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Abstract—Coding strategies that exploit node cooperation are
developed for relay networks. Two basic schemes are studied: the
relays decode-and-forward the source message to the destination,
or they compress-and-forward their channel outputs to the desti-
nation. The decode-and-forward scheme is a variant of multihop-
ping, but in addition to having the relays successively decode the
message, the transmitters cooperate and each receiver uses several
or all of its past channel output blocks to decode. For the compress-
and-forward scheme, the relays take advantage of the statistical
dependence between their channel outputs and the destination’s
channel output. The strategies are applied to wireless channels, and
it is shown that decode-and-forward achieves the ergodic capacity
with phase fading if phase information is available only locally, and
if the relays are near the source node. The ergodic capacity coin-
cides with the rate of a distributed antenna array with full coop-
eration even though the transmitting antennas are not colocated.
The capacity results generalize broadly, including to multiantenna
transmission with Rayleigh fading, single-bounce fading, certain
quasi-static fading problems, cases where partial channel knowl-
edge is available at the transmitters, and cases where local user co-
operation is permitted. The results further extend to multisource
and multidestination networks such as multiaccess and broadcast
relay channels.

Index Terms—Antenna arrays, capacity, coding, multiuser chan-
nels, relay channels.

I. INTRODUCTION

RELAY channels model problems where one or more relays
help a pair of terminals communicate. This might occur,

for example, in a multihop wireless network or a sensor network
where nodes have limited power to transmit data. We summarize
the history of information theory for such channels, as well as
some recent developments concerning coding strategies.

A model for relay channels was introduced and studied in pi-
oneering work by van der Meulen [1], [2] (see also [3, Sec IX]).
Substantial advances in the theory were made by Cover and
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El Gamal, who developed two fundamental coding strategies
for one relay [4, Theorems 1 and 6]. A combination of these
strategies [4, Theorem 7] achieves capacity for several classes
of channels, as discussed in [4]–[10]. Capacity-achieving codes
appeared in [11] for deterministic relay channels, and in [12],
[13] for permuting relay channels with states or memory. We
will consider only random coding and concentrate on general-
izing the two basic strategies of [4].

A. Decode-and-Forward

The first strategy achieves the rates in [4, Theorem 1], and it
is one of a class of schemes now commonly called decode-and-
forward ([14, p. 64], [15, p. 82], [16, p. 76]). We consider three
different decode-and-forward strategies, and we call these

• irregular encoding/successive decoding,
• regular encoding/sliding-window decoding,
• regular encoding/backward decoding.

The first strategy is that of [4], where the authors use block
Markov superposition encoding, random partitioning (binning),
and successive decoding. The encoding is done using codebooks
of different sizes, hence the name irregular encoding.

The other two strategies were developed in the context of
the multiaccess channel with generalized feedback (MAC-GF)
studied by King [5]. King’s MAC-GF has three nodes like a
single-relay channel, but now two of the nodes transmit mes-
sages to the third node, e.g., nodes 1 and 2 transmit the respec-
tive messages and to node 3. Nodes 1 and 2 further
receive a common channel output that can be different than
node 3’s output . King developed an achievable rate region for
this channel that generalizes results of Slepian and Wolf [17],
Gaarder and Wolf [18], and Cover and Leung [19].

Carleial extended King’s model by giving the transmitters
different channel outputs and [20]. We follow Willems’
convention and refer to this extended model as a MAC-GF
[21]. Carleial further derived an achievable rate region with
17 bounds [20, eqs. (7a)–(7q)]. Although this region can be
difficult to evaluate, there are several interesting features of
the approach. First, his model includes the relay channel as a
special case by making have zero rate and by setting
(note that King’s version of the relay channel requires
[5, p. 36]). Second, Carleial achieves the same rates as in [4,
Theorem 1] by an appropriate choice of the random variables in
[20, eq.(7)] (see Remark 6 below). This is remarkable because
Carleial’s strategy is different than Cover and El Gamal’s: the
transmitter and relay codebooks have the same size, and the
destination employs a sliding-window decoding technique that
uses two consecutive blocks of channel outputs [20, p. 842].
Hence, the name regular encoding/sliding-window decoding.
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The third decode-and-forward strategy is based on work for
the MAC-GF by Willems [21, Ch. 7]. Willems introduced a
backward decoding technique that is better than sliding-window
decoding in general [22]–[24], but for the relay channel reg-
ular encoding/backward decoding achieves the same rates
as irregular encoding/successive decoding and regular en-
coding/sliding-window decoding.

Subsequent work focused on generalizing the strategies to
multiple relays. Aref extended irregular encoding/successive
decoding to degraded relay networks [7, Ch. 4], [8]. He further
developed capacity-achieving binning strategies for determin-
istic broadcast relay networks and deterministic relay networks
without interference. The capacity proofs relied on a (then
new) cut-set bound [4, Theorem 4], [7, p. 23] that has become a
standard tool for bounding capacity regions (see [25, p. 445]).

Recent work on decode-and-forward for multiple re-
lays appeared in [14], [26]–[35]. In particular, Gupta and
Kumar [31] applied irregular encoding/successive decoding
to multiple-relay networks in a manner similar to [7]. The
methodology was further extended to multisource networks by
associating one or more feedforward flowgraphs with every
message (each of these flowgraphs can be interpreted as a
“generalized path” in a graph representing the network [31,
p. 1883]). We interpret the relaying approach of [7], [31] as
a variant of multihopping, i.e., the relays successively decode
the source messages before these arrive at the destinations.
However, in addition to the usual multihopping, the transmit-
ters cooperate and each receiver uses several or all of its past
channel output blocks to decode, and not only its most recent
one.

Next, Xie and Kumar [32], [33] developed regular en-
coding/sliding-window decoding for multiple relays, and
showed that their scheme achieves better rates than those of
[7], [31]. One can similarly generalize regular encoding/back-
ward decoding [34]. The achievable rates of the two regular
encoding strategies turn out to be the same. However, the delay
of sliding-window decoding is much less than that of backward
decoding. Regular encoding/sliding-window decoding is there-
fore currently the preferred variant of multihopping in the sense
that it achieves the best rates in the simplest way.

B. Compress-and-Forward

The second strategy of Cover and El Gamal is now often
called compress-and-forward, although some authors prefer the
names estimate-and-forward (based on [4, p. 581]), observe-
and-forward [14], or quantize-and-forward [36]. King [5, p. 33]
attributes van der Meulen with motivating the approach (see [2,
Example 4]). The idea is that a relay, say node , transmits a
quantized and compressed version of its channel output
to the destination, and the destination decodes by combining
with its own output. The relays and destination further take ad-
vantage of the statistical dependence between the different out-
puts. More precisely, the relays use Wyner–Ziv source coding
to exploit side information at the destination [37].

The compress-and-forward strategy was generalized to the
MAC-GF by King [5, Ch. 3], to parallel relay networks by
Schein and Gallager [27], [28], and to multiple relays by

Gastpar et al. [29] (see [38], [39]). One can also mix the de-
code-and-forward and compress-and-forward strategies. This
was done in [4, Theorem 7], for example.

C. Outline

This paper develops decode-and-forward and compress-
and-forward strategies for relay networks with many relays,
antennas, sources, and destinations. Section II summarizes our
main results.

The technical sections are divided into two main parts. The
first part, comprising Sections III to VI, deals with general relay
channels. In Section III, we define several models and review a
capacity upper bound. In Section IV, we develop decode-and-
forward strategies for relay channels, multiaccess relay chan-
nels (MARCs), and broadcast relay channels (BRCs). Section
V develops compress-and-forward strategies for multiple relays.
Section VI describes mixed strategies where each relay uses ei-
ther decode-and-forward or compress-and-forward.

The second part of the paper is Section VII that specializes
the theory to wireless networks with geometries (distances) and
fading. We show that one approaches capacity when the network
nodes form two closely spaced clusters. We then study chan-
nels with phase fading, and where phase information is avail-
able only locally. We show that decode-and-forward achieves
the ergodic capacity when all relays are near the source node.
The capacity results generalize to certain quasi-static models,
and to MARCs and BRCs. Section VIII concludes the paper.

We remark that, due to a surge of interest in relay channels, we
cannot do justice to all the recent advances in the area here. For
example, we do not discuss cooperative diversity that is treated
in, e.g., [40]–[49]. We also do not consider the popular am-
plify-and-forward strategies in much detail (see Fig. 16 and, e.g.,
[14]–[16], [27], [28], [36], [50], [51]). Many other recent results
can be found in [26]–[36], [38]–[76], and references therein (see
especially [72]–[74] for new capacity theorems).

II. SUMMARY OF MAIN RESULTS

We summarize the main contributions of this paper. These
results were reported in the conference papers [29], [34], [67].

• Theorem 1 gives an achievable rate for multiple relays.
The main idea behind this theorem is due to Xie and
Kumar [32] who studied regular encoding and sliding-
window decoding for Gaussian channels. We extended
their result to discrete memoryless and fading channels
in [34], as did [33]. Our description of the rate was some-
what more compact than that of [32], and it showed that
the level sets of [31], [32] are not necessary to maximize
the rate. However, level sets can reduce the delay and they
might improve rates for multiple source–destination pairs.

