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Abstract The replicative lifespan of normal somatic cells
is restricted by the erosion of telomeres, which are
protective caps at the ends of linear chromosomes. The
loss of telomeres induces antiproliferative signals that
eventually lead to cellular senescence. The enzyme com-
plex telomerase can maintain telomeres, but its expression
is confined to highly proliferative cells such as stem cells
and tumor cells. The immense regenerative capacity of the
hematopoietic system is provided by a distinct type of adult
stem cell: hematopoietic stem cells (HSCs). Although blood
cells have to be produced continuously throughout life, the
HSC pool seems not to be spared by aging processes.
Indeed, limited expression of telomerase is not sufficient to
prevent telomere shortening in these cells, which is thought
ultimately to limit their proliferative capacity. In this
review, we discuss the relevance of telomere maintenance
for the hematopoietic stem cell compartment and consider
potential functions of telomerase in this context. We also
present possible clinical applications of telomere manipu-
lation in HSCs and new insights affecting the aging of the
hematopoietic stem cell pool and replicative exhaustion.
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Introduction

Billions of new blood cells are produced every day in a
human being based on the undisturbed function of
hematopoietic stem cells (HSCs). These progenitor cells
represent only about 0.01% of all bone marrow cells
(Lansdorp et al. 1997). A fine balance between self-renewal
and differentiation is required by the HSCs in order to
maintain the complex hematopoietic system throughout life.
However, the proliferative potential and thereby the self-
renewal capacity of HSCs appears to be increasingly
affected in the aging individual (Lansdorp 1995). A
fundamental determinant for proliferation is found in the
telomeres, which are specialized nucleoprotein complexes
protecting the ends of eukaryotic chromosomes (for a
review, see Stewart and Weinberg 2006). Telomeres consist
of repeated units of G-rich sequences (TTAGGG in
humans) that occur as a single-stranded 3’ overhang, which
in turn contributes together with telomere-binding proteins
to a higher order terminal loop (T loop) structure (Griffith
et al. 1999; Blackburn 2001). The number of telomeric
repeats varies between different species and within an
organism; in humans, the telomere length is in the range of
2 to 15 kb (Martens et al. 1998). During each cell division,
about 50–100 bp telomeric DNA are lost mainly because
the tip of the chromosome cannot be replicated (Watson
1972). Continuous telomere erosion finally leads to the loss
of telomere function, which is associated with replicative
senescence or apoptosis. Most eukaryotic cells depend on
the enzyme telomerase, a reverse transcriptase, for the de
novo synthesis of telomeres (for a review, see Cech 2004).
Telomerase is a ribonucleoprotein complex that uses its
RNA component (TERC) as a template for the production
of telomeric repeats via the catalytic subunit TERT
(telomerase reverse transcriptase; Greider and Blackburn
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1989). Telomerase activity in normal human cells is
generally undetectable leading to successive telomere
shortening with each cell division, which ultimately limits
their proliferative capacity in vitro and, most probably, in
vivo (Harley et al. 1990). Immortal cells such as germline
cells (Allsopp et al. 1992), embryonic stem cells (Thomson
et al. 1998), and 90% of all tumor cells in humans (Kim et
al. 1994) maintain their telomeres by activated telomerase,
thereby providing an unrestricted lifespan (Fig. 1). Over-
expression of hTERT, the catalytic subunit of telomerase,
can restore telomerase activity in various human cells such
as fibroblasts and retinal pigment epithelial cells; this leads
to telomere maintenance and immortalization (Bodnar et al.
1998; Vaziri and Benchimol 1998). The telomere biology of
adult stem cells in highly proliferative tissues such as blood
appears however to be more complex, since there is telomere
shortening, despite the presence of telomerase activity.

Telomerase activity in human HSCs

In principle, stem cells from adult tissues including skin
(Yasumoto et al. 1996; Harle-Bachor and Boukamp 1996),
gut (Kolquist et al. 1998), and blood (Broccoli et al. 1995;
Chiu et al. 1996; Morrison et al. 1996; Engelhardt et al.
1997) exhibit low levels of telomerase activity. Blood
progenitor and stem cells show graduations of these basal
telomerase levels (Chiu et al. 1996; Engelhardt et al.

