
A Formal Approach to the Engineering of Emergence and its Recurrence

Martin Randles(1), Hong Zhu(2) and A. Taleb-Bendiab(1)

(1)School of Computing and Mathematical, Liverpool John Moores University, Liverpool UK.

(2)Department of Computing, Oxford Brookes University, Oxford, UK.
 (1){cmsmrand a.talebbendiab}@livjm.ac.uk (2)hzhu@brookes.ac.uk

Abstract

Emergent behaviours are often characterised by the
recurrent and recognizable events observable in a
system’s macro-scale environment, which result from
simple local interactions between system components.
Such interactions are governed by simple rule sets,
which lead to complex higher-level global behaviour.
Hence, engineering emergence is a necessarily subtle
process subject to the impacts of system evolution with
minor changes at micro-scale giving completely
different outcomes, to those envisaged, at the global
system level. Thus, to harness the self-organisation and
emergence as a design principle for the build and
management of assured and trusted systems requires a
principled approach to specification and reasoning on
emergence. In this paper the authors advocate the use
of a formal approach/method to specify component
interactions, system evolution, and runtime global
states. The proposed method provides a formal
specification for the engineering of known emergence
and runtime deliberation on the emergence observable
in the global system. A process is detailed where a
model with a formal specification of emergent
behaviour is given in the SLABS language. The
implementation is endowed with an observer system
that reasons on novel emergent features with a
consequent update of the formal system model. The
process is evaluated by means of a newly created
simulation that shows these ideas in operation.

1. Introduction

In self-organising systems, consisting of complex
interconnected systems of systems (agents/components
/particles), global behaviour, or events, arise from the
simple interactions of participating entities, and are
often observed through the system’s global
environment. However globally observable events
cannot easily be seen or predicted through the study of
the low-level situated components alone. As the term
emergence stems from the Latin word emergere – to

rise out of water, which is the opposite of mergere – to
be submerged, emergence is taken to mean some event
or occurrence that becomes apparent rising out of a
containing system. The key feature is that the
occurrence becomes apparent or observable. So
emergence may be taken as a process that results in
some phenomenon that might be detected by an
observer. This means that an observer is a vital part of
any system seeking to engineer, or make use of, system
emergence.

This is equally valid for large-scale complex
computing systems such as: P2P networks, grids or
self-organising overlay networks, in which the
prediction of the global system behaviour based on the
study of individual autonomous agents is notoriously
difficult, if not impossible. For such a class of systems,
there is a general lack of underpinning theory and
techniques to facilitate the specification of the
individual components, at design-time, to
explain/allow-for the accurate prediction of runtime
states of the global whole-system behaviour. These
predictions need not necessarily be totally accurate, as
some level of error is allowed, but they ought to be
adaptable/defeasible, by the system itself, throughout
the runtime. Thus, for runtime autonomic
detection/characterisation of emergence and/or
monitoring of systems’ global behaviour, observer
agents must be included that are capable of data
acquisition from the system and subsequent
deliberation on the global system state using this data.
Traditionally multi-agent systems handle emergence
through local data and communications, as global data
is most often not readily available to the local
components. Thus global data is almost certainly
incomplete, due to the scale of the system. Therefore a
model of self-organising emergence systems is
proposed that is based on dedicated observers, termed
the Observer Model [1, 2].
The observer is required to base its reasoning on
likelihood rather than complete certainty and scenarios
need to be specified to identify likely emergent
behaviour or characterise self-organising systems.

Work has already been reported on a Scenario Calculus
[3] to reason about emergent behaviour at design time.
Its approach to the formal specification of emergent
behaviour can be used for expressing global behaviours
recognisable to an observer type entity. The recurrence
properties for this emergence, reachability, stability or
convergence for instance, can be proved as properties
of the scenario. However this approach still relies on
the exact pre-definition of each specialised instance of
a self-organising behaviour. To address this problem,
formal models of systems are highly desirable; as it is
only through a formal logic that adequate deliberation
can be achieved. A propositional account of the
systems operations gives provably correct
specifications whilst a suitably powerful logical
formalism can endow formally modelled observer
agents with inferential and deductive capabilities to
reason on observable emergent properties using higher
level abstractions.

It is for this reason that this paper focuses on the
formal specification of self-organising systems through
the Observer Model in an agent-based specification
language – SLABS [4], with the situation calculus [5]
to reason and gain a good representation of the forces
and flow in a dynamical system for deliberation. This
includes both supporting the detection/characterisation
of known models of self-organisation, via observer
detectable signatures, and identifying and evaluating,
in the context of the system’s operation, new signatures
via signal groundings.

