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We evaluate ways to analyze optical-heterodyne measurements of frequency chirp in pulsed, single-
longitudinal-mode output from lasers (or other coherent light sources) that operate on nanosecond time scales.
The instantaneous frequency is extracted from the beat signal generated between a continuous-wave reference

beam and the output of the pulsed source.

Three analysis techniques are tested: Fourier-transform, direct

curve fitting, and electronic mixing. We use synthetic beat waveforms based on actual experimental param-
eters to evaluate the three methods and apply these chirp-measurement techniques to an injection-seeded op-
tical parametric oscillator system. © 2004 Optical Society of America

OCIS codes: 040.2840, 120.5050, 190.4970, 230.4320, 300.6320.

1. INTRODUCTION

When pulsed lasers (or other coherent light sources) are
used for precision spectroscopy, it is important to know
how the optical phase and amplitude evolve during the
light pulse. Optical-heterodyne (OH) techniques can pro-
vide such information for nanosecond pulses of coherent,
single-longitudinal-mode (SLM) light. In this approach,
light from a continuous-wave (cw) reference source is
combined at a photodetector (PD) with light from the
pulsed SLM source.!™? One can analyze the resultant
beat waveform to determine the evolution of the optical
phase and thereby derive the instantaneous-frequency
profile of the SLM light pulse. The beat signal is cen-
tered about the difference frequency between the two
light fields at the PD, so that a bandpass filter at that fre-
quency can be used to remove unwanted frequency com-
ponents that are well separated from it. A large differ-
ence frequency (typically several hundred megahertz) is
chosen to generate a large number of beat oscillations
during the optical pulse and to ensure that the Fourier
components of the beats and of the coherent SLM pulse
are widely separated. It also takes advantage of the
lower noise levels that usually occur at high frequencies.

For an injection-seeded pulsed system, such as a pulse-
amplifier chain'™® or an optical parametric oscillator
(OPO),'512 the source of cw seed radiation may also serve
as the reference source. It is then necessary to displace
the cw frequency actively, for example, by using an
acousto-optic modulator (AOM) operating at the desired
difference frequency. This provides the reference beam,
as depicted in Fig. 1 and considered subsequently in this
paper.

It is customary to analyze the beat waveform by means
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of Fourier-transform (FT) techniques.'®* In this paper
we evaluate two additional ways to analyze the beat sig-
nal, and we compare their results with those of the FT
approach. One method directly extracts time-dependent
phase-perturbation information in the (otherwise) sinu-
soidal modulation waveform by a least-squares fitting
procedure. The other technique employs a matched pair
of electronic mixers; the modulation and beat frequencies
are introduced into the mixer inputs, and the intermodu-
lation output yields the quadrature phase information
needed to reconstruct both the instantaneous frequency
profile and the intensity profile.

In this paper we evaluate the performance of the three
methods, using a synthetic intensity profile for an optical
pulse based on the measured parameters of a pulsed SLM
coherent light source. The three techniques are also ap-
plied simultaneously to the actual pulsed SLM signal out-
put of an injection-seeded OPO that is based on periodi-
cally poled KTiOPO, (PPKTP) pumped by a custom-built
frequency-doubled Nd:YAG laser with a relatively long
pulse duration (~27 ns). Detailed characterization of the
frequency chirp from this PPKTP OPO system is demon-
strated in the following paper.'?

2. EXPERIMENT

As illustrated in Fig. 1, the output of the pulsed SLM co-
herent light source to be characterized is combined col-
linearly with the output of a narrowband, frequency-
stable cw reference laser and focused onto a square-law
PD to produce a beat waveform. If the cw frequency is
sufficiently offset from the frequency of the pulsed coher-
ent source, OH beats in the intensity profile of the optical
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Fig. 1. Schematic of the (OH) technique used to measure the op-
tical phase evolution of pulses from a coherent light source. The
AOM is driven at angular frequency w,, . Inset, unchirped syn-
thetic beat waveform and its optically delayed pulse intensity
profile.

pulse can be observed at frequency fi..is (approximated by
the AOM frequency for the system in Fig. 1), provided
that their frequency is within the detection system’s
range of working frequencies fg;. For a Gaussian-
shaped pulse with full width at half-maximum (FWHM)
duration At, this condition reduces to

(044/At) < fbeats < fdet' (1)

For a typical upper value of fy,, i.e., ~1 GHz, narrow-
band SLM optical pulses with durations longer than ~1
ns can be analyzed by the OH techniques described in this
paper. In addition, the detection system must also have
a sufficiently high sampling rate of at least twice the Ny-
quist critical frequency; if fg = 1 GHz, the minimum
sampling rate required is therefore ~2 GSa s™!, where Sa
is one digital sample.