1997; Hiyama et al. 1995; Yui et al. 1998). Higher
telomerase activity can be detected in the bone marrow
(BM) CD34+CD38+ committed progenitor cell fraction than
in the CD34+CD38−/low fraction containing primitive hema-
topoietic progenitor cells (Hiyama et al. 1995). BM
CD34+CD38− cells show lower telomerase activity com-
pared with corresponding cells isolated from fetal liver (Yui
et al. 1998). These initially basal telomerase levels can be
transiently up-regulated during in vitro cultures upon
stimulation with cytokines such as interleukin 3 (IL-3;
Engelhardt et al. 1997; Yui et al. 1998; Zimmermann et al.
2004). The cell cycle and telomerase activity of HSCs is
linked as demonstrated by an elevated telomerase level in
actively cycling cells and its down-regulation upon differen-
tiation and re-entry into G0, the phase in which most resting
HSCs can be found (Engelhardt et al. 1997; Zhu et al. 1996).
Since repopulating HSCs represent only a minor fraction of
the CD34+CD38− cells (Bhatia et al. 1997), and since
candidate human HSCs considered for the repopulation of
the BM of non-obese diabetic severe-combined-immunode-
ficient (NOD/SCID) mice (SRCs) contain heterogeneous
subpopulations with distinct engraftment and differentiation
capacities (Glimm et al. 2001), the extent of telomerase
activity in the rare SRCs is not known. A recent study with
an hTERT-reporting adenoviral vector in CD34+ cells in cord
blood (CB) has demonstrated up-regulated hTERT expres-
sion in proliferating short-term SRCs; this remains relatively
high in committed colony-forming progenitor cells but is
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Fig. 1 Telomere-length dynamics in human cells; dependence on
telomerase. Telomerase is down-regulated during embryonic develop-
ment, which leads to telomere shortening with successive cell
divisions in normal somatic cells. Critically short telomeres are
associated with loss of telomere function eventually leading to

senescence and apoptosis. The by-passing of such telomere-dependent
growth barriers and the reactivation of telomerase is fundamental for
the immortalization of most tumor cells. Adult stem cells from highly
proliferative tissues undergo telomere erosion despite marked levels of
telomerase activity
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down-regulated in mature myeloid cells (Jaras et al. 2006).
Nevertheless, a decreased self-renewal capacity is exhibited
by SRCs that express the highest hTERT levels, thus
indicating the requirement of a tight control of telomerase
in these cells.

Telomere length in human HSCs

Independent of the effective degree of telomerase activity in
HSCs, there is clear evidence that proliferation in this
compartment is accompanied by extensive telomere short-
ening during cell culture in vitro (Engelhardt et al. 1997;
Zimmermann et al. 2004) and aging in vivo (Vaziri et al.
1994). Thus, CD34+CD38low candidate HSCs from adult
BM possess telomeres that are about 4 kb shorter than their
counterparts from fetal liver (Vaziri et al. 1994). Further-
more, significantly longer telomeres are found in BM
CD34+CD38− and, to some extent, in side-population cells
compared with the corresponding CD34+CD38+ cells; this
positively correlates with the known proliferation potential
of these highly purified subpopulations representing differ-
ent HSC candidate populations (Van Ziffle et al. 2003).
Telomere-length dynamics of HSCs expanded in vitro
for 3–4 weeks indicate an overall loss of 35–75 bp of
telomeric repeats per population doubling in the HSC pool
(Engelhardt et al. 1997; Vaziri et al. 1994), a value that is
lower in relation to other somatic cells, which lose
between 50–100 bp/population doubling (Harley et al.
1990; Allsopp et al. 1992; Vaziri et al. 1993). Although
the in vitro studies are inconsistent in terms of heteroge-
neous starting cell populations from different tissues and
diverse expansion protocols with various media and
additives, telomerase seems generally not to counteract
telomere erosion in these cells (Engelhardt et al. 1997;
Zimmermann et al. 2004; Vaziri et al. 1994). Nevertheless,
studies of actual telomere dynamics in HSCs are compli-
cated because of the lack of definite HSC markers. Even
CD34+CD38− purified cells represent a heterogeneous
population, which comprise only to a small percentage of
real HSCs. Functional studies have revealed an ontogeny-
related decline in the hematopoietic capacity of HSCs
manifesting in a reduced proliferative and NOD/SCID
engrafting potential of stem cells from adult mobilized
peripheral blood compared with CB CD34+ cells (Lansdorp
et al. 1994; Traycoff et al. 1995; Tanavde et al. 2002).
Repopulation of the hematopoietic system during BM or
HSC transplantations represents an interesting model for
studying telomere dynamics of HSCs in vivo. Earlier reports
indicated a significantly reduced telomere length in recipi-
ents after allogeneic stem cell transplantation compared with
their respective donors (Notaro et al. 1997; Wynn et al. 1998;
Akiyama et al. 1998, 2000; Lee et al. 1999). Subsequent data