• We introduce the BRC as the natural counterpart of
the MARC described in [24], [52]. Theorem 2 gives an
achievable rate region for BRCs that combines regular
encoding and sliding-window decoding.

• Theorem 3 generalizes the compress-and-forward
strategy of [4, Theorem 6] to any number of relays.
As pointed out in [29], [38], [39], the Wyner–Ziv



KRAMER et al.: COOPERATIVE STRATEGIES AND CAPACITY THEOREMS FOR RELAY NETWORKS 3039

problem with multiple sources appears naturally in this
framework.

• Theorem 4 gives an achievable rate when the relays use
either decode-and-forward or compress-and-forward.

• Theorem 5 adds partial decoding to Theorem 4 when there
are two relays.

For Gaussian channels, the following general principle is es-
tablished in a series of theorems: decode-and-forward achieves
the ergodic capacity when there is phase fading (i.e., any fading
process such as Rayleigh fading where the phase varies uni-
formly over time and the interval ), the transmitting nodes
are close to each other (but not necessarily colocated), and phase
information is available at the receivers only (or is available
from nearby nodes). Perhaps unexpectedly, the capacity is the
rate of a distributed antenna array even if the transmitting an-
tennas are not colocated. The paper [75] further argues that
internode phase and symbol synchronization is not needed to
achieve the capacity (see Remark 42).

• Section VII-C points out that one achieves capacity if the
network nodes form two closely spaced clusters.

• Theorems 6 and 7 establish the ergodic capacity claim for
the simplest kind of phase fading, and for one or more re-
lays. For example, decode-and-forward achieves capacity
for relays if these are all located within a circle of ra-
dius about about the source, where is the channel
attenuation exponent. As another example, if relays
are placed at regular intervals between the source and des-
tination, then one can achieve a capacity of about
bits per use for large .

• Theorem 8 establishes the capacity claim for Rayleigh
fading, multiple antennas, and many relays. We remark
that a special case of Theorem 8 appeared in parallel work
by Wang, Zhang, and Høst-Madsen [68], [76], where one
relay is considered. As kindly pointed out by these authors
in [76, p. 30], the proof of their Theorem 4.1, and hence
their Proposition 5.1, is based on our results in [67] that
generalize [34, Theorem 2].

• Section VII-G outlines extensions of the theory to fading
with directions.

• Theorems 9 and 10 establish the capacity claim for certain
MARCs and BRCs, and Section VII-H describes general-
izations to more complex cases.

• Section VII-I derives results for quasi-static fading.

We here develop the capacity theorems for full-duplex relays,
i.e., relays that can transmit and receive at the same time and
in the same frequency band. However, we emphasize that the
theory does extend to half-duplex relays, i.e., relays that cannot
transmit and receive at the same time, by using the memory-
less models described in [75]. For example, all of the theory of
Cover and El Gamal [4] and all of the theory developed in Sec-
tions III–VI applies to half-duplex relays. Moreover, our geo-
metric capacity results apply to half-duplex relays if practical
constraints are placed on the coding strategies (see Remarks 29
and 38). More theory for such relays can be found in [14], [36],
[51]–[55], [59]–[62], [75], and references therein.

A third type of relay is one that can transmit and receive at
the same time, but only in different frequency bands. Such relays

Fig. 1. A one-relay network.

Fig. 2. A two-relay network.

are treated in [73], [74], where the authors constrain the source
node to use only one of the two frequency bands available to it.

III. MODELS AND PRELIMINARIES

A. Relay Network Model

Consider the network model of [1, Fig. 1]. The -node relay
network has a source terminal (node 1), relays (nodes
with ), and a destination terminal (node ).
For example, relay networks with and are shown
as graphs in Figs. 1 and 2. The network random variables are

• a message ,
• channel inputs ,
• channel outputs ,
• a message estimate .

The are functions of , and the , are functions
of node ’s past outputs . We write

for the conditional probability that given
, or simply when the arguments are lower case

versions of the corresponding random variables. The networks
we consider are memoryless and time invariant in the sense that

(1)

for all , where the and , are random vari-
ables representing the respective channel inputs and outputs.
The condition (1) lets one focus on the channel distribution

(2)

for further analysis.
The destination computes its message estimate as a func-

tion of (recall that ). Suppose
that has bits. The capacity is the supremum of rates

at which the destination’s message estimate
can be made to satisfy for any positive .

For example, consider the node network of Fig. 1,
and suppose the source (node 1) is wired to the relay and des-
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tination (nodes 2 and 3, respectively). We write the channel in-
puts as and , and the outputs as and

. An appropriate channel distribution for wired
communication might be

(3)

Consider next the node network of Fig. 2, and sup-
pose the source (node 1) is wired to two relays (nodes 2 and
3) and the destination (node 4). The channel inputs are

and , and the outputs are
and . An appropriate

channel distribution might be

(4)

B. Capacity Upper Bound

We use the common notation ,
and for the respective entropy of , the entropy of

conditioned on , the mutual information between and
, and the mutual information between and conditioned

on [77, Ch. 2] (cf. [78, Ch. 1.1]). Let
and . A capacity upper bound is given
by the cut-set bound in [7, p. 23] (see also [8, Theorem 1] and
[25, p. 445]).

Proposition 1: The relay network capacity satisfies

(5)

where is the complement of in .

For example, for the bound (5) is

(6)

Applying (6) to the wired networks (3), one recovers a standard
flow cut-set bound

(7)

where is the capacity of the channel from node to node
[79, p. 179].

Remark 1: The set of is convex, and the mu-
tual information expressions in (5) are concave in
[25, p. 31]. Furthermore, the point-wise minimum of a collec-
tion of concave functions is concave [80, p. 35]. One can thus
perform the maximization in (5) efficiently with convex opti-
mization algorithms.

C. MARC Model

The relay networks described above have one message .
We will consider two networks with several messages: MARCs
and BRCs. A MARC with two sources has four nodes: nodes
1 and 2 transmit the independent messages and at rates

and , respectively, node 3 acts as a relay, and node 4 is the

Fig. 3. A MARC with two sources. Node 3 is the relay.

Fig. 4. A BRC with two destinations. Node 2 is the relay.

destination for both messages [24], [52]. This model might fit a
situation where sensors (the sources) are too weak to cooperate,
but they can send their data to more powerful nodes that form a
“backbone” network. The MARC has three inputs
and two outputs (see Fig. 3). The channel distribution is

(8)

where and are independent. The capacity region is the
closure of the set of rate pairs at which the two sources
can transmit and reliably to the destination.

Suppose, for example, that the sources (nodes 1 and 2) are
wired to the relay (node 3) and the destination (node 4). The
channel inputs are and , and
the outputs are and . An
appropriate channel distribution might be

(9)

D. BRC Model

A BRC with two sinks and three independent messages
is depicted in Fig. 4. Node 1 transmits at rate

to both nodes 3 and 4, at rate to node 3, and at
rate to node 4. Node 2 acts as a relay. Such a model might
fit a scenario where a central node forwards instructions to a
number of agents (the destinations) via a relay [67], [71]. The
channel distribution has the form

(10)

The capacity region is the closure of the set of rate triples
at which the source can transmit and

reliably to nodes 3 and 4, respectively.
Suppose, e.g., that in Fig. 4 the channel inputs are

and , and the outputs
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are and . An appropriate
channel distribution for wired communication might be

(11)

IV. DECODE-AND-FORWARD

The decode-and-forward strategies have as a common fea-
ture that the source controls what the relays transmit. For wire-
less networks, one consequently achieves gains related to mul-
tiantenna transmission. We label the corresponding rates .

A. Rates for One Relay

The decode-and-forward strategy of Cover and El Gamal [4,
Theorem 1] achieves any rate up to

(12)

The difference between (6) and (12) is that is included in the
first information expression on the right-hand side of (6).

Remark 2: One can apply Remark 1 to (12), i.e., convex op-
timization algorithms can efficiently perform the maximization
over .

Remark 3: Suppose we have a wireless network. The second
mutual information expression in (12) can be interpreted as the
information between two transmit antennas and , and
one receive antenna [28, p. 15], [29]. Decode-and-forward
achieves the cooperative gain reflected by the maximization
over all joint distributions .

Remark 4: The rate (12) requires the relay to decode the
source message, and this can be a rather severe constraint. For
example, suppose Fig. 1 represents a network of discrete memo-
ryless channels (DMCs) defined by (3). Suppose that
and are binary, and that and

. The capacity is clearly 2 bits per use, but (12) gives only 1
bit per use.

Remark 5: One can generalize (12) by allowing the relay to
partially decode the message. This is done in [4, Theorem 7]
and [9] by introducing a random variable, say , that represents
the information decoded by the relay. The strategy of [9] (which
is a special case of [4, Theorem 7]) achieves rates up to

(13)

where is arbitrary up to the alphabet constraints
on and . For instance, choosing gives (12).
Moreover, the rate (13) is the capacity of the network (3) by
choosing and as being independent, and .

