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1 Introduction

This chapter, which deals with multi-output Boolean functions viewed from
a cryptographic viewpoint, follows the previous one (dedicated to Boolean
functions). It focuses on functions from Fn2 to Fm2 (where F2 is the finite
field with two elements, denoted by B in some chapters of the present vol-
ume), but many results can also be stated for mappings between Abelian
groups (see [37], for instance). We refer to the chapter “Boolean Functions
for Cryptography and Error Correcting Codes” for all the definitions and
properties concerning Boolean functions and error correcting codes, that will
be needed in the present chapter. As in the chapter “Boolean Functions for
Cryptography and Error Correcting Codes”, additions of bits performed not
modulo 2 will be denoted by +, and additions calculated modulo 2 will be
denoted by ⊕. All the multiple sums calculated in characteristic 0 will be
denoted by

∑
i and all the sums calculated modulo 2 will be denoted by

⊕
i.

For simplicity and because there will be no ambiguity, we shall denote by +
the addition of vectors of Fn2 or of elements of the finite field F2n .

Let n andm be two positive integers. The mappings from the vectorspace
Fn2 , of all binary vectors of length n, to the vectorspace Fm2 , are called (n,m)-
functions. Such function F being given, the Boolean functions f1, . . . , fm
defined, at every x ∈ Fn2 , by F (x) = (f1(x), . . . , fm(x)), are called the
coordinate functions of F . When the numbers m and n are not specified,
(n,m)-functions are called multi-output Boolean functions, vectorial Boolean
functions or S-boxes1.

They play a central role in iterative block ciphers. The round functions
of these ciphers consist of vectorial Boolean functions combined in different
ways involving the key, and the whole ciphers are finally formed by iterating
certain numbers of rounds. See the chapter “Boolean Functions for Cryp-
tography and Error Correcting Codes” for figures displaying the places of
the S-boxes in the two main block ciphers: DES and AES.
The main attacks on block ciphers are the following. The differential at-
tack , introduced by Biham and Shamir [7], uses the existence of ordered
pairs (α, β) of binary strings such that, a plaintext block m being randomly
chosen, the bitwise difference between the ciphertexts c and c′ corresponding
to m and m ⊕ α is more likely equal to β than if c and c′ were randomly
chosen; let us call a differential such an ordered pair (α, β). The related

1“S” for “Substitution”. The term of S-box is most often used to designate more pre-
cisely those vectorial Boolean functions whose role is to provide confusion (see Subsection
4.1 of the chapter “Boolean Functions for Cryptography and Error Correcting Codes” for
the meaning of this term).
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criterion on the S-boxes used in the round functions of the cipher is that the
output to their derivatives (see definition at Proposition 2) be as uniformly
distributed as possible (except for the derivatives at 0, obviously). There
are several ways to mount the attack of differential cryptanalysis. The most
common one is to use differentials for the reduced cipher , that is, the input
to the last round (i.e. the cipher obtained from the original one by removing
its last round); this allows to distinguish the reduced cipher from a random
permutation and the existence of such distinguisher allows to recover the
key used in the last round (either by an exhaustive search if this key is
shorter than the master key, or by using specificities of the cipher). The
linear attack , introduced by Matsui [91], and based on an idea from [105],
uses as distinguishers triples (α, β, γ) of binary strings such that, a plain-
text block m and a key k being randomly chosen, and α ·m denoting the
usual inner product, the bit α ·m ⊕ β · c ⊕ γ · k has (significantly enough)
a probability different from 1/2 of being null. The related criterion on the
S-boxes used in the round functions of the cipher is that the linear com-
binations, with coefficients not all null, of the coordinate functions of each
S-box (the so-called component functions) have nonlinearities (see definition
in the chapter “Boolean Functions for Cryptography and Error Correcting
Codes”, at Subsection 4.1) as high as possible. The higher order differential
attack [87] exploits the fact that the algebraic degree of the S-box is low and
the interpolation attack [76] is efficient when the degree of the univariate
polynomial representation of the S-box over F2n – see the next page – has
low degree. Algebraic attacks also exist on block ciphers (see e.g. [48]),
exploiting the existence of multivariate equations involving the input to the
S-box and its output (an example of such equation is xy = 1 in the case of
the AES), but their efficiency has to be more precisely studied.

In the pseudo-random generators of stream ciphers, (n,m)-functions can
be used to combine the outputs to n linear feedback shift registers (LFSR),
or to filter the content of a single one, generating then m bits at each clock
cycle instead of only one, which increases the speed of the cipher (but risks
decreasing its robustness). The attacks, described in the chapter “Boolean
Functions for Cryptography and Error Correcting Codes”, are obviously also
efficient on these kinds of ciphers.

1.1 Representation of vectorial functions

• The notion of algebraic normal form of Boolean functions can easily be
extended to (n,m)-functions. Such a function F is uniquely represented as
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a polynomial on n variables with coefficients in Fm2 :

F (x) =
∑

I∈P(N)

aI

(∏
i∈I

xi

)
=

∑
I∈P(N)

aI x
I , (1)

where P(N) denotes the power set of N = {1, . . . , n}, and aI belongs to
Fm2 . This polynomial is called again the algebraic normal form (ANF) of F .
Its existence and uniqueness, can be deduced from those of the ANF of the
coordinate functions of F . According to the relations recalled at Subsection
2.1 of the chapter “Boolean Functions for Cryptography and Error Correct-
ing Codes”, aI equals

∑
x∈Fn

2 / supp(x)⊆I
F (x) (this sum being calculated in

Fn2 ). Conversely, we have F (x) =
∑

I⊆supp(x) aI .
The algebraic degree of the function is by definition the degree of its ANF:
d◦F = max{|I|/ aI 6= (0, . . . , 0); I ∈ P(N)}. It therefore equals the max-
imum algebraic degree of the coordinate functions of F . It is a right and
left affine invariant (that is, its value does not change when we compose F ,
on the right or on the left, by an affine automorphism). Another notion of
degree is also relevant to cryptography: the minimum algebraic degree of
all the nonzero linear combinations of the coordinate functions of F , often
called the minimum degree.
• A second representation of (n,m)-functions exists when m = n: we endow
Fn2 with the structure of the field F2n , as explained in the chapter “Boolean
Functions for Cryptography and Error Correcting Codes” (see “The trace
representation”, at Subsection 2.1); any (n, n)-function F then admits a
unique representation as a univariate polynomial over F2n , of degree at most
2n − 1:

F (x) =
2n−1∑
j=0

δjx
j , δj ∈ F2n . (2)

Indeed, the (linear) mapping which maps any such polynomial to the corre-
sponding (n, n)-function is clearly linear and has kernel {0} (since a nonzero
univariate equation of degree at most 2n − 1 over a field can not have more
than 2n − 1 solutions). The dimensions of the vectorspaces of, respectively,
all such polynomials, and all (n, n)-functions, being equal to each other, this
mapping is bijective.
The way to obtain the ANF from this univariate polynomial representation
is the following: let us change x into

∑n
i=1 xiαi, where (α1, . . . , αn) is a basis

of the F2-vectorspace F2n , and write the binary expansion of j:
∑n−1

s=0 js2
s,
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js ∈ {0, 1}. We have:

F (x) =
2n−1∑
j=0

δj

(
n∑
i=1

xiαi

)j

=
2n−1∑
j=0

δj

(
n∑
i=1

xiαi

)Pn−1
s=0 js2

s

=
2n−1∑
j=0

δj

n−1∏
s=0

(
n∑
i=1

xiα
2s

i

)js
.

Expanding these last products, simplifying and decomposing again over the
basis (α1, . . . , αn) will give the ANF of F .
It is then possible to read the algebraic degree of F directly on the univariate
polynomial representation: let us denote by w2(j) the number of nonzero co-
efficients js in the binary expansion

∑n−1
s=o js2

s of j, i.e. w2(j) =
∑n−1

s=0 js .
The number w2(j) is called the 2-weight of j. Then, function F has algebraic
degree maxj=0,...,2n−1/ δj 6=0w2(j). Indeed, according to the above equalities,
its algebraic degree is clearly upper bounded by this number, and it can
not be strictly smaller, because the number of those (n, n)-functions of alge-
braic degrees at most d equals the number of those univariate polynomials∑2n−1

j=0 δjx
j , δj ∈ F2n , such that maxj=0,...,2n−1/ δj 6=0w2(j) ≤ d.

In particular, F is linear (resp. affine) if and only if F (x) is a linearized
polynomial over F2n :

∑n−1
j=0 δjx

2j
, δj ∈ F2n (resp. a linearized polynomial

plus a constant).
- If m is a divisor of n, then any (n,m)-function F can be viewed as a func-
tion from F2n to itself, since F2m is a sub-field of F2n . Hence, the function
admits a univariate polynomial representation. More precisely, it can be
represented in the form trn/m(

∑2n−1
j=0 δjx

j), where trn/m is the trace func-
tion from F2n to F2m . Indeed, there exists a function G from F2n to F2n such
that F equals trn/m ◦G (for instance, G(x) = λF (x), where trn/m(λ) = 1).
• We shall call Walsh transform of F the function which maps any (u, v) ∈
Fn2 × Fm2 ∗ to

∑
x∈Fn

2
(−1)v·F (x)⊕u·x (that is, the value at u of the discrete

Fourier transform of the sign function (−1)v·F , or in other terms the Walsh
transform of the Boolean function v · F ). K. Nyberg derives from it in
[97] a polynomial representation, that she calls the multidimensional Walsh
transform: she defines the polynomial

W(F )(x1, · · · , xm) =
∑
x∈Fn

2

m∏
j=1

x
fi(x)
j ∈ Z[x1, · · · , xm]/(x2

1 − 1, · · · , x2
m − 1),
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where f1, · · · , fm are the coordinate functions of F and the multidimensional
Walsh transform maps every linear (n,m)-function L to the polynomial
W(F +L)(x1, · · · , xm). This is a representation with uniqueness of F , since,
for every L, the knowledge ofW(F+L) is equivalent to that of the evaluation
of W(F +L) at (χ1, · · · , χm) for every choice of χj , j = 1, · · · ,m, in the set
{−1, 1} of the roots of the polynomial x2

j−1. For such a choice, let us define
the vector v ∈ Fm2 by vj = 1 if χj = −1 and vj = 0 otherwise. Then this
evaluation equals

∑
x∈Fn

2
(−1)v·F (x)⊕u·x, where u =

∑m
j=1 vjLj ∈ Fn2 , where

Lj is the vector such that the j-th coordinate of L(x) equals Lj ·x. It is then
a simple matter to see that knowing the multidimensional Walsh transform
of F is equivalent to knowing its Walsh transform. Obviously and for the
same reasons, the multidimensional Walsh transform satisfies a Paeseval’s
relation.

1.2 Balanced functions

An (n,m)-function F is called balanced if it takes every value of Fm2 the
same number 2n−m of times. Let us denote, for every b ∈ Fm2 , by ϕb the
indicator function of the pre-image F−1(b) = {x ∈ Fn2/F (x) = b}, defined
by ϕb(x) = 1 if F (x) = b and ϕb(x) = 0 otherwise, then, F is balanced if
every such function ϕb has Hamming weight 2n−m.
Obviously, the balanced (n, n)-functions are the permutations on Fn2 .
The S-boxes, used in block or stream ciphers, are preferably balanced.

Proposition 1 [89] An (n,m)-function is balanced if and only if every
nonzero linear combination of its coordinate functions is balanced, or equiv-
alently, if and only if the Boolean function v ·F is balanced for every v ∈ Fm2 ,
v 6= 0.

Proof. The function ϕb being defined as above, the relation:∑
v∈Fm

2

(−1)v·(F (x)+b) =
{

2m if F (x) = b
0 otherwise

= 2m ϕb(x), (3)

is valid for every x ∈ Fn2 , every b ∈ Fm2 and every (n,m)-function F , since
the function v 7→ v · (F (x) + b) is linear. Thus:∑

x∈Fn
2 ;v∈Fm

2

(−1)v·(F (x)+b) = 2m |F−1(b)| = 2m wH(ϕb). (4)

Hence, the discrete Fourier transform of the function v 7→
∑

x∈Fn
2
(−1)v·F (x)

equals the function b 7→ 2m |F−1(b)|, and F is balanced if and only if the
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function v 7→
∑

x∈Fn
2
(−1)v·F (x) is null on Fm2 ∗. �

The notion of covering sequence of a balanced Boolean function has been
generalized to vectorial functions and the properties of this generalization
have been studied in [42].

The notion of algebraic immunity of S-boxes has been studied in [1].

2 Nonlinearities of S-boxes

2.1 Nonlinearity of S-boxes in block ciphers; bent, almost
bent and almost perfect nonlinear functions

A generalization to (n,m)-functions of the notion of nonlinearity of Boolean
functions has been introduced by Nyberg [93] and studied by Chabaud and
Vaudenay [44]:

Definition 1 The nonlinearity NL(F ) of an (n,m)-function F is the mini-
mum nonlinearity of all the component functions x ∈ Fn2 7→ v ·F (x), v ∈ Fm2 ,
v 6= 0.

