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Abstract 
 

Emergent behaviours are often characterised by the 
recurrent and recognizable events observable in a 
system’s macro-scale environment, which result from 
simple local interactions between system components. 
Such interactions are governed by simple rule sets, 
which lead to complex higher-level global behaviour. 
Hence, engineering emergence is a necessarily subtle 
process subject to the impacts of system evolution with 
minor changes at micro-scale giving completely 
different outcomes, to those envisaged, at the global 
system level. Thus, to harness the self-organisation and 
emergence as a design principle for the build and 
management of assured and trusted systems requires a 
principled approach to specification and reasoning on 
emergence. In this paper the authors advocate the use 
of a formal approach/method to specify component 
interactions, system evolution, and runtime global 
states. The proposed method provides a formal 
specification for the engineering of known emergence 
and runtime deliberation on the emergence observable 
in the global system. A process is detailed where a 
model with a formal specification of emergent 
behaviour is given in the SLABS language. The 
implementation is endowed with an observer system 
that reasons on novel emergent features with a 
consequent update of the formal system model. The 
process is evaluated by means of a newly created 
simulation that shows these ideas in operation.  
 
1. Introduction 
 
In self-organising systems, consisting of complex 
interconnected systems of systems (agents/components 
/particles), global behaviour, or events, arise from the 
simple interactions of participating entities, and are 
often observed through the system’s global 
environment. However globally observable events 
cannot easily be seen or predicted through the study of 
the low-level situated components alone. As the term 
emergence stems from the Latin word emergere – to 

rise out of water, which is the opposite of mergere – to 
be submerged, emergence is taken to mean some event 
or occurrence that becomes apparent rising out of a 
containing system. The key feature is that the 
occurrence becomes apparent or observable. So 
emergence may be taken as a process that results in 
some phenomenon that might be detected by an 
observer. This means that an observer is a vital part of 
any system seeking to engineer, or make use of, system 
emergence.  

This is equally valid for large-scale complex 
computing systems such as: P2P networks, grids or 
self-organising overlay networks, in which the 
prediction of the global system behaviour based on the 
study of individual autonomous agents is notoriously 
difficult, if not impossible. For such a class of systems, 
there is a general lack of underpinning theory and 
techniques to facilitate the specification of the 
individual components, at design-time, to 
explain/allow-for the accurate prediction of runtime 
states of the global whole-system behaviour. These 
predictions need not necessarily be totally accurate, as 
some level of error is allowed, but they ought to be 
adaptable/defeasible, by the system itself, throughout 
the runtime. Thus, for runtime autonomic 
detection/characterisation of emergence and/or 
monitoring of systems’ global behaviour, observer 
agents must be included that are capable of data 
acquisition from the system and subsequent 
deliberation on the global system state using this data. 
Traditionally multi-agent systems handle emergence 
through local data and communications, as global data 
is most often not readily available to the local 
components. Thus global data is almost certainly 
incomplete, due to the scale of the system. Therefore a 
model of self-organising emergence systems is 
proposed that is based on dedicated observers, termed 
the Observer Model [1, 2].    
The observer is required to base its reasoning on 
likelihood rather than complete certainty and scenarios 
need to be specified to identify likely emergent 
behaviour or characterise self-organising systems. 



Work has already been reported on a Scenario Calculus 
[3] to reason about emergent behaviour at design time. 
Its approach to the formal specification of emergent 
behaviour can be used for expressing global behaviours 
recognisable to an observer type entity. The recurrence 
properties for this emergence, reachability, stability or 
convergence for instance, can be proved as properties 
of the scenario. However this approach still relies on 
the exact pre-definition of each specialised instance of 
a self-organising behaviour. To address this problem, 
formal models of systems are highly desirable; as it is 
only through a formal logic that adequate deliberation 
can be achieved. A propositional account of the 
systems operations gives provably correct 
specifications whilst a suitably powerful logical 
formalism can endow formally modelled observer 
agents with inferential and deductive capabilities to 
reason on observable emergent properties using higher 
level abstractions.  