This paper details a formal approach to the
engineering of self-organising systems, which is based
on a provably correct formal model of the systems
operation that is directly implemented through the
efficient logical specification. Also composed into the
system, as a separate concern, is a hierarchical
cognitive observation system [2]. The observation
system is capable of reasoning on the observed
emergence either through metric evaluation or the
inferring of new groundings for signals. For certain
novel events, where no logical inference can be made
from the existing knowledge base, it will be necessary
for this deliberation to culminate in human level
intervention. Additionally, where system adaptation
and/or evolution has occurred through the run time, the
formal model can be periodically informed and
checked for its logical cohesion, through consistency
and completeness, for instance.

The paper is thus structured as follows: The next
section, 2, gives an overview of the proposed research
agenda with a model of the associated procedures,
tools and languages that will be used to support the
process. Section 3 presents a simple scenario out of
which arises an interesting global event, not apparent at
participant level. The formalism and process is applied

to this example with a formal specification of the
system, an analysis of the emergence and a translation
into executable code. The simulation results are
evaluated and the paper continues, in section 4, with a
setting of this work in the context of currently related
works. A comparison to existing work is given with a
discussion of the advantages and problems in this
work. The paper concludes with a brief summary in
section 5.

2. Proposed Observer Model of Self-
Organising Systems

In this section an overview is given of the proposed
approach to engineering emergence in self-organising
systems.

2.1 The Observer Model: Self-Organising
Systems

In existing system engineering methods a system
can be engineered to recognise and ascribe meaning to
a finite set of known signals (events). However, for
self-organising or emergent behaviour, such signals
cannot be a priori defined. Therefore signals may be
grounded only by using existing signals to infer the
intrinsic meaning of new (composite) signals or by
assessing the future state of a system following the
observation of a novel occurrence. The latter can be a
specific action set taking-place in a specific context
(situation, scenario, etc.). The assessment of the future
state may either take place as the system runs or be
performed in a modelling environment based on past
performance. In the end signals can only be grounded
via a cognitive deliberative observer [2], which can be
performed via human level input or through an
observational meta-system attached to the system to
reason on any ensuing novelty. Such a process may
occur as detailed in Figure 1.

Figure 1. The overall structure of the Observer
Model

Following recognition reoccurrence needs to be
taken into consideration. For a signal to be recognised
or grounded requires more than one manifestation of
the observed occurrence. At the detection of a certain
signal the particular conditions that held can be
analysed for consideration of the likelihood of
reoccurrence. For an immediate “piece of knowledge”
to use in the run time system this analysis can be done
through a formal model based deliberative observer. So
upon an observer/monitor detecting some system
feature with associated conditions or action history the
manifestation of this feature may be mapped to the
conditional set or history and the formal model used to
establish the likely occurrence of the conditions in the
future.

This is beneficial because the rules governing
behaviour in an evolving system may be formalised
and used for a number of purposes such as to improve
future performance, to apply to another part of the
system or to reuse as best practice in new system
design. This is different to the previously specified
technique of reinforcement learning because the rules
in reinforcement learning are evaluated only through
their application in the running system through reward
or penalty.

In [1] a deliberative, logical, observer system was
demonstrated using system imperatives to derive
global system behaviour by deliberating on the
emergent features resulting from the bounded
autonomous behavioural norms of the system
members. Norm governed safe, predictable behaviour
is performed by the low-level components through
their interactions and beliefs, whilst the global system
properties, emerge from these low level interactions, to
be assessed through the deliberative observer, as
shown in Figure 2.

Figure 2. The observer model

The hierarchical nature of this system is apparent in
that an entire system may have very many observer
modules meaning that each of the N nodes in Figure 2
may itself be an observer system.

2.2 Dealing with Emergence: The Process
Elements

This work is based on a dual approach to the formal
methods employed in the system design and detection
and deliberation on emergent system features. An
efficient implementation method is also available to
take the formalism into a fully coded application. The
process starts with a formal specification of the overall
structure of the system and an appropriate class of
emergent behaviours observed, for example, those
common in World Wide Web type systems and the
overall structure of the system. This is followed by
formal reasoning regarding the alternative choices for
the defining of suitable rules targeted to the related
emergent features. An executable system may then be
derived from the formal specification for actual
development or simulation. Subsequently deliberation
on the run time system further informs the initial
formal specification and run time system
evolution/adaptation.

