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1 Introduction

Let Ω ⊂ IRN , N ≥ 3 be bounded a domain with smooth boundary ∂Ω. Depend-
ing on the parameters a, b, c ∈ IR; α, β > 1, we shall investigate the existence
and non-existence of solutions for the following system of elliptic equations

−∆u = au + bv +
2α

α + β
u|u|α−2|v|β , Ω (1)

−∆v = bu + cv +
2β

α + β
|u|αv|v|β−2, Ω (2)

u = v = 0, ∂Ω (3)

u, v > 0, Ω. (4)

For this purpose, the sum α + β will be compared with the critical Sobolev
exponent 2∗ ≡ 2N

N−2 of the embedding

H1
o (Ω) ↪→ Lp(Ω). (5)

The positive first eigenvalue of the eigenvalue problem (−∆,H1
o (Ω)) will

be denoted by λ1 and the respective associated eigenfunction φ1will be taken
positive on Ω.
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Denoting A =
(

a b
b c

)
∈ M2×2 (IR) , U = (u, v) and −−→∆U =

( −∆u
−∆v

)
,

the above system may be rewritten in the form

P+
(α,β),A :




−∆U = ∇ (

1
2 (AU,U)IR2 + F (U)

)
, Ω

U = 0, ∂Ω
U > 0,Ω

where (., .)IR2 denotes the usual inner product in IR2, U > 0 states (4) and
F (U) = 2

α+β |u|α|v|β . The sign + stands for assertion (4).
As the system is in the gradient form we will use variational methods to

solve it. We shall work with the space (H1
o )2 :≡ H1

o (Ω)×H1
o (Ω) endowed with

the norm ||(u, v)||2(H1
o)2 ≡ ||u||2H1

o(Ω) + ||u||2H1
o(Ω).

The real eigenvalues of the matrix A will be denoted by µ1 and µ2 and we
shall assume that µ1 ≤ µ2. .

Our main result is the following theorem

Theorem 1 Let Ω be a bounded domain and suppose that the following assump-
tions hold

α + β = 2∗ (6)

b ≥ 0. (7)

Then
(i) if N ≥ 4 and

0 < µ1 ≤ µ2 < λ1, (8)

system P+
(α,β),A has a solution;

(ii) if N = 3 and Ω is a ball,

system P+
(α,β),A has a solution if

λ1

4
< µ1 ≤ µ2 < λ1 (9)

and P+
(α,β),A has no solution if 0 < µ1 ≤ µ2 <

λ1

4
. (10)

Remark 1 The minimum and the maximum of the quadratic form (AZ, Z)IRN ,
Z ∈ IRN restricted to the unity sphere are µ1 and µ2 respectively, and we have
that

µ1|Z|2 ≤ (AZ, Z)IR2 ≤ µ2|Z|2, Z ∈ IR2. (11)

Remark 2 Considering u = v, b = 0, a = c and α = β in the equations (1)
and (2), we obtain the standard scalar case of this type of problems.
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This is the case treated in the well known paper [1]. The main difficulties
faced in dealing with this problem with 2α = 2∗ or Ω = IRN , is the lack of
compactness of the embedding (5). Many others results in the scalar case for this
kind of problems, and also for the p−Laplacean operator ∆pu = div(∇u|u|p−2),
have appeared after [1]. For instance, [5], [6], [7],[8]. Theorem 1 is an extension
of some results of the scalar case ([1]) to a system of elliptic equations.

Remark 3 A weak solution for P(α,β),A is a vector U = (u, v) ∈ (H1
o )2 such

that
∫

Ω

∇u∇ϕdx +
∫

Ω

∇v∇ζdx−
∫

Ω

auϕdx−
∫

Ω

bvϕdx−
∫

Ω

buζdx−
∫

Ω

cvζdx−

− 2α

α + β

∫

Ω

|u|α−2|v|βuϕdx− 2β

α + β

∫

Ω

|u|α|v|β−2vζdx = 0, ∀ (ϕ, ζ) ∈ (H1
o )2.

Remark 4 By a standard bootstrap argument it is proved that a weak solution
for P(α,β),A is in the space C2(Ω)× C2(Ω), and it is really a classical solution.
This fact will be assumed throughout the work. We shall find weak solutions of
the system.