It is for this reason that this paper focuses on the 
formal specification of self-organising systems through 
the Observer Model in an agent-based specification 
language – SLABS [4], with the situation calculus [5] 
to reason and gain a good representation of the forces 
and flow in a dynamical system for deliberation. This 
includes both supporting the detection/characterisation 
of known models of self-organisation, via observer 
detectable signatures, and identifying and evaluating, 
in the context of the system’s operation, new signatures 
via signal groundings. 

This paper details a formal approach to the 
engineering of self-organising systems, which is based 
on a provably correct formal model of the systems 
operation that is directly implemented through the 
efficient logical specification. Also composed into the 
system, as a separate concern, is a hierarchical 
cognitive observation system [2]. The observation 
system is capable of reasoning on the observed 
emergence either through metric evaluation or the 
inferring of new groundings for signals. For certain 
novel events, where no logical inference can be made 
from the existing knowledge base, it will be necessary 
for this deliberation to culminate in human level 
intervention. Additionally, where system adaptation 
and/or evolution has occurred through the run time, the 
formal model can be periodically informed and 
checked for its logical cohesion, through consistency 
and completeness, for instance.    

The paper is thus structured as follows: The next 
section, 2, gives an overview of the proposed research 
agenda with a model of the associated procedures, 
tools and languages that will be used to support the 
process. Section 3 presents a simple scenario out of 
which arises an interesting global event, not apparent at 
participant level. The formalism and process is applied 

to this example with a formal specification of the 
system, an analysis of the emergence and a translation 
into executable code. The simulation results are 
evaluated and the paper continues, in section 4, with a 
setting of this work in the context of currently related 
works. A comparison to existing work is given with a 
discussion of the advantages and problems in this 
work. The paper concludes with a brief summary in 
section 5. 
 
2. Proposed Observer Model of Self-
Organising Systems 
 

In this section an overview is given of the proposed 
approach to engineering emergence in self-organising 
systems. 

 
2.1 The Observer Model: Self-Organising 
Systems 
 

In existing system engineering methods a system 
can be engineered to recognise and ascribe meaning to 
a finite set of known signals (events). However, for 
self-organising or emergent behaviour, such signals 
cannot be a priori defined. Therefore signals may be 
grounded only by using existing signals to infer the 
intrinsic meaning of new (composite) signals or by 
assessing the future state of a system following the 
observation of a novel occurrence. The latter can be a 
specific action set taking-place in a specific context 
(situation, scenario, etc.). The assessment of the future 
state may either take place as the system runs or be 
performed in a modelling environment based on past 
performance. In the end signals can only be grounded 
via a cognitive deliberative observer [2], which can be 
performed via human level input or through an 
observational meta-system attached to the system to 
reason on any ensuing novelty. Such a process may 
occur as detailed in Figure 1. 
 

 
Figure 1. The overall structure of the Observer 
Model 



Following recognition reoccurrence needs to be 
taken into consideration. For a signal to be recognised 
or grounded requires more than one manifestation of 
the observed occurrence. At the detection of a certain 
signal the particular conditions that held can be 
analysed for consideration of the likelihood of 
reoccurrence. For an immediate “piece of knowledge” 
to use in the run time system this analysis can be done 
through a formal model based deliberative observer. So 
upon an observer/monitor detecting some system 
feature with associated conditions or action history the 
manifestation of this feature may be mapped to the 
conditional set or history and the formal model used to 
establish the likely occurrence of the conditions in the 
future. 

This is beneficial because the rules governing 
behaviour in an evolving system may be formalised 
and used for a number of purposes such as to improve 
future performance, to apply to another part of the 
system or to reuse as best practice in new system 
design. This is different to the previously specified 
technique of reinforcement learning because the rules 
in reinforcement learning are evaluated only through 
their application in the running system through reward 
or penalty. 

In [1] a deliberative, logical, observer system was 
demonstrated using system imperatives to derive 
global system behaviour by deliberating on the 
emergent features resulting from the bounded 
autonomous behavioural norms of the system 
members. Norm governed safe, predictable behaviour 
is performed by the low-level components through 
their interactions and beliefs, whilst the global system 
properties, emerge from these low level interactions, to 
be assessed through the deliberative observer, as 
shown in Figure 2. 

