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Abstraet--A hierarchical recurrent neural network (HRNN) for speech recognition is presented. The HRNN 
is trained by a generalized probabilistic descent (GPD) algorithm. Consequently, the difficulty of empirically 
selecting an appropriate target function for training RNNs can be avoided. Results obtained in this study 
indicate the proposed HRNN has the advantages of being capable of absorbing the temporal variation of 
speech patterns as well as possessing effective discrimination capabilities. The scaling problem of RNNs is 
also greatly reduced. Additionally, a realization of the system using initial/final sub-syllable models for 
isolated Mandarin syllable recognition is also undertaken for verifying its effectiveness. The effectiveness 
of the proposed HRNN is confirmed by the experimental results. 

Speech recognition Hierarchical Recurrent neural networks 
Generalized probabilistic descent Discriminative training 

l. INTRODUCTION 

Speech is unmistakably produced by a slowly moving 
vocal tract. Features extracted from speech signals are 
therefore distributed over time in a complex manner. 
The temporally distributed features of speech signal 
make it difficult to recognize. The hidden Markov 
model (HMM) is a conventional method applied in 
coping with this difficulty. In HMMs, a speech pattern 
is treated as if it is the output of a stochastic system 
with its associated internal state being a process 
governed by probabilistic laws. In this sense, HMMs 
do not directly deal with time warping; however, they 
learn statistical distribution of a training set which 
contains time warped patterns, m Consequently, HMMs 
recognizing a test pattern which is far away from the 
statistical distribution of the training set would be 
rather unlikely. Conducting within-class training with- 
out competition with hostile classes is yet another 
vulnerability of HMMs; that is, they are trained with 
a maximum likelihood criterion. Hence, elements of 
confusing words are not emphasized as essential cues 
when distinguishing between them. Some criteria, e.g. 
the maximum mutual information, actually provide an 
approach of discriminative training for HMMs; how- 
ever, these criteria require much hypotheses to be 
solved. 

Multi-layer perceptrons (MLPs), on the other hand, 
possess effective discrimination capabilities through 
competitive training for static patterns to produce 
outputs which discriminate between the classes to re- 
cognize. Since speech signal is inherently dynamic, a 

* Author to whom all correspondence should be addressed. 

network which accepts a stream of speech requires 
recurrent connections for maintaining a representation 
of previous cues. Unfortunately, the structure of MLPs 
being a feedforward network does not directly conform 
to the speech recognition because of no memory to 
represent the process of state transitions over time. 
Some approaches toward MLP-based speech recog- 
nition have been studied in recent years to solve 
the problem caused by temporal distortion in speech 
signal/2-6/The time delayed neural network (3) (TDNN) 
and the dynamic programming neural network (4) 
(DNN) are two typical examples of these approaches. 
TDNN deals with the time-alignment problem through 
the mapping of a temporal variation of the speech 
signal into interconnections which are present between 
neurons of different delay periods. The cells of the 
TDNN integrate activities from adjacent time-delayed 
vectors, which allows each vector to be separately 
weighted in time. Even so, TDNN does not work well 
for recognizing dynamic speech signals since the local 
features from adjacent time-delayed vectors do not 
directly contribute to the final classification. The DNN 
applies the conventional dynamic programming 17) 
(DP) algorithm toward optimistically aligning the MLP 
input cells with the input utterance. The DP, although 
an efficient strategy of searching for the optimum path 
among all L L possible paths, still requires ~ O ( L  2) 
operations, (1~ where L is the frame length of the input. 
Additionally, one operation here represents all of the 
calculations involved in evaluating the score of one 
path. The DP is later demonstrated here as not being 
required whenever using the proposed HRNN. This 
exclusion is a dramatic saving in the computation 
power. 