The proof Theorem 1 will be postponed until the last section. However, in
the coming sections we will make a detailed investigation on problem P(α,β),A

under different sets of hypotheses. In Section 1 we prove some non-existence
results for P(α,β),A, in Section 3 we study the subcritical case. Section 4 will be
devoted to some relations which allow us to take advantage of some estimates
already made in the scalar case, and in Section 5, we prove Theorem 1.

2 Non-existence results

Let us prove the following theorem

Theorem 2 If the assertions below hold:

Ω is star shapped with respect to 0 (12)

µ2 ≤ 0 and (13)

α + β ≥ 2∗ ≡ 2N

N − 2
, (14)

then system P(α,β),A has no solutions, except the trivial one.

The proof of the above Theorem is made using the following type of Pohozaev
Identity adapted for systems
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Lemma 1 If F ∈ C1(IR2, IR) with F (s, z) = 0 if s = 0 and z = 0, and u, v ∈
C2(Ω) ∩ C1(Ω) are solutions of the system




−∆u = Fs(u, v), Ω
−∆v = Fz(u, v), Ω

u = v = 0, ∂Ω

then the identity holds
∫

Ω

(|∇u|2 + |∇v|2)dx− 2∗
∫

Ω

F (u, v)dx+

1
N − 2

∫

∂Ω

(|∂u

∂ν
|2 + |∂v

∂ν
|2)(x, ν)IRN dσ = 0, (15)

where ∂u
∂ν (x) is the outward normal derivative exterior to ∂Ω at the point x ∈ ∂Ω.

The Pohozaev Identity in the scalar case first appeared in [2] and has had
various sorts of extensions since that time. The above formulation for systems
may be immediately proved by an adaptation of the proof of the scalar case
which may be seen in [3].

Proof of Theorem 2: Multiplying (1) and (2) by u and v respectively,
integrating by parts and adding the resulting expressions we find

∫

Ω

(|∇u|2 + |∇v|2)dx =
∫

Ω

(AU,U)IR2dx + 2
∫

Ω

|u|α|v|βdx. (16)

On the other hand,

F (u, v) =
1
2
(AU,U)IR2 +

2
α + β

|u|α|v|β . (17)

Substituting (16) and (17) in (15) we achieve
(

1− 2∗

2

) ∫

Ω

(AU,U)IR2dx + 2
[
1− 2∗

α + β

] ∫

Ω

|u|α|v|βdx+

1
N − 2

∫

∂Ω

(|∂u

∂ν
|2 + |∂v

∂ν
|2)(x, ν)IRN dσ = 0. (18)

First Case: α + β = 2∗.
From (18) it follows that
(

1− 2∗

2

) ∫

Ω

(AU,U)IR2dx +
1

N − 2

∫

Ω

(|∂u

∂ν
|2 + |∂v

∂ν
|2)(x, ν)IRN dσ = 0

and then
∫
Ω
(AU,U)IR2dx ≥ 0 .

If µ2 < 0, (17) implies that U = 0.
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On the other hand if µ2 = 0, then a, c ≤ 0 and

b2 = ac. (19)

So, the interesting case is when a, c < 0. We already know that
∫

Ω

(AU,U)IR2dx = a||u||2 + 2b(u, v) + c||v||2 = 0, (20)

where ||.|| and (., .) denote, respectively, the norm and the inner product of
L2(Ω). This last equation implies that

a||u||2 + 2|b| ||u|| ||v||+ c||v||2 ≥ 0. (21)

If u, v ≡ 0 the proof is finished. Suppose that the opposite occurs. With no
loss of generality we may assume that v 6 ≡0. Assertion (19) imply that strict
inequality in (21) can not occur, this fact together with (20) yield that there
exists δ ∈ IR such that

u = δv (22)

since equality holds in the Cauchy-Schwartz inequality. Returning to (20) and
using (22) we see that δ is the unique root of the equation

aδ2 + 2bδ + c = 0

and then δ = − b
a . Using the relation u = δv in (2) we obtain that

−∆v =
2β

2∗
|δ|αv|v|2∗−2, Ω

v = 0, ∂Ω.

The argument in the scalar case used in [2] implies that v ≡ 0, which contradicts
the above assertion. Hence u ≡ v ≡ 0.