 

 
Figure 2. The observer model 

 

The hierarchical nature of this system is apparent in 
that an entire system may have very many observer 
modules meaning that each of the N nodes in Figure 2 
may itself be an observer system. 

 
2.2 Dealing with Emergence: The Process 
Elements 
 

This work is based on a dual approach to the formal 
methods employed in the system design and detection 
and deliberation on emergent system features. An 
efficient implementation method is also available to 
take the formalism into a fully coded application. The 
process starts with a formal specification of the overall 
structure of the system and an appropriate class of 
emergent behaviours observed, for example, those 
common in World Wide Web type systems and the 
overall structure of the system. This is followed by 
formal reasoning regarding the alternative choices for 
the defining of suitable rules targeted to the related 
emergent features. An executable system may then be 
derived from the formal specification for actual 
development or simulation. Subsequently deliberation 
on the run time system further informs the initial 
formal specification and run time system 
evolution/adaptation. 

 
2.2.1 Formal Specification of System and 
Emergence Behaviour 
 

The formal specification of the system is achieved 
using SLABS, which stands for Specification 
Language for Agent-Based Systems [4, 6].   

In SLABS, the agents in a multi agent system 
(MAS) are classified by a partially ordered set of 
castes, which are the templates for agents which define 
a set of structures, behaviours and environmental 
features [7]. A specification of a MAS in SLABS 
consists of a set of definitions of castes in the 
following form. 
 
CASTE C <= C1, C2, …, Cn; 
 ENVIRONMENT EC1, …, ECw; 
 VAR   *v1:T1, …, *vm:Tm; u1:S1, …, ul:Sl; 
 ACTION  *A1(p1,1, …, p1,n1), …, *As(ps,1,…, ps,ns);   
                               B1(q1,1,…, q1,m1), …, Bt(qt,1,…, qt,mt); 
 RULES   R1, R2, …, Rh 
END C. 
where C1, C2, …, Cn are caste names. The clause 'C <= 
C1, ..., Ck' specifies that caste C inherits the structures, 
behaviours and environments of castes C1, ..., Ck.  

The state space of an agent in the caste is described 
by a set of variables with keyword VAR. The set of 
actions is described by a set of identifiers with 
keyword ACTION. An action can have a number of 



parameters. An asterisk before an identifier indicates 
that the variable or action is invisible.  

An agent’s environment is a subset of agents in the 
system whose visible variables and actions can be 
perceived by the agent. It can be explicitly specified by 
clauses in the following forms. (a) ‘agent name’ 
indicates a specific agent; (b) 'All: caste-name' means all 
the agents of the caste; (c) “identifier: class-name” is a 
variable that an agent in the caste can be assigned to.  
Agents’ behaviours are defined by transition rules in 
the following form.  
 
Behaviour-rule : :=   
 [<rule-name>] pattern |[ prob]−> 
                         event, [If Scenario] [where pre-cond]; 
 
where the pattern describes the pattern of the agent's 
previous behaviour and its current state. The scenario 
describes the situation in the environment. The event is 
the action to be taken when the scenario happens and 
the pre-condition is true, which is given in the where-
clause. An agent may have a non-deterministic 
behaviour if multiple rules are applicable. The 
expression prob defines the probability for the agent to 
take the specified action on the scenario. It can be 
omitted so that the choices are non-deterministic. 

A pattern describes the behaviour of an agent by a 
sequence of observable state changes and observable 
actions. It is written in the form of [p1, p2, ..., pn], n≥0, 
which means the previous sequence of events taken by the 
agent matches p1, ..., pn, where pi can be in the form 
given Table 1.  
 

Table 1. Meanings of the patterns 
Pattern Meaning 

$ The wild card, which matches with all actions 

τ Silence 

X  Action variable, which matches an action 

Act (a1, ...ak) 
An action Act that takes place with parameters 
match (a1, ...ak) 

!Pred 
Pred is a predicate that contains the agent’s 
state variable. The agent’s state matches !Pred 
if the predicate is true.  

 
A scenario is a combination of a set of agents’ 

behaviours and states that describe a global situation in 
the execution of the system. Table 2 gives the format 
and semantics of scenario descriptions in SLABS. 