suggest a less severe influence of such transplantations on
the telomeres, mainly related to the size of the transplanted
stem cell pool and the age of the donor (Brummendorf et al.
2001a; Rufer et al. 2001a; Thornley et al. 2002; Roelofs
et al. 2003). The impact of the used cell source on telomere
shortening also appears to be negligible resulting in the same
degree of shortening for BM and peripheral blood stem cell
(PBSC) transplants (Robertson et al. 2001). Nevertheless,
Pipes et al. (2006) have recently shown that CB HSCs with
longer telomeres have a replicative advantage in comparison
with PBSCs during allogeneic stem cell transplantions. In a
more recent study, the long-term effect of such treatment
modalities on the telomeres of lymphoma survivors has been
investigated, and a significant and persistent reduction in the
telomere length of hematopoietic progenitors has been
observed, accompanied by myelopoietic cell abnormalities
(Rocci et al. 2007).

Telomere length in mature hematopoietic cells

In addition to HSCs, some mature hematopoietic cells, such
as T lymphocytes, have low levels of telomerase activity,
which rises transiently in response to antigen stimulation
(Weng et al. 1996, 1998; Liu et al. 1999). Since extensive
cell divisions and clonal expansion are critical for effective
immune function, telomere dynamics are of particular in-
terest in these cells. Again, limited telomerase levels are not
sufficient to prevent telomere shortening and replicative
senescence in T cells. However, over-expression of hTERT
is able to reconstitute a constant high level of telomerase
activity and extend the lifespan of this compartment
(Hooijberg et al. 2000; Rufer et al. 2001b). Although the
rate of telomere shortening is lower in hTERT-transduced T
cells, long-term observations indicate progressive telomere
shortening that eventually results in even shorter telomeres at
senescence than in controls (Roth et al. 2005). Interestingly,
the displacement of endogenous hTERT in human T
lymphocytes by a dominant-negative mutant (DN-hTERT)
leads to a shorter lifespan and cytogenetic abnormalities
(Roth et al. 2003). This indicates a major influence of
hTERT on the longevity of these cells without preventing
overall telomere shortening but possibly with a role in the
repair of sporadic telomere attrition. Telomere shortening in
mature hematopoietic cells in vivo follows a cubic function
over time and is characterized by a significant drop within
the first year of life and a slower, more steady decline
thereafter (Rufer et al. 1999; for a review, see Ohyashiki
et al. 2002). This rapid telomere shortening in the first
year after birth has been confirmed in a longitudinal study
on granulocytes and lymphocytes from newborn baboons
(Baerlocher et al. 2006). The stabilization in telomere
length after 1 year in all cell types suggests a switch to a
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different functional mode for HSCs characterized by a
decreased turnover rate after an initial phase of rapid
expansion. Individual replicative histories of lymphocytes
are represented by heterogeneous telomere-length distri-
butions in different subpopulations: T cells have a shorter
mean telomere length than B cells (Rufer et al. 1999;
Martens et al. 2002; Baerlocher and Lansdorp 2003),
whereby even B cells are able to induce telomerase after
stimulation resulting in telomere maintenance during
differentiation from naive to memory B cells (Son et al.
2003). Since granulocytes have a short lifespan and do not
replicate, their age-related telomere loss is much less
pronounced than in lymphocytes. Therefore, the homoge-
neous telomere length of granulocytes seems to be a good
surrogate marker for HSC proliferation kinetics under the
assumption that the HSCs exhibit a constant telomere
shortening during replication and differentiation from the
HSC to granulocytes (Rufer et al. 1999; for a review, see
Verfaillie et al. 2002). In addition to an overall trend for
age-related telomere shortening in hematopoietic cells,
there is considerable inter- and intra-individual variability
of telomere length at any given age (Frenck et al. 1998;
Rufer et al. 1998). Nevertheless, twin studies have
suggested at least a genetic determination of telomere
length (Rufer et al. 1999; Slagboom et al. 1994). The
replication rates of HSC in vivo have been estimated in
a stochastic simulation method based on granulocyte
telomere lengths and have indicated that human HSCs
only replicate once per 45 weeks (Shepherd et al. 2004),
whereas murine HSCs divide more frequently (1/
2.5 weeks; Abkowitz et al. 2000). Such a slow replication
rate of human HSCs would relativize the telomere loss
calculated above, at least in normal individuals. Despite
this, an understanding of these telomere dynamics in vivo
might be important for assessment of the consequences of
a higher stem cell turnover found after allogeneic stem cell
transplantation.