795 



796 W.-Y. CHEN et al. 

The conventional neural network architectural con- 
figurations have obtained a high recognition rate for 
small vocabulary speech recognition. If these confi- 
gurations are extended for large vocabulary speech 
recognition, however, the training time becomes exces- 
sively large according to the scale of the network. 
Moreover, searching for an optimal solution in the 
solution space of a large network configuration be- 
comes increasingly difficult and causes the network to 
fall into local minima instead of the global minimum. 
A large network also requires a substantial amount of 
training data; otherwise, the network simply memorizes 
the training samples, thereby resulting in a poor gene- 
ralization. Some approaches based on hierarchical 
neural nefworks have already been studied in light 
of the fact that scaling up a conventional network 
for large vocabulary speech recognition is not realis- 
tic. (8-13) In hierarchical neural networks, each indivi- 
dual network is only faced with a partial task of solving 
a large problem in its entirety and, consequently, can 
be trained with less training samples. Additionally, the 
experimenter has the option of assigning subproblems 
to individual networks as well as structuring communi- 
cation between networks in a manner that reflects 
knowledge of the domain. (14) Matsuoka et al. ~ 2) pro- 
posed an integrated neural network, which consists of 
a control network and several sub-networks, to re- 
cognize 62 syllables. Hampshire II and Wiabel (l°'lx) 
proposed the Meta-Pi network consisting of a 
multi-network TDNN which performs multi-speaker 
phoneme discrimination (/b, d, 9/). The Meta-Pi archi- 
tecture is a multi-source connectionist pattern classifier 
that is comprised of a number of source dependent 
sub-networks that are integrated by a combinational 
superstructure. Hild and Waibel (9~ improved multi- 
state TDNN (MS-TDNN) for speaker independent 
connected letter recognition by exploring network 
architectures with "internal speaker models". How- 
ever, all of these systems are implemented in MLP- 
based neural networks which have inherited the draw- 
backs from MLPs. Some of these systems are only 
appropriate in dealing with static patterns. Others deal 
with the temporal problem using either the TDNN 
structure or the DP algorithm. 

The architectural configuration of RNN is one in 
which the state of the network at any time depends on 
a complex aggregate of previous inputs. Consequently, 
RNN-based systems more easily catch dynamic in- 
formation than those MLP-based systems. Nossair 
and Zahorian ~ 5~ demonstrated that features extracted 
from dynamic spectrum are superior to features ex- 
tracted from the static spectrum. RNNs are therefore 
potentially suitable for recognizing speech patterns. 
However, two main limitations involving application 
of RNNs to speech recognition still remain unsolved 
and require further studies, i.e. the selection of appro- 
priate target functions for training the network as well 
as its applicability toward large vocabulary speech 
recognition. The desired outputs of RNNs must be 
expressed as functions of time, as indicated in previous 

studies. (16'iv) The setting of proper target functions 
over time is rather critical for RNNs because it deter- 
mines how the network's weights can be updated. The 
setting target functions for RNNs is totally different 
from the approach of training a static network, e.g. an 
MLP, by setting fixed desired targets for a specific 
input pattern. The selection of appropriate time- 
dependent target functions is unfortunately still an 
empirical process. The limitation of applying an RNN 
to large vocabulary speech recognition is a scaling 
problem. The RNN should be sufficiently large to 
discriminate all of the word patterns in the vocabulary. 
However, the learning time and the number of weights 
required for accurately distinguishing all word patterns 
would grow exponentially and become unacceptable 
as the network becomes large. 

A hierarchical RNN (HRNN) system for speech 
recognition is proposed in this study. Speech signal of 
an utterance is first phonetically divided into sub-word 
units. Each subword unit is then separately discrimina- 
ted using an RNN. Next, a sequence of RNNs formed 
by serially cascading these basic RNN recognizers is 
utilized as the syllable recognizer. Besides, an addi- 
tional RNN is employed in generating weighting func- 
tions for softly segmenting the input utterance as well 
as for unequally combining outputs of the sequential 
network. The segmentation of the input utterance is 
notably a soft one. This system is suitable for large- 
vocabulary speech recognition applications in light 
of the fact that sub-word units are adopted herein. 
Additionally, a novel training scheme based on a gene- 
ralized probabilistic descent (GPD) algorithm (is) is 
also introduced for training the HRNN. The difficulties 
of empirically selecting appropriate target functions 
for training RNNs can be avoided by using the GPD 
competitive training algorithm. The proposed HRNN 
has the advantages of absorbing the temporal variation 
of speech patterns as well as possessing efficient dis- 
crimination capabilities. 

This paper is organized as follows. The proposed 
HRNN system for speech recognition is presented in 
Section 2. A realization of the system based on initial/ 
final sub-word models for Mandarin syllables recogni- 
tion is also discussed. Performance of the system 
is examined by simulations discussed in Section 3. 
Conclusions are finally made in Section 4. 