As shown in [3, 8] and will be also demonstrated 
later in the paper, SLABS can be used for the formal 
specification of agents of MAS using castes as well as 
the global emergence behaviour using scenario 
descriptions. The recurrence properties of the 

emergence behaviour can be proved using Scenario 
Calculus as properties of the scenarios in the context of 
system’s formal specification [3]. 
 
 

Table 2. Semantics of scenario descriptions 
Scenario Meaning 

Predicate The state of the agents satisfies the predicate 
A=B The identifiers A and B refer to the same agent 
A∈C Agent A is in the caste C 

A:P Agent A's behaviour matches pattern P 

∀X∈C.Sc The scenario Sc[X/A] is true for all agents A in 
caste C.  

∃[m]X∈C.Sc 
There are m agents in caste C such that Sc[X/A] 
is true, where the default value of the optional 
expression m is 1. 

S1 & S2 Both scenario S1 and scenario S2 are true 
S1 ∨ S2 Either scenario S1 or S2 or both are true 

¬ S Scenario S is not true 
 

2.2.2 The Description of the Observer’s Knowledge  
 

The formalism, for the system deliberation via the 
observer system, follows a propositional account 
taking situations as a history of the previous actions. In 
these experiments a variation of the Situation Calculus 
[5] is used. In the initial situation (S0), before any 
actions or events have completed, fluent values are 
described and subsequently vary according to effect 
axioms for each action or event that occurs. Successor 
state axioms that define the system variables complete 
the specification taken with action precondition axioms 
and the initial situation. In the first instance an action, 
a, changes the initial situation from S0 to do(a, S0) with 
the next action, a1 say, changing the situation to do(a1 
do(a,S0)) with a2 giving do(a2,do(a1,do(a,S0))) and so 
on. The comprised set of successor state and action 
precondition axioms show the changes in value of the 
fluents and the possibility of completing an action in 
each situation accordingly. In other words a successor 
state axiom for a fluent is TRUE in the next situation if 
and only if an action occurred to make it TRUE or it is 
TRUE in the current situation and no action occurred 
to make it FALSE, with precondition axiom poss(a, s) 
meaning it is possible to perform action a in situation s. 
The pieces of knowledge, or agent belief sets, are 
represented in the situation calculus by equating each 
world state with an action history or situation with the 
concept of accessible situations [9]. So if s1 and s2 are 
situations then (s1 s2) ∈ Ki means that in situation s2 
agent i  considers s1 a possible situation with Ki the 
accessibility relation for agent i. So that Ki(s1 s2) means 



that all fluents known to hold in situation s2 also hold 
in s1. So the accessibility fluent may be specified: Ki(s1 
s2) denotes the belief state that in situation s2 agent i  
thinks s1 could also be the actual situation. 

So knowledge for agent i (knowsi) can be 
formulated in a situation as: 

 
knowsi(φ, s) ≡ ∀s1(Ki(s1, s)→φ(s1)) 
[alternatively ∀s1 (¬ Ki(s1, s)∨ φ(s1) ) ] 
 

Thus knowledge dynamics, represented in the 
situation calculus, become available for deliberation 
through logical operations. However through this 
representation there is a distinction to be made between 
actual system actions and knowledge producing 
actions: If the action that occurred, to change the 
situation to its successor, was the perception of the 
value of a fluent then a sensing action to produce 
knowledge occurred. So the change was a change in 
the knowledge base of the agent. Thus it is necessary to 
distinguish sensing actions by writing SR(senseφ,s) to 
record that the action produced a resulting value for φ. 
SR(senseφ, s) =r = value of φ in s. Thus the successor 
state axiom for K follows: 

 
K(s2, do(a, s)) ⇔ ∃ s1( s2=do(a, s1)  
                 ∧ K(s1, s)∧ poss(a, s1)  
                  ∧ SR(a, s)= SR(a, s1)) 
 

This formalism allows the representation of 
knowledge in partially observable domains, where only 
incomplete data is available. This is a vital 
prerequisite, for the approach presented in this paper, 
to reason on detectable emergent signals and infer the 
presence of new signals. For example suppose the 
following action history is specified:  

 
do(a,do(a1,do(a,s))) with 
SR(a,s)≠SR(a, do(a1,do(a,s))) 
where a=sensef for some fluent f and a1 is some 
deterministic action. 
 