By virtue of its narrow bandwidth, low noise character-
istics, and stable frequency, the cw seed source provides
an ideal means of generating the frequency-shifted refer-
ence beam. Furthermore, because the wave-front direc-
tion of the generated pulse is determined primarily by the
seed beam, an injection-seeded pulsed coherent source
has minimal sensitivity to any apparent phase shift that
may result from tilt variations between the cw reference
and pulsed beams.'®

In the simplest case, the cw and pulsed radiation fields
(with electric vectors E,, and E,, respectively) are as-
sumed to be linearly polarized plane waves®:

E.(t) = B’ exp[i(wg — ,,)t)] + c.c., 2)

E, (t) = E,°(t)expli{w)t + ip(t)] + c.c., (3)
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where 0, and w,, are the angular frequencies of the cw
radiation field and of the AOM, respectively, and c.c. de-
notes a complex conjugate. Any phase perturbations
during the pulse evolution are assigned entirely to ¢(¢)
because the central value (w) of the pulsed field’s angular
frequency is time independent. For example, for the FT
method (w) may correspond to the peak of the pulsed
power spectrum. However, in the present context, the
absolute value of (w) is immaterial because we are con-
cerned only with the beat frequency.

The instantaneous-frequency profile, fi,.(¢), of the
pulse is then defined as?

Finst(t) = (2m) " 1dep(2)/de. (4)

It should be noted that f,(¢) is relative to the central
frequency ((w)/27) and is zero if there are no phase per-
turbations. The voltage signal generated by the PD has
the form

VPD * |Ecw(t) + Ep(t)|2 = |ECW0|2 + |Ep0(t)‘2
wo)t + ig(t)]
+ c.c}. (5)

The first term in Eq. (5), which is due to the cw beam
alone, can be neglected. The second term represents the
intensity envelope of the optical pulse, and the third term
is the OH interference term (comprising positive- and
negative-frequency components). A modulation index,
u(t), can be included in the interference term to account
for imperfect overlap of the two beams.? To evaluate the
optical phase perturbations, one must isolate the third
term and extract ¢(¢) from it.

Frequency chirp commonly refers to an approximately
linear or monotonic change in f;,(¢), which can include
quadratic and other higher-order chirp terms. Because
real pulses can exhibit complicated f;,,(¢) behavior, we
have found it useful to define two parameters that mea-
sure the variation in fi,(¢) during the pulse.!! The util-
ity of these two chirp parameters is demonstrated later in
this paper and in Ref. 12. The first parameter, denoted
Afinst » 18 simply the difference between the maximum and
the minimum frequency excursions, such that

|Afinst‘ = (finst) max (finst) min * (6)

The sign of Afj,, which is taken to be negative if
(finst) max precedes (finst)min @and positive otherwise, indi-
cates whether the chirp increases or decreases during the
pulse. However, this sign is of limited value when fj,4(¢)
fluctuates about a central value with no pronounced over-
all trend. The second measure of the variation in f;,,(¢)
is the range of frequencies covered by a straight-line fit to
the fins(¢) profile (the linear-fit definition). We have em-
ployed both definitions of the variation in f;,(#) in our
seeded OPO experiments (which exhibit predominantly
linear chirp) with comparable results.!>12

The choice of the time period over which Af; , and the
linear fit are defined is arbitrary, but the interval between
the 10%-intensity points of the pulse profile is consistent
with previous reports.*!! In many applications, such as
nonlinear-optical wavelength conversion, only the central
part of the pulse with the highest peak powers is signifi-
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cant. In this case, Afj, measured between the 50%-
intensity points is likely to be a more useful quantity.

We test the performance of the chirp analysis tech-
niques by using computer-generated waveforms that are
based on a measured intensity profile (~8-ns FWHM,
~14-ns 10%-intensity interval) from a pulsed PPKTP
OPO," smoothed to reduce the noise level. The OPO
pulse was measured by a 1-GHz Si P-I-N photodiode
(New Focus 1601; 0.4-ns rise time) and a 2-GHz digitizing
oscilloscope (Tektronix TDS794D) with a sampling rate of
4 GSas™!, matching that of our detection system.

