' S

O

UG ¢,
“ oyso®
M
w

2003

Variability in Service-Oriented Systems: An Analysis of
Existing Approaches
Holger Eichelberger and Christian Kréher and Klaus Schmid

1Software Systems Engineering, Institute of Computer Science,
University of Hildesheim, Germany
{eichelberger, kroeher, schmid}@sse.uni-hildesheim.de

Please cite this publication as follows:

Holger Eichelberger, Christian Kroher, and Klaus Schmid. “Variability in Service-Oriented Sys-
tems: An Analysis of Existing Approaches”. In: Proceedings of the 10th International Conference
on Service Oriented Computing (ICSOC ’12). Springer, 2012, pp. 516-524. DOI: 10.1007/978-
3-642-34321-6_35.

The corresponding BIBTEX-entry is:
QINPROCEEDINGS{EichelbergerKroeherSchmidi2,
author = {Holger Eichelberger and Christian Krdher and Klaus Schmid},
title = {Variability in Service-Oriented Systems: An Analysis of Existing Approaches},
booktitle = {Proceedings of the 10th International Conference on Service Oriented
Computing (ICSOC ’12)},
year = {2012},
pages = {516--524},
doi = {10.1007/978-3-642-34321-6_35},
publisher = {Springer}

This is the authors version of the work. It is posted here by permission of Springer. The orig-
inal publication is available from www.springerlink.com at the address: link.springer.com/
chapter/10.1007/978-3-642-34321-6_35. (©) Springer, Berlin, Heidelberg 2012.

Variability in Service-Oriented Systems:
An Analysis of Existing Approaches

Holger Eichelberger, Christian Kréher, Klaus Schmid

Software Systems Engineering, University of Hilds=ah
Marienburger Platz 22, 31141 Hildesheim, Germany
{ei chel berger, kroeher, schm d} @se. uni-hil deshei m de

Abstract. In service-oriented systems services can be easilyed and shared
without modification. However, there are busingsisasions where a variation
of services is needed to meet the requirementsspéaific customer or context.
Variation of software systems has been well reswatdn product line engi-
neering in terms of Variability Implementation Tedues (VITs). While most
VITs focus on the customization of traditional sadfte systems, several VITs
have been developed for service-oriented systemthid paper, we discuss the
problem of service customization and provide amaew of different VITs for
service variability. For this purpose, we will defifour dimensions to describe,
characterize and analyze existing VITs: teehnical core ideathe object of
variation, theforms of variationand thebinding time

1 I ntroduction

Customization of software systems is current pcadin industry to meet the require-
ments of customers in a qualitative and timely nemnfhe most frequent reasons for
customization are: novel functionality [10], optiration for quality of service aspects
[8], and seamless integration into existing infnastures [5]. Companies face ever-
increasing demands on customization due to growingbers of requirements and
rising complexity of software systems.

In Service-oriented Computing (SoC) a typical apgtoto satisfy varying re-
quirements is to add, remove, or replace servidesever, there are situations where
the customization of existing services is needéids Tould be realized by implement-
ing a completely new variant of a service, busitriore appropriate from a business
point of view to customize the service implememtatas needed. This will lower the
development effort and increase reusability. Howe®®C does not provide for the
customization of services in terms of tailoringiindual aspects of a single service.

An industry best practice to achieve tailor-madstays with low effort and high
quality are Software Product Line Engineering (SPhtethods [9]. The key idea of
SPLE with respect to customization is to focustmndifferences (calledariabilities)
among similar systems instead of repeating the Idpueent. Avariability model
represents all variabilities on an abstract lewall(ding constraints among them) and
is used to derive a valid product configuration iftstantiation. AVariability Imple-
mentation Techniqué/IT) is an approach to realize variability acciogito a config-

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Service s Ul/Application |
e T s

Variability Service Interface Service Interface Service Interface
. Service Service Service
Service Implementation . Implementation . Implementation
Implementation deploy
Variability

Fig. 1. The role of variability in services.

uration. As the problem of customization is alsievant for SoC, there is a need for
approaches that integrate VITs with service-origéehnologies.

In this paper, we will provide a classification fTs for SoC. The scope of this
paper is on service variability including variatyilof interfaces and implementations.
Other forms, like variabilities in business pro@sssservice compositions, or service
platforms are out of scope due to space restristion

The paper is organized as follows: in the nextisecive detail the dimensions to
analyze and characterize VITs. Section 3 will déscthe approach of the literature
study we carried out to identify VITs. The resuwfsthe analysis will be presented in
Section 4. In Section 5, we will draw conclusionsl @oint out future challenges.