B. Regular Encoding for One Relay

The rate (12) has in the past been achieved with three dif-
ferent methods, as discussed in the Introduction. We refer to [4]
for a description of the irregular encoding/successive decoding
strategy. We instead review the regular encoding approach of
[20], [21] that is depicted in Figs. 5 and 6.

Fig. 5. Decode-and-forward for one relay. The source and relay transmit the
respective codewords x ( � ) and x ( � ).

Fig. 6. The information transfer for one relay and regular encoding/sliding
window decoding.

The message is divided into blocks of
bits each. The transmission is performed in blocks by

using codewords and of length , where and
range from to . We thus have
and where we recall that is the
number of message bits, is the total number of channel uses,
and is the overall rate. The ,
can be “correlated” with . For example, for real alphabet
channels one might choose

(14)

where and are scaling constants, and where the
, form a separate codebook.

Continuing with the strategy, in the first block node 1
transmits and node 2 transmits . The receivers
use either maximum-likelihood or typical sequence decoders.
Random coding arguments guarantee that node 2 can decode
reliably as long as is large and

(15)

where we assume that is positive (we similarly
assume that the other mutual information expressions below are
positive). The information transfer is depicted in Fig. 6, where
the edge between nodes 1 and 2 is labeled . So
suppose node 2 correctly obtains . In the second block, node
1 transmits and node 2 transmits . Node 2
can decode reliably as long as is large and (15) is true.
One continues in this way until block . In this last block,
node 1 transmits and node 2 transmits .

Consider now node 3, and let be its th block of channel
outputs. Suppose these blocks are collected until the last block
of transmission is completed. Node 3 can then perform Willems’
backward decoding by first decoding from . Note
that depends on and , which in turn
depend only on . One can show (see [21, Ch. 7]) that node 3
can decode reliably as long as is large and

(16)

Suppose node 3 has correctly decoded . Node 3 next decodes
from that depends on and .

Since node 3 knows , it can again decode reliably as long
as (16) is true. One continues in this fashion until all message
blocks have been decoded. The overall rate is
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bits per use, and by making large one can get the rate as close
to as desired.

Finally, we describe Carleial’s sliding-window decoding
technique [20]. Consider again Fig. 5, but suppose node 3
decodes after block 2 by using a sliding window of the two
past received blocks and . One can show (see [20], [32],
[33]) that node 3 can decode reliably as long as is large and

(17)

The contribution in (17) is from , and the contri-
bution is from . The information transfer is
shown in Fig. 6 by the labels of the incoming edges of node 3.
After receiving , node 3 similarly decodes by
using and , all the while assuming its past message

estimate is . The overall rate is again
bits per use, and by making large one can get the rate as close
to as desired.

Remark 6: One recovers (12) from Carleial’s region [20, eq.
(7)] as follows. The relay channel problem corresponds to

and , and we obtain (12) by choosing
and

.

Remark 7: Carleial’s strategy enjoys the advantages of both
the Cover/El Gamal strategy (two block decoding delay) and the
Carleial/Willems strategy (regular encoding). Furthermore, as
discussed later, regular encoding and sliding-window decoding
extend to multiple relays in a natural way.

Remark 8: The papers [32], [33] derive the bound (17) by
generating different random code books for consecutive blocks.
This is done to create statistical independence between the
blocks. We use the same approach in Appendix B.

C. Multiple Relays

One approach to decode-and-forward with several relays is to
generalize the irregular encoding/successive decoding strategy.
This was done in [7], [31]. However, we here consider only the
improved strategy of [32]–[34] that is depicted in Figs. 7 and 8
for two relays.

Consider two relays. We divide the message into blocks
of bits each. The transmission is performed in blocks
by using and , where range from

to . For example, the encoding for is depicted
in Fig. 7. Node 2 can reliably decode after transmission
block if is large, its past message estimates
of are correct, and

(18)

The information transfer is depicted in Fig. 8, where the edge
between nodes 1 and 2 is labeled .

Node 3 decodes by using and . This can be

done reliably if is large, its past message estimates
are correct, and

(19)

Fig. 7. Decode-and-forward for two relays. The source, first relay, and second
relay transmit the respective codewords x ( � ); x ( � ); and x ( � ).

Fig. 8. The information transfer for two relays and regular encoding/sliding
window decoding.

The contribution is from , and the contribution
isfrom .Theinformationtransfer isde-

picted in Fig. 8 by the labels of the incoming edges of node 3. As-
suming correct decoding, node 3 knows after transmission
block , and can encode the messages as shown in Fig. 7.

Finally, node 4 decodes by using and
. This can be done reliably if is large, its past message

estimates are correct, and

(20)

The contribution is from is from
and is from . The informa-

tion transfer is shown in Fig. 8 by the labels of the incoming
edges of node 4. The overall rate is , so by making

large we can get the rate as close to as desired.
It is clear that sliding-window decoding generalizes to

-node relay networks, and one can prove the following the-
orem. Let be a permutation on with

and , and let .

Theorem 1: The -node relay network capacity is at least

(21)

where one can choose any distribution on .
Proof: Theorem 1 is essentially due to Xie and Kumar, and

appeared for additive white Gaussian noise (AWGN) channels
in [32]. The result appeared for more general classes of channels
in [33], [34]. Proofs can be found in [32], [33] where the authors
show that (21) improves on the rate of [33, Theorem 3.1].

Remark 9: We have expressed Theorem 1 using only permu-
tations rather than the level sets of [31]–[33]. This is because one
need consider only permutations to maximize the rate, i.e., one
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can restrict attention to flowgraphs that have only one vertex per
level set. However, to minimize the delay for a given rate, one
might need to consider level sets again. This occurs, e.g., if one
relay is at the same location as another.

Remark 10: Theorem 1 appeared for degraded relay net-
works in [7, p. 69], where degradation was defined as

(22)

for , where is some permutation on
with and (see [7, p. 54],

and also [4, eq.(10)] and [35]). Moreover, is the capacity
region of such channels [7, p. 69]. One can, in fact, replace (22)
by the more general

(23)

for . The condition (23) simply makes the cut-set
bound of Proposition 1 the same as [33].

Remark 11: We can apply Remark 1 to (21), i.e., convex op-
timization algorithms can efficiently perform the maximization
over .

Remark 12: Backward decoding also achieves , but for
multiple relays one must transmit using nested blocks to allow
the intermediate relays (e.g., node 3 in Fig. 7) to decode before
the destination. The result is an excessive decoding delay.

Remark 13: Theorem 1 illustrates the multiantenna trans-
mission behavior: the rate (21) can be interpreted as the mu-
tual information between transmit antennas and one receive
antenna. The main limitation of the strategy is that only one an-
tenna is used to decode. This deficiency is remedied somewhat
by the compress-and-forward strategy developed below.

Remark 14: One can generalize Theorem 1 and let the relays
perform partial decoding (see [4, Theorem 7], [9]). We will not
consider this possibility here, but later do consider a restricted
form of partial decoding.

D. MARCs

Consider a MARC with two sources (see Fig. 3). A regular
encoding strategy is depicted in Figs. 9 and 10, and it proceeds
as follows.

The message is divided into blocks
of bits each, . Transmission is performed in

blocks by using codewords
and of length , where and range

from to . The details of the codebook construction,
encoding and decoding are given in Appendix A. It turns out
that node 3 can decode reliably if is large, its past
estimate of is correct, and

(24)

where

Fig. 9. Decode-and-forward for a MARC. The first and second source
transmit x ( � ) and x ( � ), respectively. The relay’s codeword x ( � ) is
statistically dependent on x ( � ) and x ( � ) through u ( � ) and u ( � ), which
are auxiliary codewords at the respective sources 1 and 2.

Fig. 10. The information transfer between the nodes of a MARC when using
regular encoding/backward decoding.

The information transfer is depicted in Fig. 10, where the in-
coming edges of node 3 are labeled by the mutual information
expressions in (24).

Suppose node 4 uses backward decoding. One finds that this
node can decode reliably if

(25)

The information transfer is shown in Fig. 10, where the in-
coming edges of node 4 are labeled by the mutual information
expressions in (25). The achievable rates of (24) and (25) were
derived in [52, eq. (5)].

Remark 15: We can use the flowgraphs of [31, Sec. IV] to
define other strategies for the MARC. There are two different
flowgraphs for each source, namely, one that uses the relay and
one that does not. Suppose that both sources use the relay. There
are then two successive decoding orderings for the relay and six
such orderings for the destination, for a total of 12 strategies.
There are six more strategies if one source uses the relay and
the other does not, and two more strategies if neither source
uses the relay. There are even more possibilities if one splits
each source into two colocated “virtual” sources and performs
an optimization over the choice of flowgraphs and the decoding
orderings, as was suggested in [31, p. 1883].

E. BRCs

Consider a BRC with four nodes and three messages (see Fig.
4). Several block Markov superposition encoding strategies can
be defined, and one of them is depicted in Figs. 11 and 12. En-
coding proceeds as follows.