2. HIERARCHICAL RECURRENT NEURAL NETWORKS 

2.1. Recurrent neural networks 

The architectural configuration of the basic RNN 
used in this study is shown in Fig. 1. In the RNN, 
outputs of hidden units are delayed and fed back as 
supplementary inputs of the network. The activation 
function of output neuron k at time n is defined as 

Ok(n) = • wk jO j(n) (1) 
J 

where Wkj is the feedforward connection strength from 
hidden neuron j to output neuron k. Additionally, Oj 
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Fig. 1. The architectural configuration of a recurrent neural 
network. Previous outputs of hidden nodes are fed back to 
inputs. All nodes in the input layer are fully connected to the 

nodes in the hidden layer. 

is the activation function of hidden neuron j, defined as 

Oj(n) = Sigmoid(netj(n)) (2) 

netj(n) = Z w jixi(n) Jr- ~ r jlOl(n -- 1) 
i l 

where Sigmoid() is a sigmoidal function defined by 
Sigmoid(x) = 1/(1 + e-~); O~(n - 1) is the activation value 
of hidden neuron l at time n -  1; rjz is the recurrent 
connection strength from hidden neuron 1 to hidden 
neuron j; and x~(n) is the input value of input neuron i 
at time n. 

2.2. The proposed H R N N  for Mandarin speech 
recognition 

Each character in Mandar in  speech is pronounced 
as a syllable. An isolated Mandar in  syllable can be 
phonetically decomposed into initial and final sub- 
syllable units. Only 22 initials, including a dummy one, 
and 39 finals are available in Mandar in  speech. The 
initial of a syllable is simply composed of a single 
consonant  if it exists at all. As a result of the simple 
phonetic structure, all of the 408 Mandar in  syllables 
form many confusing sets because many syllables have 
rather similar phoneme constituents. A H R N N  speech 
recognition system is proposed here for discriminating 
between isolated Mandar in  syllables. The H R N N  is 
composed of a sequential network and a weighting 
RNN. The sequential network utilizes sub-syllables, 
i.e. initials and finals, as basic recognition units in this 
study. By decomposing each Mandar in  syllable into 
an initial and a final, two separate RNNs are contained 
in the sequential network and employed so as to dis- 
criminate them, respectively. Also, the weighting R N N  
is applied towards producing two weighting functions 
for segmenting the input utterance as well as for un- 
equally emphasizing the outputs of these two RNNs. 
By serially cascading these two weighted RNNs, a 
H R N N  is formed and taken as the syllable recognizer. 
The block diagram of the proposed HRNN,  as com- 
posed of two RNNs and a weighting RNN, is displayed 

I output 

I syllable with 
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Fig. 2. The proposed hierarchical recurrent neural networks 
(HRNN) composed of three RNNs. The initial RNN and the 
final RNN are employed to distinguish initial sub-syllables 
and final sub-syllables, respectively. The weighting RNN is 
applied towards producing two weighting functions for seg- 
menting the input utterance as well as unequally emphasizing 

the outputs of initial and final RNNs. 

m Fig. 2. Discriminant functions for initial and final 
sub-syllables can be calculated by 

L 1 

gl(x) = ~ Ol(n)O{v(n), for initials (3) 
n = 0  

L 1 

gf(x) = ~ Of(n)Ofv(n), for finals (4) 
n = o  

where L is the length of the input utterance; Of(n) and 
Of(n) are the kth output  of the initial R NN and the j th  
output  of the final RNN, respectively; and O~(n) and 

v Ow(n) are the weighting functions produced by the 
weighting R NN for the initial and the final RNNs, 
respectively. The final decision rule involves selecting 
candidates for the initial and the final with maximal 
discriminant functions. The input utterance is recogni- 
zed as a syllable which has the kth class of initials if 
g[(x) > g[(x) for all l ¢ k and the j th  class of finals if 
gf(x) > gf(x) for all 1 ¢ j .  

2.3. Applying a GPD algorithm for training the H R N  N 

Recently, Juang et el. have proposed a G P D  algo- 
rithm for speech recognition./is 2°) The G P D  algorithm, 
which is a systematic training algorithm employed for 
minimizing the recognition error rate, is adopted in 
this study for training the HRNN. The procedure of 
applying the G P D  algorithm towards training the 
weights of the H R N N  is stated as follows. Two mis- 
classification measures for an input utterance x with 
the kth class of initial and the j th  class of final are 
defined on the basis of the discriminant functions of 
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equations (3) and (4): 

I I 1 
d~(x) = [ --gk(x) + gp(X)3~ (5) 

r 1 
dr(x) = [ - g f ( x )  + gq(X)] L (6) 

where p and q are the most probable incorrect classes 
of initial and final, respectively. Next, a loss function 
J(d) is defined for evaluating the costs of the current 
decisions for the initial and the final sub-syllables. The 
loss function should be a monotonical ly increasing, 
differentiable function. If a well approximating 0-1 
cost function is used for J (d ) , J1=ZxJ(d~(x ) )  and 
j r = 3 ~ , j ( d f ( x ) )  would approximately represent the 
total recognition errors of initials and finals, respec- 
tively. The sigmoidal function shown below 