2 Characterizing Variability Implementation

The combination of services with VITs forms the ldeam space of this work. In this

section, we identify dimensions for analyzing amdracterizing VITs for SoC. We

will use these dimensions to classify the resultesuwr analysis in Section 4 as they
provide a good basis for selecting a specific \mlity technique in practice.

D1.Technical coreidea: The VITs described in literature are at the he&dur anal-
ysis. For each VIT we will discuss the technicalecmlea, the individual prerequi-
sites, and the provided capabilities.

D2. Variability object: We differentiate between service interface angise imple-
mentation variability as shown in Fig. 1 due to fitepe of this papegervice in-
terface variabilityallows customizing the interface of a service. i€gfly, this also
requiresservice implementation variabilityservice implementation variability en-
ables the customization of the implementation sérvice (and thus its behavior).

D3.Form of the variation: Optional alternative and multiple selectionare well
known forms of variation in SPLE [9Extensionas a form of variation is particu-
larly relevant to SoC as it supports variabilitythvaut a predefined range of possi-
ble variations. Further functionality may extendeaisting service (without creat-
ing a new service). Extensions are unknown at dgwveént time but may be intro-
duced later (this is a typical open-world scenaa)rther forms are mentioned in
SPLE literature, but as we could not identify thasepart of our analysis, we will
not list these here.

D4. Binding time: The binding time determines when a decision idergbout a vari-
ability. This may be either made once and cannoalt®ed afterwardspérma-
nen) or rebinding for a new variation is possibl®latile). Different binding times
are discussed in literature [14]. However, we ¥atlus on a representative set for

SoC. Atcompile time variability binding is performed during the bujpdocess by
mechanisms such as pre-processorsnifiilization time variability binding hap-
pens during the startup phase, e.g., based onfeywation file. Runtimebinding

subsumes all cases of binding variability during éixecution of a service.

3 Literature Study

We performed a literature study in order to systérally survey existing VITs and to
classify them according to the dimensions introduge Section 2. We defined a
strategy based on the guidelines for systematiewesvby Kitchenham and Charters
[7] in order to structure our survey. However, goal is not an evidence-based anal-
ysis, but to ensure completeness and correctneiseafientified literature. In this
section, we will briefly describe our strategy.

We performed our literature search using the mostmment search engines as
publication sources For the search queries, we used six differentcheatrings
(combinations of service or SOA and variabilitypguct-line, or SPLE) to cover the
entire range of available literature on that tophe used these search strings with
each search engine. The individual searches yiaidae than two thousand papers
from which we selected about two hundred to beveslg that discuss variability in
SoC (based on reading the title and the abstraétgr eliminating duplicates, we
applied a set of inclusion and exclusion critetigpicality and maturity of the ap-
proach, focus of the approach, etc.) yielding thalfset of relevant papers.

As a result, the literature study revealed 20 ViiTotal, which are in principle
relevant to service-oriented computing. Howeveg ttuspace restrictions we decided
to focus in this paper exclusively on service Maitity as discussed in Section 2.

4 Analysisof Variability Implementation Techniques

In this section, we will present the results of analysis. Please note, that we intro-
duce descriptive names for the VITs for clear idattion and ease of reading. The
next sections below follow the sequence of dimersitefined in Section 2.

4.1 Technical Coreldeas

A VIT describes a specific way of realizing variéi In this section, we introduce
the identified VITs, their technical core idea, ahd addressed service technologies.
These are summarized in Tabfe 1

The Pattern Plugin(PP) approach [12] is a generative approach, i.e.icervari-
ants are generated from a variant-enabled desigleindhe design model is an ex-
tension of UML, and includes common and variablgspéas variation points) of a
Service-Oriented Architecture (SOA). A variant ipeessed as a stereotyped model

1 ACM Digital Library: http://dl.acm.org/, IEEE Compert Society: http://www.computer.org,
Google Scholar: http://scholar.google.com/, and<eie: http://citeseerx.ist.psu.edu/

2 Reallization approaches and SOAP/WSDL are derivenh the VITs; OSGi and REST are repre-
sentative examples of service technologies (maakenptional if concluded to be applicable).