The messages are divided into blocks
, respectively, for . However,

before mapping these blocks into codewords, we take note of
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Fig. 11. Decode-and-forward for a BRC. The source and relay transmit x ( � ) and x ( � ), respectively. The u ( � ); u ( � ), and u ( � ) are auxiliary codewords
at the source. In block b, the relay decodes w , as do the first and second destinations. The first destination then decodes s , and the second decodes s .

Fig. 12. The information transfer between the nodes of a BRC when using
regular encoding/sliding window decoding.

the following result. One sometimes improves rates by letting
a “stronger” receiver decode the bits of a “weaker” receiver,
and having the former receiver subsequently discard these
bits. This type of strategy achieves the capacity of degraded
broadcast channels, for example [81] (see also [82, Sec. III],
[83], and [84, Lemma 1]). In order to enable such an approach,
for each we convert some of the bits of and into bits
of that are decoded by both destinations. More precisely,
we reorganize the into blocks such
that includes the bits of and
includes the bits of . Finally, is encoded
into a pair of integers such that uniquely deter-
mines , and uniquely determines (see Appendix B
for more details).

Decoding proceeds as follows. Node 2 decodes after
block , but node 3 waits until block to decode both
and by using sliding-window decoding with its channel
outputs from blocks and . Similarly, node 4 decodes
and after block . The resulting rates are given by the
following theorem. The proof of this theorem uses the theory
developed in [78, p. 391], [82]–[85].

Theorem 2: The nonnegative rate triples satis-
fying

(26)

are in the capacity region of the BRC, where

(27)

and where is arbitrary up to the alphabet
constraints on and .

Proof: See Appendix B. The information transfer across
nodes is shown in Fig. 12, where the edges are labeled by mutual
information expressions in (26). The last bound in (26) is due to
binning at node 1.

For example, suppose we choose and
in Theorem 2. The result is that is achievable if

(28)

for any choice of . We use (28) later in Theorem 10.

Remark 16: The region (26) includes Marton’s region [78,
p. 391], [82] by viewing the relay as having no input and as
being colocated with the source. That is, we choose
and so that is larger than and .

Remark 17: One can generalize Theorem 2 by letting the
relay perform partial decoding of . More precisely, suppose
that is some portion of the bits in . We first
generate a codebook of codewords . The size of this
codebook is smaller than before. We next superpose on each

a new codebook of codewords
generated by an auxiliary random variable . Next, we su-
perpose a codebook of codewords on each

, and similarly for , and . In block ,
the cooperation between the source and the relay thus takes
place through rather than .

As yet another approach, the relay might choose to decode all
new messages after each block. This seems appropriate if there
is a high capacity link between the source and relay.

V. COMPRESS-AND-FORWARD

The compress-and-forward strategy of [4, Theorem 6] has
the relay forwarding a quantized and compressed version of its
channel outputs to the destination. We label the corresponding
rates . This approach lets one achieve gains related to mul-
tiantenna reception [14, p. 64], [29].

A. One Relay

The strategy of [4, Theorem 6] achieves any rate up to

(29)

where

(30)
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Fig. 13. Compress-and-forward for two relays. The source, first relay, and
second relay transmit x ( � ); x ( � ); and x ( � ), respectively. In block b, the
first relay decodes the index r carried by u ( � ), and quantizes its channel
output y to ŷ ( � ) by using its knowledge of u ( � ); u ( � ); x ( � ); and the
statistical dependence between these vectors and the channel outputs y and
y . This relay then transmits ŷ ( � ) to the destination via x ( � ). The second
relay performs similar steps.

and where where the joint probability distribution of the random
variables factors as

(31)

Remark 18: Equation (29) illustrates the multiantenna recep-
tion behavior: can be interpreted as the rate for
a channel with one transmit antenna and two receive antennas.
The multiantenna gain is limited by (30), which states that the
rate used to compress must be smaller than the rate used to
transmit data from the relay to the destination. The compres-
sion uses techniques developed by Wyner and Ziv [37], i.e., it
exploits the destination’s side information .

B. Multiple Relays

For multiple relays, we view the relays-to-destination channel
as being a MAC. Note that the signals ob-
served by the relays are statistically dependent, so we have the
problem of sending “correlated” sources over a MAC as treated
in [86]. However, there are two additional features that do not
arise in [86]. First, the destination has channel outputs that
are correlated with the relay channel outputs. This situation
also arose in [4], and we adopt the methodology of that paper.
Second, the relays observe noisy versions of each other’s
symbols. This situation did not arise in [4] or [28], and we deal
with it by using partial decoding.

The compress-and-forward scheme for two relays is depicted
in Figs. 13 and 14, and we outline its operation. One chooses
random variables and for that are related
as specified later on in (34). During block , node 2 receives
symbols that depend on both and ,
where and are indices that are defined in Appendix D.
Node 2 decodes and “subtracts” from . How
much node 2 “subtracts” is controlled by how is related to

. For example, if then node 2 completely decodes
node 3’s codewords, while if then node 2 ignores node 3.

The symbols , modified by the “subtraction” using
, are compressed to by using the correlation

between , and , i.e., the compression is performed
using Wyner–Ziv coding [37]. However, the relays additionally
have the problem of encoding in a distributed fashion [28].

Fig. 14. The information transfer between the nodes for compress-and-
forward. Two decoding stages are shown. The first stage (top of the figure)
has the relays and destination decoding the indices r carried by u ( � )
and u ( � ), followed by the destination decoding the indices s carried by
x ( � ) and x ( � ). The second stage (bottom of the figure) has the destination
decoding the messages w of x ( � ).

After compression, node 2 determines indices and
from and transmits in block

. Node 3 operates in a similar fashion as node 2. The desti-
nation uses to decode , and to obtain
and . Finally, the destination uses together with

and to decode .
We derive the rates of such schemes, and summarize the result

with the following theorem. Let be the complement of in
, and let denote .

Theorem 3: Compress-and-forward achieves any rate up to

(32)

where

(33)

for all , all partitions of , and all
such that (recall that and

are the complements of the respective and in ). For
we set . Furthermore, the joint probability

distribution of the random variables factors as

(34)

Proof: See Appendix D.

Remark 19: The left-hand side of (33) has rates that gen-
eralize results of [37] to distributed source coding with side
information at the destination (see [38], [39]). The right-hand
side of (33) describes rates achievable on the multiway channel
between the relays and the destination. In other words, an
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(extended) Wyner–Ziv source-coding region must intersect a
channel-coding region. This approach separates source and
channel coding, which will be suboptimal in general (see [87,
Ch. 1]). This last remark also applies to (29)–(31).

Remark 20: Equation (34) specifies that the
, are statistically independent. Equation (32)

illustrates the multiantenna reception behavior: the mutual in-
formation expression can be interpreted as the rate for a channel
with one transmit antenna and receive antennas. The
multiantenna gain is limited by (33), which is a combination of
source and channel coding bounds.

Remark 21: For we recover (29)–(30).

Remark 22: For , there are nine bounds of the form
(33): two for ( and ), two for

( and ), and five bounds for
( for , and otherwise

being or ). Clearly, computing the
compress-and-forward rate for large is tedious.

Remark 23: Suppose the relays decode each other’s code-
words entirely, i.e., for all . The relays thereby
remove each other’s interference before compressing their
channel outputs. The bound (33) simplifies to

(35)

However, for there are still nine bounds, namely

(36)

Remark 24: Suppose the relays perform no partial decoding,
i.e., for all . The bounds (33) simplify because we need
not partition . For example, for we have

(37)

For Schein’s parallel relay network, this region reduces to The-
orem 3.3.2 in [28, p. 136].

VI. MIXED STRATEGIES

The strategies of Sections IV and V can be combined as in
[4, Theorem 7]. However, we consider only the case where each
relay chooses either decode-and-forward or compress-and-for-
ward. We divide the relay indices into the two sets

(38)

The relays in use decode-and-forward while the relays in
use compress-and-forward. The result is the following theorem.

Theorem 4: Choosing either decode-and-forward or com-
press-and-forward achieves any rate up to

(39)

where is a permutation on , we set , and

(40)

for all , all partitions of , and all
such that . We here write for the com-

plement of in . For , we set . Further-
more, the joint probability distribution of the random variables
factors as

(41)

Proof: We omit the proof because of its similarity to the
proofs in [32], [33] and Appendix D. Summarizing the idea of
the proof, nodes 1 to operate as if they were using decode-
and-forward for a -node relay network. Similarly, nodes

to operate as if they were using compress-and-
forward for a -node relay network. Instead of proving
Theorem 4, we supply a proof of Theorem 5 below. Theorem 5
illustrates how to improve Theorem 4 for by permitting
partial decoding at one of the relays.

As an example, consider and (or
). We find that Theorem 4 simplifies to (cf. [29, The-

orem 2])

(42)

where

(43)

and the joint probability distribution of the random variables
factors as

(44)
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The second mutual information expression in (42) can be inter-
preted as the rate for a multiantenna system. Hence, when
node 2 is near the source and node 3 is near the destination, one
will achieve rates close to those described in [88], [89].