The synthetic PD waveform (Fig. 1, inset) is generated
by forming numerical beats between the synthetic pulse
and a frequency-shifted (—730-MHz) cw reference beam.
The optically delayed pulse ~40 ns later permits pulse-
envelope subtraction for each pulse rather than pulse
averaging,® although this procedure has no significant
benefit at high beat frequencies (e.g., >700 MHz, as in
this study). In the inset the pulse is unchirped and has a
constant modulation index (u) of 0.5, included to simu-
late incomplete overlap of the two beams consistent with
previous experimental observations.>1!

In the next three sections we evaluate the performance
of the three analysis techniques, using synthetic pulses
with various rates of linear chirp. This evaluation is also
valid for quadratic and higher-order chirp because, on
sufficiently small time scales, a given f;,(¢) profile can be
approximated by a sequence of linear chirps of varying
slope.

3. FOURIER-TRANSFORM METHOD

We have employed a technique, similar to that devised by
Fee et al.,! that entails Fourier transforming the beat sig-
nal. This FT technique has been used to characterize the
optical phase properties of cw dye and Ti:sapphire lasers
amplified in dye media'™® and, more recently, of an
injection-seeded PPKTP OPO.!! Figure 2 shows how
Fourier transformation of a synthetic beat waveform
yields a power spectrum that can then be filtered with a
bandpass filter (three types of filter are shown) to select
the positive-frequency interference term, which is explicit
in the final part of relation (5). This filtered frequency-
domain power spectrum is then backtransformed to the
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Fig. 2. Power spectrum of the beat waveform in Fig. 1 (solid
curve) and the three filter functions superimposed: Blackman
(dashed curve), first-order Blackman (dashed—dotted curve), and
Tukey (r = 0.75; dotted curve).
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time domain. The magnitude and the angle of the result-
ant complex-valued data yield the amplitude and the
phase, respectively, of the original optical pulse. The
finst(¢) profile is then obtained from the optical phase by
use of Eq. (4).

A key to the accuracy of the FT algorithm is its ability
to isolate the positive interference term in relation (5)
while it retains all its phase and amplitude information.
It is important to minimize the overlap between the inter-
ference terms and the dc-centered frequency component
[which is due to the pulse profile, |E,’(¢)|?, and to the cw
level, |E,,°|?]. Slight overlap of the two components was
found to be the largest source of error in previous
measure-
ments.>* To minimize overlap it is useful to employ a
relatively large beat frequency or to reduce the dc-
centered component by subtracting the delayed intensity
profile from the beat signal. In previous reports of cw la-
sers that were pulse amplified in dye media,' ™' adequate
separation was attained with a beat frequency of as much
as 400 MHz. In our preliminary PPKTP OPO research'
we further reduced the overlap by using an AOM fre-
quency of ~730 MHz, although this required a larger
detection-system bandwidth (3-dB rolloff at ~1 GHz) and
sampling rate (4 GSas™ ).

The choice of frequency-domain filter is also important.
A rectangular filter centered at the peak beat frequency
and with a width equal to the peak beat frequency pro-
vides optimal isolation of the interference term while giv-
ing zero attenuation across its passband. However, such
a filter allows significant spectral leakage to occur be-
cause of its sharp edges, complicating interpretation in
the time domain. There is a trade-off between the flat-
ness of the filter and the sidelobe level of its Fourier
transform.'> We have compared the performance of
three filters of varying flatness: Blackman, first-order
Blackman (as defined in Ref. 4), and Tukey.!® It should
be noted that, in data-windowing applications, such fil-
ters are usually applied in the time domain.

Each of the three filter functions shown in Fig. 2 is de-
fined in terms of a parameter & that corresponds to the
zero-to-zero width relative to the peak beat frequency.
The Tukey filter is specified by a second parameter, r, de-
fining the combined width of its two tapered regions nor-
malized to & the filter then evolves from rectangular to
Hanning type as r varies from 0 to 1.

The FT algorithm was applied to an unchirped syn-
thetic beat waveform, with several values of 6 for each fil-
ter, so any deviation of f;,.(¢) from a constant value is an
artifact of the FT algorithm. For values of é greater than
~1, modulation appears on the portion of the f;,.(#) curve
that corresponds to the rising edge of the pulse. This
modulation occurs because the filter extends into the dec-
centered component of the frequency spectrum, the
highest-frequency components of which correspond to the
rising edge of the pulse. The optimum value of 5 (J,p) is
chosen to be the largest value for which these modula-
tions are no longer significant (i.e., less than 1 MHz in
this study). The results, for unchirped 8- and 25-ns
(FWHM) pulses, are listed in Table 1. These results in-
dicate how the three filters are likely to perform for actual
chirped pulses.
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Table 1. Characteristics of the Filter Functions
Used for Chirp Analysis by the FT Method®