This then describes a process whereby a new 
prediction for the results of action a1 may be inferred, 
where the values of other fluents in situation s form the 
action precondition axioms for a1 as a context. So an 
action a1, occurring in the context of situation s, 
grounds the signal, represented by the monitoring 
indicator f.  

 
2.3 The Development Process 
 

Using the formalisms described in the previous 
subsections the major elements of the engineering for 
emergence approach are derived. The known likely 

candidate scenarios that exhibit emergent outcomes are 
pre-defined and handled through the design time 
formalism whilst a logical dynamical representation, of 
the deliberative observer system, permits an efficient 
implementation with attendant reasoning functionality. 
The known signatures for emergent outcomes are part 
of the initial specification so may easily be recognised, 
when they occur, with additional tools, in the scenario 
calculus, to address the properties of reoccurrence and 
thus determine the relative importance to the system of 
this signal detection. Subsequently, through run time, 
the observer system assesses novel sources of system 
variable change based on the action history that 
preceded the variability in the fluent. Additionally the 
known emergent signatures are monitored and actions 
may be taken accordingly. At determined points 
through the operational lifecycle the snapshot run time 
system state can be synchronised with the overall 
formal model, as originally composed, and assessed for 
its logical properties and implications for future 
operation.  
 
3. Example Evaluation: Salt World  
 

In this section, we report on an experimental 
evaluation of the proposed method. 

 

 
Figure 3: Initial situation 

 
3.1 The Salt World 
 

The Salt World implements a very simple set of 
rules for the actors that results in an emergent global 
outcome. In the initial situation grains of salt (white) 
are randomly distributed across a 2-D world that also 
contains randomly distributed salt carriers (green) to 



move the grains, as shown in figure 3, a screen shot of 
the implementation in Netlogo [10].  

The salt carriers move randomly, through the world, 
picking up salt grains and dropping them at the nearest 
empty space when another salt grain is encountered. As 
shown in figure 4 this behaviour causes the formation 
of a highly concentrated completely connected salt 
pile. 

The output to left of the screen shows the action 
history for a specific general salt carrier. The moving 
action merely abbreviates a sequence of move actions. 
The concentration- and concentration+ means 
concentration is decreasing or increasing respectively. 
The actual fluent value is recorded but not output for 
readability. The fluent changes are also output to this 
window and the distinction is made between the local 
(salt carrier) fluents and the global (world properties) 
fluents. 

3.2.1 The SLABS Specification 
 

The specification in SLABS provides the design 
time formal model through which the actual 
implementation can be easily produced. This is shown 
in Figure 5. 

It may be seen from this, that certain recurrence 
properties may be deduced at design time. The 
emergent state of high concentration (state 2 in Figure 
5) is not always reachable. For instance if the number 
of salt grains is low or widely dispersed the emergent 
state (2) will not always result. Additionally, from 
Figure 5, the emergent states (1) and (2) are reached 
with high probability when the number of salt grains is 
high. Furthermore, these states are stable. The system 
remains in either of these states once the states have 
been entered. Emergent state (3), however, is not stable 
as the search may result in a new find.  

 

 
Figure 4: Emergence of single “clump” 



Figure 5. System Specification in SLABS 
 
3.2.2 The Observer’s Perspective  
 

For the observer system a dynamic action history is 
required, where the sensed emergent outcome can be 
related to the action history of the system.  The 

underlying participant successor state axioms are: 
 
