
Variability in Service-Oriented Systems: An Analysis of

Existing Approaches

Holger Eichelberger and Christian Kröher and Klaus Schmid
1Software Systems Engineering, Institute of Computer Science,

University of Hildesheim, Germany

{eichelberger, kroeher, schmid}@sse.uni-hildesheim.de

Please cite this publication as follows:

Holger Eichelberger, Christian Kröher, and Klaus Schmid. “Variability in Service-Oriented Sys-

tems: An Analysis of Existing Approaches”. In: Proceedings of the 10th International Conference
on Service Oriented Computing (ICSOC ’12). Springer, 2012, pp. 516–524. doi: 10.1007/978-

3-642-34321-6_35.

The corresponding BibTEX-entry is:

@INPROCEEDINGS{EichelbergerKroeherSchmid12,

author = {Holger Eichelberger and Christian Kröher and Klaus Schmid},

title = {Variability in Service-Oriented Systems: An Analysis of Existing Approaches},

booktitle = {Proceedings of the 10th International Conference on Service Oriented

Computing (ICSOC ’12)},

year = {2012},

pages = {516--524},

doi = {10.1007/978-3-642-34321-6_35},

publisher = {Springer}

}

This is the authors version of the work. It is posted here by permission of Springer. The orig-

inal publication is available from www.springerlink.com at the address: link.springer.com/

chapter/10.1007/978-3-642-34321-6_35. c© Springer, Berlin, Heidelberg 2012.

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Variability in Service-Oriented Systems:
An Analysis of Existing Approaches

Holger Eichelberger, Christian Kröher, Klaus Schmid

Software Systems Engineering, University of Hildesheim
Marienburger Platz 22, 31141 Hildesheim, Germany

{eichelberger, kroeher, schmid}@sse.uni-hildesheim.de

Abstract. In service-oriented systems services can be easily reused and shared
without modification. However, there are business situations where a variation
of services is needed to meet the requirements of a specific customer or context.
Variation of software systems has been well researched in product line engi-
neering in terms of Variability Implementation Techniques (VITs). While most
VITs focus on the customization of traditional software systems, several VITs
have been developed for service-oriented systems. In this paper, we discuss the
problem of service customization and provide an overview of different VITs for
service variability. For this purpose, we will define four dimensions to describe,
characterize and analyze existing VITs: the technical core idea, the object of
variation, the forms of variation, and the binding time.

1 Introduction

Customization of software systems is current practice in industry to meet the require-
ments of customers in a qualitative and timely manner. The most frequent reasons for
customization are: novel functionality [10], optimization for quality of service aspects
[8], and seamless integration into existing infrastructures [5]. Companies face ever-
increasing demands on customization due to growing numbers of requirements and
rising complexity of software systems.

In Service-oriented Computing (SoC) a typical approach to satisfy varying re-
quirements is to add, remove, or replace services. However, there are situations where
the customization of existing services is needed. This could be realized by implement-
ing a completely new variant of a service, but it is more appropriate from a business
point of view to customize the service implementation as needed. This will lower the
development effort and increase reusability. However, SoC does not provide for the
customization of services in terms of tailoring individual aspects of a single service.

An industry best practice to achieve tailor-made systems with low effort and high
quality are Software Product Line Engineering (SPLE) methods [9]. The key idea of
SPLE with respect to customization is to focus on the differences (called variabilities)
among similar systems instead of repeating the development. A variability model
represents all variabilities on an abstract level (including constraints among them) and
is used to derive a valid product configuration for instantiation. A Variability Imple-
mentation Technique (VIT) is an approach to realize variability according to a config-

uration. As the problem of customization is also relevant for SoC, there is a need for
approaches that integrate VITs with service-oriented technologies.

In this paper, we will provide a classification of VITs for SoC. The scope of this
paper is on service variability including variability of interfaces and implementations.
Other forms, like variabilities in business processes, service compositions, or service
platforms are out of scope due to space restrictions.

The paper is organized as follows: in the next section, we detail the dimensions to
analyze and characterize VITs. Section 3 will describe the approach of the literature
study we carried out to identify VITs. The results of the analysis will be presented in
Section 4. In Section 5, we will draw conclusions and point out future challenges.