A. Two Relays and Partial Decoding

Suppose there are two relays, node 2 uses decode-and-for-
ward, and node 3 uses compress-and-forward. Suppose node 3
further partially decodes the signal from node 2 before com-
pressing its observation. However, for simplicity we make
statistically independent of and . We show that this
strategy achieves the following rates.

Theorem 5: For the two-relay network, any rate up to

(45)

is achievable, where for some and we have

(46)

and where the joint probability distribution of the random vari-
ables factors as

(47)

Proof: See Appendix E.

Remark 25: We recover (42) and (43) with .

Remark 26: We recover (12) by turning off Relay 3 with
and .

Remark 27: We recover (29)–(30) by turning off and ig-
noring Relay 2 with and .

VII. WIRELESS MODELS

The wireless channels we will consider have the and
being vectors, and we emphasize this by underlining symbols.
We further concentrate on channels (2) with

(48)

where is the distance between nodes and is an attenua-
tion exponent, is an complex vector, is an
matrix whose entry is a complex fading random vari-
able, and is an vector whose entries are indepen-
dent and identically distributed (i.i.d.), proper [90], complex,
Gaussian random variables with zero mean and unit variance.
We impose the per-symbol power constraints
for all , where is the complex-conjugate transpose of .

We will consider several kinds of fading.

• No fading: is a constant for all and .

• Phase fading: , where is uniformly
distributed over . The are jointly independent
of each other and all and .

• Rayleigh fading: is a proper, complex, Gaussian
random variable with zero mean and unit variance. The

are jointly independent of each other and all
and .

• Single-bounce fading: , where is a
random matrix, is a random di-
agonal matrix whose entries have independent phases that
are uniformly distributed over , and is a random

matrix. The and are jointly inde-
pendent of each other and all and . The matrices
and might represent knowledge about the directions
of arrival and departure, respectively, of plane waves [91].

• Fading with directions: , where is
a random matrix, is an random
matrix whose entries have independent phases that are
uniformly distributed over , and is a random

matrix. The and are jointly inde-
pendent of each other and all and .

For the no-fading case, the are known by all nodes. For
the other cases, we assume that node knows only its own fading
coefficients. That is, node knows for all , but it does not
know for . One can model this as in [89] and write
the full channel output of node as

(49)

Remark 28: The above model has continuous random vari-
ables, and one should therefore exercise caution when applying
the theorems of Sections IV to VI (cf. [77, Sec. 2.5]). We will
assume that the theorems are valid for Gaussian random vari-
ables. This poses no difficulty for the decode-and-forward theo-
rems that can be derived by using entropy-typical sequences [25,
p. 51], [78, p. 40]. However, the compress-and-forward scheme
is trickier to deal with (see Remark 30).

Remark 29: The above model applies to full-duplex relays,
i.e., relays that can transmit and receive at the same time and in
the same frequency band. This might be possible, e.g., if each
relay has two antennas: one receiving and one transmitting. For
half-duplex devices, one should modify (48) by adding the con-
straints that if for all . The analysis is then
similar to that described below if one assumes that every node
knows at all times which mode (listen or talk) the other nodes
are using (cf. [53], [55]). However, if the nodes do not know
each others operating modes, then one might adopt an approach
such as that described in [75].

A. Optimizing the Cut-Set and Decode-and-Forward Rates

Let and .
We write for the complement of in the set of transmit-
ting nodes . We further write and

for the differential entropies of without and with
conditioning on , respectively [25, Ch. 9]. We prove the fol-
lowing proposition.
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Proposition 2: Consider the channels (48) and (49) where
every node knows only its own channel coefficients . The
maxima in the cut-set bound (5) and the decode-and-forward
rate (21) are attained by Gaussian .

Proof: All of the mutual information expressions in (5)
and (21) can be written as

(50)

for some and . The first step in (50) follows by (49), the
second because the are independent of the , and the third
by (48). Observe that cannot be influenced by , so we
are left with a maximum entropy problem.

The best has zero mean because every node uses less
power by sending rather than , and this change
does not affect the mutual information expressions (50). Sup-
pose the best has covariance matrix for either (5) or
(21). This choice of fixes for all
and , where is the covariance matrix of the vector

conditioned on . But if is fixed, then one
maximizes by making and jointly Gaussian (see
[92, Lemma 1]). Hence, choosing to be Gaussian with co-
variance matrix maximizes for
every and every mutual information expression in (5) and (21).
The theorem is proved by averaging over .

Choosing Gaussian , we find that (50) simplifies to

(51)
where is the determinant of . The final step is to optimize

. This optimization depends on the type of fading, so we
perform it case-by-case.

B. No Fading and One Relay

Suppose we have one relay, nodes with one antenna, and no
fading. Let

(52)

be the correlation coefficient of and , where is the
complex conjugate of . Using (51), the cut-set bound (6) is

(53)

where is real. Similarly, the best decode-and-forward rate (12)
is

(54)

Consider next the compress-and-forward strategy. Gaussian
input distributions are not necessarily optimal, but for simplicity

Fig. 15. A single relay on a line.

we choose and to be Gaussian. We further choose
, where is a proper, complex, Gaussian, random

variable with zero mean and variance , and is independent
of all other random variables. The rate (29) is then

(55)

where the choice

(56)

satisfies (30) with equality (see also [29] and [60, Sec. 3.2] for
the same analysis).

Remark 30: The proof of the achievability of (29) and its
generalization (32) is presented in Appendix D. The proof re-
quires strong typicality to invoke the Markov lemma of [93,
Lemma 4.1] (cf. [78, p. 370, eq. (4.38)]). However, strong typi-
cality does not apply to continuous random variables, and hence
the achievability of (29) might not imply the achievability of
(55). However, for Gaussian input distributions, one can gener-
alize the Markov lemma along the lines of [94], [95] and thereby
show that (55) is achievable.

As an example, suppose the source, relay, and destination are
aligned as in Fig. 15, where and

. Fig. 16 plots various bounds for and .
The curves labeled DF and CF give the respective decode-and-
forward and compress-and-forward rates. Also shown are the
rates when the relay is turned off, but now only half the overall
power is being consumed as compared to the other cases. Fi-
nally, the figure plots rates for the strategy where the relay trans-
mits , where is a scaling factor chosen so that

. This strategy is called amplify-and-forward
in [14, p. 80] (see also [27], [28, p. 61], and [36], [50]). Am-
plify-and-forward turns the source-to-destination channel into
a unit-memory intersymbol interference channel. The curve la-
beled AF shows the capacity of this channel after optimizing .

Remark 31: As the relay moves toward the source ,
the rates (54) and (55) become

(57)

and is the capacity. Similarly, as the relay moves toward
the destination , we have

(58)

and is the capacity. These limiting capacity results extend
to multiple relays, as discussed next. Note that the right-hand
side of (53) is the same as and only if and

, respectively.
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Fig. 16. Rates for one relay with P = P = 10 and � = 2.

Remark 32: Traditional multihopping has the source trans-
mitting the message to the relay in one time slot, and then
the relay forwarding to the destination in a second time slot.
This scheme can be used with both full-duplex and half-duplex
relays. Suppose one assigns a fraction of the time to the first
hop. One then achieves the rate

(59)

However, even after optimizing one always performs worse
than using no relay for any in Fig. 16. This happens because

is here too small to make multihopping useful.

C. No Fading and Many Relays

Suppose there are relays, all nodes have one antenna
each, and there is no fading. Suppose further that the relays are
within a distance of the source. The decode-and-forward rate
of Theorem 1 becomes the capacity as , which is

(60)

This limiting capacity result is called an antenna clustering ca-
pacity in [29].

Similarly, if the relays are within a distance of the destina-
tion and , the compress-and-forward rate of Theorem 3
becomes the capacity

(61)

This limiting capacity result is another type of antenna clus-
tering capacity (see [29]).

Fig. 17. Two relays on a line.

Finally, consider the geometry in Fig. 17. The mixed strategy
of Theorem 4 achieves capacity as , which is

(62)

with and .
This type of limiting capacity result generalizes to many re-

lays if the nodes form two closely spaced clusters.

D. Phase Fading and One Relay

Consider phase fading where is known only to node for
all . We prove the following geometric capacity result.

Theorem 6: Decode-and-forward achieves capacity with
phase fading if the relay is near the source. More precisely, if

(63)

then the capacity is

(64)

Proof: Using (51), in (12) is

(65)
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Fig. 18. Rates for one relay with phase fading, P = P = 10, and � = 2.

where is the real part of . Let be the integral in (65),
and note that for a random variable with

(66)

Jensen’s inequality [25, p. 25] thus gives , and this
implies that maximizes (65). The same arguments show
that is also best for the cut-set bound (5) (see Section
VII-F for a more general proof of this claim). Summarizing, the
capacity upper and lower bounds are (53) and (54), respectively,
both with . The bounds meet if (63) is satisfied.

Remark 33: Phase-fading relay channels are not degraded in
the sense of [4].

Remark 34: The optimality of for phase fading was
independently stated in [60, Lemma 1], [63, Sec. 2.3]. The fact
that decode-and-forward can achieve capacity with distributed
nodes first appeared in [34].