In other words, NL(F ) equals the minimum Hamming distance between all
the component functions of F and all affine functions on n variables. This
generalization is closely related to the linear attack (see introduction).
The nonlinearity of S-boxes is clearly a right and left affine invariant and
the nonlinearity of an S-box F does not change if we add to F an affine
function. Moreover, if A is a surjective linear (or affine) function from
Fp2 (where p is some positive integer) into Fn2 , then it is easily shown that
NL(F ◦A) = 2p−nNL(F ).
According to the equality relating the nonlinearity of a Boolean function to
the maximum magnitude of its Walsh transform, we have:

NL(F ) = 2n−1 − 1
2

max
v∈Fm

2
∗; u∈Fn

2

∣∣∣∣∣∣
∑
x∈Fn

2

(−1)v·F (x)⊕u·x

∣∣∣∣∣∣ . (5)

Note that “ max
v∈Fm

2
∗; u∈Fn

2

” can be replaced by “ max
(u,v)∈Fn

2×Fm
2 ;(u,v) 6=(0,0)

”. Hence,

if n = m and if F is a permutation, then F and its inverse F−1 have the
same nonlinearity (change the variable x into F−1(x).

We shall call Walsh spectrum of F the multi-set of all the values
∑

x∈Fn
2
(−1)v·F (x)⊕u·x

of the Walsh transform of F , where u ∈ Fn2 , v ∈ Fm2 ∗, extended Walsh spec-
trum of F the multi-set of their absolute values, and Walsh support of F the
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set of those (u, v) such that
∑

x∈Fn
2
(−1)v·F (x)⊕u·x 6= 0.

Remark. We have∑
x∈Fn

2

(−1)v·F (x)⊕u·x =
∑
b∈Fm

2

ϕ̂b(u)(−1)v·b (6)

where ϕ̂b is the discrete Fourier transform of the Boolean function ϕb.
Also, if we denote by GF the graph {(x, y) ∈ Fn2 × Fm2 / y = F (x)} of F ,
and by 1GF

its indicator, then we have
∑

x∈Fn
2
(−1)v·F (x)⊕u·x = 1̂GF

(u, v).

Note that, if we write the values of the function 1̂GF
in a 2m × 2n matrix

(in which the term located at the line indexed by v ∈ Fm2 and at the column
indexed by u ∈ Fn2 equals 1̂GF

(u, v)), then, the matrix corresponding to the
composition F ◦H of F with an (r, n)-function H, equals the product (in the
same order) of the matrices associated to F and H, divided by 2n. Indeed,
for every w ∈ Fr2 and every v ∈ Fm2 , we have∑

u∈Fn
2

1̂GF
(u, v)1̂GH

(w, u) =
∑

u∈Fn
2 ;x∈Fr

2;y∈Fn
2

(−1)v·F (y)⊕u·y⊕u·H(x)⊕w·x

= 2n
∑

x∈Fr
2;y∈Fn

2 / y=H(x)

(−1)v·F (y)⊕w·x

= 2n1̂GF◦H
(w, v),

since
∑

u∈Fn
2
(−1)u·y⊕u·H(x) equals 2n if y = H(x), and is null otherwise. �

Relation with linear codes As observed in [36, 107], there is a relation-
ship between the maximum possible nonlinearity of (n,m)-functions and
the possible parameters of the supercodes of the Reed-Muller code of or-
der 1. Let C be a linear [2n,K,D] binary code including the Reed-Muller
code RM(1, n) as a subcode. Let (b1, . . . , bK) be a basis of C completing
a basis (b1, . . . , bn+1) of RM(1, n). The n-variable Boolean functions cor-
responding to the vectors bn+2, . . . , bK are the coordinate functions of an
(n,K − n − 1)-function whose nonlinearity is D. Conversely, if D > 0 is
the nonlinearity of some (n,m)-function, then the linear code equal to the
union of the cosets v · F + RM(1, n), where v ranges over Fm2 , has pa-
rameters [2n, n+m+ 1, D]. Existence and non-existence2 results on highly
nonlinear vectorial functions are deduced in [107] and upper bounds on the
nonlinearity of (n,m)-functions are derived in [38].

2Using the linear programming bound due to Delsarte.
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2.1.1 The upper bounds on NL(F ) and the functions achieving
them

Covering radius bound: the covering radius bound NL(f) ≤ 2n−1 −
2n/2−1, valid for every n-variable Boolean function, is a fortiori valid for
every (n,m)-function:

NL(F ) ≤ 2n−1 − 2n/2−1. (7)

Definition 2 An (n,m) function is called bent if it achieves the covering
radius bound (7) with equality.

Clearly, an (n,m)-function is bent if and only if all of the component func-
tions v · F , v 6= 0 of F are bent (i.e. achieve the same bound). Hence, the
algebraic degree of any bent (n,m)-function is at most n/2. Note also that,
since any n-variable Boolean function f is bent if and only if all of its deriva-
tives Daf(x) = f(x)⊕ f(x+ a), a 6= 0, are balanced, an (n,m)-function F
is bent if and only if, for every v ∈ Fm2 , v 6= 0, and every a ∈ Fn2 , a 6= 0,
the function v · (F (x) + F (x + a)) is balanced. According to Proposition
1, this is equivalent to saying that, for every a ∈ Fn2 , a 6= 0, the function
F (x) + F (x+ a) is balanced.

Proposition 2 An (n,m)-function is bent if and only if all of its derivatives
DaF (x) = F (x) + F (x+ a), a ∈ Fn2 ∗, are balanced.

For this reason, bent functions are also called perfect nonlinear3; they con-
tribute then to an optimum resistance to the differential attack (see intro-
duction) of those cryptosystems in which they are involved (but they are not
balanced). They can be used to design authentication schemes (or codes);
see [45].
Thanks to the observations made at Subsection 1.1 (where we saw that the
evaluation of the multidimensional Walsh transform corresponds in fact to
the evaluation of the Walsh transform), it is a simple matter to characterize
the bent functions as those functions whose squared expression of the mul-
tidimensional Walsh transform at L is the same for every L.

Existence of bent (n,m)-functions: since bent n-variable Boolean func-
tions exist only if n is even, bent (n,m)-functions exist only under this same
condition. But, as shown by Nyberg in [92], this is not sufficient for the
existence of bent (n,m)-functions. Indeed, we have seen in Relation (4)

3We shall see that perfect nonlinear (n, n)-functions do not exist; but they do exist in
other characteristics than 2 (see e.g. [37]); they are then often called planar .
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that, for any element b ∈ Fm2 , the size of F−1(b) (that is, the Hamming
weight of ϕb) is equal to 2−m

∑
x∈Fn

2 ;v∈Fm
2

(−1)v·(F (x)+b). Denoting, for ev-

ery v ∈ Fn2 ∗, by ṽ · F the dual of the Boolean function x 7→ v · F (x), we
have

∑
x∈Fn

2
(−1)v·F (x) = 2n/2(−1)ṽ·F (0). The size of F−1(b) equals then

2n−m + 2n/2−m
∑

v∈Fn
2
∗(−1)ṽ·F (0)⊕v·b. Since the sum

∑
v∈Fn

2
∗(−1)ṽ·F (0)⊕v·b

has an odd value (Fn2 ∗ having an odd size), we deduce that, if m ≤ n then
2n/2−m must be an integer. And it is also easily shown that m > n is
impossible. Hence:

Proposition 3 Bent (n,m)-functions exist only if n is even and m ≤ n/2.

It is a simple matter to show that, for every ordered pair (n,m) satisfy-
ing this condition, bent functions do exist. The two main classes of bent
Boolean functions described in the chapter “Boolean Functions for Cryp-
tography and Error Correcting Codes” (see Subsection 6.4.1) lead to two
classes of bent (n,m)-functions (this was first observed by Nyberg in [92]).
We endow Fn/22 with the structure of the field F2n/2 . We identify Fn2 with
F2n/2 × F2n/2 .
- Let us define F (x, y) = L(xπ(y)) + H(y), where the product xπ(y) is
calculated in F2n/2 , where L is any linear or affine mapping from F2n/2 onto
Fm2 , π is any permutation of F2n/2 and H is any (n/2,m)-function. This
gives a so-called Maiorana-McFarland’s bent (n,m)-function. More gen-
erally, we obtain bent functions by taking for F any (n,m)-function such
that, for every v ∈ Fm2 ∗, the Boolean function v · F belongs, up to linear
equivalence, to Maiorana-McFarland’s class of bent functions. The function
L(xπ(y)) +H(y) has this property, since the function v · L(z) is a nonzero
linear function, and then equals tr(λz) for some λ 6= 0, where tr is the (ab-
solute) trace function from F2m to F2.
Modifications of these Maiorana-McFarland’s bent functions have been pro-
posed in [95], using the classes C and D of bent Boolean functions recalled
in the chapter “Boolean Functions for Cryptography and Error Correcting
Codes”.
- Defining F (x, y) = G(xy ) (with x

y = 0 if y = 0), where G is a balanced
(n/2,m)-function, gives also a bent (n,m)-function: for every v 6= 0, the
function v·F belongs to the class PSap of Dillon’s functions (seen in the chap-
ter “Boolean Functions for Cryptography and Error Correcting Codes”), ac-
cording to Proposition 1.
Note that, given any bent (n,m)-function F , any chopped (n,m′)-function
(with m′ < m) obtained by deleting some coordinates of F (or more gener-
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ally by composing it on the left with any surjective affine mapping) is still
bent. But there exist other secondary constructions (that is, constructions
of new bent functions from known ones). In [34] is given the following sec-
ondary construction of bent Boolean functions: let r ≤ s be two positive
integers with the same parity and let n = r + s; let φ be a mapping from
Fs2 to Fr2 and g a Boolean function on Fs2; let us assume that, for every
a ∈ Fr2, the set φ−1(a) is an (n− 2r)-dimensional affine subspace of Fs2 and
that, if r < s, the restriction of g to φ−1(a) (viewed as a Boolean function
on Fn−2r

2 via an affine isomorphism between φ−1(a) and this vectorspace) is
bent; then the function fφ,g(x, y) = x · φ(y) ⊕ g(y), x ∈ Fr2, y ∈ Fs2, where
“·” is an inner product in Fr2, is bent on Fn2 . This gives:

Proposition 4 Let r and s be two positive integers with the same parity and
let r ≤ s

3 . Let ψ be any mapping from Fs2 to F2r such that, for every a ∈ F2r ,
the set ψ−1(a) is an (s−r)-dimensional affine subspace of Fs2. Let H be any
(s, r)-function whose restriction to ψ−1(a) (viewed as an (s− r, r)-function
via an affine isomorphism between ψ−1(a) and Fs−r2 ) is bent for every a ∈
F2r . Then the function Fψ,H(x, y) = xψ(y) + H(y), x ∈ F2r , y ∈ F s2 , is a
bent function from Fr+s2 to F2r .

Indeed, for every v ∈ F ∗
2r , the function tr(v Fψ,H(x, y)) (where tr is the

trace function from F2r to F2) is bent, according to the result of [34] with
φ(y) = v ψ(y) and g(y) = tr(v H(y)). The condition r ≤ s

3 , more restrictive
than r ≤ s, is meant so that r ≤ s−r

2 , which is necessary for allowing the
restrictions of H to be bent. The condition on ψ being easily satisfied4,
it is then a simple matter to choose H. Hence, this construction is quite
effective (but only for designing more bent (n,m)-functions when m ≤ n/4).

In [33] is also given a very general secondary construction of bent Boolean
functions which can be adapted to vectorial functions as follows:

Proposition 5 Let r and s be two positive even integers and m a positive
integer such that m ≤ r/2. Let H be a function from Fn2 = Fr2 × Fs2 to Fm2 .
Assume that, for every y ∈ Fs2, the function Hy : x ∈ Fr2 → H(x, y) is a bent
(r,m)-function. For every nonzero v ∈ Fm2 and every a ∈ Fr2 and y ∈ Fs2, let
us denote by fa,v(y) the value at a of the dual of the Boolean function v ·Hy,
that is, the binary value such that

∑
x∈Fr

2
(−1)v·H(x,y)⊕a·x = 2r/2(−1)fa,v(y).

Then H is bent if and only if, for every nonzero v ∈ Fm2 and every a ∈ Fr2,
the Boolean function fa,v is bent.

4Note that it does not make ψ necessarily affine.
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Indeed, by definition of fa,v, we have, for every nonzero v ∈ Fm2 and every
a ∈ Fr2 and b ∈ Fs2:∑

x∈Fr
2

y∈Fs
2

(−1)v·H(x,y)⊕a·x⊕b·y = 2r/2
∑
y∈Fs

2

(−1)fa,v(y)⊕b·y.

An obvious example of application of Proposition 5 is the so-called direct
sum of bent functions: H(x, y) = F (x) + G(y), where F is a bent (r,m)-
function and G a bent (s,m)-function.
Another example is by choosing everyHy in the Maiorana-McFarland’s class:
Hy(x, x′) = xπy(x′) + Gy(x′), x, x′ ∈ F2r/2 , where πy is bijective for every
y ∈ Fs2. For every v ∈ F∗

2r/2 and every a, a′ ∈ F2r/2 , we have then f(a,a′),v(y) =
tr
(
a′ π−1

y

(
a
v

)
+ v Gy

(
π−1
y

(
a
v

)))
, where tr is the trace function from F2r/2 to

F2. Then H is bent if and only if, for every v ∈ F∗
2r/2 and every a, a′ ∈ F2r/2 ,

the function y → tr
(
a′ π−1

y (a) + v Gy(π−1
y (a))

)
is bent on Fs2. A simple

possibility for achieving this is to choose s = r/2 and π−1
y and Gy such that,

for every a, the mapping y → π−1
y (a) is an affine automorphism of F2r/2

(e.g. π−1
y (a) = πy(a) = a + y) and, for every a, the function y → Gy(a) is

bent.