Second Case: α + β > 2∗.
As by (13) ( more precisely, by (11) ) (AU,U)IR2 ≤ 0, it follows from (18)

that

2
[
1− 2∗

α + β

] ∫

Ω

|u|α|v|βdx ≤ 0,

and hence that
∫
Ω
|u|α|v|βdx = 0. Using this fact in (16) together with (13) we

obtain that
||(u, v)||2(H1

o)2 =
∫

Ω

(AU,U)IR2dx ≤ 0

and therefore that U = 0 . ♦
Theorem 3 Suppose that

b ≥ 0 and µ2 ≥ λ1 (23)

or
b ≤ 0 and µ1 ≤ λ1. (24)

Then problem P+
(α,β),A has no solution.
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Proof: Suppose that (u, v) is a solution for P+
(α,β),A . We may always assume

that the eigenvector X = (x, y) associated to µ2 is non-negative with x > 0 or
y > 0.

Multiplying equations (1) and (2) by xφ1 and yφ1,respectively, we achieve
that

(−−→∆U, φ1X)IR2 = (AU, φ1X)IR2+

2αx
α + β

φ1u
α−1vβ +

2βy

α + β
φ1 uαvβ−1. (25)

Integrating by parts the left-hand side of the above expression and using the
symmetry of the matrix A in the right-hand side of it, we obtain

(λ1 − µ2)
∫

Ω

(uφ1x + vφ1y)dx =

∫

Ω

(
2αx

α + β
φ1u

α−1vβ +
2βy

α + β
φ1 uαvβ−1

)
dx.

Therefore we have that λ1 > µ2. The other case uses similar argument. ♦

3 Existence in the subcritical case

The Lemma below is essential in what follows .

Lemma 2 If α + β ≤ 2∗, then there exists a positive constant c such that

(∫

Ω

|u|α|v|βdx

) 1
α+β

≤ c||(u, v)||(H1
o)2 . (26)

Proof: The proof follows from the definition

Sα+β(Ω) = inf
u∈H1

o(Ω)\{0}

∫
Ω
|∇u|2dx

(∫
Ω
|u|α+βdx

) 2
α+β

and the inequality |u|α|v|β ≤ |u|α+β + |v|α+β . ♦

In this section let us investigate the existence of solutions for P+
(α,β),A in the

subcritical case, namely α + β < 2∗.

Theorem 4 Let Ω be a bounded domain. Suppose that

b ≥ 0 (27)

µ2 < λ1 (28)

α + β < 2∗ (29)

then system P+
(α,β),A has a solution.
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Proof: The idea is minimizing the functional

I : (H1
o )2 → IR

(u, v) 7−→ I(u, v) =
1
2

∫

Ω

(|∇u|2 + |∇v|2)dx− 1
2

∫

Ω

(AU,U)IR2dx

with the constraint

M = {(u, v) ∈ (H1
o )2 :

∫

Ω

uα
+vβ

+dx = 1},

and then use the Lagrange Multiplier Theorem and the homogeneity of the
problem P+

(α,β),A to find a solution for it.
Let

inf
M

I ≡ Io

and (un, vn) ∈ M be a minimizing sequence for Io. Hence

I(un, vn) = Io + on(1) ≤ C, (30)

for some C > 0 and on(1) → 0 as n →∞.
On the other hand, by Poincaré inequality and (11) we achieve

I(u, v) ≥ 1
2

min{1,

(
1− µ2

λ1

)
}||(u, v)||2(H1

o)2 . (31)

Therefore, (30) and (31) imply that ||(un, vn)||2(H1
o)2 ≤ C ′ and hence there

exist subsequences un and vn such that un ⇀ uo and vn ⇀ vo in H1
o (Ω) and

the convergences still hold a.e. on Ω and in Lα+β (Ω) for α + β < 2∗. Using
these facts, we see that (uo, vo) ∈ M and also that we may pass to the limit in
(30) to get that I(uo, vo) ≤ Io, and therefore conclude that I(uo, vo) = Io.

This way, if G(u, v) =
∫
Ω

uα
+vβ

+dx− 1, there is a Lagrange multiplier η such
that

I ′(uo, vo)(ϕ, ζ)− ηG′(uo, vo)(ϕ, ζ) = 0, ∀(ϕ, ζ) ∈ (H1
o )2. (32)

( Here, I ′ and G′ are the Frechet derivatives of I and G, respectively).
Taking (ϕ, ζ) = (u−o , v−o ) in (32) we obtain

I(u−o , v−o )−
∫

Ω

(bv+
o u−o + bv−o u+

o )dx = 0

and by (27) conclude that I(u−o , v−o ) ≤ 0 and then that (u−o , v−o ) = 0. So, we
conclude that (uo, vo) ≥ 0.