1 
d(d) (7) 

1 + e  - v d  

is selected in this study as the loss function J(cl), where 
v is a scalar to control the rate of adjustment. The loss 
function J(d) would clearly induce the training algo- 
rithm for emphasizing those utterances which are loca- 
ted at a short distance from the decision boundary; in 
addition, the scalar v serves to scale that distance. The 
objective of the G P D  algorithm involves recursively 
adjusting the weights of the H R N N  so as to achieve a 
minimum of j1 and j r .  The amount  of weight change 
in the H R N N  can be expressed through the G P D  
algorithm as 

AW t = --t/,  , for the initial R N N  (8) 
g W  ~ 

Oj(dr(x)) 
A W  e = - - t / n - - ,  for the final R N N  (9) 

gW F 

g(J(d~(x)) + J(df(x)))  
A W  w = - r l ,  

OW w 

for the weighting R N N  (10) 

where q~ is the learning rate at the nth iteration. The 
scheme of selecting a proper learning rate can be found 
in Komor i  and Katagiri 's  study) 21) These three deri- 
vative terms can actually be computed via application 
of the chain ruleJ 22) The training of the H R N N  canbe  
accomplished by applying a bootstrap strategy. The 
training procedure is described as follows: 

Step 1 - - r a n d o m l y  initialize all of the weights of 
these R N N s  to small values; 

Step 2 - - s egmen t  each training utterance into two 
parts, i.e. an initial and a final, by using the gene- 
ralized minimum distortion segmentation (GMDS) 
methodJ  TM Modify these two segments such that they 
are overlapped by several frames. Data  in both seg- 
ments are used in training the weighting R N N  by the 
standard error back propagat ion (EBP) training alg0r- 
i thm) 21) The target for the output  node associated 
with initial (final) weighting function is set to 1.0 when 

the input signal lies in the initial (final) segment, and 0.0 
otherwise. This procedure is repeated for several passes 
of the training set until it converges; 

Step 3 - - m a i n t a i n  all of the weights of the weighting 
R N N  fixed. Next, apply the G P D  algorithm towards 
training the initial and the final R N N s  by using equa- 
tions (8) and (9); 

Step 4 - - k e e p  all of the weights of the initial and the 
final RNNs  fixed. Next, retrain the weighting R N N  by 
the G P D  algorithm using equation (10); and 

Step 5--s teps  3 and 4 are iterated until a convergence 
is reached. 

3. S I M U L A T I O N S  

3.1. Database 

The performance of the proposed speech recognition 
method was examined by simulations on a multi- 
speaker speech recognition task. A database (241 con- 
taining utterances of 54 confusable Mandarin  mono-  
syllables with the first tone was employed in the test. 
These 54 syllables are the set of all possible combina- 
tions of 22 initials and four finals including/en/ , /eng/ ,  
/in/, and ring/. Table 1 lists these 54 syllables with a 
numerical label set to indicate a legal combinat ion of 
initial and final. Each of these 54 syllables was pro- 
nounced three times by seven males and four females. 
Two repetitions of each speaker were used for training 
and the remaining one repetition for testing. One other 
speaker, a female, uttered each syllable 13 times, i.e. 10 
times for training and three times for testing. There 
were a total of 1728 training utterances and 756 testing 
utterances. All speech signals in the database were 
digitized into 16-bit data format at a rate of 8 k H z  
and pre-emphasized with a high-pass filter, 1-0.98 z -  1. 
Next, a short-time spectral analysis by 256:point F F T  
was performed over every 32 ms Hamming-windowed 
frame with 8 ms frame shift. A bank of filters (in mel- 
scale) was then implemented to extract 12 log-com- 
pressed energies from the spectrum of each frame. 12 
delta log-compressed energies were also calculated for 
each frame. The recognition features include these 24 
parameters. 

Table 1. 54 Mandarin monosyllables with the first tone. These 
54 syllables are the set of all possible combinations of 22 

initials and four finals 

b d p t m n I j(i) oh(i) s(i) 

en 1 2 3 4 5 
eng 6 7 8 9 10 11 12 
in 13 14 15 16 17 18 19 20 21 
ing 22 23 24 25 26 27 28 29 30 31 32 

j ch sh dz ts s h f g k r 

en 33 34 35 36 37 38 39 40 41 42 43 
eng 44 45 46 47 48 49 50 51 52 53 54 

The phonetic symbols are in the Yale system. 
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3.2. Experimental results and analysis 