Sidelnikov-Chabaud-Vaudenay bound: Since bent (n,m)-functions do
not exist if m > n/2, there is a chance that upper bounds better than the
covering radius bound exist in this case. Such a bound has been re-discovered
by Chabaud and Vaudenay in [44]. We say “re-discovered” because a bound
on sequences due to Sidelnikov [102] is equivalent to the bound obtained by
Chabaud and Vaudenay for power functions and its proof is in fact valid for
all functions. Note that other bounds have been obtained in [38] and im-
prove, when m is sufficiently greater than n (which makes them less interest-
ing, cryptographically), upon the covering radius bound and the Sidelnikov-
Chabaud-Vaudenay bound (examples are given). A more precise insight on
the Sidelnikov-Chabaud-Vaudenay bound is also given in this same paper.

Theorem 1 Let n and m be any positive integers; m ≥ n−1. Let F be any
(n,m)-function. Then:

NL(F ) ≤ 2n−1 − 1
2

√
3× 2n − 2− 2

(2n − 1)(2n−1 − 1)
2m − 1

.
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Proof. Recall thatNL(F ) = 2n−1−1
2 maxv∈Fm

2
∗; u∈Fn

2

∣∣∣∑x∈Fn
2
(−1)v·F (x)⊕u·x

∣∣∣.
We have:

max
v∈Fm

2
∗

u∈Fn
2

∑
x∈Fn

2

(−1)v·F (x)⊕u·x

2

≥

∑
v∈Fm

2
∗

u∈Fn
2

(∑
x∈Fn

2
(−1)v·F (x)⊕u·x

)4

∑
v∈Fm

2
∗

u∈Fn
2

(∑
x∈Fn

2
(−1)v·F (x)⊕u·x

)2 . (8)

Parseval’s relation states that, for every v ∈ Fm2 :

∑
u∈Fn

2

∑
x∈Fn

2

(−1)v·F (x)⊕u·x

2

= 22n.

Using the fact that any character sum
∑

x∈E(−1)`(x) associated to a linear
function ` over any F2-vectorspace E is nonzero if and only if ` is null on E,
we can state that:

∑
v∈Fm

2 , u∈Fn
2

∑
x∈Fn

2

(−1)v·F (x)⊕u·x

4

=
∑

x,y,z,t∈Fn
2

∑
v∈Fm

2

(−1)v·(F (x)+F (y)+F (z)+F (t))

∑
u∈Fn

2

(−1)u·(x+y+z+t)


= 2n+m

∣∣∣∣{(x, y, z, t) ∈ F4n
2 /

{
x+ y + z + t = 0
F (x) + F (y) + F (z) + F (t) = 0

}∣∣∣∣
= 2n+m|{(x, y, z) ∈ F3n

2 /F (x) + F (y) + F (z) + F (x+ y + z) = 0}| (9)

≥ 2n+m|{(x, y, z) ∈ F3n
2 / x = y or x = z or y = z}|. (10)

We have |{(x, y, z)/ x = y or x = z or y = z}| = 3 · |{(x, x, y)/ x, y ∈ Fn2}| −
2 · |{(x, x, x)/ x ∈ Fn2}| = 3 · 22n − 2 · 2n. Hence:

max
v∈Fm

2
∗; u∈Fn

2

∑
x∈Fn

2

(−1)v·F (x)⊕u·x

2

≥

2n+m(3 · 22n − 2 · 2n)− 24n

(2m − 1) 22n
= 3× 2n − 2− 2

(2n − 1)(2n−1 − 1)
2m − 1

and this gives the desired bound. �
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It is a simple matter to show that this Sidelnikov-Chabaud-Vaudenay
bound improves upon the covering radius bound (7) only for m ≥ n (and
the question of improving upon the covering radius bound for n/2 < m < n,
when n is even and for m < n, when n is odd, is open). It is also clear that,
when m ≥ n, it can be achieved only if n = m with n odd.

2.1.2 Almost perfect nonlinear and almost bent functions

Definition 3 The (n, n)-functions F which achieve the bound of Theorem
1 with equality – that is, such that NL(F ) = 2n−1−2

n−1
2 – are called almost

bent (AB).

Remark. The term of almost bent is a little misleading. It gives the feel-
ing that these functions are not quite optimal while they are; according to
Nyberg’s result (Proposition 3), (n, n)-bent functions do not exist.

According to Inequality (8), the AB functions are those (n, n)-functions
such that, for every u, v ∈ Fn2 , v 6= 0, the sum

∑
x∈Fn

2
(−1)v·F (x)⊕u·x (that

is, the Walsh transform of the function v · F ) equals 0 or ±2
n+1

2 (indeed,
the maximum of a sequence of non-negative integers equals the ratio of the
sum of their squares over the sum of their values if and only if these integers
have at most one nonzero value). Note that this condition does not depend
on the choice of the inner product.
There exists a bound on the algebraic degree of AB functions, similar to the
bound for bent functions:

Proposition 6 [36] Let F be any (n, n)-function. If F is AB, then the
algebraic degree of F is less than or equal to (n+ 1)/2.

This is a direct consequence of the fact that the Walsh transform of any func-
tion v ·F is divisible by 2

n+1
2 , and of Proposition 9 of the chapter “Boolean

Functions for Cryptography and Error Correcting Codes” (bounding the
algebraic degree of a Boolean function, given the divisibility of its Walsh
transform values). Note that the divisibility plays also a role with respect
to the algebraic degree of the composition of two vectorial functions. In
[32] has been proved that, if the Walsh transform values of a vectorial func-
tion F : Fn2 → Fn2 are divisible by 2` then, for every vectorial function
F ′ : Fn2 → Fn2 , the algebraic degree of F ′ ◦ F is at most equal to the alge-
braic degree of F ′ plus n − `. This means that using AB power functions
as S-boxes in block ciphers may not be a good idea. Suboptimal functions
(as the inverse function, see below) may be better, as usual in cryptography
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(since optimal functions have much structure, which can be used in attacks).

Inequality (10) is an equality if and only if the relation F (x) + F (y) +
F (z)+F (x+y+ z) = 0 can be achieved only when x = y or x = z or y = z.
There are two equivalent ways of characterizing this property:
- the restriction of F to any 2-dimensional flat (i.e. affine subspace) of Fn2 is
non-affine (indeed, the set {x, y, z, x+y+ z} is a flat and it is 2-dimensional
if and only if x 6= y and x 6= z and y 6= z; saying that F (x) +F (y) +F (z) +
F (x+ y+ z) = 0 is equivalent to saying that the restriction of F to this flat
is affine);
- the equation F (x) + F (x+ a) = F (y) + F (y + a) can be achieved only for
a = 0 or x = y or x = y + a (denote x+ z by a).
Hence, Inequality (10) implies that all AB functions are such that, for every
a ∈ Fn2 ∗ and every b ∈ Fn2 , the equation F (x) + F (x+ a) = b has at most 2
solutions (that is, 0 or 2 solutions, since if it has one solution x, then it has
x+ a for second solution).

Definition 4 An (n, n)-function F is called almost perfect nonlinear (APN)
if, for every a ∈ Fn2 ∗ and every b ∈ Fn2 , the equation F (x) + F (x + a) = b
has 0 or 2 solutions; that is, equivalently, if the restriction of F to any
2-dimensional flat (i.e. affine subspace) of Fn2 is non-affine.

Remark. Here again, the term of almost perfect nonlinear is a little mis-
leading, giving the feeling that these functions are not quite optimal while
they are.

The notion of plateaued function will play a role in the sequel.

Definition 5 An (n,m)-function is called plateaued if, for every nonzero
v ∈ Fm2 , the function v ·F is plateaued, that is, there exists a positive integer
λv (called the amplitude of v ·F ) such that the values of its Walsh transform:∑

x∈Fn
2
(−1)v·F (x)⊕u·x, u ∈ Fn2 , all belong to the set {0,±λv}.

Then, because of Parseval’s relation, 22n equals λ2
v times the size of the

set {u ∈ Fn2 /
∑

x∈Fn
2
(−1)v·F (x)⊕u·x 6= 0}, and λv equals then a power of 2

whose exponent is greater than or equal to n/2 (since this size is at most
2n). The extreme case λv = 2n/2 corresponds to the case where v ·F is bent.
Every quadratic function (that is, every function of algebraic degree 2) is
plateaued, see the chapter “Boolean Functions for Cryptography and Error
Correcting Codes”.

16



Proposition 7 Every AB function is APN. More precisely, any vectorial
function F : Fn2 → Fn2 is AB if and only if F is APN and the functions v ·F ,
v 6= 0, are plateaued with the same amplitude.

This comes directly from Relations (8) and (10). We shall see below, thanks
to Proposition 12, that the condition “with the same amplitude” is in fact
not necessary in this proposition (for n odd). According to Definition 4, F
is APN if, for every distinct nonzero vectors a and a′, its second derivative
DaDa′F (x) = F (x)+F (x+a)+F (x+a′)+F (x+a+a′) takes only non-zero
values.
Note that, according to Relations (9) and (10), and to the two lines following
them, F is APN if and only if

∑
v∈Fn

2 ,u∈Fn
2

∑
x∈Fn

2

(−1)v·F (x)⊕u·x

4

= 3 · 24n − 2 · 23n (11)

or equivalently (using Parseval’s relation):

∑
v∈Fn

2
∗

u∈Fn
2

∑
x∈Fn

2

(−1)v·F (x)⊕u·x

2∑
x∈Fn

2

(−1)v·F (x)⊕u·x

2

− 2n+1

 = 0. (12)

APN property is a particular case of a notion introduced by Nyberg [92, 93]:
an (n,m)-function F is called differentially δ-uniform if, for every nonzero
a ∈ Fn2 and every b ∈ Fm2 , the equation F (x) + F (x+ a) = b has at most δ
solutions. The number δ is then lower bounded by 2n−m and equals 2n−m

if and only if F is perfect nonlinear.
The smaller δ is, the better is the contribution of F to a resistance to dif-
ferential cryptanalysis. When m = n, the smallest possible value of δ is 2,
since we already saw that if x is a solution of equation F (x) +F (x+ a) = b
then x + a is also a solution. Hence, APN functions contribute to a maxi-
mum resistance to differential cryptanalysis when m = n and AB functions
contribute to a maximum resistance to both linear and differential crypt-
analyses.

Note that if F is a quadratic (n, n)-function, the equation F (x)+F (x+
a) = b is a linear equation. It admits then at most 2 solutions for ev-
ery nonzero a and every b if and only if the related homogeneous equation
F (x) + F (x + a) + F (0) + F (a) = 0 admits at most 2 solutions for every
nonzero a. Hence, F is APN if and only if the associated bilinear symmetric
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(2n, n)-function ϕF (x, y) = F (0) + F (x) + F (y) + F (x + y) never vanishes
when x and y are F2-linearly independent vectors of Fn2 . For functions of
higher degrees, the fact that ϕF (x, y) (which is no longer bilinear) never
vanishes when x and y are linearly independent is only a necessary condi-
tion for APNness.

A subclass of APN functions (and a superclass of APN quadratic per-
mutations), called crooked functions, has been considered in [3] and further
studied in [20, 84]. All known crooked functions are quadratic. Every power
crooked function is a Gold function (see definition below).

Other characterizations of AB and APN functions

• The properties of APNness and ABness can be translated in terms of
Boolean functions, as observed in [36]:

Proposition 8 Let F be any (n, n)-function. For every a, b ∈ Fn2 , let
γF (a, b) equal 1 if the equation F (x) + F (x+ a) = b admits solutions, with
a 6= 0. Otherwise, let γF (a, b) be null. Then, F is APN if and only if γF
has weight 22n−1−2n−1, and is AB if and only if γF is bent. Its dual is then
the indicator of the Walsh support of F , deprived of (0, 0).

Proof.
1) If F is APN, then for every a 6= 0, the mapping x 7→ F (x) + F (x+ a) is
two-to-one (that is, the size of the pre-image of any vector equals 0 or 2).
Hence, γF has weight 22n−1 − 2n−1. The converse is also straightforward.
2) We assume now that F is APN. For every u, v ∈ Fn2 , replacing (−1)γF (a,b)

by 1 − 2γF (a, b) in the character sum
∑

a,b∈Fn
2
(−1)γF (a,b)⊕u·a⊕v·b leads to∑

a,b∈Fn
2
(−1)u·a⊕v·b−2

∑
a,b∈Fn

2
γF (a, b)(−1)u·a⊕v·b. Denoting by δ0 the Dirac

symbol (δ0(u, v) = 1 if u = v = 0 and 0 otherwise), we deduce that the Walsh
transform of γF equals 22n δ0(u, v)−

∑
x∈Fn

2 ,a∈Fn
2
∗(−1)u·a⊕v·(F (x)+F (x+a)) =

22n δ0(u, v) −
(∑

x∈Fn
2
(−1)v·F (x)⊕u·x

)2
+ 2n. Hence, F is AB if and only

if the value of this Walsh transform equals ±2n at every (u, v) ∈ Fn2 × Fn2 ,
i.e. if γF is bent. Moreover, if γF is bent, then for every (u, v) 6= 0, we
have γ̃F (u, v) = 0, that is,

∑
a,b∈Fn

2
(−1)γF (a,b)⊕u·a⊕v·b = 2n if and only if∑

x∈Fn
2
(−1)v·F (x)⊕u·x = 0. Hence, the dual of γF is the indicator of the

Walsh support of F , deprived of (0, 0). �
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• Obviously, an (n, n)-function F is APN if and only if, for every (a, b) 6=

(0, 0), the system
{
x+ y = a
F (x) + F (y) = b

admits 0 or 2 solutions. As shown

in [50], it is AB if and only if the system
{
x+ y + z = a
F (x) + F (y) + F (z) = b

admits 3 · 2n − 2 solutions if b = F (a) and 2n − 2 solutions otherwise.
This can easily be proved by using the facts that F is AB if and only if,

for every v ∈ Fn2 ∗ and every u ∈ Fn2 , we have
(∑

x∈Fn
2
(−1)v·F (x)⊕u·x

)3
=

2n+1
∑

x∈Fn
2
(−1)v·F (x)⊕u·x, and that two pseudo-Boolean functions (that is,

two functions from Fn2 to Z) are equal to each other if and only if their
discrete Fourier transforms are equal to each other: the value at (a, b) of the

Fourier transform of the function equal to
(∑

x∈Fn
2
(−1)v·F (x)⊕u·x

)3
if v 6= 0,

and to 0 otherwise equals

∑
u∈Fn

2
v∈Fn

2

∑
x∈Fn

2

(−1)v·F (x)⊕u·x

3

(−1)a·u⊕b·v − 23n =

22n

∣∣∣∣{(x, y, z) ∈ F3n
2 /

{
x+ y + z = a
F (x) + F (y) + F (z) = b

}∣∣∣∣− 23n,

and the value of the Fourier transform of the function which is equal to
2n+1

∑
x∈Fn

2
(−1)v·F (x)⊕u·x if v 6= 0, and to 0 otherwise equals

23n+1

∣∣∣∣{x ∈ Fn2 /
{
x = a
F (x) = b

}∣∣∣∣− 22n+1.