Sopt Filter Width
(FWHM
Filter Type ~8-ns Pulse ~25-ns Pulse X8)

Blackman 1.1 15 0.406
First-order Blackman® 0.9 1.3 0.541
Tukey

r = 0 (rectangle) 0.6 0.9 1.0

r=0.25 0.7 1.1 0.875

r=205 0.7 1.2 0.75

r=20.75 0.8 1.2 0.625

r = 1 (Hanning) 1 1.3 0.5

“Indicative results are shown for both short (8-ns FWHM; Ref. 11) and
long (25-ns FWHM; Ref. 12) unchirped synthetic pulses.
®As defined in Ref. 4.
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Fig. 3. FT algorithm applied to the synthetic 8-ns pulse with a
linear chirp rate of +1 MHzns 1. Bottom, calculated fi,«(%).
Top, residual deviation of fj,(¢) from the input chirp profile.
Results are shown for three filter functions: Tukey (solid curve;
r =075, 6= 0.8), first-order Blackman (dashed curve; ¢
= 0.9), and Blackman (dashed-dotted curve; 6§ = 1.1). The
dotted line (bottom) is the input chirp profile, and the vertical
dashed lines define the 10%-intensity interval for the input
pulse.

Figure 3 shows the fi,(#) curves generated by the FT
algorithm when it is applied to the synthetic 8-ns pulse
with a linear frequency chirp of +1 MHzns™!. The larg-
est residual excursion is due to the fast-rising edge of the
synthetic pulse. To investigate this effect, we removed
the high-frequency components by applying a low-pass fil-
ter to the intensity profile, which reduced this residual ex-
cursion to <1 MHz. Alternatively, by using the output
intensity profile as an input pulse, as described in Ref. 9,
we achieved a similar reduction. Note that for a purely
Gaussian synthetic pulse the residual excursion is <0.1
MHz.

The optimized filters were then applied to synthetic
pulses with various total chirp values, and the resultant
calculated chirp was compared to the input chirp value.
The percent chirp deviations plotted in Fig. 4 show that
the Blackman and the first-order Blackman filters are
less accurate than the Tukey filter with r = 0.75, which
reproduces the synthetic linearly chirped f;,.(¢) profiles
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to within ~10% uncertainty across a broad chirp range.
This Tukey filter is therefore preferred because it yields
smaller relative errors than the other two forms of filter.

4. DIRECT-FIT METHOD

Our second chirp-analysis technique models the beat
waveform directly by using a least-squares fitting proce-
dure. This direct-fit approach provides a clear picture of
how the instantaneous frequency f,s(¢) varies during a
single OPO pulse without transferring to the frequency
domain.

The phase and frequency information of the OPO pulse
is contained in the third (cross) term of relation (5), which
is a product of electric field amplitudes and a sinusoidal
phase term. We can extract the first two terms (cw and
pulsed intensity profiles) as well as the electric field am-
plitude of the cross term from the recorded beat wave-
form. It therefore remains to determine the sinusoidal
phase term. This we do by using a least-squares fit to a
polynomial for the phase, thereby separating the sinu-
soidal phase term from intensity and amplitude terms
such that the phase term can be analyzed directly over
the pulse duration.

The direct-fit procedure reconstructs the intensity
terms of the beat waveform, as in relation (5), by applica-
tion of Savitzky—Golay moving-window (SGMW)
smoothing!* to the recorded beat waveform to remove the
oscillating cross term. One then retrieves the cross term
by subtracting the reconstructed intensity terms from the
recorded beat waveform, with its amplitude obtained by
SGMW smoothing of the absolute value of the cross term
and multiplication by 7/2. The phase term, extracted by
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Fig. 4. Percent error in the output of the FT algorithm normal-
ized to the input chirp applied to a range of synthetic pulses (8-ns
FWHM duration) with linear chirp rates that range from —10 to
+10 MHzns 1. The error is plotted against the total chirp
within the 10%-intensity window (14 ns). Circles and crosses,
Afinst and linear-fit definitions of the chirp, respectively. Results
are shown for Blackman, first-order Blackman, and Tukey (r
= 0.75) filter functions, with the filter’s width parameter Sset at
Sopt- The error bars in the linear-fit data show the percent of
standard deviation of the linear fit from the fj,(#) curve com-
pared with the total chirp, within the 10%-intensity interval.
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Fig. 5. Direct-fit method applied to the synthetic 8-ns pulse
with a linear chirp rate of +1 MHzns !. (a) Input beat-
waveform data points (dots) and model fit within the 10%-
intensity interval, plus reconstructed intensity profile. (b) Nor-
malized phase term (dots) and least-squares fit with polynomial
phase, within the 10%-intensity interval (solid curve). (c) Cal-
culated beat frequency for a moving window that is ~2 oscilla-
tion periods wide. (d) Residual deviation of fj,(¢) from the in-
put chirp profile.