Using (32) we see that I(uo, vo) = η(α+β)
∫
Ω

uα
o vβ

o dx = η(α+β) ,and since
I(uo, vo) > 0 we get that η > 0. Equation (32) means that (uo, vo) is a weak
solution of the problem P( α

η , β
η ),A. So, using the homogeneity of the system we

find that
[

η(α+β)
2

] 1
α+β−2

(uo, vo) is a weak solution for P(α,β),A. Assertions (27)
and (28) allow us to use the Strong Maximum Principle in the scalar case for
both equations, to conclude the positivity of this solution. ♦
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4 An important relation

In order to prove Theorem 1, we shall make use of the following infima

Sα+β(Ω) = inf
u∈H1

o(Ω)\{0}

∫
Ω
|∇u|2dx

(∫
Ω
|u|α+βdx

) 2
α+β

(33)

and

S̃(α,β)(Ω) = inf
(u,v)∈(H1

o)2\{0}

∫
Ω
(|∇u|2 + |∇v|2)dx

(∫
Ω
|u|α|v|βdx

) 2
α+β

. (34)

The infimum in (34)is well-defined by Lemma 2.

Theorem 5 Let Ω be a domain ( not necessarily bounded ) and α + β ≤ 2∗.
Then we have

S̃(α,β)(Ω) =

[(
α

β

) β
α+β

+
(

α

β

) −α
α+β

]
Sα+β(Ω). (35)

Moreover, if ωo realizes Sα+β(Ω) then uo = Bωo and vo = Cωo realizes S̃(α,β)(Ω)

for any real constants B and C such that B
C =

√
α
β .

Proof: Consider ωn a minimizing sequence for Sα+β(Ω). Let s, t > 0 to be
chosen later. Taking un = sωn and vn = tωn in the quotient (34) we have that

s2 + t2

(sαtβ)
2

α+β

∫
Ω
|∇ωn|2dx

(∫
Ω
|ωn|α+βdx

) 2
α+β

≥ S̃(α,β)(Ω). (36)

Observe that
s2 + t2

(sαtβ)
2

α+β

=
(s

t

) 2β
α+β

+
(s

t

)−2α
α+β

(37)

and define the function

g(x) = x
2β

α+β + x
−2α
α+β , x > 0.

The minimum of the function g is assumed at the point x =
√

α
β with minimum

value

g

(√
α

β

)
=

(
α

β

) β
α+β

+
(

α

β

) −α
α+β

. (38)

Choosing s and t in (36) such that s
t =

√
α
β we have that

(
α

β

) β
α+β

+
(

α

β

) −α
α+β

∫
Ω
|∇ωn|2dx

(∫
Ω
|ωn|α+βdx

) 2
α+β

≥ S̃(α,β)(Ω)
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and hence that

(
α

β

) β
α+β

+
(

α

β

) −α
α+β

Sα+β(Ω) ≥ S̃(α,β)(Ω). (39)

To complete the proof, let (un, vn) be a minimizing sequence for S̃(α,β)(Ω).
Define zn = snvn for some sn > 0 such that

∫

Ω

|un|α+βdx =
∫

Ω

|zn|α+βdx. (40)

By Young’s Inequality
∫

Ω

|un|α|zn|βdx ≤ α

α + β

∫

Ω

|un|α+βdx +
β

α + β

∫

Ω

|zn|α+βdx

and by (40) we have that

(∫

Ω

|un|α|zn|βdx

) 2
α+β

≤
(∫

Ω

|un|α+βdx

) 2
α+β

=
(∫

Ω

|zn|α+βdx

) 2
α+β

. (41)

In this way, using (41) we have that

∫
Ω
(|∇un|2 + |∇vn|2)dx

(∫
Ω
|un|α|vn|βdx

) 2
α+β

=
s

2β
α+β
n

∫
Ω
(|∇un|2 + |∇vn|2)dx

(∫
Ω
|un|α|zn|βdx

) 2
α+β

≥

s
2β

α+β
n

∫
Ω
|∇un|2dx

(∫
Ω
|un|α+βdx

) 2
α+β

+ s
2β

α+β
n s−2

n

∫
Ω
|∇zn|2dx

(∫
Ω
|zn|α+βdx

) 2
α+β

≥

g(sn)Sα+β(Ω),

and hence that
∫
Ω
(|∇un|2 + |∇vn|2)dx

(∫
Ω
|un|α|vn|βdx

) 2
α+β

≥ g

(√
α

β

)
Sα+β(Ω).