This proves the result. Note that 3 · 2n− 2 is the number of triples (x, x, a),
(x, a, x) and (a, x, x) where x ranges over Fn2 . Hence the condition when
F (a) = b means that these particular triples are the only solutions of the

system
{
x+ y + z = a
F (x) + F (y) + F (z) = F (a)

. This is equivalent to saying that

F is APN. And, by denoting c = F (a) + b, we have:

Proposition 9 Let n be any positive integer and F any APN (n, n)-function.
Then F is AB if and only if, for every c 6= 0 and every a in Fn2 , the equation
F (x) + F (y) + F (a) + F (x+ y + a) = c has 2n − 2 solutions.

Note that, assuming that F is APN, this condition is also equivalent to
saying that the weight of the function z → γF (a+z, b+F (z)) equals 2n−1−1,
for every (a, b) such that F (a) 6= b.
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Summarizing, let A2 be the set of 2-dimensional flats of Fn2 and ΦF :
A ∈ A2 →

∑
x∈A F (x) ∈ Fn2 . Then F is APN if and only if ΦF is valued in

Fn2 \{0} and F is AB if and only if ΦF has additionally the property that, for
every a ∈ Fn2 , the restriction of ΦF to those flats which contain a is balanced
from this set to Fn2 \ {0}, that is, is a 2n−1−1

3 -to-1 function. Note that, for
every APN function F and any two distinct vectors a and a′, the restriction
of ΦF to those flats which contain a and a′ is injective, since for two such
distinct flats A = {a, a′, x, x + a + a′} and A′ = {a, a′, x′, x′ + a + a′}, we
have ΦF (A) + ΦF (A′) = F (x) + F (x + a + a′) + F (x′) + F (x′ + a + a′) =
ΦF ({x, x + a + a′, x′, x′ + a + a′}) 6= 0. But ΦF cannot be balanced since
the number of flats containing a and a′ equals 2n−1−1, that is less than 2n−1.

Remark: Other characterizations can be derived with the same method.
For instance, F is AB if and only if, for every v ∈ Fn2 ∗ and every u ∈
Fn2 , we have

(∑
x∈Fn

2
(−1)v·F (x)⊕u·x

)4
= 2n+1

(∑
x∈Fn

2
(−1)v·F (x)⊕u·x

)2
. By

applying again the Fourier transform and dividing by 22n, we deduce that
F is AB if and only if, for every (a, b), we have∣∣∣∣{(x, y, z, t) ∈ F4n

2 /

{
x+ y + z + t = a
F (x) + F (y) + F (z) + F (t) = b

}∣∣∣∣− 22n =

2n+1

∣∣∣∣{(x, y) ∈ F2n
2 /

{
x+ y = a
F (x) + F (y) = b

}∣∣∣∣− 2n+1.

Hence, F is AB if and only if the system
{
x+ y + z + t = a
F (x) + F (y) + F (z) + F (t) = b

admits 3 · 22n− 2n+1 solutions if a = b = 0 (this is equivalent to saying that
F is APN), 22n− 2n+1 solutions if a = 0 and b 6= 0 (note that this condition
corresponds to adding all the conditions of Proposition 9 with c fixed to b
and with a ranging over Fn2 ), and 22n+2n+2γF (a, b)−2n+1 solutions if a 6= 0
(indeed, F is APN; note that this gives a new necessary condition).

• It is a simple matter to show (see [36]) a relationship between the properties
for an (n, n)-function of being APN or AB, and properties of related codes.

Proposition 10 Let F be any (n, n)-function such that F (0) = 0. Let H be

the matrix
[

1 α α2 . . . α2n−2

F (1) F (α) F (α2) . . . F (α2n−2)

]
, where α is a primitive

element of the field F2n, and where each symbol stands for the column of its
coordinates with respect to a basis of the F2-vectorspace F2n. Let CF be the
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linear code admitting H for parity-check matrix. Then, F is APN if and
only if CF has minimum distance 5, and F is AB if and only if C⊥

F ( i.e.
the code admitting H for generator matrix) has weights 0, 2n−1− 2

n−1
2 , 2n−1

and 2n−1 + 2
n−1

2 (the weight distribution being then imposed by Parseval’s
relation and equal to that of the dual of the 2-error-correcting BCH code of
length 2n − 1).

Indeed, CF being a subcode of the Hamming code, it has minimum distance
at least 3, and the fact that it has no codeword of weight 3 or 4 is by
definition equivalent to the APNness of F . The characterization of ABness
through the weight distribution of C⊥

F is by definition too.
Moreover, if F is APN on F2n and n > 2, then the code C⊥

F has dimension 2n,
i.e., the code of generator matrix

[
F (1) F (α) F (α2) . . . F (α2n−2)

]
,

which can be seen as the code {tr(bF (x); b ∈ F2n}, has dimension n and
intersects the simplex code {tr(ax); a ∈ F2n} (whose generator matrix is
equal to

[
1 α α2 . . . α2n−2

]
) only in the null vector. Equivalently:

Proposition 11 Let F be an APN function in n > 2 variables. Then the
nonlinearity of F cannot be null and the code C⊥

F has dimension 2n.

Proof. Suppose there exists b 6= 0 such that b · F is affine. Without loss of
generality (by composing F with an appropriate linear automorphism and
adding an affine function to F ), we can assume that b = (0, · · · , 0, 1) and
that b · F is null. Then, every derivative of F is 2-to-1 and has null last
coordinate. The (n, n− 1) function obtained by erasing the last coordinate
of F (x) has therefore balanced derivatives; hence it is a bent (n, n − 1)-
function, a contradiction with Nyberg’s result, since n− 1 > n/2. 2

Note that for n = 2, the nonlinearity can be null. An example is the function
(x1, x2) → (x1x2, 0).

J. Dillon (private communication) observed that this property of the dimen-
sion of C⊥

F , valid for every APN function, implies that, for every nonzero
c ∈ F2n , the equation F (x) + F (y) + F (z) + F (x + y + z) = c must have
a solution (that is, the function ΦF introduced after Proposition 9 is onto
Fn2 \ {0}). Indeed, otherwise F (x) + cg(x) would be APN for every Boolean
function g(x). In particular, for g(x) = tr(b0F (x)) with b0 6∈ c⊥, we would
have tr(b0[F (x) + cg(x)]) = tr(b0F (x)) + tr(b0c)g(x) = 0, a contradiction
with the fact that C⊥

F+cg has dimension 2n (since F + cg is APN).

• We have seen that all AB functions are APN. The converse is false, in
general. But if n is odd and if F is APN, then there exists a nice necessary
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and sufficient condition, for F being AB: the weights of C⊥
F are all divisible

by 2
n−1

2 (see [30], where the divisibilities for several types of such codes
are calculated, where tables of exact divisibilities are computed and where
proofs are given that a great deal of power functions are not AB). In other
words:

Proposition 12 Let F be an APN (n, n)-function, n odd. Then F is AB
if and only if all the values

∑
x∈Fn

2
(−1)v·F (x)⊕u·x of the Walsh spectrum of

F are divisible by 2
n+1

2 .

As shown in [29, 26], this can be proved easily:
Proof. The condition is clearly necessary. Conversely, assume that F is APN
and that all the values

∑
x∈Fn

2
(−1)v·F (x)⊕u·x are divisible by 2

n+1
2 . Writing(∑

x∈Fn
2
(−1)v·F (x)⊕u·x

)2
= 2n+1λu,v, where all λu,v’s are integers, Relation

(12) implies then ∑
v∈Fn

2
∗,u∈Fn

2

(λ2
u,v − λu,v) = 0, (13)

and since all the integers λ2
u,v−λu,v are non-negative (λu,v being an integer),

we deduce that, for every v ∈ Fn2 ∗, u ∈ Fn2 , λ2
u,v = λu,v, i.e. λu,v ∈ {0, 1}. �

Hence, if an APN function F is plateaued, or more generally if F = F1 ◦F−1
2

where F2 is a permutation and where the linear combinations of the compo-
nent functions of F1 and F2 are plateaued, then F is AB. Indeed, the sum∑

x∈Fn
2
(−1)v·F (x)⊕u·x =

∑
x∈Fn

2
(−1)v·F1(x)⊕u·F2(x) is then divisible by 2

n+1
2 .

This allows to deduce easily the AB property of Gold and Kasami func-
tions (see their definitions below) from their APN property, since the Gold
functions are quadratic and the Kasami functions are equal, when n is odd,
to F1 ◦ F−1

2 where F1(x) = x23k+1, x ∈ BbbF 2n and F2(x) = x2k+1 are
quadratic.

•A necessary condition dealing with quadratic terms in the ANF of any APN
function has been observed in [5]. Given any APN function F (quadratic
or not), every quadratic term xixj (1 ≤ i < j ≤ n) must appear with a
non-null coefficient in the algebraic normal form of F . Indeed, we know
that the coefficient of any monomial

∏
i∈I x

i in the ANF of F equals aI =∑
x∈Fn

2 / supp(x)⊆I
F (x) (this sum being calculated in Fn2 ). Applied for in-

stance to I = {n− 1, n}, this gives aI = F (0, . . . , 0, 0, 0)+F (0, . . . , 0, 0, 1)+
F (0, . . . , 0, 1, 0)+F (0, . . . , 0, 1, 1), and F being APN, this vector can not be
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null. Note that, since the notion of almost perfect nonlinearity is affinely
invariant (see below), this condition must be satisfied by all of the functions
L ◦ F ◦ L′, where L and L′ are affine automorphisms of Fn2 . Extended this
way, the condition becomes necessary and sufficient (indeed, for every dis-
tinct x, y, z in Fn2 , there exists an affine automorphism L′ of Fn2 such that
L′(0, . . . , 0, 0, 0) = x, L′(0, . . . , 0, 1, 0) = y and L′(0, . . . , 0, 0, 1) = z).

In the case n even: If F is APN and plateaued, then Relation (13) again
shows that there must exist v ∈ Fn2 ∗, u ∈ Fn2 such that

∑
x∈Fn

2
(−1)v·F (x)⊕u·x

is not divisible by 2(n+2)/2, that is, equals ±2n/2. Indeed, otherwise, all the
numbers λ2

u,v − λu,v are non-negative and at least one is strictly positive.
Hence there must exist v ∈ Fn2 ∗ such that the Boolean function v · F is
bent. Note that this implies that F cannot be a permutation, according to
Proposition 1 and since a bent Boolean function is never balanced. More
precisely, the numbers λu,v involved in Equation (13) can be divided into
two categories: those such that the function v · F is bent (for each such v,
we have λu,v = 1/2 for every u and therefore

∑
u∈Fn

2
(λ2
u,v − λu,v) = −2n−2);

and those such that v ·F is not bent (then λu,v ∈ {0, 2i} for some i ≥ 1 and
we have, thanks to Parseval’s relation:

∑
u∈Fn

2
(λ2
u,v −λu,v) = 22n

2n+1 (2i− 1) =
2n−1(2i − 1) ≥ 2n−1). Equation (13) implies then that the number B of
those v such that v · F is bent satisfies −B 2n−2 + (2n − 1 − B) 2n−1 ≤ 0,
which implies that the number of bent functions among the functions v · F
is at least 2

3(2n − 1).
In the case of the Gold functions F (x) = x2i+1, gcd(i, n) = 1 (see Subsection
2.1.6), the number of bent functions among the functions tr(vF (x)) equals
2
3(2n − 1). Indeed, the function tr(vF (x)) is bent if and only if there is no
nonzero x ∈ F2n such that tr(vx2i

y + vxy2i
) = 0 for every y ∈ F2n (see the

chapter “Boolean Functions for Cryptography and Error Correcting Codes”,
Subsections 5.1 and 6.2), i.e., the equation vx2i

+ (vx)2
n−i

= 0 has no non-
zero solution. Raising this equation to the 2i-th power gives v2i

x22i
+vx = 0

and 2i − 1 being co-prime with 2n − 1, it is equivalent, after dividing by vx
(when x 6= 0) and taking the (2i − 1)th root, to vx2i+1 ∈ F2. Hence, the
function tr(vF (x)) is bent if and only if v is not the (2i + 1)-th power of
an element of F2n , that is (since gcd(2i + 1, 2n − 1) = 3), v is not the third
power of an element of F2n .
Note that, given an APN plateaued function F , saying that the number of
bent functions among the functions tr(vF (x)) equals 2