division of the cross term by its reconstructed amplitude,
is represented by a least-squares fit of the form [a
+ bsin(cy + cqt + cot? + ...)], where the first two param-
eters, a and b, have nominal values of 0 and 1, respec-
tively. The instantaneous frequency and model beat
waveform are then derived from the fitted phase term pa-
rameters by use of Eq. (4) and relation (5).

This procedure is illustrated in Fig. 5, where it is
shown applied to a synthetic 8-ns pulse with a linear fre-
quency chirp of +1 MHzns !. We used a total of 11 data
points (~2 oscillation periods) and a third-order polyno-
mial for SGMW smoothing'® and applied it four times
successively. In Fig. 5(a) the input beat waveform is rep-
resented by the 4-GSa s~ ! sampled data points (dots) con-
nected by a model beat-waveform fit within the 10%-
intensity points of the input pulse; the smooth solid curve
is the reconstructed intensity profile. The normalized
phase term (dots) and its least-squares fit to a sinusoid
with polynomial phase (solid curve) are shown in Fig. 5(b)
over the 10%-intensity interval. The extracted instanta-
neous beat frequency, obtained by a moving window (~2
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oscillation periods wide) and a second-order polynomial
for the phase, and its deviation from the input instanta-
neous frequency are shown in Figs. 5(c) and 5(d), respec-
tively.

The least-squares fit of the phase term is applied in two
different ways. First, we can fit the phase of the whole
section of interest by using a polynomial function of ad-
justable order (a second-order polynomial represents a
linearly chirped frequency). We increase the order of the
polynomial successively to determine the best fit. The
second method uses a separate moving-window approach.
For each data point we choose an adjustable number of
surrounding data points to form a narrow region of the
curve, fit this narrow region to the model function, and
use the resultant fit only for this data point. We repeat
the fit for all data points by shifting the moving window.
This approach is useful, as it reveals phase perturbations
over a narrow range.

It might appear that the amplitude of the cross term is
proportional to the square root of the pulse intensity.
However, this is a reasonable assumption only for small
frequency chirp. For larger chirp, a broadband compo-
nent (e.g., comprising several longitudinal modes) may
gain intensity toward the end of the pulse at the cost of a
reduction in the narrowband SLM component. The
square root of the pulse intensity contains both narrow-
band and broadband contributions, whereas the ampli-
tude of the cross term arises only from the narrowband
component. Such a comparison offers a practical way to
determine whether a broadband component exists in the
pulsed output signal.

We verified the performance of this direct-fit method by
applying the method to synthesized beat waveforms for
different chirp rates, as for the FT method described in
Section 3. The results, related to the linear-fit definition
of chirp, are shown in Fig. 6. The corresponding Afi
chirp definition is not used here: It is identical to the
linear-fit definition for a single direct fit of the entire beat
waveform; it differs only slightly from the linear-fit defi-
nition if a moving-window direct fit is applied. The larg-
est residual excursion is due to the fast-rising edge of the
synthetic pulse, as shown in Fig. 5(d). We attribute this
effect to a minor imperfection in reconstructing the inten-
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Fig. 6. Percent error in the output of the direct-fit algorithm ap-
plied to a range of synthetic pulses (8-ns FWHM duration) with
linear chirp rates that range from —10 to +10 MHzns™!. The
error is plotted against the total chirp within the 10%-intensity
window (14 ns). Crosses, linear-fit definition only; error bars,
percent of standard deviation (~0.5 MHz) of moving-window lin-
ear fits (over ~ 2 oscillation periods) from the input chirp pro-
files compared with the total chirp.
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Fig. 7. Schematic of electronic mixing: PD, photodetector; RF,
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(AOM) input, and intermodulation output of electronic mixers,
respectively; D, digitizing oscilloscope; HPF, high-pass filter;
LPF, low-pass filter; S1, S2, rf power splitters.

sity terms of the beat waveform at the fast-rising edge of
the synthetic pulse. The overall agreement of the ex-
tracted instantaneous frequency is accurate and reliable.
In contrast to those of the FT method (Section 3) and the
electronic mixer method (Section 5 below), the residual
excursion profiles of the direct-fit method are not affected
significantly by the chirp rate and remain below ~2 MHz
at all chirp rates. Thus we are able to correct actual ex-
perimental measurements by using the known residual
error profile of the synthetic beat waveform based on the
actual pulse-intensity profile.

