
International Conference on VLSI Design, January 1997Dynamic Fault Grouping for PROOFS:A Win for Large Sequential CircuitsCharles R. Graham Elizabeth M. Rudnick Janak H. PatelCenter for Reliable & High-Performance ComputingUniversity of Illinois, Urbana, ILAbstractThis paper discusses the important role of faultgrouping in a parallel 32-bit fault simulator such asPROOFS. Three algorithms are presented which dy-namically order the fault list during fault simulationto determine how the faults get grouped together. Thedynamic fault grouping algorithms were incorporatedinto PROOFS and tested on benchmark circuits. Thealgorithms showed a marked reduction in the numberof faulty circuit gate evaluations (compared to a staticfault grouping) for almost all of the circuits with morethan 20 ip-ops. For the largest benchmark circuit,s35932, all of the algorithms showed at least a 39% re-duction in the number of faulty circuit gate evaluationsand at least a 55% speedup in simulation time.I IntroductionThis section will explain the importance of faultgrouping in determining the fault simulation e�ciencyof a parallel 32-bit fault simulator. Then, some limita-tions of static fault grouping will be presented.In order to take advantage of the parallelism inher-ent in PROOFS, the proper fault grouping is essential[1] [2]. Each fault injected into the circuit causes a cer-tain number of circuit elements to be evaluated. Letthe list of all circuit elements evaluated for a given faultand vector pair be called the sphere of inuence. Thegoal of fault grouping is to group faults together whosespheres of inuence have the greatest intersection.When a group of 32 faults is injected into a cir-cuit, all the gates in each of the 32 spheres of inuencemust be evaluated before a new group of faults canbe injected into the circuit. In the case of ideal faultgrouping (where all 32 faults grouped together causeexactly the same circuit elements to be simulated) thenumber of gate evaluations is reduced by a factor of32 because each gate must be evaluated only once tosimulate every fault in the fault group. On the otherhand, if there is no intersection between spheres of in-uence, then each gate is evaluated to determine thevalue of one faulty circuit only. When this occurs, the�This research was supported in part by DARPA under Con-tract DABT63-95-C-0069, in part by the Semiconductor Re-search Corporation under Contract SRC 95-DP-109, and byHewlett-Packard under an equipment grant

major advantage of parallel fault simulation is lost. Ina fault simulator that uses word level parallelism, suchas PROOFS, the fault grouping that is chosen will de-termine the number of gate evaluations that must beperformed and thus a�ect the fault simulation time.PROOFS implements a static fault grouping tech-nique based on a depth-�rst search of the circuit start-ing at the primary outputs. The ordering of the faultsin the fault list is done in a preprocessing stage priorto fault simulation. Once PROOFS scans a fault list,the ordering of that fault list is not changed except topermanently drop faults that have been detected or totemporarily drop faults that are known to be inactive.Faults are taken from the fault list in sequential orderfor each test vector to be simulated [1].A static fault ordering, as used in the originalPROOFS, is a simple approach that attempts to groupfaults together that are most likely to have intersectingspheres of inuence. One type of fault that this staticfault ordering approach does not take into account isthe hyperactive fault. A hyperactive fault is de�ned asa fault which is undetected by a vector and has a verylarge sphere of inuence. Hyperactive faults pose a lim-itation on parallel fault simulation because they tend todramatically increase the number of gates evaluated fortheir fault groups. Lee and Ha noted during the devel-opment of their PROOFS-based fault simulator calledHOPE that when highly active faults were grouped to-gether, the bits in each 32-bit word were better utilized[2][3]. In order to reduce the negative e�ects of hyper-active faults, they implemented dynamic fault groupingin addition to static fault grouping in their HOPE1.1fault simulator [2]. Later Kung and Lin developed theHyHOPE fault simulator in order to further reducethe number of gate evaluations caused by hyperactivefaults. The algorithm used in HyHOPE separates hy-peractive faults from non-hyperactive faults and simu-lates them di�erently [4].The goal of our research is to implement and testdynamic fault ordering algorithms that group normalfaults separately from hyperactive faults. In order fora dynamic fault ordering algorithm to be successful, itmust identify hyperactive faults in a simple way be-cause using a complex algorithm would most likely de-feat the purpose of reducing overall simulation time [2].