3(2n − 1) is equiva-
lent to saying, according to the observations above, that F has nonlinearity
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2n−1−2n/2 and it is also equivalent to saying that F has the same extended
Walsh spectrum as the Gold functions. Note that it can be characterized by
using the same method as for proving Proposition 9: an APN function F
has same extended Walsh spectrum as the Gold functions if and only if, for
every v ∈ Fn2 ∗ and every u ∈ Fn2 , denoting Wv·F (u) =

∑
x∈Fn

2
(−1)v·F (x)⊕u·x,

we have Wv·F (u)
(
W 2
v·F (u)− 2n+1

) (
W 2
v·F (u)− 2n

)
= 0, that is, W 5

v·F (u)−3·
2nW 3

v·F (u)+22n+1Wv·F (u) = 0; applying the Fourier transform and dividing
by 22n, this is equivalent to the fact that∣∣∣∣{(x1, · · · , x5) ∈ F5n

2 /

{ ∑
xi = a∑
F (xi) = b

}∣∣∣∣− 23n−

3 · 2n
(∣∣∣∣{(x1, · · · , x3) ∈ F3n

2 /

{ ∑
xi = a∑
F (xi) = b

}∣∣∣∣− 2n
)

+

22n+1

(∣∣∣∣{x ∈ Fn2/
{
x = a
F (x) = b

}∣∣∣∣− 2−n
)

= 0

for every a, b ∈ Fn2 . A necessary condition is (taking b = F (a) and using
that F is APN) that, for every a, b ∈ Fn2 , we have∣∣∣∣{(x1, · · · , x5) ∈ F5n

2 /

{ ∑
xi = a∑
F (xi) = b

}∣∣∣∣ =
23n + 3 · 2n(3 · 2n − 2− 2n)− 22n+1(1− 2−n) =

23n + 22n+2 − 2n+2.

There exist APN quadratic functions whose Walsh spectra are different from
the Gold functions. For instance, K. Browning et al. [12] have exhibited
such function in 6 variables: F (x) = x3 +u11x5 +u13x9 +x17 +u11x33 +x48,
where u is a primitive element in the field. For this function, we get the
following spectrum: 46 functions tr(vF (x)) are bent, 16 are plateaued with
amplitude 16 and one is plateaued with amplitude 32. 2

2.1.3 The particular case of power functions

We have seen that the notion of AB function being independent of the
choice of the inner product, we can identify Fn2 with the field F2n and take
x · y = tr(xy) for inner product, where tr is the trace function from this
field to F2. This allows to consider those particular (n, n)-functions which
have the form F (x) = xd, called power functions (and sometimes, monomial
functions).
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When F is a power function, it is enough to check the APN property for
a = 1 only, since changing, for every a 6= 0, the variable x into ax in the
equation F (x) + F (x + a) = b gives F (x) + F (x + 1) = b

F (a) . Moreover,

checking the AB property
∑

x∈F2n
(−1)tr(vF (x)+ux) ∈ {0,±2

n+1
2 }, for every

u, v ∈ F2n , v 6= 0, is enough for u = 0 and u = 1 (and every v 6= 0),
since changing x into x

u (if u 6= 0) in this sum gives
∑

x∈F2n
(−1)tr(v

′F (x)+x),
for some v′ 6= 0. If F is a permutation, then checking the AB property is
enough for v = 1 (and every u), since changing x into x

F−1(v)
in this sum

gives
∑

x∈F2n
(−1)

tr
“
F (x)+ ux

F−1(v)

”
.

Also, when F is an APN power function, we have additional information on
its bijectivity. The author, Charpin and Zinoviev proved in [36] that, when
n is even, no APN function exists in a class of permutations including power
permutations, that we describe now. Let k = 2n−1

3 (which is an integer, since
n is even) and let α be a primitive element of the field F2n . Then β = αk is
a primitive element of F4. Hence, β2 + β + 1 = 0. For every j, the element
β2j +βj = (β+1)j +βj equals 1 if j is coprime with 3 (since βj is then also
a primitive element of F4), and is null otherwise. Let F (x) =

∑2n−1
j=0 δjx

j ,
(δj ∈ F2n ) be an (n, n)-function. According to the observations above, β
and β+1 are the solutions of the equation F (x)+F (x+1) =

∑
gcd(j,3)=1 δj .

Also, the equation F (x)+F (x+1) =
∑2n−1

j=1 δj admits 0 and 1 for solutions.
Thus, if F is APN, then

∑k
i=1 δ3i 6= 0. If F is a power function, then it can

not be a permutation.
H. Dobbertin gives in [64] a result valid only for power functions but slightly
more precise, and he completes it in the case when n is odd: if a power func-
tion F (x) = xd is APN, then its kernel (when we view F as an endomorphism
of F∗2n) is the intersection of F4 with F∗2n ; in other words, xd = 1 if and only
if x3 = 1, that is, gcd(d, 2n − 1) equals 1 if n is odd and equals 3 if n is
even; thus APN power functions are permutations of F∗2n if n is odd, and
are three-to-one if n is even. Indeed, suppose that xd = 1 with x 6= 1.
Then there is a (unique) y in F2n , y 6= 0, 1, such that x = (y + 1)/y. The
equality xd = 1 implies then (y + 1)d + yd = 0 = (y2 + 1)d + (y2)d. By the
APN property and since y2 6= y, we conclude y2 + y + 1 = 0. Thus, y, and
therefore x, are in F4 and x3 = 1. Conversely, if x 6= 1 is an element of F∗2n

such that x3 = 1, then 3 divides 2n − 1 and n must be even. Then, since d
must then be divisible by 3 (indeed, otherwise, the restriction of xd to F4 is
linear and therefore xd is not APN), xd = 1.

A. Canteaut proves in [27] that for n even, if a power function F (x) = xd

on F2n is not a permutation (i.e. if gcd(d, 2n − 1) > 1), then the nonlin-
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earity of F is upper bounded by 2n−1 − 2n/2 (she also studies the case
of equality). Indeed, denoting gcd(d, 2n − 1) by d0, for every v ∈ F2n ,
the sum

∑
x∈F2n

(−1)tr(vx
d) equals

∑
x∈F2n

(−1)tr(vx
d0 ) which implies that∑

v∈F2n

(∑
x∈F2n

(−1)tr(vx
d)
)2

equals 2n |{(x, y), x, y ∈ F2n , xd0 = yd0}|.
The number of elements in the image of F∗2n by the mapping x → xd0 is
(2n − 1)/d0 and every element of this image has d0 pre-images. Hence,∑

v∈F∗2n

(∑
x∈F2n

(−1)tr(vx
d)
)2

equals 2n[(2n − 1)d0 + 1] − 22n = 2n(2n −

1)(d0 − 1) and maxv∈F∗2n

(∑
x∈F2n

(−1)tr(vx
d)
)2
≥ 2n(d0 − 1) ≥ 2n+1.

The possible values of the sum
∑

x∈F2n
(−1)tr(vx

d) are determined in [4] for
APN power functions in an even number of variables.

If F is a power function, then the linear codes CF and C⊥
F (viewed in

Proposition 10) are cyclic, that is, invariant under cyclic shifts of their co-
ordinates (see [90]). Indeed, (c0, . . . , c2n−2) belongs to CF if and only if
c0 + c1α + . . . + c2n−2α

2n−2 = 0 and c0 + c1α
d + . . . + c2n−2α

(2n−2)d = 0;
this implies c2n−2 + c0α + . . . + c2n−3α

2n−2 = 0 and c2n−2 + c0α
d + . . . +

c2n−3α
(2n−2)d = 0. Cyclic codes have been extensively studied in coding the-

ory. They have very useful properties, that we briefly recall: representing
each codeword (c0, . . . , c2n−2) by the polynomial c0+c1X+. . .+c2n−2X

2n−2,
we obtain an ideal of the quotient algebra F2[X]/(X2n−1 + 1) (viewed as a
set of polynomials of degrees at most 2n − 2, each element of the algebra
being identified to its minimum degree representent). This algebra is a
principal domain, and any (linear) cyclic code has a unique element having
minimal degree, called its generator polynomial . The generator polynomial
being (as easily shown) a divisor of X2n−1 + 1, its roots all belong to F∗2n .
The code equals the set of all those polynomials which include the roots of
the generator polynomial among their own roots. The generator polynomial
having all its coefficients in F2, its roots are of the form {αi, i ∈ I} where
I ⊆ Z/(2n − 1)Z is a union of cyclotomic classes of 2 modulo 2n − 1. The
set I is called the defining set of the code. The generator polynomial of C⊥

is the reciprocal of the quotient of X2n−1 + 1 by the generator polynomial
of C, and its defining set therefore equals {2n − 1− i; i ∈ Z/(2n − 1)Z \ I}.
In the case of CF , the defining set I is precisely the union of the two cyclo-
tomic classes of 1 and d.
A very efficient bound on the minimum distance of cyclic codes is the BCH
bound [90]: if I contains a string {l+1, . . . , l+k} of length k in Z/(2n−1)Z,
then the cyclic code has minimum distance greater than or equal to k + 1.

This bound shows for instance directly that the function x2
n−1

2 +1, n odd, is
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AB: by definition, the defining set I of CF equals the union of the cyclotomic
classes of 1 and 2

n−1
2 + 1, that is

{1, 2, · · · , 2n−1} ∪ {2
n−1

2 + 1, 2
n+1

2 + 1, 2
n+1

2 + 2, · · · , 2n−1 + 2
n−1

2 }.

The defining set of C⊥
F equals then Z/(2n − 1)Z \ {−i, i 6∈ I} (this property

is valid for every cyclic code, see [90]). Since there is no element equal to
2n−1 +2

n−1
2 +1, · · · , 2n−1 in I, the defining set of C⊥

F contains then a string
of length 2n−1 − 2

n−1
2 − 1. Hence the nonzero codewords of this code have

weight at least 2n−1 − 2
n−1

2 which means that the function is AB.
The powerful McEliece Theorem (see e.g. [90]) gives the exact divisibility
of the codewords of cyclic codes. Translated in terms of vectorial functions,
it says that if d is relatively prime to 2n− 1, the exponent ed of the greatest
power of 2 dividing all the Walsh coefficients of the power function xd is given
by ed = min{w2(t0)+w2(t1), 1 ≤ t0, t1 < 2n−1; t0 + t1d ≡ 0 [mod 2n−1]}.
It can be used in relationship with Proposition 12. This led to the proof, by
Canteaut, Charpin and Dobbertin, of a several decade old conjecture due to
Welch (see below).

Note finally that, if F is a power function, then the Boolean function
γF seen in Proposition 8 is within the framework of Dobbertin’s triple con-
struction [57].

2.1.4 Stability of APN and AB properties

The right and left compositions of an APN (resp. AB) function by an affine
permutation are APN (resp. AB). Two functions are called affine equivalent
if one is equal to the other, composed by such affine permutations. Adding
an affine function to an APN (resp. AB) function respects its APN (resp.
AB) property. Two functions are called extended affine equivalent (EA-
equivalent) if one is affine equivalent to the other, added with an affine
function.
The inverse of an APN (resp. AB) permutation is APN (resp. AB).
There exists a notion of equivalence between two functions F and G which
respects APNness and ABness and which is more general than the EA-
equivalence between F and G or between F and G−1 (if G is a permutation)
or vice versa or between F−1 and G−1 (if F and G are permutations). Let
F1 be a permutation on Fn2 , and let F2 be a function from Fn2 to itself. By
definition, F2 ◦ F1

−1 is APN if and only if, for any nonzero element (a, b) of

(Fn2 )2, the system:
{
F2 ◦ F1

−1(x) + F2 ◦ F1
−1(y) = b

x+ y = a
admits at most
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two solutions (x, y).
Changing x and y into F1(x) and F1(y), we obtain that the function F2◦F1

−1

is APN if and only if the system:
{
F2(x) + F2(y) = b
F1(x) + F1(y) = a

admits at most

two solutions. We then deduce:

Proposition 13 Let F be an APN (resp. AB) function on Fn2 and L1, L2 be
two affine functions from F2n

2 to Fn2 . Assume that (L1, L2) is a permutation
on F2n

2 and that the function F1(x) = L1(x, F (x)) is a permutation on Fn2 .
Then, denoting F2(x) = L2(x, F (x)), the function F2 ◦ F−1

1 is APN (resp.
AB) and γF2◦F−1

1
equals γF ◦L−1, where L is linear and (L1, L2) = L+ cst.

Proof. The value γF2◦F−1
1

(a, b) equals 1 if and only if a 6= 0 and there ex-
ists (x, y) in Fn2 × Fn2 such that F1(x) + F1(y) = a and F2(x) + F2(y) = b.
Thus, γF2◦F−1

1
is equal to γF ◦ L−1. The function γF2◦F−1

1
is therefore bent

(resp. has weight 22n−1 − 2n−1) if and only if γF is bent (resp. has weight
22n−1 − 2n−1). Proposition 8 completes the proof. 2

Proposition 13 can also be stated in the following way:
- If the graphs {(x, y) ∈ Fn2×Fn2 | y = F (x)} and {(x, y) ∈ Fn2×Fn2 | y = G(x)}
of two functions F and G are affine equivalent, then F is APN (resp. AB) if
and only if G is APN (resp. AB). According to the terminology introduced
in [13], the functions F and G are then called CCZ-equivalent .
- Given a function F : Fn2 → Fn2 and an affine automorphism L = (L1, L2)
of Fn2 × Fn2 , the image of the graph of F by L is the graph of a function if
and only if the function F1(x) = L1(x, F (x)) is a permutation.