Remark 35: The capacity (64) is the rate of a distributed an-
tenna array with full cooperation even though the transmitting
antennas are not colocated.

Remark 36: Theorem 6 generalizes to Rayleigh fading, and
to other fading processes where the phase varies uniformly over
time and (see Theorem 8).

Remark 37: Theorem 6 (and Theorems 7–10 below) remains
valid for various practical extensions of our models. For ex-
ample, suppose that the source and relays can share extra in-
formation due to their proximity. Nevertheless, if the destina-
tion is far away and there is phase uncertainty in the

, then the capacity for this problem is the same
as when no extra information can be shared.

Remark 38: The capacity claim of Theorem 6 (and Theo-
rems 7–10) is not valid for half-duplex relays even if each node
is aware of the operating modes of all other nodes. The reason
is that one must introduce a time-sharing parameter, and this

parameter takes on different values for the capacity lower and
upper bounds. However, one can derive capacity theorems if
the time-sharing parameter is restricted to certain ranges [75].
For instance, this occurs if protocols restrict time to be shared
equally between transmission and reception.

The condition (63) is satisfied for a range of near zero.
For example, for the geometry of Fig. 15 with and

, the bound (63) is . Fig. 18 plots the
resulting cut-set and decode-and-forward rates for

and a range of . Fig. 18 also plots the rates of compress-and-
forward when the relay uses as for the no-fading
case. In fact, these rates are given by (55) and (56), i.e., they are
the same as for the no-fading case. We remark that compress-
and-forward performs well for all and even achieves capacity
for in addition to .

Consider next a two-dimensional geometry where the source
is at the origin and the destination is a distance of to the right
of the source. For the condition (63) is

(67)

The relay positions that satisfy (67) for and
are drawn as the shaded regions in Fig. 19. As

increases, this region expands to become all points inside the
circle of radius one around the origin, excepting those points
that are closer to the destination than to the source.

E. Phase Fading and Many Relays

Suppose there are nodes subject to phase fading. We have
the following generalization of Theorem 6.

Theorem 7: Decode-and-forward achieves capacity with
relays and phase fading if

(68)
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Fig. 19. Positions of the relay where decode-and-forward achieves capacity
with phase fading and P = P .

and the resulting capacity is

(69)

Note that the minimization in (68) does not include .
Proof: The optimal input covariance matrix is di-

agonal for both the cut-set and decode-and-forward versions of
(51). We defer a proof of this claim to the proof of Theorem 8.
Using (51), the resulting decode-and-forward rates (21) are

(70)

for . But the rate (70) with is
also in the cut-set bound (5), and (68) ensures that every other
mutual information expression in the the cut-set bound is larger
than one of the rates of (70). The condition (68) thus ensures
that both the cut-set and decode-and-forward rates are (69).

The bound (68) is satisfied if all relays are near the source.
For example, for the expression (68) is

(71)

The bound (71) is satisfied for fixed , , and if both
and are small as compared to .

As a second example, consider a two-dimensional geometry
and suppose the relays are in a circle of radius around the
source. Then if the destination is a distance of from the source,
we have . Suppose further that for all .
The left-hand side of (68) is then at most ,
while the right-hand side of (68) is at least (cf. (71)). The
bound (68) is thus satisfied if

(72)

The relays must therefore be in a circle of radius about
around the source for large .

As a third geometric example, consider a linear network as
in Fig. 15 but with relays placed regularly to the right of
the source at positions , where

(see also [32, Fig. 9]). Suppose again that
for all , and note that the right-hand side of (68) is

(cf. (71)). The bound (68) is thus satisfied if

(73)

Suppose we choose where is a positive
constant independent of . Multiplying both sides of (73) by

, we obtain

(74)

The expression (74) is clearly not satisfied if , but the left-
hand side of (74) is continuous and decreasing in . We upper-
bound the sum in (74) by the integral

(75)

The bound (74) is thus satisfied if and

(76)

But this implies there is an between and the right-hand side of
(76) such that (73) holds with equality. This choice for makes
(69) become

(77)

In other words, the capacity grows logarithmically in the
number of nodes (or relays). Other types of logarithmic scaling
laws were obtained in [32] and [51].

F. Phase Fading, Many Relays, and Multiple Antennas

Suppose we have phase or Rayleigh fading, many relays, and
multiple antennas. We prove the following general result.

Theorem 8: The best for both the cut-set bound (5) and
the decode-and-forward rate (21) are independent and Gaussian
if there is phase or Rayleigh fading with multiple antennas.
The best covariance matrices are . More-
over, decode-and-forward achieves capacity if in (21) is

. The resulting capacity is

(78)

where the integral is over all channel matrices

Proof: Using (51), we write the mutual information ex-
pression in (5) as

(79)
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where . For , we define

(80)

The determinant in (79) evaluates to

(81)

where the inequality follows because conditioning cannot in-
crease entropy (see [25, Sec. 16.8]). Equality holds in (81) if

and are statistically independent.
Observe that, in (79), we can replace with for all

because it is immaterial what phase we begin integrating from
for any . This step is valid for any fading process where
the have independent and uniform phases. Moreover, this
step is equivalent to using the same as originally, but re-
placing with . But this change makes all cross-corre-
lation matrices with change sign. We can thus
use the concavity of in positive-semidefinite , and
apply Jensen’s inequality to show that the mutual information
expressions cannot decrease if we make for all

. and are therefore independent. Re-
peating these steps for all input vectors, the best input distribu-
tion has independent . This implies that
equality holds in (81).

We next determine the best . Observe that, by the same
argument as above, we can replace the first columns of the
with their negative counterparts. This is equivalent to using the
same as originally, but replacing the first entry of
with . This in turn makes the entries of the first row and
column of change sign, with the exception of the diag-

onal element. Applying Jensen’s inequality, we find that
should be independent of the remaining .
Repeating these steps for all the entries of all the , we find
that the best are diagonal.

Finally, we can replace with for ,
where is an permutation matrix. Equivalently, we can
permute the diagonal elements of the without changing the
mutual information expressions. Applying Jensen’s inequality,
we find that the best input distributions are

(82)

where is the appropriately sized identity matrix. We have thus
proved that the optimal are independent and satisfy (82) for
the cut-set bound (5). The same claim can be made for the de-
code-and-forward rate (21) by using the same arguments. Using
(51), the decode-and-forward rates (21) are thus

(83)

for , where the integral is over all channel
matrices . The rest of
the proof is similar to the proof of Theorem 7, i.e., if the rate
with in (83) is the smallest of the rates, then
this rate is the capacity.

Remark 39: Theorem 8 appeared in [67]. The theorem was
also derived in [68], [76] for one relay by using the proof tech-
nique of [67].

Remark 40: It is clear that Theorem 8 generalizes to many
other fading processes where the phase varies uniformly over
time and the interval , including fading processes with
memory. The main insight is that, because the transmitting
nodes do not have knowledge about their channel phases to the
destination, their best (per-letter) inputs are independent when
the destination is far from all of them.

Remark 41: The geometries for which one achieves capacity
can be computed, but they do depend on the type of fading,
the number of antennas, and the attenuation exponent. However,
one always achieves capacity if all the relays are near the source
node (but are not necessarily colocated with it).

For example, suppose we have phase fading with one relay,
, and , i.e., the destination has two antennas.

The rate (78) is then

(84)

where and represent phase differences and

(85)

Recall from the proof of Theorem 8 that (84) is .
For the geometry of Fig. 15, capacity is therefore achieved if
(84) is less than . That is,
one achieves capacity if

(86)

Again, this condition is satisfied for a range of near zero.
Fig. 20 plots the cut-set and decode-and-forward rates for

and the same range of as in Fig. 18. We have
also plotted the decode-and-forward rates from Fig. 18, and the
compress-and-forward rates when the relay again uses

. The latter rates are now

(87)

where the choice

(88)

satisfies (30) with equality. Compress-and-forward again per-
forms well for all and achieves capacity for and .

Fig. 21 plots the region of relay positions that satisfy (86) for
a two-dimensional geometry (cf. Fig. 19). Again, as increases,
this region expands to become all points inside the circle of ra-
dius one around the origin, except those points that are closer
to the destination than to the source. Observe that the regions
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Fig. 20. Rates for a single-relay network with phase fading, n = n = 1; n = 2; P = P = 10; and � = 2.

Fig. 21. Positions of the relay where decode-and-forward achieves capacity
with phase fading, n = n = 1; n = 2, and P = P = 10.

are much smaller than for when is small. At the same
time, the rates with are much larger than with .

Remark 42: An important limitation of our models is that the
network operates synchronously. The transmitting nodes might
therefore need to be symbol synchronized, and this is likely dif-
ficult to implement in wireless networks. However, we point out
that as long as the signals are band limited, the decode-and-for-
ward strategies with independent do not require symbol syn-
chronization between nodes. This statement can be justified as
follows [75]. Suppose the , are samples of

band-limited waveforms. The are sufficient statistics
about the transmitted signals if the sampling rates are at or above
the Nyquist rate [96, p. 53]. Suppose further that one uses the
regular encoding/sliding-window decoding version of the de-
code-and-forward strategy. Node then decodes after block
by interpolating its , by using
different delays for every . This will permit communication at

the rates (21) because, ignoring boundary effects, the interfer-
ence energy in every block is unaffected by the interpolator
time shifts (the energy of a time-shifted and Nyquist-rate sam-
pled version of a band-limited signal is the same for every time
shift [77, Ch. 8.1]).