5. ELECTRONIC MIXER METHOD

Both of the methods described above require a high-
frequency data-acquisition system (at least 4 GSas™! for
a 730-MHz modulation) and, as has been shown, can be
subject to errors that arise from the choice of filter to sup-
press unwanted frequencies or from truncation of the fit-
ting polynomial. A third pulse chirp-analysis technique
employs electronic rf mixing technology'® and requires
only readily available data-acquisition systems with mod-
est bandwidths (several hundred megahertz).

Feeding the rf signal driving the AOM along with the
PD output into an electronic mixer demodulates the beat
signal to yield only the frequency-chirp components (typi-
cally <100 MHz). The demodulated output is equivalent
to that which would have been obtained from an OH beat
signal by use of the original (unshifted) seed laser but
with the advantage that low-frequency detector noise has
been removed.

Figure 7 shows the circuit diagram used for the mixer
technique. The beat-waveform signal produced by the
PD is separated into two equal channels by a rf power
splitter (S1; Mini-Circuits ZFSC-3-1). The direct PD sig-
nal channel is recorded by a 5-GSa s™1, 0.5-GHz digitizing
oscilloscope (Tektronix TDS3054). The other channel is
sent to a simple high-pass filter (Mini-Circuits BHP-300;
—30-dB insertion loss at 180 MHz) to remove the dc offset
(|E.°|?) in relation (5) and other low-frequency compo-
nents [e.g., |E,%(¢)|?]. The filtered signal is further sepa-
rated equally into two channels by a second rf power split-
ter (S2; Mini-Circuits ZFSC-3-1). These two channels
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are then introduced into the respective reference input
ports of two electronic mixers (Mini-Circuits ZAD-2).

The 730-MHz rf wave produced by the AOM driver
(Brimrose Model VFF-100-300-V) is separated into three
channels in the ratio 8:1:1 by a third rf power splitter (S3;
homemade). The highest-power channel is used to drive
the AOM; the other two channels provide the reference
frequency for the local input ports of the electronic mix-
ers. The output product signal channels from the two
electronic mixers are recorded by the digitizer as inter-
modulation signals. One of the two local oscillator sig-
nals from splitter S3 is delayed via a short (~50-mm) pas-
sive delay line. The length of the delay line is adjusted to
ensure that the phase difference between the two inter-
modulation waveforms is close to 7/2. The intermodula-
tion waveform data are obtained by use of the low-
bandpass (150-MHz) mode on the digitizer to reduce high-
frequency cross talk from the rf driver at ~730 MHz.

A rf electronic mixer generates an intermodulation
product voltage V; « V5V from two rf voltages, the local
oscillator voltage (V) and the rf input voltage (Vz). In
the present case, Vp = Vpp, and V; is obtained from the
rf output of the AOM. When V; is observed through a
low-pass filter, the high-frequency terms in V; (near o,
and 2w,,) are eliminated. We can also create another in-
termodulation output whose phase is shifted by —a/2
from the initial phase by introducing a delay line from the
local oscillator. Therefore we have, for the two quadra-
tures,

VS = CSu(t)|E,°(¢)|sin] ¢(¢) + (wo — (w))t], (7)

Vi€ = CCu@)|E,°(t)|cos[ ¢(t) + (wg — (@))t], (8)

30 T T T 1
20

10

V, (a.u.)

finst (MHZ)
(4]

] ]
-10 0 10 20 30 40

Time (ns)

Fig. 8. Mixer simulation applied to the synthetic 8-ns pulse (lin-
ear chirp rate, +1 MHzns™!). (a) Simulated intermodulation
quadrature outputs V;5 and V;¢. (b) Bottom, calculated fin(¢);
top, residual frequency difference from a linear fit to fi«(¢).
The frequency of the local oscillator input is 730 MHz. Vertical
dashed lines define the 10%-intensity interval.
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Fig. 9. Percent error in the output of the mixer method applied
to a range of synthetic pulses (8-ns FWHM duration) with linear
chirp rates that range from —10 to +10 MHzns™!. Crosses, lin-
ear fit; circles, Afi,. Error bars show the percent of standard
deviation of the residuals between the linear fit and the calcu-
lated fi,(t) values compared with the total chirp. The fre-
quency of the local oscillator input was 730 MHz.
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Fig. 10. Mixer dispersion data showing phase delay B (tri-
angles) and the arctangent of amplitude ratio R (circles) as func-
tions of intermodulation frequency (centered at ~730 MHz).

where u(t) is the modulation index? that was introduced
in the context of relation (5). The instrument-dependent
factors C° and CC are proportional to |E’|; they are ex-
actly equal if the two mixer channels are perfectly bal-
anced. The initial phase of V; is assumed to be zero.
Temporal profiles for the instantaneous frequency, fi,.(?),
and the pulse, |E,°(¢)|?, can then be obtained by use of
VS and V,° as the imaginary and the real components,
respectively.