2.2.1 Formal Specification of System and
Emergence Behaviour

The formal specification of the system is achieved
using SLABS, which stands for Specification
Language for Agent-Based Systems [4, 6].

In SLABS, the agents in a multi agent system
(MAS) are classified by a partially ordered set of
castes, which are the templates for agents which define
a set of structures, behaviours and environmental
features [7]. A specification of a MAS in SLABS
consists of a set of definitions of castes in the
following form.

CASTE C <= C1, C2, …, Cn;
 ENVIRONMENT EC1, …, ECw;
 VAR *v1:T1, …, *vm:Tm; u1:S1, …, ul:Sl;
 ACTION *A1(p1,1, …, p1,n1), …, *As(ps,1,…, ps,ns);
 B1(q1,1,…, q1,m1), …, Bt(qt,1,…, qt,mt);
 RULES R1, R2, …, Rh
END C.
where C1, C2, …, Cn are caste names. The clause 'C <=
C1, ..., Ck' specifies that caste C inherits the structures,
behaviours and environments of castes C1, ..., Ck.

The state space of an agent in the caste is described
by a set of variables with keyword VAR. The set of
actions is described by a set of identifiers with
keyword ACTION. An action can have a number of

parameters. An asterisk before an identifier indicates
that the variable or action is invisible.

An agent’s environment is a subset of agents in the
system whose visible variables and actions can be
perceived by the agent. It can be explicitly specified by
clauses in the following forms. (a) ‘agent name’
indicates a specific agent; (b) 'All: caste-name' means all
the agents of the caste; (c) “identifier: class-name” is a
variable that an agent in the caste can be assigned to.
Agents’ behaviours are defined by transition rules in
the following form.

Behaviour-rule : :=
 [<rule-name>] pattern |[prob]−>
 event, [If Scenario] [where pre-cond];

where the pattern describes the pattern of the agent's
previous behaviour and its current state. The scenario
describes the situation in the environment. The event is
the action to be taken when the scenario happens and
the pre-condition is true, which is given in the where-
clause. An agent may have a non-deterministic
behaviour if multiple rules are applicable. The
expression prob defines the probability for the agent to
take the specified action on the scenario. It can be
omitted so that the choices are non-deterministic.

A pattern describes the behaviour of an agent by a
sequence of observable state changes and observable
actions. It is written in the form of [p1, p2, ..., pn], n≥0,
which means the previous sequence of events taken by the
agent matches p1, ..., pn, where pi can be in the form
given Table 1.

Table 1. Meanings of the patterns
Pattern Meaning

$ The wild card, which matches with all actions

τ Silence

X Action variable, which matches an action

Act (a1, ...ak)
An action Act that takes place with parameters
match (a1, ...ak)

!Pred
Pred is a predicate that contains the agent’s
state variable. The agent’s state matches !Pred
if the predicate is true.

A scenario is a combination of a set of agents’

behaviours and states that describe a global situation in
the execution of the system. Table 2 gives the format
and semantics of scenario descriptions in SLABS.

As shown in [3, 8] and will be also demonstrated
later in the paper, SLABS can be used for the formal
specification of agents of MAS using castes as well as
the global emergence behaviour using scenario
descriptions. The recurrence properties of the

emergence behaviour can be proved using Scenario
Calculus as properties of the scenarios in the context of
system’s formal specification [3].

Table 2. Semantics of scenario descriptions
Scenario Meaning

Predicate The state of the agents satisfies the predicate
A=B The identifiers A and B refer to the same agent
A∈C Agent A is in the caste C

A:P Agent A's behaviour matches pattern P

∀X∈C.Sc The scenario Sc[X/A] is true for all agents A in
caste C.

∃[m]X∈C.Sc
There are m agents in caste C such that Sc[X/A]
is true, where the default value of the optional
expression m is 1.

S1 & S2 Both scenario S1 and scenario S2 are true
S1 ∨ S2 Either scenario S1 or S2 or both are true