Passing to the limit in the last inequality we obtain

(
α

β

) β
α+β

+
(

α

β

) −α
α+β

Sα+β(Ω) ≤ S̃α+β(Ω).

♦

Remark 5 (i) S2∗(IRN ) is achieved by the family of functions

vε(x) =

[
N(N − 2)ε2

]N−2
4

[ε2 + |x|2]N−2
2

. (42)
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See [3] for details.
(ii) The above Theorem proves that the constant S̃(α,β)(IRN ) is achieved

when α + β = 2∗, since S2∗(IRN ) is achieved in this case.
(iii) Talenti in [4] computed that

S2∗(IRN ) = 2π(N − 2)
[
Γ(N/2)
Γ(N)

]2/N

.

(iii) If Ω is bounded then S2∗(Ω) = S2∗(IRN ). See [3] for details.

5 Proof of Theorem 1

We shall make use of some ideas from [1]. For this purpose we need some
definitions. Let

Qλ(u) =

∫
Ω
(|∇u|2 − λ|u|2)dx
(∫

Ω
|u|2∗dx

) 2
2∗

, u ∈ H1
o (Ω)\{0}, (43)

Q̃(α,β),A(u, v) =

∫
Ω
(|∇u|2 + |∇v|2)dx− ∫

Ω
(AU,U)IR2dx

(∫
Ω
|u|α|v|βdx

) 2
2∗

, (44)

for α + β = 2∗ , ∀ (u, v) ∈ (H1
o )2\{0}

and
S∗λ = inf

u∈H1
o(Ω)\{0}

Qλ(u) (45)

S̃∗A = inf
(u,v)∈(H1

o)2\{0}
Q̃(α,β),A(u, v). (46)

We also make use of the notations

S∗ = inf
u∈H1

o(IRN )\{0}

∫
IRN |∇u|2dx

(∫
IRN |u|2∗dx

) 2
2∗

(47)

and

S̃∗ = inf
(u,v)∈(H1

o)2\{0}

∫
IRN (|∇u|2 + |∇v|2)dx
(∫

IRN |u|α|v|βdx
) 2

2∗
, for α + β = 2∗. (48)

Remark 6 If µ2 < λ1, then using Poincaré inequality,(11) and (26) we see
that Q̃(α,β),A(u, v) ≥ K > 0 and therefore that S̃∗A > 0 .

The proof of Theorem 1 will be made with a series of lemmas and assertions.
Our first result aiming the proof of Theorem 1 is the next Lemma
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Lemma 3 Let Ω be a bounded domain and suppose that

µ1 > 0. (49)

Then
S̃∗A < S̃∗. (50)

Proof: The case N ≥ 4 :
We may suppose that 0 ∈ Ω.
In [1] ( Lemma 1.1 ) they proved that if λ > 0 then S∗λ < S∗ . Their idea

was to use of the function

uε(x) =
ϕ(x)

[ε2 + |x|2]N−2
2

, ε > 0, (51)

where ϕ is a cut-off positive function such that ϕ(x) ≡ 1 for x in a neighborhood
of 0, to obtain the estimate

Qλ(uε) < S∗, (52)

for a sufficiently small ε > 0.
In our case, let B,C > 0 be such that

(
B

C

)2

=
α

β
. (53)

Then by (11), (37) and (43) we have that

Q̃(α,β),A(Buε, Cuε) ≤ (B2 + C2)
∫
Ω
(|∇uε|2 − µ1|u2

ε|)dx

(BαCβ)
2
2∗

(∫
Ω
|uε|2∗dx

) 2
2∗

=

(
α

β

) β
α+β

+
(

α

β

) −α
α+β

Qµ1(uε).

Therefore, by (52) and (35), for small ε we achieve that

Q̃(α,β),A(Buε, Cuε) < S̃∗

which results in (50).

