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ABSTRACT

This paper addresses the problem of linear beamformer de-
sign for a multiuser downlink channel in which the base-
station is equipped with multiple antennas and the remote
users are equipped with a single-antenna each. The design
objective is to minimize the maximum transmit power on
each transmit antenna while satisfying an SINR constraint
for each user. This per-antenna power optimization is more
realistic than the usual sum-power criterion because in prac-
tice each transmit antenna has its own power amplifier. The
main contribution of this paper is a uplink-downlink duality
result for this new setting. We prove that the optimal down-
link transmit beamformers with per-antenna power constraints
are identical to the optimal receive beamformers of a dual
uplink channel with a uncertain noise. This mirrors our pre-
vious result on the capacity region duality with per-antenna
power constraints, and it extends the previously known beam-
forming duality for sum-power constrained channels. The
per-antenna beamforming duality derived in this paper is
based on a new interpretation of beamforming duality based
on Lagrangian duality. Duality is useful in practice because
the uplink problem is typically easier to solve. In the final
part of this paper, we propose efficient numerical algorithms
to solve the per-antenna problem.

1. INTRODUCTION

Duality is a powerful concept for system design in wireless
communications. The optimal design for a multi-antenna
downlink channel can often be derived from the optimal de-
sign of an uplink channel in which the transmit and receive
antennas are reversed and the channel matrix is transposed.
This so-called uplink-downlink duality has been proved in
two very different contexts. From an information theoreti-
cal point of view, [1] and [2] showed that the capacity re-
gion of a downlink broadcast channel, achieved by the so-
called dirty-paper precoding, is exactly the same as the ca-
pacity region of a dual uplink multiple-access channel un-
der the same power constraint. On the other hand, from a
signal processing perspective, a similar beamforming dual-
ity result also holds [5]-[7]. For a multi-antenna downlink

channel with a single antenna in each remote user, under
the same power constraint, the best achievable SINR region
with transmit beamforming is exactly the same as that of an
uplink channel with receiver beamforming. Although the
proofs of the two results are quite different, in both cases,
duality is extremely useful because the uplink problem is
much easier to solve than the downlink problem.

In this paper, we focus on the beamforming problem and
give a new interpretation of SINR duality. We establish the
equivalence of uplink-downlink duality and Lagrangian du-
ality in optimization and extend the beamforming duality
beyond the sum-power constrained channels. In particular,
we show that the uplink and downlink beamforming prob-
lems are related to each other in the sense that their La-
grangian duals are the same. Further, with a per-antenna
power constraint, the dual of the optimal downlink beam-
forming problem becomes an uplink problem with an un-
certain channel noise. This result is akin to our previous
work on an optimization viewpoint of capacity region dual-
ity [9], where the uplink and downlink capacity region opti-
mization problems are shown to be the Lagrangian duals of
each other and a similar extension for the per-antenna power
constrained problem is established. It is interesting to note
that despite the similarity in the two final results, the proofs
in these two settings are again very different.

Our Lagrangian approach is different from previous treat-
ment of SINR duality [5]-[7] which is mainly based on the
manipulation of the optimality conditions and SINR con-
straints. It has long been recognized that the uplink beam-
forming problem has an analytical structure that is much
easier to handle [3]. Thus, the main motivation for dual-
ity is to transform the downlink problem into the uplink
problem. Toward this end, [5] identified an iterative algo-
rithm that solves the downlink beamforming optimization
problem in the dual uplink domain. Later, [6] offered an
optimality proof for uplink-downlink duality based on an
examination of the Karush-Kuhn-Tucker (KKT) conditions
for the optimization problem. An alternative approach is
provided in [7] where the iterative algorithm is generalized
to take into account fairness among the users by maximizing
the smallest individual SINR under a total power constraint.



In a subsequent work, [8] introduced a convex optimization
framework for this problem. They showed that the down-
link beamforming problem can be formulated as a semidef-
inite programming (SDP) problem and proposed a simple
and fast fixed-point iteration algorithm for its solution. All
of these above approaches essentially solve the same prob-
lem: the downlink beamforming problem with a sum-power
constraint.

This paper advocates yet another approach to the down-
link beamforming problem based on Lagrangian duality in
optimization. This viewpoint not only illustrates the previ-
ously known duality result in a new perspective, it also al-
lows a new downlink beamforming problem with per-antenna
power constraint to be solved.