Telomerase manipulation in adult stem cells

As seen above for T cells, modulation of telomerase
expression could be a valuable tool for studying its function
in various cell types. We and others have shown that
hTERT over-expression in hematopoietic progenitors such
as CD34+ CB cells results in a significant elevation of
telomerase activity that cannot prevent overall telomere
shortening. Furthermore, the elevated telomerase activity is
incapable of increasing the replicative capacity of these
cells (Zimmermann et al. 2004; Elwood et al. 2004;
Akimov et al. 2005; Wang et al. 2005). A co-transduction
of hTERT with oncogenes HPV16 E6/E7 is required for a
continuous proliferation of CD34+ CB cells, which then

give rise to permanent cell lines with a myeloerythroid/mast
cell progenitor phenotype. Such cell lines exhibit stabilized
telomeres and minimal chromosomal aberrations in contrast
to CB cell cultures, which express only the oncogenes and
eventually go through a crisis period with highly aneuploid
cells (Akimov et al. 2005). An eventual stabilization of
telomere length without changes in telomerase activity has
been observed during the establishment of leukemic cell
lines from normal CB cells, indicating that additional
genetic or epigenetic alterations are required for telomere
maintenance in immortalized human hematopoietic cells
(Wang et al. 2005), altogether evidence is accumulating that
hTERT functions independently of its enzymatic activity as
a pro-survival factor (Elwood et al. 2004; Cao et al. 2002;
Yamada et al. 2003; Gorbunova and Seluanov 2003; Folini
et al. 2005; Armstrong et al. 2005; Massard et al. 2006).
Thus, over-expression of hTERT in a cytokine-dependent
human hematopoietic progenitor cell line and in normal CB
CD34+ cells results in protection from apoptosis in the
absence of cytokine stimulation but does not favour
unlimited replicative potential (Li et al. 2006). Extensive
CB CD34+ cell expansion for up to 18 weeks in long-term
cultures with sustained telomerase activity and minimal
telomere loss has been demonstrated only under the
conditions of refined culture conditions including special
cytokine cocktails and stroma support (Gammaitoni et al.
2004). Similarly, the application of an optimized serum-
free and cytokine-limited defined medium during CB
AC133+ cell expansion allows early uncommitted HSC
proliferation and is accompanied by high levels of
telomerase activity to maintain telomere length (Yao et
al. 2006). No matter which approach is used, the in vitro
expansion of HSCs for a prolonged period without
telomere shortening has striking clinical implications for
allogeneic transplantation, in view of the limited HSC
numbers in individual CB samples and other HSC sources
(Moore 2000; Jaroscak et al. 2003).