¬ S Scenario S is not true

2.2.2 The Description of the Observer’s Knowledge

The formalism, for the system deliberation via the
observer system, follows a propositional account
taking situations as a history of the previous actions. In
these experiments a variation of the Situation Calculus
[5] is used. In the initial situation (S0), before any
actions or events have completed, fluent values are
described and subsequently vary according to effect
axioms for each action or event that occurs. Successor
state axioms that define the system variables complete
the specification taken with action precondition axioms
and the initial situation. In the first instance an action,
a, changes the initial situation from S0 to do(a, S0) with
the next action, a1 say, changing the situation to do(a1
do(a,S0)) with a2 giving do(a2,do(a1,do(a,S0))) and so
on. The comprised set of successor state and action
precondition axioms show the changes in value of the
fluents and the possibility of completing an action in
each situation accordingly. In other words a successor
state axiom for a fluent is TRUE in the next situation if
and only if an action occurred to make it TRUE or it is
TRUE in the current situation and no action occurred
to make it FALSE, with precondition axiom poss(a, s)
meaning it is possible to perform action a in situation s.
The pieces of knowledge, or agent belief sets, are
represented in the situation calculus by equating each
world state with an action history or situation with the
concept of accessible situations [9]. So if s1 and s2 are
situations then (s1 s2) ∈ Ki means that in situation s2
agent i considers s1 a possible situation with Ki the
accessibility relation for agent i. So that Ki(s1 s2) means

that all fluents known to hold in situation s2 also hold
in s1. So the accessibility fluent may be specified: Ki(s1
s2) denotes the belief state that in situation s2 agent i
thinks s1 could also be the actual situation.

So knowledge for agent i (knowsi) can be
formulated in a situation as:

knowsi(φ, s) ≡ ∀s1(Ki(s1, s)→φ(s1))
[alternatively ∀s1 (¬ Ki(s1, s)∨ φ(s1))]

Thus knowledge dynamics, represented in the
situation calculus, become available for deliberation
through logical operations. However through this
representation there is a distinction to be made between
actual system actions and knowledge producing
actions: If the action that occurred, to change the
situation to its successor, was the perception of the
value of a fluent then a sensing action to produce
knowledge occurred. So the change was a change in
the knowledge base of the agent. Thus it is necessary to
distinguish sensing actions by writing SR(senseφ,s) to
record that the action produced a resulting value for φ.
SR(senseφ, s) =r = value of φ in s. Thus the successor
state axiom for K follows:

K(s2, do(a, s)) ⇔ ∃ s1(s2=do(a, s1)
 ∧ K(s1, s)∧ poss(a, s1)
 ∧ SR(a, s)= SR(a, s1))

This formalism allows the representation of
knowledge in partially observable domains, where only
incomplete data is available. This is a vital
prerequisite, for the approach presented in this paper,
to reason on detectable emergent signals and infer the
presence of new signals. For example suppose the
following action history is specified:

do(a,do(a1,do(a,s))) with
SR(a,s)≠SR(a, do(a1,do(a,s)))
where a=sensef for some fluent f and a1 is some
deterministic action.

This then describes a process whereby a new
prediction for the results of action a1 may be inferred,
where the values of other fluents in situation s form the
action precondition axioms for a1 as a context. So an
action a1, occurring in the context of situation s,
grounds the signal, represented by the monitoring
indicator f.

2.3 The Development Process

Using the formalisms described in the previous
subsections the major elements of the engineering for
emergence approach are derived. The known likely

candidate scenarios that exhibit emergent outcomes are
pre-defined and handled through the design time
formalism whilst a logical dynamical representation, of
the deliberative observer system, permits an efficient
implementation with attendant reasoning functionality.
The known signatures for emergent outcomes are part
of the initial specification so may easily be recognised,
when they occur, with additional tools, in the scenario
calculus, to address the properties of reoccurrence and
thus determine the relative importance to the system of
this signal detection. Subsequently, through run time,
the observer system assesses novel sources of system
variable change based on the action history that
preceded the variability in the fluent. Additionally the
known emergent signatures are monitored and actions
may be taken accordingly. At determined points
through the operational lifecycle the snapshot run time
system state can be synchronised with the overall
formal model, as originally composed, and assessed for
its logical properties and implications for future
operation.

3. Example Evaluation: Salt World

In this section, we report on an experimental
evaluation of the proposed method.

Figure 3: Initial situation

3.1 The Salt World

The Salt World implements a very simple set of
rules for the actors that results in an emergent global
outcome. In the initial situation grains of salt (white)
are randomly distributed across a 2-D world that also
contains randomly distributed salt carriers (green) to

move the grains, as shown in figure 3, a screen shot of
the implementation in Netlogo [10].

The salt carriers move randomly, through the world,
picking up salt grains and dropping them at the nearest
empty space when another salt grain is encountered. As
shown in figure 4 this behaviour causes the formation
of a highly concentrated completely connected salt
pile.