The effectiveness of the proposed HRNN speech 
recognizer was next examined by using the database. 
As mentioned previously, the HRNN is comprised of 
a sequential network and a weighting RNN. The se- 
quential network is composed of two RNNs, one for 
initial sub-syllables and the other for final sub-syllables. 
The number of output nodes was set to 22 for the initial 
RNN, and four for the final RNN. Two output nodes 
were used for the weighting RNN so as to produce two 
weighting functions for initial and final sub-syllables, 
respectively. The number of hidden units was empiri- 
cally selected to be 48 for the initial RNN, and 24 for 
the other two RNNs. Input features for all three RNNs 
consisted of 12 log-compressed energies and 12 delta 
log-compressed energies generated from frame-based 
spectra. Two other parameters were also set for training 
the HRNN. The learning rate q, in equations (8)-(10) 
was initially set to 0.1 and then linearly decayed with 
time. The scalar v of the loss function used in the GPD 
training algorithm was set to 1. 

Table 2 summarizes the recognition results attained 
by the proposed HRNN recognizer. A recognition rate 
of 73.5% was achieved. Notably, the values shown in 
parentheses indicate the numbers of correct classifica- 
tions out of 756 testing utterances. For performance 
comparison, the continuous density hidden Markov 
model (CDHMM) method was also tested. Each syl- 
lable used in the CDHMM method was modelled by 
a six-state left-to-right network with a single transition. 
The observation features in each state were modelled 
by a five-mixture Gaussian distribution. As shown in 
Table 2, the recognition rate achieved by the CDHMM 
method was 67.2%. Obviously the proposed method 
performed much better in the study than the CDHMM 
method. 

Detailed analyses of the HRNN are worthwhile 
since a better understanding regarding its behaviors 
can be obtained and may be conducive for further 
improvement in future studies. The learning curves of 
the HRNN for training data were first scrutinized. 
Figure 3 shows the learning curves of recognition rates 
for initial sub-syllables, final sub-syllables, and syllables. 
The weighting RNN had been initially trained with the 
EBP algorithm discussed in Steps 1 and 2 of the 
HRNN training procedure described in Section 2.3. 
This figure displays the training results of the GPD 
algorithm which alternately executes Steps 3 and 4 of 
the HRNN training procedure. This same figure reveals 

Table 2. The recognition results of 54 confusable Mandarin 
monosyllables. The figures in parentheses indicate the number 
of correct classification. The total utterance for testing is 756 

Initial Final Syllable 

CDHMM 67.2% 
(508) 

RNNs based 88.8% 81.1~ 73.5% 
(671) (613) (556) 
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Fig. 3. Learning rates of the initial sub-syllable, the final 
sub-syllables, and the syllable corresponding to the number 
of learning iterations. The three RNNs had initially been 
trained by using the EBP training algorithm. Next, the training 
on the HRNN was directed by interlacing the training pro- 

cedure of Step 3 or Step 4. 

that all three learning curves increase gradually as the 
training procedure progresses until the 300th iteration. 
They all fall abruptly at the 301th iteration and then 
rise again thereafter. This phenomenon is accounted 
for as follows. At the end of the 300th iteration, one 
complete training process from Step 1 to Step 4 had 
just been performed for the HRNN. Both initial and 
final RNNs had been properly trained in Step 3 with 
the guidance of the initially-trained weighting RNN. 
Furthermore, the weighting RNN had been updated 
in Step 4. The training procedure then jumped to Step 
3 at the 301th iteration to retrain both initial and final 
RNNs with the guidance of the updated weighting 
RNN. Due to the fact that the effective initial/final 
boundaries of many syllables determined by the old 
weighting RNN were inaccurate and had been corrected 
by the updated weighting RNN, a portion of training 
data which was previously guided by the old weighting 
RNN to train the initial (final) RNN was switched to 
train the final (initial) RNN with the guidance of the 
updated weighting RNN, This effect causes the abrupt 
fall off these three learning curves at the 30 lth iteration. 
Fortunately, the updated weighting RNN performed 
better than the original one so as to guide the retraining 
process in a correct direction. All three learning curves 
went up as the training procedure was continued and 
converged to better recognition rates. 