Telomerase in mesenchymal stem cells

BM harbors another type of adult stem cell, the so-called
mesenchymal stem cells (hMSCs), which can differentiate
along variable lineages, including those of bone, cartilage,
adipose, and muscle cells (Jiang et al. 2002). Surprisingly,
unlike HSCs and other adult stem cells, hMSCs exhibit a
complete lack of telomerase activity (Simonsen et al. 2002;
Zimmermann et al. 2003). Ectopic telomerase expression is
able to expand their otherwise limited replicative capacity
in tissue culture, although the cells retain their functional
characteristics (Simonsen et al. 2002; Shi et al. 2002). This
is of particular interest for the application of these cells in
tissue engineering (for a recent review, see Satija et al.
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2007). Nevertheless, premalignant changes have been
observed during long-term cultures of hTERT over-
expressing hMSCs (Serakinci et al. 2004) evoking some
concerns about such applications (Keith 2004). The finding
that stem cells and cancer cells share several common
features, such as the same factors regulating self-renewal to
those of normal HSCs and leukemic cells (Lessard and
Sauvageau 2003), has led to the “cancer stem cell”
hypothesis (for a review, see Marx 2003). A stem cell
origin for certain cancers would mean that these stem cells
possess a telomerase that does not need to be reactivated,
although the enzyme activity may still increase in later
stages of carcinogenesis (for a review, see Armanios and
Greider 2005; Fig. 2). Vice versa, a limited telomerase
activity related to a finite lifespan in adult stem cells may
promote aging but may prevent cancer. On the other hand,
evidence is available that telomere shortening can induce
chromosomal instability and cancer initiation.

Side-effects of telomerase inhibition in HSCs?

Once telomeres have become significantly eroded, a DNA
damage cascade is activated, and cells usually undergo
replicative senescence and/or apoptosis (Harley et al. 1994;
Maser and DePinho 2002). Because the majority of tumor
cells is reliant on telomerase for telomere stabilization,
inhibition of this enzyme represents an attractive concept
for cancer therapy (for a review, see Zimmermann and
Martens 2007). Proof of principle for such strategies have

been provided by studies in which telomerase activity is
abolished by the over-expression of DN-hTERT in immor-
tal cancer cell lines, resulting in telomere erosion and the
induction of senescence or apoptosis (Zhang et al. 1999;
Hahn et al. 1999). In addition to genetic approaches,
various synthetic telomerase inhibitors are being tested
at present with promising results for the specific killing of
tumor cells (Herbert et al. 1999; Damm et al. 2001; Asai
et al. 2003; El-Daly et al. 2005, for a review, see
Zimmermann and Martens 2007); some of these inhibitors
are progressing significantly toward clinical application
(Dikmen et al. 2005; Djojosubroto et al. 2005; Gellert
et al. 2006). Most of the normal human cells considered as
being telomerase-negative should not be affected by
telomerase inhibition, but potential side-effects produced
by such treatment modalities concern telomerase-positive
stem cells such as HSCs. The most likely side-effects are
probably not dramatic in the light of the low HSC
replication rates and generally much longer telomeres in
stem cells than in most tumor cells, so that an anti-
telomerase therapy could, in principle, be stopped after the
cancer cells had ceased to proliferate and before the stem
cells had reached the stage of having critically short
telomeres. However, there is evidence that telomerase
activity is required in stem cells for health and viability
throughout life (Mitchell et al. 1999; Vulliamy et al.
2001). This became evident during investigations of
dyskeratosis congenita (DKC), a human disease that is
characterized by anemia, immune deficiency, skin and nail
lesions, chromosomal instability, and cancer (for a review,
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Fig. 2 Telomere-length dynamics as described in Fig. 1. For the development of so-called cancer stem cells, there is no need to reactivate
telomerase, since it is available in the original stem cell to various extents. Therefore, a limitation of telomerase in such cells could moderate the
risk of tumor development while still allowing for a slightly increased replicative capacity compared with that of normal cells
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see Collins and Mitchell 2002). Several genes of the
telomerase complex have been found to be mutated in this
disease, resulting in partial telomerase inhibition, abnor-
mally short telomeres, and a dramatically limited prolifer-
ative capacity of hematopoietic and epithelial tissues in
DKC patients. Therefore, this disease appears to be a suit-
able model for studying the role of telomerase function in
vivo (Mitchell et al. 1999; Vulliamy et al. 2001; Goldman
et al. 2005; for a review, see Vulliamy and Dokal 2006).
Haploinsufficiency of hTERC most likely results in an
anticipation of autosomal dominant DKC disease forms
correlated with an increase in telomere shortening in
successive generations of affected families (Vulliamy et al.
2004). The hematological abnormalities that develop in the
vast majority of DKC patients indicate that hematopoietic
progenitor cells require telomerase, irrespective of its obscure
relationship to telomere maintenance in these cells. Another
human disease possibly associated with telomerase is aplastic
anemia (AA), a BM failure syndrome that is characterized by
pancytopenia with reduced or absent immature hematopoietic
cells (Marsh et al. 1990; Maciejewski et al. 1994; Scopes et
al. 1994). The higher turnover of HSCs is here expressed in
significantly shorter telomeres in mature blood cells, such as
peripheral lymphocytes and granulocytes, than in those in
age-adjusted healthy controls (Ball et al. 1998; Lee et al.
2001; Brummendorf et al. 2001b). As in DKC, mutations in
telomerase hTERC (Vulliamy et al. 2002) might be
responsible for the comprised telomerase activity resulting
in the observed phenotypes. Recently, evidence for a direct
link between hTERC sequence variants found in AA patients
and abolished telomerase activity has been described (Ly et
al. 2005). Analogously, mutations in hTERT have been
identified among AA patients, again associated with short
telomeres and low telomerase enzymatic activity (Yamaguchi
et al. 2005). BM failure of variable severity attributable to
DKC may be present in otherwise phenotypically normal
adults and can masquerade as AA, whereas common
mutations in hTERC link the two diseases (Dokal and
Vulliamy 2003; Fogarty et al. 2003; Marrone et al. 2004).
Interestingly, hTERC haploinsufficiency in autosomal dom-
inant DKC cases is associated with a modest reduction of
telomerase activation of around 50% and is sufficient to
induce the severe phenotypes of the disease described above.
Overall, this indicates the need of a tight control of
telomerase levels throughout life, not only in human HSCs
(for a review, see Collins and Mitchell 2002).