The output to left of the screen shows the action
history for a specific general salt carrier. The moving
action merely abbreviates a sequence of move actions.
The concentration- and concentration+ means
concentration is decreasing or increasing respectively.
The actual fluent value is recorded but not output for
readability. The fluent changes are also output to this
window and the distinction is made between the local
(salt carrier) fluents and the global (world properties)
fluents.

3.2.1 The SLABS Specification

The specification in SLABS provides the design
time formal model through which the actual
implementation can be easily produced. This is shown
in Figure 5.

It may be seen from this, that certain recurrence
properties may be deduced at design time. The
emergent state of high concentration (state 2 in Figure
5) is not always reachable. For instance if the number
of salt grains is low or widely dispersed the emergent
state (2) will not always result. Additionally, from
Figure 5, the emergent states (1) and (2) are reached
with high probability when the number of salt grains is
high. Furthermore, these states are stable. The system
remains in either of these states once the states have
been entered. Emergent state (3), however, is not stable
as the search may result in a new find.

Figure 4: Emergence of single “clump”

Figure 5. System Specification in SLABS

3.2.2 The Observer’s Perspective

For the observer system a dynamic action history is
required, where the sensed emergent outcome can be
related to the action history of the system. The

underlying participant successor state axioms are:

holding(do(a,s)) ⇔ (holding(s) ∧
 a≠dropsalt) ∨ a=pickupsalt

Specification of the system
Caste Turtle;
Environment field: Field;
Var
 Position: Integer x Integer; (* The position of the turtle is at the coordinate *)
 State: {FindSalt; FindPile, GetAway}; (* The mental state of the turtle *)
Action:
 Move; (* Make a random move in the field *)
 PickSalt(x: Integer, y: Integer); (*Pick a grain of salt at coordinate (x, y) *)
 DropSalt(x: Integer, y: Integer); (*Drop a grain of salt at coordinate (x,y) *)
Behaviour:
<Move>: (* Keep moving when the field has no salt at the current position, if the turtle is finding salt *)
 [!State = FindSalt & Position=(x,y)]
 |−>Move!Position=(x’,y’); if field: [!HasSalt(x, y)=False]; where (x’, y’) ∈ Neighbour(x, y)
<Pick>: (* Pickup a grain of salt and change the state into finding a pile, when the turtle is finding salt*)
 [!State = FindSalt & Position=(x, y)] |−>PickSalt(x,y)!State=FindPile; if field: [!HasSalt(x, y)=True];
<Search>: (*Keep moving if the turtle is in the state of finding a pile of salt until a pile is found *)
 [!State = FindPile & Position=(x,y)]
 |−>Move!Position=(x’,y’); if field: [!~OnPile(x, y)]; where (x’,y’)∈Neighbour(x, y)
<Drop>: (* Drop a grain of salt when the turtle found a pile while search for a pile *)
 [!State = FindPile & Position=(x,y)] |−>DropSalt(x, y)!State=GetAway; if field: [!OnPile(x, y)];
<GetAway>: (*The turtle moves to a random place where has no salt and start a new cycle of searching of salt grains *)
 [!State = getaway & Position=(x,y)]
 |−> Move ! (Position=(x’,y’) & State = FindSalt); if field:[!~OnPile(x’,y’) & ~HasSalt(x’, y’)]; where 0<x’, y’≤100
End Turtle

Caste Field;
Environment All: Turtle;
Var HasSalt[1..100, 1..100]: Bool; OnPile[1..100, 1..100]: Bool;
Action Update(x, y: Integer);
Behaviour:
<WhenPicked>: (*When a salt grain is picked up by a turtle, it is removed from the field*)
 [!HasSalt(x,y)=True] |−> Update(x,y) !HasSalt(x,y)=False; if ∃turtle∈Turtle:[PickSalt(x,y)];
<WhenDropped>: (*when a salt grain is dropped down by a turtle, it is placed on the field*)
 [!HasSalt(x,y)=False] |−> Update(x,y) !HasSalt(x,y)=True; if ∃turtle∈Turtle:[DropSalt(x,y)];
<Update>: (*When after a salt is dropped down or picked up by a turtle, the condition for a position in the field about

whether it is on a pile of salt is updated*)
 [Update(x,y)] |−> !(∀(i, j)∈Neighbour(x,y).(OnPile(i,j)=True ⇔ ||{(x’,y’)∈Neighbour(i, j) | HasSalt(x’, y’)}||>5);
 where Neighbour(x,y)={(i, j) | x−1≤ i ≤ x+1 & 0< i ≤ 100 & y−1≤ j ≤ y+1 & 0 < j ≤ 100 }
End Field.

Agent field: Field.

