer andEgs is a constant related to the surface stress. If the ;
C—F beam and C—C beam resonators are fabricated using th@Y Surface loss are greatly alleviated and hence the com-
same process, we can argue thahould be the same for parison between the developed model and the experimental
both C—F and C—C while thgs of a C—F beam resonator is d&fa is much more reliable.

smaller than that of a C—C beam resonator, in that only one _1able 5Scompares th&measureqand calculatesupport

end of a C—F beam is constrained. Since it is very difficult of the fundamental mode of different sizes of single crystal
to characterize the values &fand Eqs, we will choose the silicon C—F beam resonators without surface treatment. It
best-fit values ofE4s to minimize the error between the S found thatEqss = 0.81 works well for the C—F beam

model and the experimental data in the following subsection, "€Sonators. As expected, the valuefis for a C—F beam
resonator is smaller than that of a C—C beam resonator, and

6.2. Comparison with experimental data the calculated and measured values of quality factor are
agreeable.
In order to demonstrate its validity, this analytical model =~ The comparison between tH@measuredand calculated
is compared with the experimental data detailed in the Qsupportfor the third resonant mode of different size single

Table 3
Comparison between measured quality factors and calculated support quality factors of the fundamental mode of different sizes of singiearystal sil
C-C beam resonators without surface treatment (the first data point was takef2@prwhich used the same fabrication technology{E3])

Length @m) Width (Mm) Measured frequency (kHZ) )LT/h qupport QTED qurface Qanalylical Qmeasured

900 7.9 74.8 3120 248470 116590 173760 54476 53600
700 5.15 80.3 2907 421980 254010 139464 74201 74000
500 3.8 117 1995 382800 322520 116178 69831 67000

300 3.4 288.4 809 115440 162280 108079 41533 43000
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Table 4
Comparison between measured quality factor and calculated support quality factor of the fundamental mode of different sizes of single arystal silic

C-C beam resonators with surface treatment

Length @wm) Width (um) Measured At/h Qsupport Qrep Qanalytical Qmeasured
frequency (kHz)

500 5.35 164.5 1419 130280 115870 61327 60400

500 6.45 198 1179 74345 66523 35108 35000

500 7.1 217 1076 56933 51264 26975 27000

700 8 125.5 1860 106920 68302 41678 39400

Table 5

Comparison between measured quality factor and calculated support loss quality factor of the fundamental mode of different sizes of siniieoarystal s
C—F beam resonators without surface treatment

Length @m) Width (um) Measured At/h Qsupport Qrep Qsurface Qanalytical Qmeasured
frequency (kHz)

700 6.45 15.94 14642 2662600 821910 262262 185006 173800

500 4 19 12284 4068400 1758100 200000 171981 178000

500 5 24.59 9492 2083000 900180 228571 167617 157400

500 6.2 30.14 7744 1092500 472190 256995 144420 154800

Table 6

Comparison between measured quality factor and calculated support quality factor of the 3rd resonant mode of different sizes of single anystal silic
C—C beam resonators with surface treatment

Length (le) Width (|~Lm) Measured )\T/h qupport QTED Qanalytical Qmeasured
frequency (MHz)

700 8.7 0.74 315 17365 13768 7660 8000

500 6.1 1.03 227 18357 17142 8864 10700

500 7.2 1.21 193 11177 19476 7102 8300

crystal silicon C—C beam resonators with surface treatmentometry will overcome the application limit of this 2D ana-
is shown inTable 6 Our model overestimates the support lytical model.

loss in this case. This difference may be attributed to the

ratio of A1/h not being large enough to validate the 2D as-
sumption in the support region. As emphasized throughou
the paper, our 2D analytical model is valid only under the
condition that the transverse wavelength is much larger than
the beam thickness. For a beam resonator with a small ratio
of At/h, 3D geometry should be included in the analytical
model to predict support loss. References
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