Recent studies suggest that even normal human cells such
as primary fibroblasts harbor some previously undetected
telomerase activity (Masutomi et al. 2003). These basal
telomerase levels seem to be important for the maintenance
of the 3’ overhang, cell proliferation, and cellular lifespan
without any consequences on overall telomere loss (Masutomi
et al. 2003). The demonstration of a similar function of

telomerase in the stem cell compartment would be of in-
terest. We have found that telomerase ablation in CB
AC133+ cells by DN-hTERT over-expression is accompa-
nied by a reduction in clonogenic growth without
changing the mean telomere length, supporting the
hypothesis above that telomerase, even in HSCs, might
have additional functions beyond simple telomere length-
ening (Zimmermann et al. 2004). In addition, we have
observed that high concentrations of the small molecule
telomerase inhibitor, BIBR1532, specifically kill malig-
nant cells of the hematopoietic system and do not harm the
proliferation and clonogenic growth of normal CD34+

cells (El-Daly et al. 2005). This might be because of
differences between genetic and pharmacological
approaches of telomerase inhibition and might not reflect
a different composition of telomere-binding proteins in
stem cells and leukemic cells.

Telomeres in mice

Telomeres in mice are far longer than those in humans,
which complicates any direct comparisons of telomere-
dependent replicative capacities in cells from these species.
Nevertheless, valuable insights can be obtained from
telomerase-deficient mice in which both alleles of mTERC,
the murine RNA component of telomerase, are deleted. The
primary four to five generations of mTERC−/− mice have
unobtrusive phenotypes until telomeres become critically
short. In the following generations, cytogenetic aberrations,
a comprised BM, immune deficiency, tumor formation, and
an overall reduced lifespan appear, as in DKC patients
(Blasco et al. 1997; Hande et al. 1999; Herrera et al. 1999;
Rudolph et al. 1999). HSCs of wild-type mice have a finite
replicative lifespan, based upon their limitation to 4–7 serial
transplantations into irradiated mice (Siminovitch et al.
1964; Harrison et al. 1978; Harrison and Astle 1982). Like
in human HSCs, there seems to be telomere shortening,
despite telomerase activity in murine HSCs, resulting in
more than a 40% loss of total telomeric DNA after four
rounds of serial transplantation (Allsopp et al. 2001,
2003a). Similar to the human situation, the way that
telomere shortening in mouse HSCs has an impact on the
more differentiated offspring is not as yet clear. However,
stimulated T cells isolated from HSC transplant recipients
can rejuvenate their telomeres by activation of telomerase
(Allsopp et al. 2002). HSCs from telomerase-deficient
mice, including the mTERC−/− mice mentioned above and
mTERT−/− mice (Liu et al. 2000), can only be serially
transplanted for two rounds because of an accelerated
telomere loss compared with wild-type controls (Allsopp et
al. 2003b). This indicates a role of telomerase in HSCs in at
least limiting the rate of telomere shortening during cell
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divisions to allow extended proliferation, the prerequisite of
(hematopoietic) stem cell function throughout life. In
contrast to the wild-type, transgenic mice over-expressing
mTERT exhibit a four-fold elevated level of telomerase
activity and stable telomeres during serial transplantations
(Allsopp et al. 2003a). However, the transplantation
capacity cannot be increased for mTERT over-expressing
HSCs, which indicates telomere-independent barriers for
the transplantation of mice HSC, possibly reflecting a form
of premature senescence or being related to a dilution and
loss of real stem cells during serial transplantation (Allsopp
et al. 2003a; Wright and Shay 2002). In a similar transgenic
mice strain over-expressing mTERT, the proliferation rate
of hematopoietic cells is not elevated, although these mice