The case N = 3 and Ω=ball:
In this case, Brezis-Nirenberg uses the fact that u is radially symmetric (

see [9] ), and after some estimations they get a relation analogous to (52) for
all λ > λ1

4 and the proof follows as in the first case. In the case of systems, the
radially symmetry of the solutions is guaranteed by result due to Troy [12]. ♦
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Let us define the functional

J : (H1
o )2 → IR

(u, v) 7−→ J(u, v) =
1
2

∫

Ω

(|∇u|2 + |∇v|2)dx− 1
2

∫

Ω

(AU,U)IR2dx−

− 2
2∗

∫

Ω

|u|α|v|βdx.

The functional J is well defined and of class C1.Our aim is to exhibit a critical
point for J. We emphasize that critical points for J are precisely the weak
solutions for P(α,β),A (see Remark 3).

It is easy to see that J has the Mountain Pass type geometry, i.e.

There exist ρ, r > 0 such that J(u, v) ≥ ρ > 0 for ||(u, v)||(H1
o)2 = r (54)

and
there exists (u, v) 6 =0 such that lim

t→∞
J(tu, tv) = −∞ (55)

(to prove (54) we used the inequalities (11) and (8)).
Let (u1, v1) be such that J(u1, v1) < 0 and define

Γ = {g ∈ C([0, 1], (H1
o )2); g(0) = 0, g(1) = (u1, v1)} and

c = inf
g∈Γ

max
0≤t≤1

J(g(t)). (56)

From (54) we see that c> 0. Using an application of the Ekeland Variational
Principle, the above assertions imply the existence of a sequence (un, vn) ⊂
(H1

o )2 ( see [10]) such that
J(un, vn) → c (57)

J ′(un, vn) → 0. (58)

It is a standard procedure to use (57) and (58) to show that this sequence is
bounded. Then by the Sobolev embedding Theorem, there exists a subsequence,
again denoted by (un, vn),such that

un ⇀ uo and vn ⇀ vo in H1
o (Ω), and they converge

pointwisely in Lp(Ω) for 2 ≤ p < 2∗. (59)

From now on, our aim will be two-fold. First show that (uo, vo) is a solution
for P(α,β),A, and then show that uo, vo 6= 0.

Proof that (uo, vo) is a solution for P(α,β),A :
From (58) we have that

J ′(un, vn)(ϕ, ζ) = on(1),∀ (ϕ, ζ) ∈ (H1
o )2; on(1) → 0, as n →∞. (60)

12



Due to an argument of Brezis-Lieb (Lemma 4.8 - pag. 10 - in [11]), since
wn = |un|α−2un|vn|β ∈ L

2∗
2∗−2 (Ω) is an uniformly bounded sequence in this

space and converges pointwisely to |uo|α−2uo|vo|β , we have that

wn ⇀ |uo|α−2uo|vo|β . (61)

The same arguments applies to the sequence |un|αvn|vn|β−2.
Now using (59), (61) and passing to the limit in (60) we have that (uo, vo)

is a weak solution of P(α,β),A.

Proof that uo, vo 6= 0 :

To proceed further we shall choose a special c in (56).

Lemma 4 There exists a (u1, v1) such that c defined in (56) satisfies

0 < c <
2
N

(
S̃∗

2

)N/2

. (62)

Proof: Let B,C satisfying (53) and uε as in Lemma 3 with
∫
Ω
|uε|2∗dx = 1.

Then

J(tBuε, tCuε) ≤ 1
2
(B2 + C2)Qµ1(uε)t2 +

2
2∗

BαCβt2
∗
.

Let r(t) be the function in the right-hand side of the last inequality . A forward

computation assures that to =
[

B2+C2

(BαCβ)
2
2∗

Qµ1(uε)
] 1

2∗−2

is the maximum point

for r and that

r(to) =
2
N

[
1
2

B2 + C2

(BαCβ)
2
2∗

Qµ1(uε)

]N
2

is its maximum value. Hence,by (37), (35) e (52) we have that

sup
t≥0

J(tBuε, tCuε) <
2
N

(
S̃∗

2

)N/2

and thus, that (62) holds. ♦

Let us go back to the proof that uo, vo 6= 0.
Notice uo = 0 if, and only if vo = 0. In fact, if uo = 0, then by (1) and (2)

we see that b = 0 and then a, c ∈ {µ1, µ2}. Since, in this case, vo is a solution
of the equation { −∆v = cv, Ω

v = 0, ∂Ω

we conclude by (8) that vo = 0. The same reasoning is applied when v0 = 0.