holding(do(a,s)) ⇔ (holding(s) ∧  
           a≠dropsalt) ∨ a=pickupsalt 
 

Specification of the system 
Caste Turtle; 
Environment field: Field;  
Var  
 Position: Integer x Integer;     (* The position of the turtle is at the coordinate *) 
 State: {FindSalt; FindPile, GetAway};  (* The mental state of the turtle *) 
Action:   
 Move;           (* Make a random move in the field *) 
 PickSalt(x: Integer, y: Integer);    (*Pick a grain of salt at coordinate (x, y) *) 
 DropSalt(x: Integer, y: Integer);   (*Drop a grain of salt at coordinate (x,y) *) 
Behaviour: 
<Move>:   (* Keep moving when the field has no salt at the current position, if the turtle is finding salt *) 
 [!State = FindSalt & Position=(x,y)]  
  |−>Move!Position=(x’,y’); if field: [!HasSalt(x, y)=False]; where (x’, y’) ∈ Neighbour(x, y) 
<Pick>:   (* Pickup a grain of salt and change the state  into finding a pile, when the turtle is finding salt*) 
 [!State = FindSalt & Position=(x, y)] |−>PickSalt(x,y)!State=FindPile; if field: [!HasSalt(x, y)=True]; 
<Search>:   (*Keep moving if the turtle is in the state of finding a pile of salt until a pile is found *) 
 [!State = FindPile & Position=(x,y)]  
  |−>Move!Position=(x’,y’); if field: [!~OnPile(x, y)];  where (x’,y’)∈Neighbour(x, y)  
<Drop>:   (* Drop a grain of salt when the turtle found a pile while search for a pile *) 
 [!State = FindPile & Position=(x,y)] |−>DropSalt(x, y)!State=GetAway; if field: [!OnPile(x, y)];  
<GetAway>:  (*The turtle moves to a random place where has no salt and start a new cycle of searching of salt grains *) 
 [!State = getaway & Position=(x,y)]  
  |−> Move ! (Position=(x’,y’) & State = FindSalt); if field:[!~OnPile(x’,y’) & ~HasSalt(x’, y’)]; where 0<x’, y’≤100 
End Turtle 
 
Caste Field; 
Environment All: Turtle; 
Var  HasSalt[1..100, 1..100]: Bool;  OnPile[1..100, 1..100]: Bool; 
Action  Update(x, y: Integer); 
Behaviour: 
<WhenPicked>:  (*When a salt grain is picked up by a turtle, it is removed from the field*) 
 [!HasSalt(x,y)=True] |−> Update(x,y) !HasSalt(x,y)=False; if ∃turtle∈Turtle:[PickSalt(x,y)]; 
<WhenDropped>:  (*when a salt grain is dropped down by a turtle, it is placed on the field*) 
 [!HasSalt(x,y)=False] |−> Update(x,y) !HasSalt(x,y)=True;  if ∃turtle∈Turtle:[DropSalt(x,y)]; 
<Update>:  (*When after a salt is dropped down or picked up by a turtle, the condition for a position in the field about 

whether it is on a pile of salt is updated*) 
 [Update(x,y)] |−> !(∀(i, j)∈Neighbour(x,y).(OnPile(i,j)=True ⇔ ||{(x’,y’)∈Neighbour(i, j) | HasSalt(x’, y’)}||>5); 
       where Neighbour(x,y)={(i, j) | x−1≤ i ≤ x+1 & 0< i ≤ 100 & y−1≤ j ≤ y+1 & 0 < j ≤ 100 } 
End Field. 
 
Agent field: Field.  
 
Specification of the emergent states: 
(1) Every salt grain is on a pile:  

field:[!∀x,y.(0<x, y≤100 & HasSalt(x,y) ⇒OnPile(x,y))] 
(2) At least 95% of salt grains are on piles:  

field:[ || {(x,y) | 0<x, y≤100 & HasSalt(x,y)&OnPile(x,y)} || / || {(x,y) | 0<x, y≤100 & HasSalt(x,y) }|| >95%] 
(3) All turtles are idle: 

∀turtle∈Turtle:[!State = FindSalt] 



foundpile(do(a,s))⇔( foundpile(s) 
                     ∧ a≠dropsalt) ∨ 
  ( holding(s)∧ a= sensecolor(white)) 
 
atcolorwhite(do(a,s)) ⇔ 
              (atcolorwhite(s) ∧  
          a≠move)∨a=sensecolor(white) 
 
atcolorblack(do(a,s)) ⇔  
                 (atcolorblack(s) ∧  
          a≠move)∨a=sensecolor(black) 
 
with action precondition axioms: 
 
poss(dropsalt, s) ⇒ holding(s) ∧ 
       atcolorblack(s) ∧ foundpile(s) 
poss(pickupsalt,s) ⇒ atcolorwhite(s) 
poss(sensecolor,s) ⇒true 
 