2 Characterizing Variability Implementation

The combination of services with VITs forms the problem space of this work. In this
section, we identify dimensions for analyzing and characterizing VITs for SoC. We
will use these dimensions to classify the results of our analysis in Section 4 as they
provide a good basis for selecting a specific variability technique in practice.

D1. Technical core idea: The VITs described in literature are at the heart of our anal-
ysis. For each VIT we will discuss the technical core idea, the individual prerequi-
sites, and the provided capabilities.

D2. Variability object: We differentiate between service interface and service imple-
mentation variability as shown in Fig. 1 due to the scope of this paper. Service in-
terface variability allows customizing the interface of a service. Typically, this also
requires service implementation variability. Service implementation variability en-
ables the customization of the implementation of a service (and thus its behavior).

D3. Form of the variation: Optional, alternative, and multiple selection are well
known forms of variation in SPLE [9]. Extension as a form of variation is particu-
larly relevant to SoC as it supports variability without a predefined range of possi-
ble variations. Further functionality may extend an existing service (without creat-
ing a new service). Extensions are unknown at development time but may be intro-
duced later (this is a typical open-world scenario). Further forms are mentioned in
SPLE literature, but as we could not identify these as part of our analysis, we will
not list these here.

D4. Binding time: The binding time determines when a decision is made about a vari-
ability. This may be either made once and cannot be altered afterwards (perma-
nent) or rebinding for a new variation is possible (volatile). Different binding times
are discussed in literature [14]. However, we will focus on a representative set for

Fig. 1. The role of variability in services.

Service Interface

Service

Implementation

UI/Application

use service(s)
Service

Interface

Variability

Service

Implementation

Variability

Service Interface

Service

Implementation

Service Interface

Service

Implementation

Service Platform

deploy

SoC. At compile time, variability binding is performed during the build process by
mechanisms such as pre-processors. At initialization time, variability binding hap-
pens during the startup phase, e.g., based on a configuration file. Runtime binding
subsumes all cases of binding variability during the execution of a service.

3 Literature Study

We performed a literature study in order to systematically survey existing VITs and to
classify them according to the dimensions introduced in Section 2. We defined a
strategy based on the guidelines for systematic reviews by Kitchenham and Charters
[7] in order to structure our survey. However, our goal is not an evidence-based anal-
ysis, but to ensure completeness and correctness of the identified literature. In this
section, we will briefly describe our strategy.

We performed our literature search using the most prominent search engines as
publication sources1. For the search queries, we used six different search strings
(combinations of service or SOA and variability, product-line, or SPLE) to cover the
entire range of available literature on that topic. We used these search strings with
each search engine. The individual searches yielded more than two thousand papers
from which we selected about two hundred to be relevant, that discuss variability in
SoC (based on reading the title and the abstract). After eliminating duplicates, we
applied a set of inclusion and exclusion criteria (topicality and maturity of the ap-
proach, focus of the approach, etc.) yielding the final set of relevant papers.

As a result, the literature study revealed 20 VITs in total, which are in principle
relevant to service-oriented computing. However, due to space restrictions we decided
to focus in this paper exclusively on service variability as discussed in Section 2.

4 Analysis of Variability Implementation Techniques

In this section, we will present the results of our analysis. Please note, that we intro-
duce descriptive names for the VITs for clear identification and ease of reading. The
next sections below follow the sequence of dimensions defined in Section 2.

4.1 Technical Core Ideas

A VIT describes a specific way of realizing variability. In this section, we introduce
the identified VITs, their technical core idea, and the addressed service technologies.
These are summarized in Table 12.

The Pattern Plugin (PP) approach [12] is a generative approach, i.e. service vari-
ants are generated from a variant-enabled design model. The design model is an ex-
tension of UML, and includes common and variable parts (as variation points) of a
Service-Oriented Architecture (SOA). A variant is expressed as a stereotyped model

1 ACM Digital Library: http://dl.acm.org/, IEEE Computer Society: http://www.computer.org,

Google Scholar: http://scholar.google.com/, and Citeseer: http://citeseerx.ist.psu.edu/
2 Realization approaches and SOAP/WSDL are derived from the VITs; OSGi and REST are repre-

sentative examples of service technologies (marked as optional if concluded to be applicable).

element (variation model) which holds the information on the actual variation. A SOA
variant is defined by selecting appropriate variants. The variation models of the vari-
ants are composed into the primary design model via pattern plugins. A pattern plugin
describes an individual variant. The composed model can finally be transformed into
code artifacts. The encapsulation of variability in variation models and related plugins
allows to arbitrarily selecting the service technology (marked as optional in Table 1).