Next, the effectiveness of the weighting RNN in 
assisting the discrimination of confusing syllables and 
on softly segmenting the test utterance was examined 
by observing the weighting functions it produced. An 
example is shown in Fig. 4. The spectrogram of the 
utterance/sh-~n/is first displayed in Fig. 4(a). A spec- 
trogram is a three-dimensional pattern showing the 
magnitude spectrum on grey-level display with time 
and frequency taken as the horizontal and the vertical 
axes, respectively. This figure indicates that the genuine 
initial-final boundary located at the 16th frame was 
accurately detected by the GMDS method. Figure 4(b) 
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Fig. 4. Analysis of the weighting RNN. (a) the spectrogram of an input utterance/sh-~n/and the initial-final 
boundary segmented by a GMDS method is at the 16th frame. Outputs of the weighting RNN: (b) result 
of an initial training procedure by using the EBP training algorithm, (c) result of the complete training 
procedure by using the proposed GPD training algorithm, (d) normalized result of (c) such that peak values 

of two functions are equal to 1. 

displays the weighting functions generated by the 
weighting RNN trained in Step 2 of the HRNN training 
procedure with targets set on the basis of the segmenta- 
tion result from the GMDS method. This figure reveals 
that these two functions can be approximately regarded 
as 1 0 and 0-1 step functions to indicate the ini- 
tial and the final parts of the utterance, respectively. 
Figure 4(c) displays the weighting functions generated 
by the updated weighting RNN trained in Step 4 of the 
HRNN training algorithm. This same figure reveals that 
both of these two functions give different weights to 
the three acoustic events of the utterance. Additionally, 
the initial weighting function gives a very heavy weight 
to the initial, light weight to the vowel, and a very light 
weight to the nasal. On the contrary, the final weighting 
function gives a heavy weight to the nasal, light weight 
to the vowel, and a very light weight to the initial. The 
overall effects of these two weighting functions specially 
emphasize the initial part of the input signal as well as 
emphasize the nasal part of the input signal. According 
to the phonetic structure of Mandarin syllable, initial 
and nasal are the two most important parts to distin- 

guish these 54 syllables. Therefore, using these two 
weighting functions can assist the HRNN syllable re- 
cognizer in increasing its discrimination capability. To 
verify the effectiveness of the updated weighting RNN 
in segmenting the input utterance, the weighting func- 
tions displayed in Fig. 4(c) are normalized with peak 
values set to 1. Figure 4(d) shows these two normalized 
weighting functions. This figure indicates that the initial- 
final boundary can still be correctly detected. Another 
example using an utterance of/b-~n/is shown in Fig. 5. 
Similar results have been found from the figure except 
for that the initial/final boundary determined by the 
old weighting RNN is an incorrect one. This would 
result not only in providing unsuitable weighting func- 
tions to the initial and the final sub-syllables for final 
decision, but also in misguiding the training of the 
initial and the final RNNs. Fortunately, as shown in 
Fig. 5(d), the mis-segmentation had been corrected in 
the updated weighting function. Actually, in the training 
process, many mis-segmentations occurred for utter- 
ances with voiced plosive initials having very short 
durations had been corrected by the updated weighting 
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Fig. 5. Analysis of the weighting RNN. (a) the spectrogram of an input utterance/b-~n/and the boundaries 
segmented by the GMDS method and a manual vision are located at the 13th and fourth frames, respectively. 
Outputs of the weighting RNN: (b) result of an initial training procedure by using an EBP training algorithm, 
(c) result of the complete training procedure by using the proposed training procedure, (d) normalized result 

of (c) such that peak values of two functions are equal to l. 

RNN. The benefit of correcting mis-segmentations is 
two-fold. One advantage is to provide correct and 
appropriate weighting functions to unequally empha- 
size different parts of input signal for discriminating 
confusing syllables. The other is to correctly guide the 
training for both the initial and the final RNNs. Some 
utterances which were previously mis-classified can 
therefore be correctly recognized. 

An examination is then made of the effect of combin- 
ing the outputs of the initial and the final RNNs with 
the weighting functions generated by the weighting 
RNN for syllable recognition. An example to recognize 
an utterance of/sh-~n/is  shown in Fig. 6. Weighted 
scores for initial and final sub-syllables are obtained 
by multiplying the initial and the final weighting func- 
tions to the corresponding outputs of the initial and 
final RNNs. Figure 6(a) and (b) display the weighted 
scores for the best four initial sub-syllables and for the 
four final sub-syllables, respectively. Their cumulative 
weighted scores are displayed in Fig. 6(c) and (d). 
Figure 6(a) and (c) indicate that the final part of the 
input utterance starting from the 20th frame to the 

ending frame makes almost no contribution to the 
cumulative weighted scores of initials. Similarly, as 
shown in Fig. 6(b) and (d), the contributions from the 
initial part to the cumulative weighted scores of finals 
are negligible. The discriminant functions of syllables 
for final recognition decision are calculated by simply 
combining the corresponding cumulative weighted 
scores of initial and final sub-syllables. In this example, 
the utterance was correctly recognized. Figure 7 pro- 
vides yet another example which recognizes an utter- 
ance of/b~n/. Similar results can also be found in this 
figure. 