Table 1. Realization approaches and service technologipsresl by VITs.

m: mandatory, o: optional PP CbSi FOPbR CWwW ASW
Component-based - m - - -

L Aspect-oriented - 0 - - m
i%ag'r?::%n Interceptiqn - - - - m
Feature-oriented - 0 m m -

Generative m - - - -

. OSGi 0 0 (o] [0] -
Teif]rr‘]’(')‘lfgy SOAP / WSDL o o m o m
REST 0 0 0 0 -

element (variation model) which holds the inforroatbn the actual variation. A SOA
variant is defined by selecting appropriate vadgafihe variation models of the vari-
ants are composed into the primary design modepaitern plugins. A pattern plugin
describes an individual variant. The composed modeglfinally be transformed into
code artifacts. The encapsulation of variabilitywariation models and related plugins
allows to arbitrarily selecting the service tectogy (marked as optional in Table 1).

Component-based Service Implementaf®bS) [10] adds a component layer as a
refinement of services and realizes variabilitytbe component level. The approach
is rather generic and more a conceptual framewwh & single approach. For exam-
ple, a service can be implemented as an optiomapoaent (service implementation).
Other VITs like aspects, features, etc. are posdibptional in Table 1)CbSI pro-
vides variability of the implementation, while teervice layer is variation-free (with
respect to service implementation variability). $hthis VIT does not require a spe-
cific service technology (optional in Table 1).

The FOP-based Refineme(fOPbR approach [1] relies on Feature-Oriented Pro-
gramming (FOP). A feature represents an incremeritimctionality, which affects
one or multiple services simultaneousBOPbR encapsulates the code of a feature
into a feature module. A feature module consists &t of refinements for a service’s
base code which are enacted by joining the base¢hentkature code. As a prerequi-
site, FOP needs to be available for the implemmmtdanguage, such as for Java [4]
or WSDL [2] (mandatory in Table 1). The use of otervice technologies is un-
clear, but we expect this to be optional.

The Class Wrappel(CW) approach [13] also applies FOP techniques to $oC.
contrast,CW uses Java HotSwap to update bytecode in placg tisen same class
identity. HotSwap is required to add features it of base classes and wrappers to
the service implementation (plain Java code). Bdass code updates only internal
algorithms without affecting the class schema. \Weap are used to introduce new
elements such as additional methods. In ordenvokia the functionality provided by
the wrapper, HotSwap is used to update all objefgrences of the changed class.
While CW is conceptually similar t6OPbR however, it would also allow the vola-
tile rebinding at runtime as we will discuss in @t 4.4. The customization of arbi-
trary Java code yields service technology-indepecel€optional in Table 1).

The Aspect Service WeavéASW approach [11] relies on Aspect-Oriented Pro-
gramming (AOP) and message interceptidBWintercepts existing service message
chains (based on SOAP) between service consumeptavitier. If a message in-

Table 2. Variability objects addressed by VITs.

X: supported PP Cbsl FOPbR CwW ASW
Variability [Service Interface X - X - -
Objects [Service Implementation X X X X X

cludes a request for a method that the service doesupport, advice services are
required. An advice service implements additiorade (the variability) that can be
woven into existing services. TRe&SWtool [3] supports this for SOAP and Web ser-
vices (marked as mandatory in Table 1).

4.2 Variability Objects

A variability object is an element of a SoC thasigposed to vary. As discussed in
Section 1 we restrict our scope to services, eevises interface variability and ser-

vice implementation variability. In this sectionewlescribe which variability objects

can be supported by which VIT (cf. Table 2) and haniation is realized.

The PP approach supports interface and implementatioiabgity. The basic ser-
vice, which is supposed to vary, is described tsewrvice operation description and
it's in- and outputs. Each variant is given as aateon model. In case of an interface
variant, the model specifies the modified interfabe affected in- and outputs as well
as a variant description. For an implementationavay the model lists the affected
operations, in- and outputs. The variation modedsagsociated with the basic service
model. Given a specific selection of the variamisd basic service, a code generator
produces the service interfaces and the relataitsamplementation variants.

In CbS| implementation variability is enabled by the cament layer. Each ser-
vice implementation is realized by at least on congmt. The selection of the com-
ponents for the implementation makes up the vditgbihus, the same service may
provide different functionality based on the sedectomponents. However, there is
no mechanism that ensures that the in- and outgfutise service interface (service
layer) and the service implementation (compongrarlamatch. This must be done on
a more abstract level, e.g. in the variability nagleich controls the customization.