Component-based Service Implementation (CbSI) [10] adds a component layer as a
refinement of services and realizes variability on the component level. The approach
is rather generic and more a conceptual framework than a single approach. For exam-
ple, a service can be implemented as an optional component (service implementation).
Other VITs like aspects, features, etc. are possible (optional in Table 1). CbSI pro-
vides variability of the implementation, while the service layer is variation-free (with
respect to service implementation variability). Thus, this VIT does not require a spe-
cific service technology (optional in Table 1).

The FOP-based Refinement (FOPbR) approach [1] relies on Feature-Oriented Pro-
gramming (FOP). A feature represents an increment in functionality, which affects
one or multiple services simultaneously. FOPbR encapsulates the code of a feature
into a feature module. A feature module consists of a set of refinements for a service’s
base code which are enacted by joining the base and the feature code. As a prerequi-
site, FOP needs to be available for the implementation language, such as for Java [4]
or WSDL [2] (mandatory in Table 1). The use of other service technologies is un-
clear, but we expect this to be optional.

The Class Wrapper (CW) approach [13] also applies FOP techniques to SoC. In
contrast, CW uses Java HotSwap to update bytecode in place using the same class
identity. HotSwap is required to add features in terms of base classes and wrappers to
the service implementation (plain Java code). Base class code updates only internal
algorithms without affecting the class schema. Wrappers are used to introduce new
elements such as additional methods. In order to invoke the functionality provided by
the wrapper, HotSwap is used to update all object references of the changed class.
While CW is conceptually similar to FOPbR, however, it would also allow the vola-
tile rebinding at runtime as we will discuss in Section 4.4. The customization of arbi-
trary Java code yields service technology-independence (optional in Table 1).

The Aspect Service Weaver (ASW) approach [11] relies on Aspect-Oriented Pro-
gramming (AOP) and message interception. ASW intercepts existing service message
chains (based on SOAP) between service consumer and provider. If a message in-

Table 1. Realization approaches and service technologies required by VITs.
m: mandatory, o: optional PP CbSi FOPbR CW ASW

Realization
Approach

Component-based - m - - -
Aspect-oriented - o - - m
Interception - - - - m
Feature-oriented - o m m -
Generative m - - - -

Service
Technology

OSGi o o o o -
SOAP / WSDL o o m o m
REST o o o o -

cludes a request for a method that the service does not support, advice services are
required. An advice service implements additional code (the variability) that can be
woven into existing services. The ASW tool [3] supports this for SOAP and Web ser-
vices (marked as mandatory in Table 1).

4.2 Variability Objects

A variability object is an element of a SoC that is supposed to vary. As discussed in
Section 1 we restrict our scope to services, i.e. services interface variability and ser-
vice implementation variability. In this section, we describe which variability objects
can be supported by which VIT (cf. Table 2) and how variation is realized.

The PP approach supports interface and implementation variability. The basic ser-
vice, which is supposed to vary, is described by a service operation description and
it’s in- and outputs. Each variant is given as a variation model. In case of an interface
variant, the model specifies the modified interface, the affected in- and outputs as well
as a variant description. For an implementation variant, the model lists the affected
operations, in- and outputs. The variation models are associated with the basic service
model. Given a specific selection of the variants for a basic service, a code generator
produces the service interfaces and the related service implementation variants.

In CbSI, implementation variability is enabled by the component layer. Each ser-
vice implementation is realized by at least on component. The selection of the com-
ponents for the implementation makes up the variability. Thus, the same service may
provide different functionality based on the selected components. However, there is
no mechanism that ensures that the in- and outputs of the service interface (service
layer) and the service implementation (component layer) match. This must be done on
a more abstract level, e.g. in the variability model which controls the customization.

FOPbR supports both, interface and implementation variability. An interface vari-
ant is a refinement of a WSDL interface definition [2] that includes the affected ser-
vice methods. An implementation variant is realized as a class refinement introducing
new and/or modified functionality. The set of related interface and class refinements
represents a feature, which can be applied to the service’s base implementation.