2. BEAMFORMING DUALITY WITH
PER-ANTENNA POWER CONSTRAINTS

In practical multi-antenna implementations, each transmit
antenna is usually equipped with its own power amplifier.
Thus, an individual power constraint on each antenna indi-
vidually is more realistic than a sum power constraint across
all the antennas. Consider a downlink channel with N trans-
mit antennas and K users, each equipped with a single an-
tenna only:

y = Hx + z (1)

where x = [x1, · · · , xN ] is the transmitted signal, y =
[y1, · · · , yK ] is the received signal, H is an K ×N channel
matrix (which is assumed to be known both at the transmit-
ter and at the receivers), and z is an i.i.d additive Gaussian
noise with variance σ2 on each component. We focus on a
scenario where an individual power constraint Pi needs to
be satisfied at each transmit antenna:

E[x2
i ] ≤ Pi, ∀i = 1 · · ·n. (2)

One way to formulate a single optimization problem for this
setting is to uniformly minimize the margin of E[x2

i ]/Pi

over all possible beamformers and transmit powers. i.e.

min
α,wi

α s.t. E[x2
i ] ≤ αPi. (3)

A set of SINR targets are feasible if and only if the optimum
α is less than or equal to one. This formulation therefore
provides a single measure that reflects the individual trans-
mit power on each antenna.

We consider a beamforming problem in which the trans-
mitted signal is of the form x =

∑K
i=1 wiui, where wi is a

K×1 beamformer for ui, user i’s information signal. With-
out loss of generality, let E[u2

i ] = 1. The received signal for
user k is

yi =
K∑

j=1

ujwH
j hi + zi, (4)

where hi denotes the K × 1 channel vector for user i.
Given a set of SINR targets γ1, ...γK , the optimal down-

link beamforming problem is to minimize the per-antenna
power, i.e. to solve (3) subject to the SINR constraints:

min
α,wi

α (5)

s.t.
[∑K

j=1 wjwH
j

]
i,i

≤ αPi, ∀i = 1 · · ·N (6)

|wH
i hi|2∑

j �=i |wH
j hi|2 + σ2

≥ γi, ∀i = 1 · · ·K (7)

where [·]i,i denotes the (i, i)-entry of a matrix and (6) is
the per-antenna power constraint. It is easy to see that, at
the optimum point of (5), all SINR constraints (7) must be
active.

If the design objective were to minimize the sum total
transmit power, the downlink beamforming problem could
have been easily solved via a dual uplink channel with the
same SINR constraints [5]-[7]. The main result of this pa-
per is a generalization of these results in the sense that the
downlink beamforming problem with individual power con-
straints can still be solved via a dual uplink channel with
the same SINR constraints, but the uplink channel must be
modified. The modified dual uplink channel has an unusual
noise covariance which is not fixed but constrained within a
convex set. The SINR constraint must be satisfied with the
worst noise in the set. This new result is established using
a Lagrangian duality approach as shown in the proof of the
following theorem.

Theorem 1 The optimal downlink beamforming problem (5)
with per-antenna power constraints (P1, . . . , PN ) can be
solved via a dual uplink channel in which the noise is uncer-
tain. The SINR constraints remain the same, but the SINR’s
have to be satisfied for all diagonal noise covariance ma-
trices Q in the convex constraint set (10) below. More pre-
cisely, the Lagrangian dual of the downlink beamforming
problem (5) is identical to the Lagrangian dual of the fol-
lowing minimax problem:

max
Q

min
λi,ŵi

K∑
i=1

λiσ
2 (8)

s.t.
λi|ŵH

i hi|2∑
j �=i λj |ŵH

i hj|2 + ŵH
i Qŵi

≥ γi (9)

tr(QΦ) ≤ 1, Q diagonal, Q ≥ 0 (10)

where λi is the dual uplink power and the diagonal matrix
Φ = diag(P1, ...PN ) is the per-antenna power budget in
the downlink problem.

Proof: To show that the Lagrangian duals of the up-
link and the downlink problems are identical, we first derive
the dual of the downlink beamforming problem (5). With a
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Fig. 1. Uplink-downlink beamforming duality with per-antenna power constraints

simple manipulation of the SINR constraints (7), the La-
grangian for downlink optimization problem (5) is given by

LDL = α +
N∑

i=1

qi

{ 
 K∑

j=1

wjwH
j




i,i

− αPi

}
(11)

−
K∑

i=1

λi

{
1
γi
|wH

i hi|2 −
∑
j �=i

|wH
j hi|2 − σ2

}
.

where qi’s are the Lagrange multipliers corresponding to
per-antenna power constraints (6) and λi’s are the Lagrange
multipliers corresponding to SINR constraints (7).