From above analyses, we can conclude that a well- 
trained weighting RNN is capable of generating proper 
weighting functions to unequally emphasize acoustic 
events relevant to speech discrimination as well as 
softly segment the input utterance. Finally, no dynamic 
programming is notably required to be performed in 
the HRNN to optimally map the input testing utterance 
to the sequential network. Hence, the recognition pro- 
cess can be made more efficiently. 
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4. CONCLUSIONS 

A novel hierarchical RNN-based  approach for speech 
recogni t ion was proposed  in this study. The proposed  
me thod  has successfully solved the t ime-al ignment  
p rob lem and  retains the merit  of competi t ive learning 
of artificial neural  ne tworks  via using an H R N N  net- 
work with a discriminative training algorithm. Besides, 
the appl icat ion of sub-syllable recogni t ion units  has  
made  it potent ial ly  suitable for scaling up to a large 
vocabulary  application.  Validity of the proposed  ap- 
p roach  was confirmed via s imulat ions  on  a multi-  
speaker speech recognition of recognizing 54 confusable 
M a n d a r i n  syllables. Exper imenta l  results confirmed 
tha t  the app roach  outperforms the C D H M M  method.  
Extending this app roach  towards  appl ica t ion of iso- 
lated speech recogni t ion for all 408 M a n d a r i n  syllables 
would be a worthwhi le  task in future research efforts. 

Acknowledgement--This authors wish to thank Telecom- 
munication Labs, Ministry of Transportation and Communi- 
cations, Republic of China, for their support of the database. 
They also wish to thank the anonymous reviewers for their 
insightful comments of the paper. 

REFERENCES 

1. G.Z. Sun, H. H. Chen, Y. C. Lee and Y. D. Liu, Time 
warping recurrent neural networks, Proc. Int. Jt Conf. 
Neural Networks ( IJCNN),  Vol. I, 431 436 (1992). 

2, W. Y. Chen and S. H. Chen, Word recognition based on 
the combination of a sequential neural network and the 
GPDM discriminative training algorithm, Proc. IEEE 
Neural Networks for Signal Processing (NNSP).  pp. 376- 
384 (1991). 

3. K. J. Lang and A. H. Waibel, A time-delay neural network 
architecture for isolated word recognition, Neural Net- 
work 3, 23-43 (1990). 

4. H. Sakoe, R. Isotani, K. Yoshida, K. Iso, and T. Watanabe, 
Speaker-independent word recognition using dynamic 
programming neural networks, Proc. IEEE Int. Conf. 
Acoustics, Speech and Signal Processing (ICASSP), pp. 
29-32 (1989). 

5. K.I. Iso, Speech recognition using dynamical model 
of speech production, Proc. IEEE Int, Conf. Acoustics, 
Speech and Signal Processing (ICASSP), Vol. II, pp. 
283-286 (1993). 

6. J. Tebelskis, Performance through consistency: connec- 
tionist large vocabulary continuous speech recognition, 
Proc. IEEE Int. Conf. Acoustics, Speech and Signal Proces- 
sing (ICASSP), Vol. II, pp. 259-262 (1993). 

7. H. Sakoe and S. Chiba, Dynamic programming algorithm 
optimization for spoken word recognition, IEEE Trans. 
Acoust. Speech and Signal Process. 26, 43-49 (1978). 

8. Y. Chen, B. Yuan and B. Lin, Real time Chinese syllable 

recognition with hierarchically structured neural network 
and transputer system, Proc. Int. dt Conf. Neural Net- 
works ( IJCNN),  Vol. IV, pp. 743 748 (1992). 

9. H. Hild and A. Waibel, Multi-speaker/speaker indepen- 
dent architectures for the multi-state time delay neural 
network, Proc. 1EEE int. Conf. Acoustics, Speech and 
Signal Processing (ICASSP), Vol. II, pp. 255-258 (1993). 

10. J. B. Hampshire II and A. H. Waibel, The meta-pi net- 
work: connectionist rapid adaption for high performance 
multi-speaker recognition, Proc. IEEE Intern. Conf. 
Acoustics, Speech and Signal Processing (1CASSP), pp. 
165-168 (1990). 

11. J. B. Hampshire II and A. Waibel, The meta-pi network: 
building distributed knowledge representations for robust 
multisource pattern recognition, IEEE Trans. Pattern 
Analy. Mach. IntelL 14, 751-769 (1992). 