FOPbRsupports both, interface and implementation vdiigbAn interface vari-
ant is a refinement of a WSDL interface definiti@j that includes the affected ser-
vice methods. An implementation variant is realiasd class refinement introducing
new and/or modified functionality. The set of reldtinterface and class refinements
represents a feature, which can be applied toghgcg’s base implementation.

The CW approach only supports implementation variabilithe base program is
given as plain Java. Each feature consists of afsefasses and wrappers. A class
may introduce new functionality, while a wrappefirres one of the base classes in
terms of altered methods. The wrapper class therdfolds an object of the wrappee
class, which enables the wrapper to call the bagithods of the base class first and
then manipulate the results by calling additionattmds introduced by the wrapper.

The ASW only supports implementation variability. A furatial variant, e.g. a
specific method, is encapsulated as an advicecgerfithis functionality is requested
by a service call, thASWweaves the code of the advice service into the basvice.

Table 3. Forms of variation supported by VITs.

X: supported PP CbsSl FOPbR CW ASW
Optional X X X X X

Form of | Alternative X X X X X

Variation | Multiple Selection - X (x) (x) (x)
Extension - - (x) (x) (x)

Joinpoints identify the functionality which shoule® modified in the service base
code [6]. The advice service can then be wovenrbeédter or around this joinpoint.

43 Formsof Variation

Form of variation describes how specific variards be selected. In this section, we
discuss the support of the VITs for the forms afatéon (cf. Table 3).

The PP approach supports optional and alternative forfngacdiation. Typically,
each variant provides functionality describing aviee implementation or a service
interface variant. Thus, the selection is eitheiom@l or an alternative, but there is no
support for selecting multiple variants or the @&ipimodeling of extensions.

In CbSla component may be optional, an alternative, artined with other com-
ponents (multiple selection) to implement a servidewever, components cannot be
added after development time (extension) as thepooents are linked to specific
services in the service layer and later (re-)ligkii components is not supported.

The other VITs support optional, alternative, andltiple selection as well as ex-
tension in principle. IFOPbRandCW the use of refinements or wrappers is option-
al. Multiple refinements or wrappers which affeog tsame functionality of a service
will override previously applied variants. Extenssoto the base implementation after
development time can be applied by refinementswarappers. As both VITs need
access to the service code, we put extension iteTam brackets. Similar for multi-
ple selection as it is not directly supported by tiachnique, but can be simulated.

In ASWan advice service may or may not be woven int@xsting service (op-
tional). It may also be possible to select one oltiple advice services as long as the
advice services will not affect the same joinpdift Section 4.2). This will also re-
sult in overriding previously applied variants asFOPbRandCW. Introducing new
functionality, which was unknown at developmentdjmequires the joinpoints of a
service to be accessible. As again some supporéXtamsion is given, but no full
support we put this in brackets in Table 3. Simidarmultiple selection.

44 Binding Times

The binding time defines when a decision for a Bjgeeariant must be made. In this
section, we describe the binding times supportethbyndividual VITs (cf. Table 4).
PP, CbS| andFOPbRonly support permanent compile time bindingPIR, cus-
tomization is realized by replacing existing or imddadditional variants. This must
be done before the generation process and, thtise #test at compile time. Replac-
ing variants in the design model after the genenatvill not affect the generated code
(permanent binding). I€bS| the components of a service implementation astaim

Table 4. Binding times supported by VITs.

p: permanent, v: volatile PP CbslI FOPbR CW ASW
L Compile Time p p p - (v)

B|n.d|ng Initialization Time - - - (V) (v)
Time "Rintime - - - v v

tiated and composed at compilation time F@PbRthe features are handled by the
compiler which applies them to the correspondingebeode. Thus, the selection of
variants must be done at compile time and cannohbaged afterwards.

CW supports volatile runtime binding via Java HotSwagch enables class (re-)
binding. While the authors do not explicitly propd® use this approach at initializa-
tion time, this is, however, also possible (markétth brackets in Table 4).

Typically, AOP approaches are capable of compiteetibinding through static
weaving and (some form of) runtime binding by dymameaving [6].ASWexplicitly
supports volatile binding at runtime but may alscelpplied at initialization or compi-
lation time (again marked with brackets in Table E)rther,ASWallows reweaving
code of advice services (volatile binding).

5 Conclusion

Customization of SoC is typically done by addingnoving or exchanging services.
However, there are situations where variationshef ¢haracteristics of services are
needed. We presented an overview of existing Virsservices and characterized
them with respect to core idea, variability objéetm of variation, and binding time.