Specification of the emergent states:
(1) Every salt grain is on a pile:

field:[!∀x,y.(0<x, y≤100 & HasSalt(x,y) ⇒OnPile(x,y))]
(2) At least 95% of salt grains are on piles:

field:[|| {(x,y) | 0<x, y≤100 & HasSalt(x,y)&OnPile(x,y)} || / || {(x,y) | 0<x, y≤100 & HasSalt(x,y) }|| >95%]
(3) All turtles are idle:

∀turtle∈Turtle:[!State = FindSalt]

foundpile(do(a,s))⇔(foundpile(s)
 ∧ a≠dropsalt) ∨
 (holding(s)∧ a= sensecolor(white))

atcolorwhite(do(a,s)) ⇔
 (atcolorwhite(s) ∧
 a≠move)∨a=sensecolor(white)

atcolorblack(do(a,s)) ⇔
 (atcolorblack(s) ∧
 a≠move)∨a=sensecolor(black)

with action precondition axioms:

poss(dropsalt, s) ⇒ holding(s) ∧
 atcolorblack(s) ∧ foundpile(s)
poss(pickupsalt,s) ⇒ atcolorwhite(s)
poss(sensecolor,s) ⇒true

[the sensecolor(X) (X=black or white) action is shorthand
for the formalism detailed in previous works:

SR(senseφ, s) =r = value of φ in s. where φ is color and
r is X (black or white)
So that accessible situations can be defined by the
successor state axiom:
K(s2, do(a, s)) ⇔ ∃ s1(s2=do(a, s1) ∧ K(s1, s) ∧ poss(a,
s1) ∧ SR(a, s)= SR(a, s1))
meaning knowledge within situation calculus may be
defined thus:

knows(φ, s) ≡ ∀s1(K(s1, s)→φ(s1))]

3.2 Formal System Specification

 As detailed earlier, this work relies on two
approaches for a formal statement of the system. The
outcome of emergence through correlation with known
signatures is dealt with as a separate concern to that of
the observation system, where logical entailment is
used to extract new emergent features. Additionally the
newly derived properties evaluated within the running
system may then be assessed in the context of the
design time formal model.

These rules alone cause the emergent behaviour that
the observer detects via grounding using the
~saltconcentration fluent. A distinction is made
between the fluents that are monitored to assess global
emergence and those which are local to the micro-scale
participants. The global fluents arise from the
operations represented by the fluents specific to the
particle salt carriers. In this representation global
fluents are flagged with a preceding “~” to enforce this
distinction.

~saltconcentration(do(a,s))=n⇔
 [~saltconcentration(s)=n ∧
 (a≠dropsalt ∨ a≠pickupsalt)]∨
 a=senseconcentration(n)

Then the high salt concentration appears as the
emergent behaviour:

~highconcentration(do(a,s))⇔
 (~highconcentration(s)∧
 a≠senseconcentration(<97))∨
 a=senseconcentration(>97)

3.3 Translation into Executable Code

The formal representation, being an efficient logical
specification readily transfers into code; so the basic
actions of the participants are coded in Netlogo as:

to search-for-salt
ifelse pcolor = white
 [set pcolor black
 set color white
 output-print "pickupsalt”

output-print "{Fluent Change
(Particle): holding}"]
 [moveon
 search-for-salt]

to put-down-salt
ifelse pcolor = black
 [set pcolor white
 set color green
 output-print "dropsalt"
 output-print "{Fluent Change
(Particle): NOT holding}"]
 [rt random-float 360
 fd 1
 put-down-salt]

Whilst the emergent behaviour is detected by the
Netlogo code:

to calculate-saltconcentration
ask patches [if pcolor = white
[ifelse count neighbors with [pcolor
= white] > 6
[set surrounded? true]
[set surrounded? false]]

set saltconcentration count patches
with [pcolor = white]
if saltconcentration > 97
[output-print "{Fluent Change:
highconcentration}"]

4 Emergence in Multi-Agent Systems

 In [3] a framework was presented to specify and
prove emergent behaviours of multi-agent systems
using SLABS. Thus, given a sufficiently detailed
model of a general system, emergent properties can be
proved for the scenario.