All the transformations we have seen previously to Proposition 13, that
respect APN (resp. AB) property, are particular cases of this general one:
- if (L1, L2)(x, y) = (y, x), then F2 ◦ F−1

1 is equal to F−1;
- if L1(x, y) and L2(x, y) only depend on x and y, respectively, this corre-
sponds to the right and left compositions of F by linear permutations;
- if L2(x, y) = y+L(x) and L1(x, y) = x where L is any affine function from
Fn2 to itself, then we obtain F (x) + L(x).

CCZ-equivalence does not preserve crookedness.

2.1.5 Known AB functions

Power functions: Until recently, the only known examples of AB func-
tions were (up to EA-equivalence) the power functions x 7→ xd on the field
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F2n (n odd) corresponding to the following values of d, and the inverses of
these power functions:

• d = 2h + 1 with gcd(h, n) = 1 and 1 ≤ h ≤ n−1
2 (proved by Gold, see

[67, 94]). These power functions are called Gold functions.
• d = 22h − 2h + 1 with gcd(h, n) = 1 and 2 ≤ h ≤ n−1

2 (the AB property
of this function is equivalent to a result by Kasami [80], historically due to
Welch, but never published by him; see another proof in [59]). These power
functions are called Kasami functions.
• d = 2(n−1)/2 + 3 (conjectured by Welch and proved by Canteaut, Charpin
and Dobbertin, see [29, 30, 60]). These power functions are called Welch
function.
• d = 2(n−1)/2 + 2(n−1)/4 − 1, where n ≡ 1 (mod 4) (conjectured by Niho,
proved by Hollman and Xiang, after the work by Dobbertin, see [74, 61]).
• d = 2(n−1)/2 + 2(3n−1)/4 − 1, where n ≡ 3 (mod 4) (idem). The power
functions in these two last cases are called Niho functions.
The conditions “1 ≤ h ≤ n−1

2 , . . .” are made to avoid equivalent exponents.

It was proved [16] that Gold functions are pairwise CCZ-inequivalent and
that they are in general CCZ-inequivalent to Kasami and Welch functions.

The proof of the fact that the Gold function is AB is easy, either by using
Proposition 12 of the present chapter, or by using the properties of quadratic
functions recalled in the chapter “Boolean Functions for Cryptography and
Error Correcting Codes”, at Subsection 5.1. The value at a of the Walsh
transform of the Gold Boolean function tr(x2h+1) equals ±2

n+1
2 if tr(a) = 1

and is null otherwise, since tr(x2h
y + xy2h

) = tr((x2h
+ x2n−h

) y) is null for
every y if and only if x ∈ F2, and since tr(x2h+1+ax) is constant on F2 if and
only if tr(a) = 1. This gives easily the magnitude (but not the sign; partial
results on the sign are given in [86]) of the Walsh transform of the vecto-
rial Gold function, this function being a permutation (see Subsection 2.1.3).
The proofs of the almost bentness of the other functions can be derived from
their almost perfect nonlinearity (see below) and from Proposition 12 (and
McEliece’s Theorem in the case of the Welch function). More can be said
in the case of the Kasami function: it has been proved in [55, Theorem 15]
that, if 3h is congruent with 1 mod n, then the Walsh support of the Kasami
Boolean function tr(x22h−2h+1) equals the support of the Gold Boolean func-
tion tr(x2h+1) (i.e. the set {x ∈ F2n | tr(x2h+1) = 1}) if n is odd and equals
the set {x ∈ F2n |Trn/2(x2h+1) = 0} if n is even, where Trn/2 is the trace

29



function from F2n to the field F22 : Trn/2(x) = x+ x4 + x42
+ . . .+ x4n/2−1

.
When n is odd, this gives the magnitude (but not the sign) of the Walsh
transform of the vectorial Kasami function, this function being a permu-
tation. Note that this gives also an information on the autocorrelation
of the Kasami Boolean function: the Fourier transform of the function
a → F(Daf) =

∑
x∈Fn

2
(−1)Daf(x), where f is the Kasami Boolean func-

tion, equals the square of the Walsh transform of f . According to Dillon’s
and Dobbertin’s result recalled above, and since we know that the Kasami
function is almost bent when n is odd, the value at b of the square of the
Walsh transform of f equals then 2n+1 if tr(x2h+1) = 1 and equals zero
otherwise. Hence, by applying the inverse Fourier transform (that is, by
applying the Fourier transform again and dividing by 2n), F(Daf) equals
twice the Fourier transform of the function tr(x2h+1). We deduce that, ex-
cept at the zero vector, F(Daf) equals the opposite of the Walsh transform
of the function tr(x2h+1).

Remark. There is a close relationship between AB functions and sequences
used for radars and for spread-spectrum communications. A binary sequence
which can be generated by an LFSR, or equivalently which satisfies a linear
recurrence relation si = a1si−1⊕. . .⊕ansi−n, is called maximum-length if its
period equals 2n−1, which is the maximum possible value. Such a sequence
has the form tr(λαi), where λ ∈ F2n and α is some primitive element of
F2n , and where tr is the trace function on F2n . Consequently, its auto-
correlation values

∑2n−2
i=0 (−1)si⊕si+t (1 ≤ t ≤ 2n−2) are equal to -1, that is,

are optimum. Such a sequence, also called an m-sequence, can be used for
radars and for code division multiple access (CDMA) in telecommunications,
since it allows to send a signal which can be easily distinguished from any
time-shifted version of itself. Finding an AB power function xd on the field
F2n allows to have a d-decimation5 s′i = tr(λαdi) of the sequence, whose
crosscorrelation values

∑2n−2
i=0 (−1)si⊕s′i+t (0 ≤ t ≤ 2n − 2) have minimum

overall magnitude6 [70]. The conjectures that the power functions above
were AB have been stated (before being proved later) in the framework of
sequences for this reason.

5Another m-sequence if d is co-prime with 2n − 1.
6This allows, in code division multiple access, to give different signals to different users

(one for each such decimation) which can be easily distinguished from any other signal
and its time-shifted versions.
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Non-power functions: It was conjectured that all AB functions were
affinely equivalent to power functions. This conjecture was later disproved:

Functions CCZ-equivalent to power functions:

• Using the stability of the AB property by CCZ-equivalence and the fact
that the Gold function is AB, two new infinite classes of AB functions have
been introduced in [13], which disprove the conjecture:
1. The function F (x) = x2i+1 + (x2i

+ x) tr(x2i+1 + x), where n > 3 is odd
and gcd(n, i) = 1, is AB. It is EA-inequivalent to any power function and it
is EA-inequivalent to any permutation (at least for n = 5).
2. For n odd and divisible by m, n 6= m and gcd(n, i) = 1, the following
function from F2n to F2n :

x2i+1 + trn/m(x2i+1) + x2i
trn/m(x) + x trn/m(x)2

i
+

[trn/m(x)2
i+1 + trn/m(x2i+1) + trn/m(x)]

1

2i+1 (x2i
+ trn/m(x)2

i
+ 1) +

[trn/m(x)2
i+1 + trn/m(x2i+1) + trn/m(x)]

2i

2i+1 (x+ trn/m(x))

where trn/m denotes the relative trace function trn/m(x) =
∑n/m−1

i=0 x2mi
,

is an AB function of algebraic degree m+2 which is EA-inequivalent to any
power function; the question of knowing whether it is inequivalent to any
permutation is open.

Functions CCZ-inequivalent to power functions:

• The problem of knowing whether there exist AB functions which are CCZ-
inequivalent to power functions remained open after the introduction of the
two functions above. Also, it was conjectured that any quadratic APN func-
tion is EA-equivalent to Gold functions and this problem remained open.
A paper by Edel, Kyureghyan and Pott [65] introduced two quadratic func-
tions from F210 (resp. F212) to itself. The first one is proved to be CCZ-
inequivalent to any power function.
These two (quadratic) functions were isolated and this left open the ques-
tion of knowing whether a whole infinite class of APN functions being not
CCZ-equivalent to power functions could be exhibited. Such existence was
proved in [14, 15]. A new class of AB functions was found:

Proposition 14 Let s and k be positive integers with gcd(s, 3k) = 1 and
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t ∈ {1, 2}, i = 3− t. Furthermore let d = 2ik + 2tk+s − (2s + 1),

g1 = gcd(23k − 1, d/(2k − 1)),

g2 = gcd(2k − 1, d/(2k − 1)).

If g1 6= g2 then the function

F : F23k → F23k

x 7→ α2k−1x2ik+2tk+s
+ x2s+1

where α is primitive in F23k is AB when k is odd and APN when k is even.

It could be proved in [14, 15] that some of these functions are EA-inequivalent
to power functions and CCZ-inequivalent to some AB power functions, and
this was sufficient to deduce that they are CCZ-inequivalent to all power
functions for some values of n:

Proposition 15 Let s and k ≥ 4 be positive integers such that s ≤ 3k − 1,
gcd(k, 3) = gcd(s, 3k) = 1, and i = sk mod 3, t = 2i mod 3, n = 3k. If
a ∈ F2n has the order 22k+2k+1 then the function F (x) = x2s+1+ax2ik+2tk+s

is an AB permutation on F2n when n is odd and is APN when n is even.
It is EA-inequivalent to power functions and CCZ-inequivalent to Gold and
Kasami mappings.

• It has been shown in [18] by L. Budaghyan, C. Carlet and G. Leander that
for every odd positive integer, the function x3 + tr(x9) is AB on F2n . This
function is the only example, with the function x3, of a function which is
AB for ant odd n.

2.1.6 Known APN functions

We list now the known APN functions (in addition to the AB functions
listed above).

Power functions: The so-called inverse power permutation x 7→ F (x) =
x2n−2 (which equals 1

x if x 6= 0, and 0 otherwise) is APN if n is odd [5, 94].
Indeed, the equation x2n−2 + (x+ 1)2

n−2 = b (b 6= 0, since the inverse func-
tion is a permutation) admits 0 and 1 for solutions if and only if b = 1; and
it (also) admits (two) solutions different from 0 and 1 if and only if there
exists x 6= 0, 1 such that 1

x + 1
x+1 = b, that is, x2 + x = 1

b . It is well-known
that such existence is equivalent to the fact that tr

(
1
b

)
= 0. Hence, F is
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APN if and only if tr(1) = 1, that is, if n is odd.
Consequently, the functions x 7→ x2n−2i−1, which are linearly equivalent to
F (through the linear isomorphism x 7→ x2i

) are also APN, if n is odd.
If n is even, then the equation x2n−2 + (x + 1)2

n−2 = b admits at most 2
solutions if b 6= 1 and admits 4 solutions (the elements of F4) if b = 1, which
means that F opposes a good (but not optimal) resistance against differen-
tial cryptanalysis. Its nonlinearity equals 2n−1 − 2n/2 when n is even and it
equals the highest even number upper bounded by this number, when n is
odd (see [43]; Lachaud and Wolfmann proved in [85] that the set of values of
its Walsh spectrum equals the set of all integers s ≡ 0 [mod 4] in the range
[−2n/2+1 + 1; 2n/2+1 + 1]; see more in [73]). Knowing whether there exist
(n, n)-functions with nonlinearity strictly greater than this value when n is
even is an open question (even for power functions). These are reasons the
function x 7→ x2n−2 has been chosen for the S-boxes of the AES (see more
details in [94, 49]).
Until recently, the only known examples of APN and non-AB functions were
(up to affine equivalence and to the addition of an affine function) the power
functions x 7→ xd corresponding to the following values of d:

• d = 2n − 2, n odd (inverse function);
• d = 2h + 1 with gcd(h, n) = 1, n even and 1 ≤ h ≤ n−2

2 (Gold functions,
see [67, 94]);
• d = 22h − 2h + 1 with gcd(h, n) = 1, n even and 2 ≤ h ≤ n−2

2 (Kasami
functions, see [77], see also [59]);
• d = 2

4n
5 + 2

3n
5 + 2

2n
5 + 2

n
5 − 1, with n divisible by 5 (Dobbertin functions,

see [62]). It has been shown by Canteaut, Charpin and Dobbertin [30] that
this function can not be AB: they showed that C⊥

F contains words whose
weights are not divisible by 2

n−1
2 .

The proof of the fact that the first of these functions is APN (whatever
is the parity of n) is easy: the equality F (x)+F (x+1) = F (y)+F (y+1) is
equivalent to (x+y)2

h
= (x+y), and thus implies that x+y = 0 or x+y = 1,

since h and n are co-prime. Hence, any equation F (x)+F (x+1) = b admits
at most two solutions.
The proofs of the facts that the second and third functions are APN are dif-
ficult. They come down to showing that some mappings are permutations.
H. Dobbertin gives in [63] a nice and general method for this.
The Gold and Kasami functions, for n even, have the best known nonlin-
earity too [67, 80], but not the Dobbertin functions. See [30] for a list of all
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known permutations with best known nonlinearity. See also [56].
Inverse and Dobbertin functions are inequivalent to all other known APN
functions because of their peculiar Walsh spectra.

Non-power functions: As for AB functions, it had been conjectured that
all APN functions were EA-equivalent to power functions.