In our analysis, we also identified gaps and chals. The characterized VITs
support only WSDL-based web services explicitly.eféhis no explicit proof-of-
concept for other service technologies like OSGR&ST. While the variability ob-
jects are well supported, none of the VITs provigeslance to ensure that modifica-
tions to service interfaces also match the relatgdementation. As the modifications
are also local to a service, there is no guardhigtethe interfaces on caller as well as
on callee side are customized. Regarding the fdrraation, the VITs do not sup-
port the open-world scenario, i.e. extension ofs&xgy services with functionality
which was unknown at development time (unless titeds accessible). Further, all
binding times are (partially) supported but onlyeddlT supports all binding times.
Ideally, customization should be possible to perfart all binding times.

The most obvious result of our analysis is tha/hib supports all dimensions in a
comprehensive manner. Each approach focuses dmsatsaf elements of the dimen-
sions and, thus, provides specific mechanismshiesd elements. However, in SoC,
we need integrated solutions that support all aspecservice variability appropriate-
ly. An integrated solution will enable the custoatian of service (and SoC in gen-
eral) across technology and business boundariédavit effort and high quality.

In future work, we will focus on such an integradd for SoC. For this purpose,
we will consider already analyzed VITs for varidilobjects such as service plat-
forms, service deployment, service composition, launginess processes.

Acknowledgments

This work is partially supported by the INDENICAgpect, funded by the European
Commission grant 257483, area Internet of Serviefiware & Virtualisation (ICT-
2009.1.2) in the "7 framework programme.

References

1. S. Apel, C. Kaestner, and C. Lengauer. Research @gabein the Tension Between Fea-
tures and Services. Ir2nd Intern. Workshop on System Development in E@Aron-
ments pages 53-58, 2008.

2. S. Apel and C. Lengauer. Superimposition: A Langtiagependent Approach to Soft-
ware Composition. In7th Intern. Conference on Software Composijtipages 20-35,
2008.

3. F. Baligand and V. Monfort. A Concrete Solution forelVServices Adaptability Using
Policies and Aspects. Ir2nd Intern. Conference on Service Oriented Comguiages
134-142, 2004.

4. D. Batory, J. N. Sarvela, and A. Rauschmayer. Sc&teg-Wise Refinement. 125th In-
tern. Conference on Software Engineeripgges 187-197, 2003.

5. P. Istoan, G. Nain, G. Perrouin, and J.-M. Jézéddghamic Software Product Lines for
Service-Based Systems. lfth Intern. Conference on Computer and Informafi@th-
nology, volume 2, pages 193-198, 2009.

6. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, @pds, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. IEuropean Conference on Object-Oriented Program-
ming, pages 220-242, 1997.

7. B. Kitchenham and S. Charters. Guidelines for Peifogn$ystematic Literature Reviews
in Software Engineering. Technical Report EBSE-200,7$chool of Computer Science
and Mathematics Keele University, Staffs ST5 5BG,, @607.

8. Y. Li, X. Zhang, Y. Yin, and J. Wu. QoS-Driven Dyni& Reconfiguration of the SOA-
Based Software. Irintern. Conference on Service Sciengages 99-104, 2010.

9. F. van der Linden, K. Schmid, and E. Romm@&sftware Product Lines in Action - The
Best Industrial Practice in Product Line Engineeyitspringer, 2007.

10. F. M. Medeiros, E. S. de Almeida, and S. R. L. Meirawards an Approach for Service-
Oriented Product Line Architectures. Brd Workshop on Service-Oriented Architectures
and Software Product Line2009.

11. V. Monfort and S. Hammoudi. Towards Adaptable SQ4odel Driven Development,
Context and Aspect. Ir¥ith Intern. Joint Conference on Service-Oriented @ating pag-
es 175-189, 2009.

12. N. C. Narendra, K. Ponnalagu, B. Srivastava, and. Ba8avar. Variation-Oriented Engi-
neering (VOE): Enhancing Reusability of SOA-Baseduaoihs. In:5th IEEE Intern. Con-
ference on Services Computipgges 257-264, 2008.

13. N. Siegmund, M. Pukall, M. Soffner, V. Képpen, a@d Saake. Using Software Product
Lines for Runtime Interoperability. InVorkshop on Reflection, AOP and Meta-Data for
Software Evolutionpages 1-7, 2009.

14. M. Svahnberg, J. van Gurp, and J. Bosch. A Taxonofmyariability Realization Tech-
nigues.Software — Practice and Experien&%(8):705-754, 2005.