Let Q = diag(q1, · · · , qN ) and Φ = diag(P1, · · · , PN ).
Rearranging the terms of (11), we obtain

LDL =
K∑

i=1

λiσ
2 − α

{
tr(QΦ) − 1

}
(12)

+
K∑

i=1

wH
i

{
Q +

∑
j �=i

λjhjhH
j − λi

γi
hihH

i

}
wi

The dual objective is therefore

g(Q,λi) = min
wi

min
α

LDL(α,wi, Q, λi). (13)

Since α must be positive and there is no constraint on the
beamformer wi, it is easy to see that g(Q,λi) = −∞ if
tr(QΦ) ≥ 1 or Q +

∑
j �=i λjhjhH

j − λi

γi
hihH

i ≤ 0. As
Q and λi should be chosen such that the Lagrangian dual
g(Q,λi) exists, the above two inequalities impose constraints
on the dual objective function. Formally, the Lagrangian
dual problem can be written down as follows:

max
Q

max
λi

K∑
i=1

λiσ
2 (14)

s.t. Q +
K∑

j=1

λjhjhH
j ≥

(
1 +

1
γi

)
λihihH

i

tr(QΦ) ≤ 1, Q diagonal, Q ≥ 0

Next, we derive the Lagrangian dual for the uplink op-
timization problem (8). The key observation is that (8) is
equivalent to the following optimization problem

max
Q

max
λi

min
ŵi

K∑
i=1

λiσ
2 (15)

s.t.
λi|ŵH

i hi|2∑
j �=i λj |ŵH

i hj|2 + ŵH
i Qŵi

≤ γi

tr(QΦ) ≤ 1, Q diagonal, Q ≥ 0

where the SINR constraints are reversed and the minimiza-
tion on λi is replaced with a maximization. The reason is
that at the optimal solutions of (8) and (15), the SINR con-
straints must be satisfied with equality. Thus, the optimal
set of power allocations (λ1, . . . , λK) must be the same for
both problems.

The Lagrangian of this new uplink optimization prob-
lem (15) is now:

LUP =
K∑

i=1

λiσ
2 − α

{
tr(QΦ) − 1

}
(16)

+
K∑

i=1

δiŵH
i

{
Q +

∑
j �=i

λjhjhH
j − λi

γi
hihH

i

}
ŵi.

where α is the Lagrange multiplier for uncertain noise con-
straint and δi’s are Lagrange multipliers for uplink SINR
constraints. Setting wi =

√
δiŵi, we observe that LDL is

exactly LUP . �

Note that we have not yet established that either the up-
link or downlink beamforming problems is convex. How-
ever, the fact that the Lagrangians of the uplink and down-
link optimization problems are identical is sufficient to en-
sure that local optima for the uplink and downlink problems
must correspond to each other. Thus, the global optimum of
the two problems must also be the same.

In fact, it can be shown that for both problems, a lo-
cal optimum must also be a global optimum. The down-
link beamforming problem can be converted into a convex



optimization problem using a technique due to Wiesel, El-
dar and Shamai [8]. Thus, the duality gap of the downlink
problem is zero. A derivation of this fact is included in the
appendix. For the uplink problem, Visotsky and Madhow
[6] proved that the global optimum solution can be obtained
using an iterative power update algorithm. Thus, a local op-
timum in the uplink problem is a global optimum as well.

It is interesting to compare the structures of the uplink
optimization problem (8) and the downlink problem (5). It
is clear that the Lagrange multipliers λi corresponding to
the SINR constraints in the downlink problem play the role
of transmit power in the uplink problem. The Lagrange mul-
tiplier Q corresponding to the per-antenna power constraints
in the downlink problem plays the role of noise covariance
matrix in the uplink. This correspondence between the pri-
mal and dual variables enhances and generalizes the previ-
ous sum-power duality as in [5]-[7].

3. OPTIMIZATION ALGORITHMS VIA DUALITY

The main motivation for establishing the uplink-downlink
duality is that the uplink beamforming problem is typically
more amendable to numerical computation. Thus, dual-
ity leads to an efficient numerical solution for the original
downlink problem.

To solve the dual uplink beamforming problem for the
per-antenna power constrained downlink channel, a simul-
taneous maximization of the noise covariance Q and mini-
mization on transmit power and beamformer (λi, ŵi) must
be done. We propose the following numerical algorithm that
computes the minimization of (λi, ŵi) and the maximiza-
tion of Q iteratively.

Under a fixed noise covariance Q, the optimal power
and beamformer (λi, ŵi) can be found via a fixed-point it-
eration algorithm as previously proposed for the sum-power
problem. In our implementation, we choose the method of
[8] as shown in Steps 1 and 2 below. At a fixed (λi, ŵi),
the update of the worst-noise covariance Q is more difficult.
However, as Q is also the Lagrange multiplier for the per-
antenna power constraints in the downlink, a subgradient
update of Q can easily be implemented in the downlink: Qii

should increase if the transmit power on antenna i exceeds
its power budget and decrease otherwise. This is imple-
mented in Step 3. Here, SQ = {Q : tr(QΦ) ≤ 1, Q ≥ 0}
denotes the constraint set and PSQ

is the Euclidean projec-
tion on SQ. The proposed algorithm is as follows:

1. Solve for optimal power allocation λi for the uplink
using a fixed point iteration:

λn+1
i =

1

(1 + 1
γi

)hH
i (

∑K
j=1 λn

i hjhH
j + Qn)−1hi

2. Update the beamformers for the downlink problem:
ŵn+1

i =
√

δi(
∑K

j=1 λn+1
j hjhH

j + Qn)−1hi

3. Update Q using a subgradient method with step size
tn: Qn+1 = PSQ

{Qn + tndiag(
∑K

i=1 wiwH
i )}.