II Proposed Solutions: Dynamic FaultGrouping Based on Fault ActivityThis section explains the details of three di�erentdynamic fault grouping algorithms which were devel-oped to group hyperactive faults together. Each of thealgorithms begins with the same preprocessed fault listused by PROOFS (depth-�rst from primary outputs).The fault list is re-ordered just before the simulation ofa new vector. The new fault list is then used to injectgroups of 32 faults into the circuit.A Fault Grouping Based on Potential De-tectionsThe �rst fault ordering algorithm separates thefaults into two lists: (1) faults that were not poten-tially detected by the previous vector and (2) faultsthat were potentially detected by the previous vector.A potentially detected fault is de�ned as a fault whichcauses an unknown value, X, to be propagated to a pri-mary output while the good circuit value is a known1 or 0. As in the original PROOFS, faults which areknown to be inactive are not inserted into either list.The potentially detected fault list is then appended tothe end of the undetected fault list, and the resultingfault list is passed to the fault injection routine.A fault that causes potential detections is likely tobe very active because it has caused an X value topropagate from a ip-op to a primary output. In thiscase there is a very high probability that the X valuewas also propagated to a ip-op. This means that thefault may remain as a potentially detected fault in thenext time frame [2].B Fault Grouping Based on Fault E�ectsat Flip-FlopsThe second algorithm groups faults based on thenumber of ip-ops that each fault causes to be erro-neous in the circuit. If a fault e�ect is propagated toseveral ip-ops in a circuit but the fault is not de-tected, there is a high probability that the fault willbe hyperactive in the next time frame. This algorithmseparates the fault list into three groups using a thresh-old, t. Faults are placed into the groups as de�ned be-low and then joined into one list before being sent tothe fault injection routine.Group 1: # of ip-ops having fault e�ects = 0Group 2: 0 < # of ip-ops having fault e�ects < tGroup 3: # of ip-ops having fault e�ects � tC Fault Grouping Based on Potential De-tections and Fault E�ects at Flip-FlopsThe third algorithm combines the two previous al-gorithms. The fault list is separated into four groups.First, the potentially detected faults are removed fromthe original list; then the remaining faults are orderedinto three groups as described in the previous section.These four groups are then concatenated before beingsent to the fault injection routine.

III ResultsThe PROOFS fault simulator was modi�ed to dy-namically order the faults according to the three algo-rithms detailed previously. The simulation results weregathered and compared to the results of the originalversion of PROOFS. The metrics used for comparingthe original PROOFS to the PROOFS with dynamicfault ordering were (1) the overall execution time and(2) the number of faulty circuit gate evaluations.Results were gathered using the GATEST vectors[5], the ISCAS89 benchmark circuits, and several syn-thesized circuits. Table 1 contains simulation detailsfor the circuits and vectors used, including the execu-tion time and number of faulty circuit gate evaluations(Flt Eval). We are particularly interested in the sim-ulation results of the large sequential circuits becausethese are the circuits that have the longest fault simu-lation times. Table 1 contains the simulation results forall the circuits containing more than 20 ip-ops. Thecircuits requiring more than 9 seconds of execution us-ing the original PROOFS are of particular interest andhave been placed at the bottom of the table for easycomparison. All simulations were run on an HP 9000J200 workstation with 256 MB of RAM.A Fault Grouping Based on Potential De-tectionsTable 1 shows the results of the circuit simulationswhen faults are grouped dynamically according to po-tential detection status (listed under POT). For thelast six circuits listed in the table, the average reduc-tion in the number of faulty circuit gate evaluationswas 27.5%. The average speedup for the same circuitswas 30%.Figure 1 shows a graph of the number of faulty cir-cuit gate evaluations as a function of the test vectornumber for the circuit s35932. The graph shows thatdynamic fault grouping consistently outperforms staticfault grouping at each stage of fault simulation.

0

10

20

30

40

50

60

70

80

90

100

50 100 2000 150 250
VECTORS

Static Fault Grouping

Dynamic Fault Grouping

F
au

lt
y 

C
ir

cu
it

 G
at

e 
E

va
lu

at
io

ns
 (

m
ill

io
ns

)

Figure 1: Dynamic vs. Static Fault Grouping: Com-parison of Faulty Circuit Gate Evaluations for s35932