G. Fading With Directions

Single-bounce fading and fading with directions can be dealt
with as above, in the sense that the best input distribution has
independent . However, now the best

are not necessarily given by (82) and they might not be
diagonal. For example, suppose we have Rayleigh fading with
directions, i.e., has Gaussian entries. It is unclear what the
best choice of should be because each goes through
multiple and . Nevertheless, capacity is again achieved
if all relays are near the source node, because the best choice of

will be the same for both (5) and (21).
There are naturally some simple cases where we can say

more. For example, suppose there is single-bounce fading,
i.e., we have where and are

and matrices, respectively.

Proposition 3: Consider single-bounce fading with
, and for all

. Decode-and-forward achieves capacity if

(89)

and the resulting capacity is

(90)

The condition (89) is identical to (68), but the capacity (90)
increases with .

Proof: We effectively have parallel phase fading chan-
nels between the nodes. Using the same steps as in the proof of
Theorem 8, we find that the best input covariance matrices are
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given by (82). Using (51), the decode-and-forward rates (21) are
thus

(91)

for . The remaining steps are the same as in
the proof of Theorem 7 or Theorem 8.

H. Multisource Networks and Phase Fading

The capacity theorems derived above generalize to several
multisource and multidestination networks. For instance, con-
sider MARCs with phase fading. We find that the best input dis-
tribution for (24) and (25) is Gaussian (see Section VII-A). We
further find that is best, i.e., the are indepen-
dent. One again achieves capacity if the source and relay nodes
are near each other, and we summarize this with the following
theorem.

Theorem 9: The decode-and-forward strategy of Section
IV-D achieves all points inside the capacity region of MARCs
with phase fading if

(92)

and the capacity region is the set of satisfying

(93)

Proof: The proof is omitted. The idea is to use (24), (25),
and the same steps as the proof of Theorem 6.

Generalizations of Theorem 9 to include more sources and
relays, as well as multiple antennas and Rayleigh fading, are
clearly possible. Related capacity statements can also be made
for BRCs. For example, suppose we broadcast a common mes-
sage to two destinations with . We apply a
cut-set bound [25, p. 445] and use (28) with independent
and to prove the following theorem.

Theorem 10: The decode-and-forward strategy of Sec-
tion IV-E achieves the capacity of BRCs with phase fading and
with a common message if

(94)

and the resulting capacity is

(95)

Proof: The proof uses the same steps as the proof of The-
orem 6, and is omitted.

Theorem 10 generalizes to other fading models. However,
some care is needed because the BRCs might not be degraded.

I. Quasi-Static Fading

Quasi-static fading has the chosen randomly at the be-
ginning of time and held fixed for all channel uses [89, Sec. 5].
The information rate for a specified is therefore a random

variable that is a function of the fading random variables
[98, p. 2631]. The resulting analysis is rather more complicated
than for ergodic fading. We illustrate the differences by studying
one relay, single-antenna nodes, and phase fading.

Suppose we use decode-and-forward with irregular encoding
and successive decoding. This strategy will not work well
because its intermediate decoding steps can fail. Consider in-
stead regular encoding with either backward or sliding-window
decoding. The destination will likely make errors if either

or is smaller than
the code rate , because in the second case the relay likely
transmits the wrong codewords. We thus say that an outage
occurs if either of these information expressions is too small.

The best for all our bounds and for any real-
ization of and is again zero-mean Gaussian
(see Section VII-A), but one must now carefully adjust

. Recall that , and let
where is the phase of . The minimum

in (12) is thus the minimum in (54) for a fixed , i.e., it is the
random variable

(96)

that is a function of the random variable . Since is uniform
over , we can restrict attention to real and nonnegative .
The decode-and-forward outage probability is thus

(97)

We similarly denote the best possible outage probability at rate
by .
Continuing with (97), observe that if

(98)

then . For smaller , we infer from (96) that one
should choose as large as possible, i.e., choose the positive
satisfying

(99)

The random component of (96) is that has the cumu-
lative distribution

(100)

Using (99) and (100), we compute

(101)
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Fig. 22. Outage rates for decode-and-forward and a single-relay network with phase fading, P = P = 10, and � = 2.

where

(102)

We remark that clearly implies .
Also, if then . However, decode-
and-forward is not necessarily optimal when .

A lower bound on can be computed using (53) and
(100). We have

(103)

If is less than the far right-hand side of (103), we have

(104)

where

(105)

To illustrate these results, consider again the geometry of
Fig. 15. We plot the decode-and-forward rates for

as the solid lines in Fig. 22 (the rates for
satisfying are all the same). Observe that
with is the same as with phase fading (see Fig.
18). Similarly, with is the same as without
phase fading (see Fig. 16). The dash-dotted curves are upper
bounds on the best possible rates for .
These rates were computed with (103)–(105), and they ap-
proach the upper bound in Fig. 16 as .

Remark 43: The analysis for Rayleigh fading is similar to
the above. The information rate is now the random variable

(106)

that is a function of the Gaussian fading random variables
and . Note that the two expressions inside the

minimization are independent random variables, which helps
to simplify the analysis somewhat. The outage statistics for the
first random variable can be computed by using the incomplete
gamma function as in [89, Sec. 5.1].

Remark 44: Suppose that, instead of quasi-static fading, we
have block fading where the are chosen independently from
block to block. The relay outage probability with decode-and-
forward is then the same from block to block, but the destination
outage probability depends on whether the relay made an error
in the previous block. Suppose the relay outage probability is

, and the destination outage probability is if the relay sends
the correct codeword. It seems natural to define the overall des-
tination outage probability to be . One should
thus minimize this quantity rather than the probability on the
right-hand side of (97).

Remark 45: Suppose that only the channel amplitudes ex-
hibit quasi-static fading, while the channel phases behave in
an ergodic fashion. This problem was studied in [60], and it is
easier to treat than the above problem because the best correla-
tion coefficient is always zero. One thus gets more extensive
“quasi-static” capacity results than those described here.
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VIII. CONCLUSION

We developed several coding strategies for relay networks.
The decode-and-forward strategies are useful for relays that are
close to the source, and the compress-and-forward strategies are
useful for relays that are close to the destination (and some-
times even close to the source). A strategy that mixes decode-
and-forward and compress-and-forward achieves capacity if the
network nodes form two closely spaced clusters. We further
showed that decode-and-forward achieves the ergodic capacity
of a number of wireless channels with phase fading if phase
information is available only locally, and if all relays are near
the source. The capacity results extend to multisource problems
such as MARCs and BRCs.

There are many directions for further work on relay networks.
For example, the fundamental problem of the capacity of the
single-relay channel has been open for decades. In fact, even
for the Gaussian single-relay channel without fading we know
capacity only if the relay is colocated with either the source or
destination. Another challenge is designing codes that approach
the performance predicted by the theory. First results of this
nature have already appeared in [99].

APPENDIX A
DECODE-AND-FORWARD FOR MARCS

Consider MARCs with source nodes, a relay node ,
and a destination node . In what follows, we give only a sketch
of the proof because the analysis is basically the same as for
MAC decoding (see [25, p. 403]) and MAC backward decoding
(see [21, Ch. 7]).

Let and . For
rates, we write . Each source node sends
message blocks in transmission blocks.

Random Code Construction:

1) For all , choose i.i.d. with

Label these .
2) For and for each , choose i.i.d. with

Label these .
3) For all , choose an with

Label this vector .

Encoding: For block encoding proceeds as follows.

1) Source sends if if
, and if .

2) The relay knows from decoding step 1) and
transmits .

Decoding: Decoding proceeds as follows.

1) (At the relay) The relay decodes the messages after
block by using and by assuming its past mes-
sage estimates are correct. The decoding problem is the
same as for a MAC with side information and ,
and one can decode reliably if (see [25, p. 403])

(107)

for all , where is the complement of in .
2) (At the destination) The destination waits until all

transmission is completed. It then decodes for
by using its output block

and by assuming its message estimates are
correct. The techniques of [21, Ch. 7] ensure that one can
decode reliably if

(108)

for all , where is the complement of in .

Remark 46: For and , we recover (24)
and (25).

Remark 47: The above rates might be improved by intro-
ducing a time-sharing random variable as described in [25, p.
397] (see also [100]).

APPENDIX B
DECODE-AND-FORWARD FOR BRCS

Consider a BRC with four nodes as in Sections III-D and
IV-E. We again give only a sketch of the proof, albeit a detailed
one, because the analysis is based on standard arguments (see
[25, Sec. 14.2] and [82]–[85]).