It is also possible to solve the dual optimization (14)
directly using an interior-point method. A numerical ex-
ample of downlink systems with 10 and 20 mobile users is
simulated. Fig. 2 shows the norm distance of the current
power vector to the optimal solution as a function of the
number of iterations. Algorithm One in the plot is the iter-
ative update described above with a square summable step
size tn = 1

n . Algorithm Two in the plot is the interior-point
method. As one would expect, the iterative update is more
effective when the gap is large. However, the interior-point
method performs better as the power vector approaches the
optimum.
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Fig. 2. Convergence behavior of proposed algorithm for
downlink systems with 10 and 20 mobile users.

4. CONCLUSION

In this paper, we solve the downlink beamforming prob-
lem with per-antenna power constraints using a generalized
uplink-downlink duality. Our proof is based on a new rela-
tion between beamforming duality and Lagrangian duality
in optimization. It turns out that the dual of a downlink
beamforming problem with per-antenna power constraint is
an uplink problem with uncertain noise. This allows the
downlink problem to be solved effectively in the dual do-
main. Finally, we proposed an iterative algorithm for the
computation of the dual uplink beamforming problem fol-
lowed by a comparison with a general-purpose interior-point
implementation.

5. APPENDIX

We prove in this appendix that strong duality holds for the
downlink beamforming problem (5) and its Lagrangian dual



(14). This is also an alternative proof of Theorem 1. The
same proof also works for the optimization problem (15).

The main idea is to use the technique in [8] to trans-
form the problem into a semi-definite programming prob-
lem. First, we re-write the downlink beamforming problem
(5) into a equivalent convex form:

min
α,wi

α (17)

s.t.


 K∑

j=1

wjwH
j




i,i

≤ αPi, ∀i. (18)

√
1 +

1
γi

wH
i hi ≥

∣∣∣∣
∣∣∣∣ hH

i W
σ

∣∣∣∣
∣∣∣∣ , ∀i. (19)

where || · || denotes the L2 Euclidean vector norm and W =
[w1, . . . ,wK]. Its Lagrangian is given by

L = α +
K∑

i=1

qi

{ 
 K∑

j=1

wjwj
H




i,i

− αPi

}
(20)

−
K∑

i=1

µi

{√
1 +

1
γi

wi
Hhi −

∣∣∣∣
∣∣∣∣ hH

i W
σ

∣∣∣∣
∣∣∣∣
}

.

The dual objective is therefore

g(Q,µi) = min
wi

min
α

L(α,wi, Q, µi). (21)

Since the optimization objective and constraints in (17) are
convex, strong duality holds. In other words, g(Q,µi) max-
imized over Q and µi reaches a maximum at the optimal
value of the primal problem (17).

To compute g(Q,µi), let

ti =
{√

1 +
1
γi

wi
Hhi +

∣∣∣∣
∣∣∣∣ hH

i W
σ

∣∣∣∣
∣∣∣∣
}

. (22)

Then, the last term in (20) can be rewritten as

µi

{√
1 +

1
γi

wH
i hi −

∣∣∣∣
∣∣∣∣ hH

i W
σ

∣∣∣∣
∣∣∣∣
}

=
µi

ti

{(
1 +

1
γi

)
(wH

i hi)2 −
∣∣∣∣
∣∣∣∣ hH

i W
σ

∣∣∣∣
∣∣∣∣
2 }

=
µi

ti

{(
1 +

1
γi

)
(wH

i hi)2 − hH
i


 K∑

j=1

wjwH
j


hi − σ2

}

Substituting this into the Lagrangian, we obtain

L =
K∑

i=1

µi

ti
σ2 − α

{
tr(QΦ) − 1

}
(23)

+
K∑

i=1

wH
i

{
Q +

∑
j �=i

µj

tj
hjhH

j − µi

tiγi
hihH

i

}
wi.

Note that t is lower bounded by σ and is strictly positive.
Since the only constraint for the maximization of µi is µi ≥
0, we can change the optimization variable to λi = µi/ti.
Notice that (23) is now exactly (12). Thus, the dual of the
SDP (17) is exactly the dual problem (14) derived in Theo-
rem 1. The convexity of (17) guarantees strong duality and
zero duality gap between (5) and (14).
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