are also characterized by increased telomerase activity and
maintain telomere length in hematopoietic and many other
tissues compared with non-transgenic control mice (Artandi
et al. 2002). Interestingly, robust TERT expression is
accompanied by an increased susceptibility of breast cancer
in aging females of these mice, which possibly indicates a
direct oncogenic role of the enzyme (Artandi et al. 2002).
Short telomeres themselves and not telomerase per se seem
to limit the tissue renewal capacity, thus making uncertain
the importance of telomerase dosage effects on telomere
length and disease phenotypes as seen above for DKC (Hao
et al. 2005). In this context, a recent report involving the
use of mTERC−/− mice has shown that telomere dysfunc-
tion induces alterations of the environment that can have
implications for organismal aging and cell transplantation
therapies (Ju et al. 2007a). Finally, the cell cycle inhibitor
p21 impairs stem cell function and the survival of aging
telomere dysfunctional mice (Choudhury et al. 2007),
whereas it protects adult stem cells from acute genotoxic
stress by preventing the inappropriate cycling of acutely
damaged stem cells (Ju et al. 2007b).

Other factors determining self-renewal and aging
in HSCs

The self-renewal process is crucial for maintaining HSC
pool size throughout life, but the factors guiding this were
previously unknown. Comprehensive transcriptional profil-
ing studies have elucidated the molecular background
behind many stem cell attributes, including their self-
renewal capacity (Ramalho-Santos et al. 2002; Ivanova et
al. 2002). Subsequently, several genetic regulatory pro-
grams have been identified as playing important roles in
self-renewal decisions of HSCs. Among them are HOXB4
(Sauvageau et al. 1995), Notch1 (Carlesso et al. 1999),
Bmi-1 (Lessard and Sauvageau 2003; Park et al. 2003), and
the β-catenin pathway (Reya et al. 2003). More recently,
some of these diverse intracellular pathways have been

shown to be integrated probably by NF-Ya, the regulatory
and DNA-binding subunit of the trimeric transcription
factor NF-Y. Overexpression of NF-Ya in primitive hema-
topoietic cells activates the transcription of not only
multiple HOX4 paralogs, Notch-1, and LEF-1, but also
telomerase RNA. HSCs overexpressing NF-Ya are biased
toward primitive hematopoiesis in vitro and show strikingly
increased in vivo repopulating abilities, making NF-Ya a
potent cellular regulator of HSC self-renewal (Zhu et al.
2005). Previously, NF-Y binding to the CCAAT region of
the hTERC promoter had been demonstrated to be decisive
for promoter activity (Zhao et al. 2000). Essential attributes
of “stemness”, as defined by Ramalho-Santos et al. (2002),
also involve high resistance to stress with up- regulated
DNA repair and detoxifier systems, interaction with the
extracellular matrix, engagement in the cell cycle, and a
remodeled chromatin , which all or in part could be affected
in aging stem cells. Thus, studies of mice deficient for the
integral nucleotide excision repair protein ERCC1 indicate
that the accumulation of DNA damage leads to the
exhaustion of HSC activity (Prasher et al. 2005). In
addition, the dependence of the HSC self-renewal capacity
on the inhibition of oxidative stress has been shown in
studies with mice deficient for the “ataxia telangiectasia
mutated” (Atm) gene resulting in progressive BM failure
(Ito et al. 2004). In general, detoxification of reactive
oxygen species is crucial to prevent protein carbonylation,
which is associated with age-related human diseases such
as Parkinson’s disease, Alzheimer’s disease, and cancer (for
reviews, see Dalle-Donne et al. 2003; Nystrom 2005).
Nevertheless, whether detoxification systems are disturbed
in aging stem cells eventually leading to an accumulation of
carbonylated proteins remains to be demonstrated. Interest-
ingly, oxidative stress has also been discussed as an
additional telomere-eroding factor (von Zglinicki 2002)
that might explain the rapid telomere loss observed in some
cultures (not only of HSCs).