The CW approach only supports implementation variability. The base program is
given as plain Java. Each feature consists of a set of classes and wrappers. A class
may introduce new functionality, while a wrapper refines one of the base classes in
terms of altered methods. The wrapper class therefore holds an object of the wrappee
class, which enables the wrapper to call the basic methods of the base class first and
then manipulate the results by calling additional methods introduced by the wrapper.

The ASW only supports implementation variability. A functional variant, e.g. a
specific method, is encapsulated as an advice service. If this functionality is requested
by a service call, the ASW weaves the code of the advice service into the base service.

Table 2. Variability objects addressed by VITs.
 x: supported PP CbSI FOPbR CW ASW

Variability
Objects

Service Interface x - x - -
Service Implementation x x x x x

Joinpoints identify the functionality which should be modified in the service base
code [6]. The advice service can then be woven before, after or around this joinpoint.

4.3 Forms of Variation

Form of variation describes how specific variants can be selected. In this section, we
discuss the support of the VITs for the forms of variation (cf. Table 3).

The PP approach supports optional and alternative forms of variation. Typically,
each variant provides functionality describing a service implementation or a service
interface variant. Thus, the selection is either optional or an alternative, but there is no
support for selecting multiple variants or the explicit modeling of extensions.

In CbSI a component may be optional, an alternative, or combined with other com-
ponents (multiple selection) to implement a service. However, components cannot be
added after development time (extension) as the components are linked to specific
services in the service layer and later (re-)linking of components is not supported.

The other VITs support optional, alternative, and multiple selection as well as ex-
tension in principle. In FOPbR and CW the use of refinements or wrappers is option-
al. Multiple refinements or wrappers which affect the same functionality of a service
will override previously applied variants. Extensions to the base implementation after
development time can be applied by refinements and wrappers. As both VITs need
access to the service code, we put extension in Table 3 in brackets. Similar for multi-
ple selection as it is not directly supported by the technique, but can be simulated.

In ASW an advice service may or may not be woven into an existing service (op-
tional). It may also be possible to select one or multiple advice services as long as the
advice services will not affect the same joinpoint (cf. Section 4.2). This will also re-
sult in overriding previously applied variants as in FOPbR and CW. Introducing new
functionality, which was unknown at development time, requires the joinpoints of a
service to be accessible. As again some support for extension is given, but no full
support we put this in brackets in Table 3. Similar for multiple selection.

4.4 Binding Times

The binding time defines when a decision for a specific variant must be made. In this
section, we describe the binding times supported by the individual VITs (cf. Table 4).

PP, CbSI, and FOPbR only support permanent compile time binding. In PP, cus-
tomization is realized by replacing existing or adding additional variants. This must
be done before the generation process and, thus, at the latest at compile time. Replac-
ing variants in the design model after the generation will not affect the generated code
(permanent binding). In CbSI, the components of a service implementation are instan-

Table 3. Forms of variation supported by VITs.
x: supported PP CbSI FOPbR CW ASW

Form of

Variation

Optional x x x x x
Alternative x x x x x
Multiple Selection - x (x) (x) (x)
Extension - - (x) (x) (x)

tiated and composed at compilation time. In FOPbR the features are handled by the
compiler which applies them to the corresponding base code. Thus, the selection of
variants must be done at compile time and cannot be changed afterwards.

CW supports volatile runtime binding via Java HotSwap which enables class (re-)
binding. While the authors do not explicitly propose to use this approach at initializa-
tion time, this is, however, also possible (marked with brackets in Table 4).

Typically, AOP approaches are capable of compile time binding through static
weaving and (some form of) runtime binding by dynamic weaving [6]. ASW explicitly
supports volatile binding at runtime but may also be applied at initialization or compi-
lation time (again marked with brackets in Table 4). Further, ASW allows reweaving
code of advice services (volatile binding).

5 Conclusion

Customization of SoC is typically done by adding, removing or exchanging services.
However, there are situations where variations of the characteristics of services are
needed. We presented an overview of existing VITs for services and characterized
them with respect to core idea, variability object, form of variation, and binding time.