4.1.1 Related Works

 Other approaches have tended to focus on emergence
of role for the participating actors [11] or on seeking
merely to define emergence [12]. There is also work on
emergence in particular types of multi-agent systems,
in narrow areas of application [13]. Work on
emergence within multi-agent systems follows either a
biologically inspired approach [14] or focuses on
emergence from social interactions [15]. In [16]
various techniques for engineering emergence are
discussed. The proposed algorithms provide an
assurance of convergence for an eventual tangible
global state that is stable to perturbation from the
micro-level. There has also been considerable interest
in stigmergy, based on the indirect interactions of
system participants, where messages are deposited
through the environment to be picked up by subsequent
encountering entities. There have been a number of
specific applications of stigmergic techniques, [17,18]
for example. However there is little work on a related
general formal specification and there is no proof of
convergences to an emergent state. Of some relevance
to the work presented in this paper are the issues
surrounding self-organisation in agents based on
behaviour adaptation according to reinforcement. The
model of adaptive agents [19] dynamically adapts
logical relations between different behaviours. For the
observer model, proposed in this paper, this strategy
could be utilised to monitor the recurrence of
recognised emergence. Cooperation is frequently used,
where desired collective behaviour emerges to provide
the system’s functionality. AMAS theory [20] specifies
that each cooperative agent is able to rearrange its local
interactions dependent on its knowledge of the
emerging system function. It is also possible to model
systems based on meta-models of agent organisation.
The PROSA architecture [21], for example, involves a
holonic hierarchy model. Agents participate in holons,
forming holonic structures with self-organisation
occurring by adapting the holonic hierarchy to
environmental perturbations.

A model where there is direct interaction between
system participants allows the engineering of
emergence through previously observed outcomes.
However, as mentioned in [16], this is only useful for

simple global equilibrium states modelled in a strictly
linear manner. Stigmergy type scenarios have the
added benefit of giving an implementation from an
observed calibrated simulation. This gives some ideal
solutions for specific application domains but, as
mentioned earlier, does not permit a general formal
explanation. Cooperation behaviour requires an
exhaustive enumeration of cooperative states and
adaptations, which is not always possible for large
systems.

4.1.2 Engineering Emergence through a Formal
Specification and Observer System

 A fully general formal treatment for the detection
and subsequent rigorous analysis of observable
emergent behaviour, from and in a run time system,
has not been addressed adequately. The work presented
in this paper shows an approach based on using the
formal language of SLABS to provide a model of the
system, which is subsequently updated via the
deliberative observation system specified through a
dynamical logic of situations (action histories). The
course of events (action history) that led to a specific
emergent feature may be captured and used (or
rejected) in the run time system. In the end the new
emergent behaviour can be analysed through SLABS
and incorporated into the formal system model, or not
as the case may be according to logical constraints.
 The great advantage of this approach is the ability
of the system to continue running in the light of some
novel entailed emergence, even making use of the
inferred results. At a suitable time the behavioural
model can be assessed for inclusion in the formal
system model to inform future design practices. At
present a problem may be the huge memory
requirements required to ground novel signals. The
illustrated example is intended to show a small part, at
a specific hierarchical level, of the monitoring system
that grounds the observed phenomenon. Even this is
extremely costly in terms of storage space and search
techniques. Further research is at a reasonably
advanced stage to provide an algorithm for maintaining
the situation space through methods that allow deletion
of less important data without necessarily having
knowledge of the data itself. Work is also underway to
further improve this approach and demonstrate its
efficacy through more complex simulations and
scenarios. It is hoped to streamline the processes and
provide a more logically integrated approach to the
problems, allowing full run time adaptation and
evolution of the design time model. In this way
recognisability and recurrence can be analysed and
proven, for use by the system, without any interruption.

5. Conclusions

 This paper has presented a process for the formal
engineering, evaluation and handling of emergence in
multi-agent type systems. There remains a general lack
of support for formal reasoning about emergent
behaviour in multi-agent systems. This work proposes
a described process, for multi-agent systems, where the
known types of emergent behaviour may be formally
specified and proved. The run time system also
incorporates a required cognitive observer system to
deliberate on known and unknown emergent
behaviour, influencing, evolving and adapting the
system accordingly. These changes may then be
evaluated for a desired logical structure through the
derived updated formal model. The process was
illustrated and evaluated for deployment by means of a
simple scenario, implemented in Netlogo.