13



Suppose that (uo, vo) = 0. Let

l = lim
n→∞

∫

Ω

(|∇un|2 + |∇vn|2)dx ≥ 0.

Since J ′(un, vn)(un, vn) → 0 we see that
∫
Ω
|un|α|vn|βdx → l

2 as n → ∞. On
the other hand, by the above limits and (57) we obtain, for the c in Lemma 4,
that

c =
l

2
. (63)

From (48) and Remark 5-(iii) we see that
∫

Ω

(|∇un|2 + |∇vn|2)dx ≥ S̃∗
∫

Ω

|un|α|vn|βdx.

Passing to the limit in the last inequality and using (63) we get that

c ≥ 2
N

(
S̃∗

2

)N/2

which contradicts the choice of c in (62). Therefore (uo, vo) 6 =0.
Now, since J ′(un, vn)(u−n , v−n ) → 0 this yields that (u−o , v−o ) = 0 (W−(x) =

min{0,W (x)}) and then that (uo, vo) ≥ 0. Finally, using the hypothesis (7) and
the Strong Maximum Principle in the scalar case for both equations in P(α,β),A

we assure that (uo, vo) > 0. Hence the first part of Theorem 1 and (9) is proved.

The proof of (10):
In order to prove (10) we need the following result:

Lemma 5 Let ρ be a continuous function in I = [0, π) such that 0 < ρ(r) < 1,
for all r ∈ I. Then the solution ω of the Cauchy problem:

{
ω′′ + ρ(r)ω = 0
ω(0) = 1, ω′(0) = 0 (64)

satisfies
ω′(r) < 0 (65)

and ∫ r

o

ω(s)ds > 0 (66)

for all 0 < r < π.

Proof: If ω(r) > 0, for all r ∈ I, the result follows from the monotonicity
of ω′, since ω′′(r) = −ρ(r)ω(r) < 0 and ω′(0) = 0. The complement case is
when there is a r1 ∈ I such that ω(r1) = 0. By the unicity for EDO’s, we have
ω′(r1) < 0. We claim that r1 > π

2 and r1 is the unique zero of ω on I. In fact,

14



define x(r) = cos r. Observe that (xω′−ωx′)′ = xω′′−ωx′′ = (1−ρ(r))ω(r)x(r),
for all 0 < r < π. Integrating this equality on (0, r) we have

∫ r

o

(1− ρ(s))ω(s)x(s)ds = x(r)ω′(r)− ω(r)x′(r)

for all r > 0. Suppose that r1 ≤ π
2 , then the left hand side of the above equality

is positive in 0 < t < r1 and

0 <

∫ r1

o

(1− ρ(s))ω(s)x(s)ds = x(r1)ω′(r1)

which is impossible because ω′(r1) < 0 and cos r > 0 for all 0 < r < r1. Suppose
that we have a second zero r2 of ω in r1 < r < π, where cos r is negative. In
this case ω′(r2) > 0 and ω is negative in r1 < r < r2, then

0 <

∫ r2

r1

(1− ρ(s))ω(s)x(s)ds = x(r2)ω′(r2)− x(r1)ω′(r1)

and we have another contradiction, because x(r2) < 0, ω′(r2) > 0, x(r1) < 0
and ω′(r1) < 0. Now observe that ω(r) ≥ ω′(r1)(r − r1), for all r ∈ I and then∫ r

o
ω(s)ds ≥ ω′(r1)

[
(r−r1)

2

2 − r2
1
2

]
> 0, for all r ∈ I (here we use the inequality

r1 > π
2 ). (66) is done if ω(r) ≥ y(r) = ω′(r1)(r − r1), for all ṙ ∈ I. Let us show

this last claim. Using the relation (yω′ − ωy′)′ = yω′′ = −ρ(r)y(r)ω(r), for all
r ∈ I, we have

0 > −
∫ r1

r

ρ(s))ω(s)y(s)ds = y′(r)ω(r)− ω′(r)y(r) = ω(r)2
d

dr

(
y(r)
ω(r)

)
,

for all r < r1, where y and ω are positive and

0 > −
∫ r

r1

ρ(s))ω(s)y(s)ds = y(r)ω′(r)− ω(r)y′(r) = y(r)2
d

dr

(
ω(r)
y(r)

)
,

for all r > r1, where y and ω are negative.
The quocient y

ω is decreasing in (0, r1) and ω
y is decreasing in (r1, π) and

then

y(r)
ω(r)

> lim
s→r−1

y(s)
ω(s)

=
y′(r1)
ω′(r1)

= 1, and y(r) < ω(r) for all 0 < r < r1.