[the sensecolor(X) (X=black or white) action is shorthand 
for the formalism detailed in previous works:  

SR(senseφ, s) =r = value of φ in s.  where φ is color and 
r is X (black or white) 
So that accessible situations can be defined by the 
successor state axiom: 
K(s2, do(a, s)) ⇔ ∃ s1( s2=do(a, s1) ∧ K(s1, s) ∧ poss(a, 
s1) ∧ SR(a, s)= SR(a, s1)) 
meaning knowledge within situation calculus may be 
defined thus: 

knows(φ, s) ≡ ∀s1(K(s1, s)→φ(s1)) ] 
 
3.2 Formal System Specification 
 

 As detailed earlier, this work relies on two 
approaches for a formal statement of the system. The 
outcome of emergence through correlation with known 
signatures is dealt with as a separate concern to that of 
the observation system, where logical entailment is 
used to extract new emergent features. Additionally the 
newly derived properties evaluated within the running 
system may then be assessed in the context of the 
design time formal model. 

These rules alone cause the emergent behaviour that 
the observer detects via grounding using the 
~saltconcentration fluent. A distinction is made 
between the fluents that are monitored to assess global 
emergence and those which are local to the micro-scale 
participants. The global fluents arise from the 
operations represented by the fluents specific to the 
particle salt carriers. In this representation global 
fluents are flagged with a preceding “~” to enforce this 
distinction.  

 
 

~saltconcentration(do(a,s))=n⇔ 
          [~saltconcentration(s)=n ∧ 
       (a≠dropsalt ∨ a≠pickupsalt)]∨ 
              a=senseconcentration(n) 
 
Then the high salt concentration appears as the 
emergent behaviour: 
 
~highconcentration(do(a,s))⇔ 
             (~highconcentration(s)∧   
          a≠senseconcentration(<97))∨  
            a=senseconcentration(>97) 
 
3.3 Translation into Executable Code 
 

The formal representation, being an efficient logical 
specification readily transfers into code; so the basic 
actions of the participants are coded in Netlogo as: 
 
to search-for-salt 
ifelse pcolor = white 
    [ set pcolor black 
      set color white 
      output-print "pickupsalt” 

output-print "{Fluent Change 
(Particle): holding}"] 
 [ moveon 
      search-for-salt ] 
 
to put-down-salt 
ifelse pcolor = black 
   [set pcolor white 
    set color green 
   output-print "dropsalt" 
   output-print "{Fluent Change 
(Particle): NOT holding}"] 
 [rt random-float 360 
    fd 1 
    put-down-salt] 
 
Whilst the emergent behaviour is detected by the 
Netlogo code: 
 
to calculate-saltconcentration 
ask patches [if pcolor = white 
[ifelse count neighbors with [pcolor 
= white] > 6 
[set surrounded? true] 
[set surrounded? false]] 
 
set saltconcentration count patches 
with [pcolor = white] 
if saltconcentration > 97 
[output-print "{Fluent Change: 
highconcentration}"]  



4 Emergence in Multi-Agent Systems 
 

 In [3] a framework was presented to specify and 
prove emergent behaviours of multi-agent systems 
using SLABS. Thus, given a sufficiently detailed 
model of a general system, emergent properties can be 
proved for the scenario. 
 