The p16INK4a protein inhibits cell-cycle progression
and induces cellular senescence, and its expression
increases with age in many tissues, in line with the accu-
mulation of senescent cells (for reviews, see Collins and
Sedivy 2003; Campisi 2005). A recent study has found
that p16INK4a levels accumulate with age in mouse BM
HSCs and modulate specific age-associated HSC func-
tions, whereas knocking-out p16INK4a diminishes HSC
repopulating defects and apoptosis and is associated with
an improved stress tolerance and survival of cells (Janzen
et al. 2006).

In addition, novel data suggest that chromatin structure
and its modifications regarded as cellular memory play an
important role during HSC aging (for a review, see
Kamminga and de Haan 2006). Possibly, a spread of
heterochromatin, which represents transcriptionally silent
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parts of the genome, occurs upon HSC aging, and dif-
ferentiation is reflected by a higher number of distinct
transcripts in HSCs than in committed progenitors (Terskikh
et al. 2003). Although the extensive formulation of hetero-
chromatin, expressed as characteristic senescence-associated
heterochromatin foci (SAHF), is now considered as a
hallmark of cellular senescence (Zhang et al. 2005), the role
of such epigenetic changes for the aging of stem cells has to
be investigated.

Concluding remarks

Hematopoiesis based on HSCs is maintained through tightly
regulated layers of self-renewal, differentiation, and cell
death during the entire lifespan of vertebrates. The reason
that telomere shortening as a hallmark of replicative
senescence proceeds in HSCs remain unclear, since con-
ventional correlations between telomere maintenance and
telomerase activity appear to be only partially valid in these
cells. Obviously, telomerase activity and telomere dynamics
seem to play different roles in embryonic stem cells and
adult stem cells. Although stem cell proliferation is required
for tissue repair and regeneration, it also bears the risk of
cancer. Tumor suppressor mechanisms should impair this
risk by either eliminating potential cancer cells (apoptosis)
or at least limiting their proliferation (senescence). Factors
ensuring stem cell proliferation as a prerequisite of rela-
tive longevity must presumably be well balanced with
respect to mechanisms that prevent cancer (for a review,
see Beausejour and Campisi 2006). Thus, the coexistence
of telomerase expression and telomere shortening might
appear less contradictory in the HSC compartment,
especially if the telomerase here is seen more as an anti-
apoptotic factor.

The relevance of cellular senescence to in vivo aging is
difficult to evaluate not only in stem cells since there is a
paucity of markers for this phenomenon. Recently, the
combinatory use of three biomarkers (telomere dysfunction,
activation of the ATM DNA-damage response, and SAHF
formation) in aging baboons has provided evidence that
senescent cells exist in vivo and can account for more than
15% of skin fibroblasts in aged animals (Herbig et al.
2006). Whether the stem cell compartment is affected to the
same extent remains elusive. Hence, the identification of
further senescence markers could facilitate a better moni-
toring of senescence phenotypes in vivo, not least in HSCs.
Furthermore, elucidation of the particular mechanisms of
telomerase expression and telomere maintenance in HSCs
might contribute to strategies that focus on the rejuvenation
of stem cell populations for gene therapy and transplanta-

tion and on the repopulation capacity of HSC after myelo-
ablative therapies.
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