Analogously y(r) < ω(r), for all r1 < r < π.
To complete the proof let us verify (65). When 0 < r < r1, ω′ is non-

increasing because ω is positive. Since ω′(0) = 0, we have ω′(r) < 0 for all
0 < r < r1. Let z(r) = − sin(r − r1). Using the relation

(zω′′ − ωz′′) = (1− ρ(r))ω(r)z(r)
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we get

0 <

∫ r

r1

(1− ρ(s))ω(s)z(s)ds = z(r)ω′(r)− z′(r)ω(r) ≤ z(r)ω′(r)

for all r1 < r < π, since z, z′ and ω are negative in this interval. This implies
ω′(r) < 0 for all r1 < r < π, and the proof is done. ♦

Now we are ready to proof (10).
Suppose that (u, v) is a solution of (1-4), where Ω is the unitary ball B1(0) ⊂

IRN . The functions u, v are radially symmetric ( see bottom of pg.11). We write
u(x) = u(r), v(x) = v(r), where r = |x|. Thus




−u′′ − 2

r u′ = au + bv + α
3 uα−1vβ , on (0, 1)

−v′′ − 2
r v′ = bu + cv + β

3 uαvβ−1, on (0, 1)
u′(0) = v′(0) = u(1) = v(1) = 0.

(67)

We claim that
∫ 1

o

[(
u2 + v2

)

4
r2ψ′′′ + (AU,U)r2ψ′

]
dr =

4
3

∫ 1

o

uαvβ
[
rψ − r2ψ′

]
dr

+
ψ(1)

2
[
u′(0)2 + v′(0)2

]
(68)

for all ψ ∈ C3[0, 1] such that ψ(0) = 0. In fact, multiplying the first equation in
(67) by r2ψu′ and the second by r2ψv′ we obtain

∫ 1

o

[
u′(r)2 + v′(r)2

] (
1
2
r2ψ′ − rψ

)
dr =

ψ(1)
2

[
u′(0)2 + v′(0)2

]

+
∫ 1

o

r2ψ
d

dr
G(u, v)dr

=
ψ(1)

2
[
u′(0)2 + v′(0)2

]
(69)

−
∫ 1

o

(2rψ + r2ψ′)G(u, v)dr

where G(u, v) = 1
2 (AU,U) + 1

3uαvβ . Next we multiply the first equation of (67)
by ( 1

2r2ψ′ − rψ)u and the second by ( 1
2r2ψ′ − rψ)v we obtain

∫ 1

o

[
u′(r)2 + v′(r)2

] (
1
2
r2ψ′ − rψ

)
dr =

∫ 1

o

[(
u2 + v2

)

4

]
r2ψ′′′dr

+
∫ 1

o

[uGu(u, v) (70)

+vGv(u, v)]
(

1
2
r2ψ′ − rψ

)
dr.
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Using the equality uGu(u, v)+vGv(u, v) = 2G(u, v)+ 4
3uαvβ = (AU,U)+2uαvβ

and combining (69) and (70) we obtain (68). Let π2

4 > λ > µ2 and ψ the solution
of {

(u2+v2)
4 ψ′′′ + (AU,U)ψ′ = 0

ψ(0) = 0, ψ′(0) = 1, ψ′′(0) = 0

Observe that ω(t) = ψ′( t
2
√

λ
) satisfies (64) for 0 < t < 2

√
λ < π and

ρ(t) = 1
λ

(AU,U)
(U,U) ( t

2
√

λ
). We have

0 < ρ(t) ≤ µ2

λ
< 1.

Using Lemma 1, we have ψ(1) =
∫ 1

o
ω(2

√
λt)dt =

(
2
√

λ
)−1 ∫ 2

√
λ

o
ω(t)dt > 0

and (ψ − rψ′)′ = −rψ′′(r) = −2r
√

λω′(2
√

λr) > 0, that is, (ψ − rψ′) is non-
decreasing on (0, 1) and then (ψ − rψ′) > 0 on (0, 1). These remarks used in
(68) yields

4
3

∫ 1

o

uαvβ
[
rψ − r2ψ′

]
dr ≤ 0

and then u ≡ v ≡ 0.
♦
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