Figure 8 shows the mixer simulation results, obtained
with a synthetic OH beat signal input with a
+1-MHzns ! chirp and a 730-MHz synthetic local oscil-
lator input. The predicted #/2 phase-shifted mixer out-
puts from the two channels are shown in Fig. 8(a). In
this simulation a low-pass filter was applied with an at-
tenuation profile given by [1 + (f/f.)?"f]"2, where f is
the frequency at which attenuation occurs, £, is the cutoff
frequency (—3-dB power), and n, is the number of filter
elements. Values of f, = 150 MHz and n; = 6 were used
to simulate the experimentally observed attenuation at
730 MHz.

The lower portion of Fig. 8(b) shows the calculated evo-
lution of f;,(¢), with residual frequency differences from
a straight-line least-squares fit shown above it. Within
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the 10%-intensity interval this fit has a slope (0.964
+ 0.011 MHzns ') that is within 4% of the original syn-
thetic chirp. The corresponding residual frequency dif-
ferences are less than 0.85 MHz, and the standard devia-
tion of the residuals, which indicates the degree of scatter,
is 0.33 MHz. The relative percentage error for both chirp
definitions is shown in Fig. 9 as a function of the total in-
put chirp during the (14-ns) 10%-intensity interval. The
mixer method yields chirp values that are consistently
lower than the input chirp but within 5% of the input
chirp value.

6. PRACTICAL MIXER CONSIDERATIONS

We have so far considered the relative merits of the three
chirp-analysis techniques when they are used in a simu-
lated measurement of synthetic pulses. In practice, the
mixer technique introduces additional experimental un-
certainties that are not present in the other techniques.
For example, the phase shift between the two electronic
mixers might not be exactly 7/2, and the amplitudes of
the two mixer signals might not be equal. We therefore
redefine the actual mixer output as V;°’ and V;5’, respec-
tively, so that

V¢ = (RV,C" — V5 cos B)/sin B, 9)
VS =v/S5, (10)

where R and B are an amplitude ratio and a phase differ-
ence, respectively. These parameters can be obtained by
a least-squares fit of the reconstructed temporal profile to
the original temporal profile, |[E,’(¢)|?. The dispersion
thus described includes the effects of all the electronic
components that follow the photodiode.

We have measured the dispersion of the mixer system
over a £60-MHz range of frequency shifts from the refer-
ence frequency by replacing the PD output to the mixer
input with another variable-frequency rf driver. The fre-
quency dependence of phase delay 8 and the arctangent of
amplitude ratio R are shown in Fig. 10. As can be seen,
B varies by less than 10°, whereas a similar fractional
variation occurs because of the change in R.

To test the effect of 8 and R on the accuracy of the re-
sults, we processed the synthetic mixer output shown in
Fig. 8(a) (+1-MHzns™! chirp) by taking account of the
system’s measured dispersion characteristics (Fig. 10).
The resultant reconstructed temporal profile is almost in-
distinguishable from the undispersed calculation (re-
sidual differences range from +0.4 to —1.0%), whereas
the residual difference from the synthetic temporal profile
ranges from +4 to —6%. The standard deviation of the
dispersion-processed fi,(¢) profile from the input fre-
quency profile is 0.4 MHz; it differs from the undispersed
processed signal by a standard deviation of only 0.1 MHz,
indicating that dispersion effects are negligible for this
synthetic pulse.

Finally, the electronic mixers in practice exhibit har-
monic distortion (i.e., they do not produce exact trigono-
metric functions) in their intermodulation outputs, even
when monochromatic cw inputs are used; this distortion
causes variation in the output fi,(¢) value. Measure-
ments of this f;,(¢) variation have been performed by use
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Fig. 11. Instantaneous beat-frequency evolution for output from
a pulsed PPKTP OPO, shown over the 10%-intensity interval for
the FT (heavier solid curve), direct-fit (dotted curve), and mixer
(finer solid curve) methods. Vertical dashed lines define the
50%-intensity interval.

of unchirped cw rf inputs of adjustable frequency. The
results show only small variations that range from <1
MHz at the reference frequency to <3 MHz at =60 MHz
offset to the reference frequency.