12. T. Matsuoka, H. Hamada and R. Nakatsu, Syllable 
recognition using integrated neural networks, Proc. Int. 
Jt Conf. Neural Networks ( IJCNN ), Vol. I, pp. 251-258 
(1990). 

13. A. Waibel, H. Sawai and K. Shikano, Modularity and 
scaling in large phonemic neural networks, IEEE Trans. 
Acoust. Speech Signal Process. 37. 1888-1898 (1989). 

14. R.A. Jacobs, Initial experiments on constructing do- 
mains of expertise and hierarchies in connectionist systems, 
Proc. Connectionist Models Summer School, San Mateo, 
CA, pp. 144-153 (1988). 

15. Z. B. Nossair and S. A. Zahorian, Dynamic spectral shape 
features as acoustic correlates for initial stop consonants, 
J. Acoust. Soc. Am. 89(6), 2978-2991 (1991). 

16. S. J. Lee, K. C. Kim, H. Yoon and J. W. Cho, Application 
of fully recurrent neural networks for speech recognition. 
Proc. IEEE Int. Conf. Acoustics, Speech and Signal Proces- 
sing (ICASSP), pp. 77-80 (1991). 

17. G. Kuhn, Connected recognition with a recurrent net- 
work, Speech Commun., 9, 41-48 (1990). 

18. S. Katagiri, C. H. Lee and B. H. Juang, New discrimi- 
native training algorithms based on the generalized prob- 
abilistic descent method, Proc. IEEE Neural Networks 
for Signal Processing (NNSP),  pp. 299-308 (1991). 

19. P. C. Chang and B. H. Juang, Discriminative training of 
dynamic programming based speech recognizes, IEEE 
Trans. Speech Audio Process. 1(2), 135 143 (1993). 

20. B. H. Juang and S. Katagiri, Discriminative training, J. 
Acoust. Soc. Jpn (E) 13(6), 333-339 (1992). 

21. T. Komori and S. Katagiri, GPD training of dynamic 
programming-based speech recognizers, d. Acoust. Soc. 
Jpn (E) 13(6), 341-349 (1992). 

22. D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learn- 
ing internal representation by error propagation, in 
Parallel Distributed Processing: Exploration in the Micro- 
structure of Cognition. The MIT Press, London (1986). 

23. S. H. Chen and Y. R. Wang, Vector quantization of pitch 
information in Mandarin speech, IEEE Trans. Comm. 
38(9), 1317 1320, (1990). 

24. J. S. Liou, R. G. Chert, S. M. Yu, J. R. Hwang and I. C. 
Jou, The speech database of Telecommunication Labora- 
tories, Ministry of Transportation and Communications, 
R.O.C., Proc. of Telecommunications Syrup., Taiwan, pp. 
128 132 (1990). 

About the Author--WEN-YUAN CHEN received the B.S. and M.S. degrees from the National Taiwan 
Institute of Technology, Taipei, Taiwan, and the National Tsing Hua University, Hsinchu, Taiwan, in 1985 
and 1987, respectively, both in electrical engineering. Currently he is working toward a Ph.D. in electronic 
engineering at National Chiao Tung University, Hsinchu, Taiwan. Since 1987, he has been with Industrial 
Technology Research Institute, Hsinchu, Taiwan where he is involved in research work on speech recognition 
and audio signal processing. His current interests include speech recognition, pattern recognition and audio 
signal processing. 



Speech recognition with hierarchical recurrent neural networks 805 

About the Author--YUAN-FU LIAO received the B.S. and M.S. degrees in 1991 and 1993, respectively, and 
has been a Ph.D. student since 1993, all in the communication engineering of National Chiao Tung 
University, Taiwan. His current research interests include speech recognition, neural networks for signal 
processing. 

About the Author--SIN-HORNG CHEN received the B.S. degree in communication engineering and the 
M.S. degree in electronics engineering from National Chiao Tung University, Hsinchu, Taiwan, Republic of 
China, in 1976 and 1978, respectively, and the Ph.D. degree in electrical engineering from Texas Tech 
University, Lubbock, in 1983. Form 1978 to 1980, he was an Assistant Engineering for Telecommunication 
Laboratories, Taiwan. He became an Associate Professor at the Department of Communication Engineering, 
National Chiao Tung University in August 1983, and a professor in August 1990. He also became the 
Chairman from August 1985 to June 1988, and from October 1991 to August 1993. He is currently doing 
research in the areas of digital communication and speech processing, specially concentrating on the 
problems of Mandarin speech recognition and text-to-speech. 

PR 28-6-B 