References

[1] Martin Randles, A. Taleb-Bendiab, Philip Miseldine,

"Harnessing Complexity: A Logical Approach to
Engineering and Controlling Self-Organizing Systems",
International Transactions on Systems Science and
Applications Volume 2, Number 1 (2006), pp:11-20

[2] M. Randles, A. Taleb-Bendiab, P. Miseldine,
"Addressing the Signal Grounding Problem for
Autonomic Systems". Proceedings of International
Conference on Autonomic and Autonomous Systems,
2006 (ICAS06), pp: 21,Santa Clara, USA, July 19-21,
2006

[3] H. Zhu, “Formal Reasoning about Emergent Behaviour
in MAS, Proceedings of SEKE’05, July 14~16, 2005.
Taipei, pp280-285

[4] H. Zhu, “SLABS: A Formal Specification Language for
Agent-Based Systems”, International Journal of
Software Engineering and Knowledge Engineering, Vol.
11. No. 5, pp529~558. Nov. 2001

[5] H J Levesque, F Pirri and R Reiter, “Foundations for the
Situation Calculus”. Linköping Electronic Articles in
Computer and Information Science, Vol. 3 No. 18.
http://www.ep.liu.se/ea/cis/1998/018/, 1998.

[6] H. Zhu, “A formal Specification Language for Agent-
Oriented Software Engineering”, in Proc. of
AAMAS'2003, July, 2003, Melbourne, Australia,
pp1174 – 1175.

[7] H. Zhu, “The Role of Caste in Formal Specification of
MAS”, in Proc. of PRIMA’2001, LNCS 2132, Springer,
1-15.

[8] H. Zhu, “Formal Specification of Evolutionary Software
Agents”, Proc. ICFEM’2002, Shanghai, China, Oct.
2002, Springer LNCS 2495, Formal Methods and
Software Engineering, George, C. and Miao, H., (eds),
2002, pp249~261.

[9] R.C. Moore, “Reasoning about Knowledge and Action”,
Technical Report, SRI International, 1980

[10] U. Wilensky, NetLogo Simulation Software
http://ccl.northwestern.edu/netlogo Center for
Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL.

[11] D. Hales, B. Edmonds, “Evolving Social Rationality for
MAS using ‘Tags’”, in Proc. of the 2nd Int. Joint Conf.
on Autonomous Agents and Multi-Agent Systems
(AAMAS 2003). Melbourne, Australia: ACM Press,
497-503.

[12] C. Gillett, “The Varieties of Emergence: Their Purposes,
Obligations and Importance”, Grazer Philosophische
Studien , vol:65 pp:89-115, 2002

[13] R. Axtell, J.M. Epstein, H.P. Young, “The Emergence
of Classes in a Multi-Agent Bargaining Model”, in
Social Dynamics (eds: Durlauf and Young) pp:191-212
The MIT Press, USA, 2001

[14] J-P. Mano, C. Bourjot, G. Leopardo, P. Glize. “Bio-
inspired Mechanisms for Artificial Self-Organised
Systems”. Informatica Vol. 30(1) pp:55-62, Ljubljana,
Slovenia, 2006

[15] D.J. Watts, S.H. Strogatz, “Collective Dynamics of
‘Small-world’ Networks”, Nature 393, pp:440-442,
1998

[16] F. Zambonelli, M.-P. Gleizes, M. Mamei, and R.
Tolksdorf. “Spray Computers: Frontiers of Self-
Organisation for Pervasive Computing”. Second
International Workshop on Theory and Practice of Open
Computational Systems (TAPOCS 2004) in 13th IEEE
International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises
(WETICE'04), pp. 397-402. Los Alamitos, USA, 2004.

[17] H. Karuna P. Valckenaers, B. Saint-Germain, P.
Verstraete, C. B. Zamfirescu, H. Van Brussels,
“Emergent Forecasting using a Stigmergy Approach in
Manufacturing Coordination and Control”. Engineering
Self-Organising Systems. S. Brueckner et al. (Eds),
Lecture Notes in Artificial Intelligence, volume 3464,
pp. 210-226, Springer-Verlag, Berlin, 2005.

[18] N. Foukia. “IDReAM: Intrusion Detection and
Response executed with Agent Mobility”. The
International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS’05), pp 264-270,
Utrecht, The Netherlands, 2005.

[19] D. Weyns, K. Schelfthout, T. Holvoet, and O. Glorieux.
“Role based model for adaptive Agents”. Fourth
Symposium on Adaptive Agents and Multi-agent
Systems at the AISB '04 Convention, 2004.

[20] M.-P. Gleizes, V. Camps, and P. Glize. “A Theory of
Emergent Computation Based on Cooperative Self-
Organisation for Adaptive Artificial Systems”. Fourth
European Congress of Systems Science. Valencia,1999.

[21] L Bongaerts. “Integration of Scheduling and Control in
Holonic Manufacturing Systems”, PhD Thesis,
Katholieke Universiteit Leuven, 1998