7. EXPERIMENTAL BENCHMARKING

To compare these techniques experimentally, we simulta-
neously applied all three chirp-analysis methods to the
OPO system described in Ref. 12 for which relatively long
(~27-ns) pump pulses are employed. Using an arrange-
ment similar to that shown in Fig. 7, we split the PD sig-
nal to provide a raw beat signal to one input channel of a
TDS3054 digitizing oscilloscope and applied the other sig-
nal to the inputs of two electronic mixers. The mixer ref-
erence channels were fed by the ~730-MHz rf signal driv-
ing the AOM. Some low-level rf cross talk was
consequently observed between the mixer ports. The
OPO was operated at just over twice the unseeded thresh-
old pump power at a wavelength of 841.70 nm, slightly
detuned from the free-running center wavelength of
841.82 nm, to provide a measurable chirp.!>1?

The chirp evolution calculated by the three techniques
is shown in Fig. 11. Agreement within the 10%-intensity
interval defined by the figure margins is very good, and it
is significantly better within the 50%-intensity interval,
particularly for the FT and direct-fit methods, the results
for which are almost indistinguishable. The larger fre-
quency excursions for the mixer method may arise from
cross talk between the mixer ports or the digitizer chan-
nels or from the dispersion effects discussed in Section 6.
Within the 10% or 50% intensity limits, the respective
standard deviations between the FT and direct-fit meth-
ods are 1.4 or 1.0 MHz; the corresponding standard devia-
tions between the FT and mixer methods are 7.5 or 3.6
MHz. These deviations are considerably less than the
FT-limited optical bandwidth (~17.56 MHz FWHM) for the
temporal profile (~25 ns FWHM) of this OPO pulse.!?
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8. CONCLUSIONS

We have evaluated three ways to analyze beat waveforms
obtained by OH measurement of SLM output from pulsed
coherent light sources on nanosecond time scales. All
three methods are applicable for accurate determination
of the frequency chirp that arises from optical phase per-
turbations, and all can be implemented in real time for
pulses with repetition rates of several tens of hertz.

A comparison of the results presented in Figs. 4, 6, and
9 shows that all three techniques yield similar chirp re-
sults that are within 10% of the synthetic input chirp
value. The residual deviations in the direct-fit results
are insensitive to variation of the chirp rate and amount
to no more than ~2 MHz (at the rising edge of the pulse).
With the FT method and the preferred Tukey filter, the
Afine deviation is of the order of a few percent over much
of the total chirp range, apart from the (submegahertz)
deviations at low chirp. Depending on the chirp-
measurement criteria (linear fit or Af;,i) and the type of
filtering used, the methods can yield percentage chirp de-
viations that are slightly above or below the synthetic
pulse value. However, even for extremely large chirps
that exceed 100 MHz, the deviation from the synthetic
chirp value is much less than 10 MHz. For smaller total
chirp values of ~10 MHz, which are more typical of our
PPKTP OPO experiments,'2 the deviation is small (<2
MHz), particularly compared with the FT-limited optical
bandwidth (55 MHz FWHM) for the temporal profile (~8
ns FWHM) of the synthetic pulse.

The mixer technique should in principle yield the same
result as the FT and direct-fit methods. However, in its
practical implementation the filtering, dispersion, and
amplitude characteristics can influence the accuracy of
the measurement, although the synthetic pulse analysis
shows that their influence has only a small effect on the
uncertainty of the final result. Although the mixer
method does not yield quite so accurate chirp measure-
ments as the other techniques in the OPO experiment, it
has the practical advantage that it can be implemented
with only a few simple electronic components. Moreover,
it does not need a fast digitization system (with a band-
width at least several times the AOM frequency, i.e., sev-
eral gigahertz). In practice, the mixer output can be re-
corded with a detection-system bandwidth that exceeds
only the maximum beat-frequency excursion from the
mixer reference frequency (i.e., several hundred mega-
hertz).

We have applied these techniques to an injection-
seeded PPKTP OPO system pumped by a frequency-
doubled SLM Nd:YAG laser with a relatively long pulse
duration (~27 ns). All three methods yield similar re-
sults for the instantaneous frequency profile f;,(¢). In
the following paper,'?> we report in more detail on the
chirp characteristics of this OPO system.
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