Table 1: Simulation Results for PROOFS with Dynamic Fault GroupingFlip- Fault Time Speedup Flt Eval Gate Eval Red. RatioCircuit Gates Flops Faults Vec Cov (sec) POT FEFF COMB (x 1000) POT FEFF COMBs382 158 21 399 331 0.87 0.75 1.02 1.03 1.05 85 0.96 0.96 0.96s400 164 21 426 324 0.86 0.75 1.05 1.05 1.05 85 0.94 0.94 0.94s444 181 21 474 254 0.86 0.75 1.07 1.07 1.07 89 0.93 0.95 0.93s526 193 21 555 371 0.76 1.06 1.01 1.02 1.03 125 0.98 0.99 0.98s3330 1789 132 2870 863 0.74 7.09 1.00 0.90 0.90 835 1.04 1.40 1.39s3384 1702 183 3380 675 0.93 7.53 0.98 0.91 0.93 1005 1.12 1.18 1.10s4863 2342 104 4764 502 0.96 4.75 1.06 1.07 1.10 445 0.88 0.89 0.87s6669 3123 239 6684 542 1.00 7.91 1.05 1.06 1.00 730 0.94 0.95 0.93div16 856 50 2147 725 0.80 4.11 0.99 0.95 0.94 667 1.01 1.04 1.01mult16 645 55 1708 204 0.22 3.61 1.11 1.12 1.11 655 0.86 0.86 0.85am2910 930 87 2391 745 0.90 5.01 1.02 1.02 1.03 790 0.96 0.95 0.95s1423 657 74 1515 699 0.85 9.51 1.28 1.29 1.28 1688 0.67 0.66 0.67s3271 1573 116 3270 1305 1.00 9.38 1.04 1.01 1.01 1049 1.00 1.00 1.00s5378 2779 179 4603 586 0.69 14.7 1.17 1.22 1.18 2543 0.84 0.81 0.85s35932 16065 1728 39094 256 0.89 1294 1.55 1.56 1.56 90843 0.60 0.61 0.60pcont2 4010 24 11272 272 0.59 17.2 1.57 1.58 1.61 3205 0.50 0.49 0.49piir8 10712 56 29689 531 0.57 57.4 1.21 1.22 1.22 8760 0.74 0.72 0.70B Fault Grouping Based on Fault E�ectsat Flip-FlopsResults in Table 1 for fault grouping based on faulte�ects propagated to ip-ops (listed under FEFF)show that this algorithm provides a slight improvementover the previous algorithm for the six circuits withthe largest number of faulty events using the originalPROOFS. The average speedup in simulation time forthese circuits was 31%, and the average reduction infaulty circuit gate evaluations was 28.5%. The resultsin Table 1 were measured using a threshold value of 5.Several di�erent threshold values were simulated with-out any appreciable performance increase.In addition, a similar algorithm was tested whichdivided the fault list into two groups: (1) all the faultscausing fewer fault e�ects than threshold t, and (2) allof the remaining faults. This algorithm was also testedwith several di�erent threshold values. The algorithmand results were similar enough to the above mentionedalgorithm that more details have not been included.C Fault Grouping Based on Potential De-tections and Fault E�ects at Flip-FlopsThe results for the combined algorithm are shown inTable 1 (listed under COMB). The average speedup insimulation time for the last six circuits was 31%, andthe average reduction in faulty circuit gate evaluationswas 28%. Several di�erent threshold values were sim-ulated without any appreciable performance increase.IV ConclusionThe research presented in this paper clearly showsthat it is a design win to use some form of dynamic faultgrouping in a parallel fault simulator such as PROOFS.Although the idea of dynamic fault grouping for suchsimulators is not new [2] [3] [4], several of the dynamicfault ordering algorithms presented in this paper areunique.

Three algorithms for dynamically ordering faultswere described. The goal of each of these algorithmswas to explore methods for improving the fault group-ing in PROOFS by simulating the highly active faultstogether instead of letting them remain interspersedamong the less active faults.All of the algorithms improved the performance ofthe original PROOFS when used to simulate six of thelarger circuits studied. Especially notable is the factthat for the two largest ISCAS89 benchmark circuits,s5378 and s35932, dynamic fault ordering based onfault e�ects at the ip-ops resulted in reductions inthe number of faulty circuit gate evaluations by 19%and 39%, respectively, and speedups of 21% and 56%.References[1] T. M. Niermann, W.-T. Cheng, and J. H. Patel,\PROOFS: A Fast, Memory-E�cient Sequential Cir-cuit Fault Simulator," Proc. ACM/IEEE Design Au-tomation Conf., pp. 535-540, June 1990.[2] H. K. Lee and D. S. Ha, \New Methods of ImprovingParallel Fault Simulation in Synchronous SequentialCircuits," Proc. Int. Conf. Computer-Aided Design,pp. 10-17, June 1993.[3] H. K. Lee and D. S. Ha, \HOPE: An E�cient Par-allel Fault Simulator for Synchronous Sequential Cir-cuits," Proc. ACM/IEEE Design Automation Conf.,pp. 336-340, June 1992.[4] C.-P. Kung and C.-S. Lin, \HyHOPE: A Fast FaultSimulator with E�cient Simulation of HypertrophicFaults," Proc. Int. Conf. Computer-Aided Design,pp. 714-718, 1994.[5] E. M. Rudnick, J. H. Patel, G. S. Greenstein, and T.M. Niermann, \Sequential Circuit Test Generation ina Genetic Algorithm Framework," Proc. ACM/IEEEDesign Automation Conf., pp. 698{704, June 1994.