The source node divides its messages into
blocks for , and transmits these
in blocks. The have the respective rates

for each . The first encoding step is to map these
blocks into new blocks with respective rates

(see [84, Lemma 1]). The mapping is restricted to
have the property that the bits of are in ,
and that the bits of are in . This can be
done in one of two ways, as depicted in Fig. 23 (the bits
in and must be the same on the right in Fig. 23). The
corresponding restrictions on the rates are

(109)

The encoding also involves two binning steps, for which we
need rates and satisfying

(110)

Random Code Construction: We construct the following
codebooks independently for all blocks .
However, for economy of notation, we will not label the code-
words with their block. The reason we generate new codebooks



KRAMER et al.: COOPERATIVE STRATEGIES AND CAPACITY THEOREMS FOR RELAY NETWORKS 3057

Fig. 23. Reorganization of the message bits for BRC coding.

for each block is to guarantee statistical independence for
certain random coding arguments.

1) Choose i.i.d. with

Label these .
2) For each choose i.i.d. with

Label these .
3) For each choose i.i.d. with

Label these .
4) For each choose i.i.d. with

Label these .
5) Randomly partition the set into cells

with .
6) Randomly partition the set into cells

with . Note that we are abusing notation
by not distinguishing between the cells in this step and the
previous step. However, the context will make clear which
cells we are referring to.

7) For each choose an with

Label this vector .

Encoding: For block encoding proceeds as follows.

1) Map into as discussed above.
Set .

2) The source node finds a pair

with , and such that this pair is
jointly typical with and .
The source node transmits .

3) The relay knows from decoding step 1) and trans-
mits .

Fig. 24. Achievable rate region for the BRC.

The second encoding step can be done only if there is a pair of
codewords satisfying the desired conditions. Standard
binning arguments (see [85]) guarantee that such a pair exists
with high probability if is large, is small, and

(111)

Decoding: After block decoding proceeds as follows.

1) (At the relay) The relay decodes by using and by
assuming its past message estimates are correct. Decoding
can be done reliably if

(112)

2) (At the destinations) Node 3 decodes and
by using its past two output blocks and (see
Fig. 11), and by assuming its past message estimates are
correct. Similarly, node 4 decodes and by
using and , and by assuming its past message
estimates are correct. The techniques of [20], [32], [33]
ensure that both nodes decode reliably if

(113)

Nodes 3 and 4 can recover and from the respec-
tive and . They can further recover and

from the respective and .

The rate region of (26) has the form depicted in Fig. 24 (cf.
[83, Fig. 1]). We proceed as in [82, Sec. III] and show that one
can approach the corner point

(114)

where we recall that

and is fixed. We begin by choosing

(115)

for a small positive . This choice satisfies (110) and (111). We
next consider two cases separately.
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1) Suppose we have . We choose

(116)

to satisfy (109), (112), and (113). We can thus approach
the corner point (114) by letting .

2) Suppose we have . We choose

(117)

which satisfies (109), (112), and (113) (note that we are
using the mapping on the left in Fig. 23 because we have

). We can again approach the corner point (114)
by letting .

One can thus approach both corner
points in Fig. 24. One can approach the corner points by
operating at one of the corner points and
assigning all of the bits to either or . The remaining
points in the region of Fig. 24 are achieved by time sharing.

APPENDIX C
AUXILIARY LEMMA

The set of -typical vectors of length with re-
spect to is defined as (see [4, Definition 1])

for all

(118)

where is the alphabet of and the entries of , and is
the number of times the letter occurs in . We will need the
following simple extension of Theorem 14.2.3 in [25, p. 387].

Lemma 1: Consider the distribution , and
let be a vector of -tuples

that are chosen i.i.d. with distribution .
The probability that is in

is bounded by

(119)

where

(120)

Proof: We omit the proof because of its similarity to [25,
p. 387]. Lemma 1 includes unconditioned bounds by making
a constant.

Fig. 25. The code used by node 2 for compress-and-forward.

APPENDIX D
PROOF OF THEOREM 3

Our proof follows closely the proof of Theorem 6 in [4]. Re-
call that and .
We write . For rates, we write

. We send message blocks in
transmission blocks. The code construction is illustrated

for in Fig. 25, and it uses rates , that will be
chosen during the course of the proof.

Random Code Construction:
1) Choose i.i.d. with

Label these .
2) For all choose i.i.d. with

Label these .
3) For all and for each , choose i.i.d.

with

Label these .
4) For all and for each choose

i.i.d. with

Label these .
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5) For all , randomly partition the set
into cells .

We remark that the are decoded by the destination node
and the relays, while the are decoded by the destination node
only. One can think of the as cloud centers (coarse spacing)
and the as clouds (fine spacing).

Encoding:
1) Let be the message in block . The source node sends

.
2) For all , node knows from decoding

step 4) described below. Node chooses so that
, and it transmits .

Decoding: After block decoding proceeds as follows.
1) (At the destination) The destination first decodes the

indices using . This can be done reliably if (see
[25, p. 403])

(121)

for all , where is the complement of in . The
destination next decodes . This can be done reliably if

(122)

for all .
2) (At the destination) The destination determines the set

of such that

(123)

is jointly -typical, where the and were ob-
tained from the first decoding step. The destination node
declares that was sent in block if

(124)

where .

We compute the error probability of this decoding step, i.e.,
the probability that was chosen incorrectly. We first par-
tition into sets

for

for (125)

where . These sets could be empty. We proceed to deter-
mine their average size. We follow [4] and write for the
event that all decisions in block were correct. We have

(126)
where

if (123) is jointly typical
otherwise.

(127)

Now if then and the with are
jointly independent given . Lemma 1 ensures that

(128)

There are choices for . Hence, using the
union bound, we upper-bound by

(129)

As long as the of block have been decoded correctly, an
error is made only if there is a in
which maps back to . We thus compute

error in step

event (124) occurs

event (124) occurs

for all

(130)

Inserting (129) into (130), we see that as long as

(131)

for all then the destination can determine reli-
ably.

Decoding (continued):
3) (At the destination) Suppose the , and

were decoded correctly. The destination declares
that was sent in block if

(132)

is -typical. The Markov lemma (see [93, Lemma 4.1])
ensures that the probability that (132) is -typical ap-
proaches as for the transmitted . Using
Lemma 1, the probability that there exists a
such that satisfies (132) is upper-bounded by

(133)

Applying , we find that if

(134)
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then this decoding step can be made reliable.
4) (At the relays) Relay estimates the with , which

can be done reliably if

(135)

for all . The set is again the complement of
in , but one can remove the in the conditioning of

(135). Suppose the estimates of the are correct.
Relay chooses any of the so that

is jointly -typical. The probability that there is no such
is bounded by

(136)

as follows from Lemma 1. We use to
bound

(137)

This expression can be made to approach with if

(138)

for .

Finally, we combine (131) and (138), and use (see (34))

to obtain the left-hand side of (33). We combine (121), (122),
and (135) to obtain the right-hand side of (33).

APPENDIX E
PROOF OF THEOREM 5

One could prove Theorem 5 by using backward or sliding-
window decoding. Instead, we use the proof technique of [4].
The code construction is illustrated in Fig. 26.

Random Code Construction:

1) Choose i.i.d. with

Label these .
2) For each , choose i.i.d. with

Label these .
3) For each choose i.i.d. with

Label these .

Fig. 26. The code construction for Theorem 5.

4) Choose i.i.d. with

Label these .
5) For each choose i.i.d. with

Label these .
6) Randomly partition the set into cells

.
7) Randomly partition the set into cells

.

Encoding:

1) The source transmits in block
. It chooses so that .

2) Node 2 knows from decoding step 1) described
below, and it chooses so that .
Node 2 transmits in block .

3) Node 3 knows from decoding step 4) described
below, and it chooses so that . Node 3
transmits in block .
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Decoding: After block decoding proceeds as follows.

1) (At node 2) Node 2 chooses (one of) the message(s)
so that is jointly
typical. This step can be made reliable if

(139)

2) (At the destination) The destination decodes and .
This step can be made reliable if

(140)

(141)

(142)

3) (At the destination) The destination determines the set
of such that

is jointly typical. The intersection of this set with the in
determines . The correct can be found

reliably if (see (131))

(143)

This is identical to step (ii) of the proof of [4, Theorem 6].
4) (At the destination) The destination chooses so

that

is jointly typical. Using Lemma 1, this step can be made
reliable if

(144)

5) (At the destination) The destination determines the set
of such that

is jointly typical. The destination knows and
generates the intersection of with those in

. The correct can be found reliably if

(145)

This is the analog of step (iii) of the proof of [4, The-
orem 6].

6) (At node 3) Node 3 decodes using . This can be
done reliably if

(146)

Finally, node 3 tries to find a such that

is jointly typical. Such a exists with high probability
for large if

(147)

This is the analog of step (iv) of [4, Theorem 6].

In summary, is bounded by (139) and (145). Inserting
(144) into (145), we have

(148)
Combining (147) with (143) yields

(149)

where we have used (47). Furthermore, and must satisfy
(140)–(142) and (146), i.e., we have

(150)

(151)

(152)

The inequalities (148)–(152) correspond to those in (45)–(46).
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