Functions CCZ-equivalent to power functions:

• Using also the stability properties recalled at Subsection 2.1.4, two more
infinite classes of APN functions have been introduced in [13] and disprove
this conjecture:
1. The function F (x) = x2i+1 + (x2i

+ x+ 1) tr(x2i+1), where n ≥ 4 is even
and gcd(n, i) = 1 is APN and is EA-inequivalent to any power function.
2. For n even and divisible by 3, the function F (x) equal to

[x+ trn/3(x
2(2i+1) + x4(2i+1)) + tr(x) trn/3(x

2i+1 + x22i(2i+1))]2
i+1,

where gcd(n, i) = 1, is APN and is EA-inequivalent to any known APN
function.

Functions CCZ-inequivalent to power functions:

• The functions viewed at Proposition 14 are APN when n is even and some
of them can be proven CCZ inequivalent to Gold and Kasami mappings, as
seen at Proposition 15. A similar class but with n divisible by 4 was later
given in [17]. As observed by J. Bierbrauer, a common framework exists
partially for these two classes:

Theorem 2 Let:
- n = tk be a positive integer, with t ∈ {3, 4}, and s be such that t, s, k are
pairwise coprime and such that t is a divisor of k + s,
- α be a primitive element of F2n and w = αe, where e is a multiple of 2k−1,
coprime with 2t − 1,
then the function

F (x) = x2s+1 + wx2k+s+2k(t−1)

is APN.

For n ≥ 12, these functions are EA-inequivalent to power functions and
CCZ-inequivalent to Gold and Kasami mappings.
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In particular, for n = 12, 20, 24, 28 they are CCZ-inequivalent to all power
functions.

Proposition 14 has been partly generalized7 in [9] by C. Bracken, E.
Byrne, N. Markin and G. McGuire:

F (x) = u2k
x2−k+2k+s

+ ux2s+1 + vx2−k+1 + wu2k+1x2k+s+2s

is APN on F23k , when 3 | k + s, (s, 3k) = (3, k) = 1 and u is primitive in
F23k , v 6= w−1 ∈ F2k .
The same authors in the same paper obtained another generalization:

F (x) = bx2s+1 + b2
k
x2k+s+2k

+ cx2k+1 +
k−1∑
i=1

rix
2i+k+2i

where k, s are odd and coprime, b, c ∈ F22k \ F2k , ri ∈ F2k is APN on F22k .
The extended Walsh spectrum of these functions is the same as for Gold
function, see [10].

• The AB functions observed by L. Budaghyan, C. Carlet and G. Leander
in [18] generalize to APN functions for n even:
Let n be any positive integer. Then the function x3 + tr(x9) is APN on F2n.
This function is CCZ-inequivalent to any Gold function on F2n if n ≥ 7 and
n > 2p where p is the smallest positive integer different from 1 and 3 and
coprime with n.
The extended Walsh spectrum of this function is the same as for the Gold
functions as shown in [8].

• An idea of J. Dillon [53] was that functions of the form:

F (x) = x(Ax2 +Bxq + Cx2q) + x2(Dxq + Ex2q) +Gx3q,

where q = 2n/2, n even, have good chances to be differentially 4-uniform.
L. Budaghyan and C. Carlet, pushing further Dillon’s idea, obtained in [19]
the following result:
Let n be even and i be co-prime with n/2. Set q = 2n/2 and let c, b ∈ F2n

be such that cq+1 = 1, c 6∈ {λ(2i+1)(q−1), λ ∈ F2n}, cbq + b 6= 0. Then the
function

F (x) = x22i+2i
+ bxq+1 + cxq(2

2i+2i)

7To be sure this is actually a generalization, we would need to have an example of a
function of this class which would be CCZ-inequivalent to the functions of Proposition 14.
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is APN on F2n.
Such vectors b, c do exist if and only if gcd(2i + 1, q + 1) 6= 1. For n/2 odd,
this is equivalent to saying that i is odd.

• L. Budaghyan and C.Carlet obtained in this same paper [19]:
Let n be even and i be co-prime with n/2. Set q = 2n/2 and let c ∈ F2n and
s ∈ F2n \ Fq. If the polynomial

X2i+1 + cX2i
+ cqX + 1

is irreducible over F2n, then the function

F (x) = x(x2i
+ xq + cx2iq) + x2i

(cqxq + sx2iq) + x(2i+1)q

is APN on F2n.
They checked with a computer that some of the functions of the present case
and of the previous one are CCZ-inequivalent to power functions on F26 . It
remains open to prove the same property for every even n ≥ 6.

Remark. The APN power functions listed above are not permutations when
n is even. The question of knowing whether there exist APN permutations
when n is even is open. We have seen that the answer is “no” for all plateaued
functions (this was first observed in [96] when all the component functions
of F are partially-bent; Nyberg generalized there a result given without a
complete proof in [101], which was valid only for quadratic permutations).
We have also seen above at Subsection 2.1.3 that the answer is “no” for a
class of permutations including power permutations. And X.-d. Hou proved
in [75] that it is also “no” for permutations with coefficients in F2 (more
generally in F2n/2).

3 Conclusion

The design of the AES has been partly founded on the studies (by K. Ny-
berg and others) on the notions of nonlinearity (for the resistance to linear
attacks) and almost perfect nonlinearity (for the resistance to differential
attacks). This has allowed the AES to use S-boxes working on bytes (it
would not have been possible to find a good 8-bit-to-8-bit S-box by a com-
puter search as this had been done for the 6-bit-to-4-bit S-boxes of the
DES). However, from these studies, very few mappings emerged. The Gold
functions, all the other recently found quadratic functions and the Welch
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functions have too low algebraic degrees for being widely chosen for the
design of new S-boxes. The Kasami functions themselves seem too closely
related to quadratic functions. The inverse function has many very nice
properties: large Walsh spectrum and good nonlinearity, differential unifor-
mity of order at leat 4, fast implementation. But it has a potential weakness,
which did not lead yet to efficient attacks, but may in the future: denoting
its input by x and its output by y, the bilinear expression xy equals 1 for
every nonzero x. As we can see, the candidates for future block ciphers not
using the inverse function as an S-box are the Niho and Dobbertin functions.
But the Niho functions exist only in odd numbers of variables, which is not
convenient for implementation, and the Dobbertin function needs n to be
divisible by 5. So further studies seem indispensable for the future designs
of SP networks.

3.1 Main remaining open problems

1. Find a better bound than the covering radius bound for:
- n odd and m < n;
- n even and n/2 < m < n.
2. Find new primary (or secondary) constructions of perfect nonlinear (bent)
functions from Fn2 to Fn/22 .
3. Find secondary constructions of APN and AB functions.
Observation: the construction of Proposition 4 can give functions Fψ,H :
Fn2 → F2r with extended Walsh spectrum {0,±2

n+1
2 } but with r ≤ n

3 .
4. Derive constructions of APN/AB functions from perfect nonlinear func-
tions, and vice versa.
5. Find classes of APN functions by using CCZ-equivalence with Kasami
(resp. Welch, Niho, Dobbertin) functions.
6. Find classes of APN functions CCZ-inequivalent to power functions and
to quadratic functions.
7. Find APN permutations with n even, or prove they cannot exist.
Observation: If APN permutations exist for n even, they are neither power
functions, nor in F2n/2 [x], nor plateaued.
8. Classify the extended Walsh spectra, or at least the nonlinearities, of
APN functions.
Observations:
For n odd, the known APN functions have three possible spectra:

• the spectrum of the AB functions (e.g. the Gold functions) which gives
a nonlinearity of 2n−1 − 2

n−1
2 ,
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• the spectrum of the inverse function8, which takes any value divisible
by 4 in [−2n/2+1 + 1; 2n/2+1 + 1] and gives a nonlinearity close to
2n−1 − 2n/2,

• the spectrum of the Dobbertin function which is more complex (it is
divisible by 2n/5 and not divisible by 22n/5+1); its nonlinearity seems
equal to 2n−1 − 23n/5−1 − 22n/5−1.

For n even, the spectra may be more diverse:

• the Gold functions,

• the Dobbertin function,

• As soon as n ≥ 6, we find (quadratic) functions with different spectra.

The nonlinearities seem also lower bounded by approximately 2n−1−23n/5−1−
22n/5−1.
Open question: is this situation general to all APN functions or specific to
the APN functions found so far?

Observation:

Proposition 16 Let F be an APN function in n > 2 variables. For all real
numbers a and b such that a ≤ b, let Na,b be the number of ordered pairs
(u, v) ∈ Fn2 ×(Fn2 \{0}) such that W 2

v·F (u) ∈]2n+a; 2n+b[, where Wv·F (u) =∑
x∈Fn

2
(−1)v·F (x)⊕u·x. Then the nonlinearity of F is lower bounded by

2n−1 − 1
2

√
2n +

1
2
(b+ a+

√
∆a,b),

where ∆a,b = (Na,b + 1)(b− a)2 + a b 2n+2(2n − 1) + 24n+2 − 23n+2.

Proof: Relation (11) or (12) shows that for all real numbers a, b we have∑
u∈Fn

2 ,

v∈Fn
2 \{0}

(W 2
v·F (u)−2n−a)(W 2

v·F (u)−2n−b) = 24n−23n+a b 2n(2n−1), (14)

since
∑

u∈Fn
2 ,v∈Fn

2 \{0}
(W 2

v·F (u)− 2n) = 0. Since the expression (x− a)(x−

b) takes its minimum at x = b+a
2 and this minimum is − (b−a)2

4 , we have

(W 2
v·F (u)− 2n− a)(W 2

v·F (u)− 2n− b) ≥ − (b−a)2
4 for these Na,b ordered pairs

8Whose values are called Kloosterman sums.
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and (W 2
v·F (u)− 2n − a)(W 2

v·F (u)− 2n − b) ≥ 0 for all the others. Hence we
have − (b−a)2

4 ≤ (W 2
v·F (u)−2n−a)(W 2

v·F (u)−2n−b) ≤ 24n−23n+a b 2n(2n−
1) +Na,b

(b−a)2
4 for any (u, v) ∈ Fn2 × (Fn2 \ {0}), that is, (W 2

v·F (u)− 2n)2 −
(b + a)(W 2

v·F (u) − 2n) + ab − (24n − 23n + a b 2n(2n − 1) +Na,b
(b−a)2

4 ) ≤ 0,
which implies

1
2
(b+ a−

√
∆a,b) ≤W 2

v·F (u)− 2n ≤ 1
2
(b+ a+

√
∆a,b),

where ∆a,b = (b + a)2 − 4(a b − 24n + 23n − a b 2n(2n − 1) − Na,b
(b−a)2

4 ) =
(Na,b + 1)(b− a)2 + a b 2n+2(2n − 1) + 24n+2 − 23n+2. This implies that the
nonlinearity of F is lower bounded by

2n−1 − 1
2

√
2n +

1
2
(b+ a+

√
∆a,b).

2

Consequences:
- taking b = −a = 2n, we see that if W 2

v·F (u) does not take values in the
range ]0; 2n+1[, then F is AB (this was known).
- more generally, taking a = −22n

b , we see that if W 2
v·F (u) does not take val-

ues in the range ]2n− 22n

b ; 2n+b[ for some b (which is necessarily greater than
or equal to 2n), the nonlinearity of F is lower bounded by 2n−1− 1

2

√
2n + b.

As observed by G. Leander (private communication), if F is an APN power
function, then in the case where n is odd it is a bijection and thus all
functions v · F have the same Walsh spectrum. Thus we have

max
v 6=0,u

W 4
v·F (u) ≤

∑
v 6=0,uW

4
v·F (u)

2n − 1
= 23n+1.

Thus
maxv 6=0,u|Wv·F (u) ≤ 23/4n+1/4.

In the even case we have that not all the functions v · F are the same, but
they are divided in two classes. Thus we get something similar there.

A first attempt to study the behavior of highly nonlinear S-boxes with
respect to Differential Power Attacks can be found in [99].
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3.2 Nonlinearity of S-boxes in stream ciphers

The notion of nonlinearity given in Definition 1 for block ciphers is not
relevant to those S-boxes used in the pseudo-random generators of stream
ciphers. Indeed, in the case of block ciphers, due to their iterative structure,
the knowledge of a nonlinear combination of the outputs to F with a low
nonlinearity does not necessarily lead to an attack, unless (at the least)
its degree is very low. On the contrary, since the structure of the pseudo-
random generators using combining or filtering functions is not iterative, all
of the m binary sequences produced by an (n,m)-function can be combined
by a linear or nonlinear (but non-constant) m-variable Boolean function g
to perform correlation attacks. Consequently, a second generalization to
(n,m)-functions of the notion of nonlinearity has been introduced (in [41],
but the definition was based on the observations of Zhang and Chan in
[111]).

Definition 6 Let F be an (n,m)-function. The unrestricted nonlinearity
UNL(F ) of F is the minimum Hamming distance between all non-constant
affine functions and all Boolean functions g◦F , where g is any non-constant
Boolean function on m variables.

If UNL(F ) is small, then one of the linear or nonlinear (non-constant) com-
binations of the output bits to F has high correlation to a non constant
affine function of the input, and a correlation attack is feasible.