In our analysis, we also identified gaps and challenges. The characterized VITs
support only WSDL-based web services explicitly. There is no explicit proof-of-
concept for other service technologies like OSGi or REST. While the variability ob-
jects are well supported, none of the VITs provides guidance to ensure that modifica-
tions to service interfaces also match the related implementation. As the modifications
are also local to a service, there is no guarantee that the interfaces on caller as well as
on callee side are customized. Regarding the form of variation, the VITs do not sup-
port the open-world scenario, i.e. extension of existing services with functionality
which was unknown at development time (unless the code is accessible). Further, all
binding times are (partially) supported but only one VIT supports all binding times.
Ideally, customization should be possible to perform at all binding times.

The most obvious result of our analysis is that no VIT supports all dimensions in a
comprehensive manner. Each approach focuses on a subset of elements of the dimen-
sions and, thus, provides specific mechanisms for these elements. However, in SoC,
we need integrated solutions that support all aspects of service variability appropriate-
ly. An integrated solution will enable the customization of service (and SoC in gen-
eral) across technology and business boundaries with low effort and high quality.

In future work, we will focus on such an integrated VIT for SoC. For this purpose,
we will consider already analyzed VITs for variability objects such as service plat-
forms, service deployment, service composition, and business processes.

Table 4. Binding times supported by VITs.
p: permanent, v: volatile PP CbSI FOPbR CW ASW

Binding

Time

Compile Time p p p - (v)
Initialization Time - - - (v) (v)
Runtime - - - v v

Acknowledgments

This work is partially supported by the INDENICA project, funded by the European
Commission grant 257483, area Internet of Services, Software & Virtualisation (ICT-
2009.1.2) in the 7th framework programme.

References

1. S. Apel, C. Kaestner, and C. Lengauer. Research Challenges in the Tension Between Fea-
tures and Services. In: 2nd Intern. Workshop on System Development in SOA Environ-
ments, pages 53–58, 2008.

2. S. Apel and C. Lengauer. Superimposition: A Language-Independent Approach to Soft-
ware Composition. In: 7th Intern. Conference on Software Composition, pages 20–35,
2008.

3. F. Baligand and V. Monfort. A Concrete Solution for Web Services Adaptability Using
Policies and Aspects. In: 2nd Intern. Conference on Service Oriented Computing, pages
134–142, 2004.

4. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement. In: 25th In-
tern. Conference on Software Engineering, pages 187–197, 2003.

5. P. Istoan, G. Nain, G. Perrouin, and J.-M. Jézéquel. Dynamic Software Product Lines for
Service-Based Systems. In: 9th Intern. Conference on Computer and Information Tech-
nology, volume 2, pages 193–198, 2009.

6. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In: European Conference on Object-Oriented Program-
ming, pages 220–242, 1997.

7. B. Kitchenham and S. Charters. Guidelines for Performing Systematic Literature Reviews
in Software Engineering. Technical Report EBSE-2007-01, School of Computer Science
and Mathematics Keele University, Staffs ST5 5BG, UK, 2007.

8. Y. Li, X. Zhang, Y. Yin, and J. Wu. QoS-Driven Dynamic Reconfiguration of the SOA-
Based Software. In: Intern. Conference on Service Sciences, pages 99–104, 2010.

9. F. van der Linden, K. Schmid, and E. Rommes. Software Product Lines in Action - The
Best Industrial Practice in Product Line Engineering. Springer, 2007.

10. F. M. Medeiros, E. S. de Almeida, and S. R. L. Meira. Towards an Approach for Service-
Oriented Product Line Architectures. In: 3rd Workshop on Service-Oriented Architectures
and Software Product Lines, 2009.

11. V. Monfort and S. Hammoudi. Towards Adaptable SOA: Model Driven Development,
Context and Aspect. In: 7th Intern. Joint Conference on Service-Oriented Computing, pag-
es 175–189, 2009.

12. N. C. Narendra, K. Ponnalagu, B. Srivastava, and G. S. Banavar. Variation-Oriented Engi-
neering (VOE): Enhancing Reusability of SOA-Based Solutions. In: 5th IEEE Intern. Con-
ference on Services Computing, pages 257–264, 2008.

13. N. Siegmund, M. Pukall, M. Soffner, V. Köppen, and G. Saake. Using Software Product
Lines for Runtime Interoperability. In: Workshop on Reflection, AOP and Meta-Data for
Software Evolution, pages 1–7, 2009.

14. M. Svahnberg, J. van Gurp, and J. Bosch. A Taxonomy of Variability Realization Tech-
niques. Software – Practice and Experience, 35(8):705–754, 2005.