4.1.1 Related Works 
 
 Other approaches have tended to focus on emergence 
of role for the participating actors [11] or on seeking 
merely to define emergence [12]. There is also work on 
emergence in particular types of multi-agent systems, 
in narrow areas of application [13]. Work on 
emergence within multi-agent systems follows either a 
biologically inspired approach [14] or focuses on 
emergence from social interactions [15]. In [16] 
various techniques for engineering emergence are 
discussed. The proposed algorithms provide an 
assurance of convergence for an eventual tangible 
global state that is stable to perturbation from the 
micro-level. There has also been considerable interest 
in stigmergy, based on the indirect interactions of 
system participants, where messages are deposited 
through the environment to be picked up by subsequent 
encountering entities. There have been a number of 
specific applications of stigmergic techniques,  [17,18] 
for example. However there is little work on a related 
general formal specification and there is no proof of 
convergences to an emergent state.  Of some relevance 
to the work presented in this paper are the issues 
surrounding self-organisation in agents based on 
behaviour adaptation according to reinforcement. The 
model of adaptive agents [19] dynamically adapts 
logical relations between different behaviours. For the 
observer model, proposed in this paper, this strategy 
could be utilised to monitor the recurrence of 
recognised emergence. Cooperation is frequently used, 
where desired collective behaviour emerges to provide 
the system’s functionality. AMAS theory [20] specifies 
that each cooperative agent is able to rearrange its local 
interactions dependent on its knowledge of the 
emerging system function. It is also possible to model 
systems based on meta-models of agent organisation. 
The PROSA architecture [21], for example, involves a 
holonic hierarchy model. Agents participate in holons, 
forming holonic structures with self-organisation 
occurring by adapting the holonic hierarchy to 
environmental perturbations. 

A model where there is direct interaction between 
system participants allows the engineering of 
emergence through previously observed outcomes. 
However, as mentioned in [16], this is only useful for 

simple global equilibrium states modelled in a strictly 
linear manner. Stigmergy type scenarios have the 
added benefit of giving an implementation from an 
observed calibrated simulation. This gives some ideal 
solutions for specific application domains but, as 
mentioned earlier, does not permit a general formal 
explanation. Cooperation behaviour requires an 
exhaustive enumeration of cooperative states and 
adaptations, which is not always possible for large 
systems.  
 
4.1.2 Engineering Emergence through a Formal 
Specification and Observer System 
 

 A fully general formal treatment for the detection 
and subsequent rigorous analysis of observable 
emergent behaviour, from and in a run time system, 
has not been addressed adequately. The work presented 
in this paper shows an approach based on using the 
formal language of SLABS to provide a model of the 
system, which is subsequently updated via the 
deliberative observation system specified through a 
dynamical logic of situations (action histories). The 
course of events (action history) that led to a specific 
emergent feature may be captured and used (or 
rejected) in the run time system. In the end the new 
emergent behaviour can be analysed through SLABS 
and incorporated into the formal system model, or not 
as the case may be according to logical constraints. 
     The great advantage of this approach is the ability 
of the system to continue running in the light of some 
novel entailed emergence, even making use of the 
inferred results. At a suitable time the behavioural 
model can be assessed for inclusion in the formal 
system model to inform future design practices. At 
present a problem may be the huge memory 
requirements required to ground novel signals. The 
illustrated example is intended to show a small part, at 
a specific hierarchical level, of the monitoring system 
that grounds the observed phenomenon. Even this is 
extremely costly in terms of storage space and search 
techniques. Further research is at a reasonably 
advanced stage to provide an algorithm for maintaining 
the situation space through methods that allow deletion 
of less important data without necessarily having 
knowledge of the data itself. Work is also underway to 
further improve this approach and demonstrate its 
efficacy through more complex simulations and 
scenarios. It is hoped to streamline the processes and 
provide a more logically integrated approach to the 
problems, allowing full run time adaptation and 
evolution of the design time model. In this way 
recognisability and recurrence can be analysed and 
proven, for use by the system, without any interruption. 



5. Conclusions 
 
     This paper has presented a process for the formal 
engineering, evaluation and handling of emergence in 
multi-agent type systems. There remains a general lack 
of support for formal reasoning about emergent 
behaviour in multi-agent systems. This work proposes 
a described process, for multi-agent systems, where the 
known types of emergent behaviour may be formally 
specified and proved. The run time system also 
incorporates a required cognitive observer system to 
deliberate on known and unknown emergent 
behaviour, influencing, evolving and adapting the 
system accordingly. These changes may then be 
evaluated for a desired logical structure through the 
derived updated formal model. The process was 
illustrated and evaluated for deployment by means of a 
simple scenario, implemented in Netlogo. 
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