Remark.
1. In Definition 6, the considered affine functions are non-constant, because
the minimum distance between all Boolean functions g ◦F (g non-constant)
and all constant functions equals minb∈Fm

2
|F−1(b)| (each number |F−1(b)| is

indeed equal to the distance between the null function and g ◦ F , where g
equals the indicator of the singleton {b}); it is therefore an indicator of the
balancedness of F . It is upper bounded by 2n−m (and it equals 2n−m if and
only if F is balanced), since the mean of |F−1(b)| is equal to 2n−m. If we
did not restrict ourselves to non-constant affine functions, UNL(F ) would
equal most often minb∈Fm

2
|F−1(b)| and would have no real relationship with

correlation attacks.
2. We can replace “non constant affine functions” by “nonzero linear func-
tions” in the statement of Definition 6 (replacing g by g ⊕ 1, if necessary).
3. Thanks to the fact that the affine functions considered in Definition 6 are
non-constant, we can relax the condition that g is non-constant: the distance
between a constant function and a non-constant affine function equals 2n−1,
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and UNL(F ) is clearly always smaller than 2n−1.

The unrestricted nonlinearity of any (n,m)-function F is obviously un-
changed when F is right-composed with an affine invertible mapping. More-
over, if A is a surjective linear (or affine) function from Fp2 (where p is
some positive integer) into Fn2 , then it is easily shown that UNL(F ◦ A) =
2p−nUNL(F ). Also, for every (m, p)-function φ, we have UNL(φ ◦ F ) ≥
UNL(F ) (indeed, the set {g◦φ, g ∈ BFp}, where BFp is the set of p-variable
Boolean functions, is included in BFm), and if φ is a permutation on Fm2 ,
then we have UNL(φ ◦F ) = UNL(F ) (by applying the inequality above to
φ−1 ◦ F ).

A further generalization of this attack, called the generalized correlation
attack has been introduced recently in [39]: considering implicit equations
which are linear in the input variable x and of any degree in the output vari-
able z = F (x), the following probability is considered, for any nonconstant
function g:

Pr(g(z) + w1(z)x1 + w2(z)x2 + · · ·+ wn(z)xn = 0), (15)

where z = F (x), wi : Fm2 → F2 and x uniformly ranges over Fn2 .
The knowledge of such approximation g with a probability significantly
higher than 1/2 leads to an attack, because z = F (x) corresponding to
the output keystream which is known, g(z) and wi(z) are known for all
i = 1, . . . , n.
This led to a new notion of generalized nonlinearity:

Definition 7 Let F : Fn2 → Fm2 . The generalized Hadamard transform
F̂ : (F2m

2 )n+1 → R is defined as:

F̂ (g(·), w1(·), . . . , wn(·)) =
∑
x∈Fn

2

(−1)g(F (x))+w1(F (x))x1+···wn(F (x))xn ,

where the input is an (n + 1)-tuple of Boolean functions g, wi : Fm2 → F2,
i = 1, . . . , n.
Let W be the set of all n-tuple functions w(·) = (w1(·), . . . , wn(·)), where wi
is an m-variable Boolean function and such that w(z) = (w1(z), . . . , wn(z)) 6=
(0, . . . , 0) for all z ∈ Fm2 .
The generalized nonlinearity is defined as:

GNF = min{ min
0 6=u∈Fm

2

(wt(u · F ), 2n − wt(u · F )), nonlingenF},
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where

nonlingenF = 2n−1 − 1
2

max
g∈G,w∈W

F̂ (g(·), w1(·), . . . , wn(·)). (16)

The generalized nonlinearity is clearly not greater than the other nonlinear-
ity measures and thus provides linear approximations with better bias for
correlation attack.

3.2.1 Relations to the Fourier/Walsh transforms and lower bounds

The unrestricted nonlinearity of F can be related to the values of the discrete
Fourier transforms of the functions ϕb, and a lower bound (observed in [111])
depending on NL(F ) can be directly deduced:

Proposition 17 For every (n,m)-function, we have

UNL(F ) = 2n−1 − 1
2

max
u∈Fn

2
∗

∑
b∈Fm

2

|ϕ̂b(u)| , (17)

and:
UNL(F ) ≥ 2n−1 − 2m/2

(
2n−1 −NL(F )

)
. (18)

Relation (17) allows to prove that any non-constant affine function A from
Fn2 into Fm2 has null unrestricted nonlinearity9: we assume without loss of
generality that A is linear; let E be a vectorspace whose direct sum with
its kernel Ker A equals Fn2 . For every b ∈ Im A, there exists a unique
vector a ∈ E such that A−1(b) = a + Ker A. We deduce that, for ev-
ery u ∈ Fn2 , the sum

∑
b∈Fm

2
|ϕ̂b(u)| =

∑
b∈Fm

2
|
∑

x∈A−1(b)(−1)u·x| equals

2dim(ImA)
∣∣∑

x∈Ker A(−1)u·x
∣∣. Since A is nonzero, Ker A has dimension

at most n − 1, and there exists u ∈ Fn2 ∗, such that Ker A ⊆ u⊥; hence
UNL(A) ≤ 2n−1 − 1

2 · 2
dim(Im A)+dim(Ker A) = 0.

This implies that, for every non-constant affine (n,m)-function A and for
every permutation φ on Fm2 , the unrestricted nonlinearity of the (n,m)-
function φ ◦A is null.
If A is constant, the result is no more true, but there is no need to consider
its unrestricted nonlinearity, since it has no cryptographic interest.

We shall see that the lower bound (18) is far from giving a good idea of
the best possible unrestricted nonlinearities: even if NL(F ) is close to the

9If A is surjective (that is, balanced) then this can be directly deduced from Inequality
(19) below.
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nonlinearity of bent functions, that is 2n−1−2n/2−1, it implies that UNL(F )
is approximately greater than 2n−1 − 2

n+m
2

−1, whereas we shall construct a
balanced (n, n/2)-function F such that UNL(F ) = 2n−1 − 2n/2.

Proposition 18 Let F : Fn2 → Fm2 and let w(·) denote the n-tuple of m-bit
Boolean functions (w1(·), . . . , wn(·)). Then

nonlingenF = 2n−1 − 1/2
∑
z∈Fm

2

max
w(z)∈Fn

2−{0}
|ϕ̂b(w(z))| .

Corollary 1

nonlingenF = 2n−1− 1
2m+1

∑
z∈GF (2)m

max
0 6=w(z)∈
GF (2)n

∣∣∣∣∣∣
∑

v∈GF (2)m

(−1)v·z ̂(v · F )χ(w(z))

∣∣∣∣∣∣ ,
where ̂(v · F )χ denotes the Walsh transform of the Boolean function v · F .
Hence

GNF ≥ 2n−1 − (2m − 1)
(
2n−1 −NL(F )

)
.

3.2.2 Upper bounds

To have a better evaluation of what can be a good unrestricted nonlinear-
ity, we need upper bounds. Recall that NL(F ) is the minimum Hamming
distance between all Boolean functions g ◦ F where g is any nonzero linear
function, and all affine functions (including the constant ones). Note that,
if F is balanced, this minimum distance can not be achieved with constant
affine functions, because g ◦ F , which is then a Boolean balanced function,
has distance 2n−1 to constant functions. Hence:

Proposition 19 (covering radius bound) For every balanced S-box F ,
we have:

UNL(F ) ≤ NL(F ). (19)

This implies UNL(F ) ≤ 2n−1 − 2n/2−1.

Another upper bound:

UNL(F ) ≤ 2n−1−1
2

22m − 2m

2n − 1
+

√
22n − 22n−m

2n − 1
+
(

22m − 2m

2n − 1
− 1
)2

− 1


has been obtained in [41]. It improves upon the covering radius bound
only for m ≥ n/2 + 1, and the question of knowing whether it is possible
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to improve upon the covering radius bound for m ≤ n/2 is open. In any
case, this improvement will not be dramatic, at least for m = n/2, since
it is shown (by using Relation (17)) in this same paper that the balanced

function F (x, y) =
{ x

y if y 6= 0
x if y = 0

satisfies UNL(F ) = 2n−1 − 2n/2 (see

other examples of S-boxes in [81], whose unrestricted nonlinearities seem low,
however). It is pretty astonishing that an S-box with such high unrestricted
nonlinearity exists; but it can be shown that this balanced function does not
contribute to a good resistance to algebraic attacks (it is not resilient either,
but this is not a problem if it is used as a filtering function).

Proposition 20 Let F : Fn2 → Fm2 . Then the following inequality holds.

nonlingenF ≤ 2n−1 − 1
4

∑
z∈Fm

2

√
2n+2|F−1(z)| − 4|F−1(z)|2

2n − 1
.

Furthermore if F (x) is balanced, then we have:

GNF ≤ 2n−1 − 2n−1

√
2m − 1
2n − 1

This upper bound is much lower than the covering radius bound 2n−1 −
2n/2−1 and the upper bound for UNF .

It is proved in [40] that the balanced function F (x, y) =
{ x

y if y 6= 0
x if y = 0

has null generalized nonlinearity. Hence, a vectorial function may have very
high unrestricted nonlinearity and have zero generalized nonlinearity. Some
functions with good generalized nonlinearity are given in [40]:

1. F (x) = Trnm(xk) where k = 2r + 1, gcd(r, n) = 1

2. F (x) = Trnm(xk) where k = 22r − 2r + 1, 3r ≡ 1 [mod] n,

where m divides n and n is odd, and where Trnm is the trace function
from F2n to F2m , have generalized nonlinearity satisfying GNF ≥ 2n−1 −
2(n−1)/2+m−1.

4 Resilient functions

Resilient Boolean functions have been studied in the chapter “Boolean Func-
tions for Cryptography and Error Correcting Codes”. The notion, when
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extended to vectorial functions, is relevant, in cryptology, to quantum cryp-
tographic key distribution [2] and to pseudo-random sequence generation for
stream ciphers.

Definition 8 Let n and m be two positive integers. Let t be an integer such
that 0 ≤ t ≤ n. An (n,m)-function F (x) is called t-th order correlation-
immune if its output distribution does not change when at most t coordinates
xi of x are kept constant. It is called t-resilient if it is balanced and t-th order
correlation-immune, that is if it stays balanced when at most t coordinates
xi of x are kept constant

This notion has a relationship with another notion which plays also a role in
cryptography: an (n,m)-function F is called a multipermutation (see [106])
if any two ordered pairs (x, F (x)) and (x′, F (x′)), x 6= x′ ∈ Fn2 , differ on at
least m + 1 distinct positions; such (n,m)-function ensures then a perfect
diffusion; an (n,m)-function is a multipermutation if and only if the indi-
cator of its graph {(x, F (x)); x ∈ Fn2} is an n-th order correlation-immune
Boolean function (see [22]).
Since S-boxes must be balanced, we shall focus on resilient functions, but
most of the results below can also be stated for correlation-immune func-
tions.
We call an (n,m) function which is t-resilient an (n,m, t)-function. Clearly,
if such a function exists, then m ≤ n − t (i.e. t ≤ n −m), since balanced
(n,m)-functions can exist only if m ≤ n. This bound is weak (it is tight
if and only if m = 1 or t = 1). It is shown in [47] (see also [6]) that, if
an (n,m, t)-function exists, then m ≤ n − log2

[∑t/2
i=0

(
n
i

)]
if t is even and

m ≤ n − log2

[(
n−1

(t−1)/2

)
+
∑(t−1)/2

i=0

(
n
i

)]
if t is odd. This can be deduced

from a classical bound on orthogonal arrays, due to Rao [100]. But, as
shown in [6] (see also [88]), potentially better bounds can be deduced from
the linear programming bound due to Delsarte [51]: t ≤

⌊
2m−1 n
2m−1

⌋
− 1 and

t ≤ 2
⌊

2m−2(n+1)
2m−1

⌋
− 1.

Note that composing a t-resilient (n,m)-function by a permutation on Fm2
does not change its resiliency order (this obvious result was first observed
in [109]). Also, the t-resiliency of S-boxes can be expressed by means of the
t-resiliency of Boolean functions:

Proposition 21 Let F be an (n,m) function. Then F is t-resilient if and
only if one of the following conditions is satisfied :
1. for every nonzero vector v ∈ Fm2 , the Boolean function v · F (x) is t-
resilient,
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2. for every balanced m-variable Boolean function g, the n-variable Boolean
function g ◦ F is t-resilient.

Equivalently, F is t-resilient if and only if, for every vector u ∈ Fn2 such
that wH(u) ≤ t, one of the following conditions is satisfied :
(i).

∑
x∈Fn

2
(−1)v·F (x)+u·x = 0, for every v ∈ Fm2 ∗,

(ii).
∑

x∈Fn
2
(−1)g(F (x))+u·x = 0, for every balanced m-variable Boolean func-

tion g.
Finally, F is t-resilient if and only if, for every vector b ∈ Fm2 , the

Boolean function ϕb is t-th order correlation-immune and has weight 2n−m.

Proof. According to the characterization recalled in the previous chapter,
at Proposition 12, Condition 1 (resp. Condition 2) is equivalent to the fact
that Condition (i) (resp. Condition (ii)) is satisfied for every vector u ∈ Fn2
such that wH(u) ≤ t.
Let us prove now that the t-resiliency of F implies Condition 2, which im-
plies Condition 1, which implies that, for every vector b ∈ Fm2 , the Boolean
function ϕb is t-th order correlation-immune and has weight 2n−m, which
implies that F is t-resilient. If F is t-resilient, then, for every balanced m-
variable Boolean function g, the function g ◦ F is t-resilient, by definition;
hence Condition 2 is satisfied; this clearly implies Condition 1, since the
function g(x) = v · x is balanced for every nonzero vector v. Relation (3)
implies then that, for every vector u ∈ Fn2 such that wH(u) ≤ t and for
every b ∈ Fm2 , we have ϕ̂b(u) = 2−m

∑
x∈Fn

2
(−1)v·(F (x)+b)+u·x = 0. Hence,

Condition 1 implies that ϕb is t-th order correlation-immune for every b.
Also, according to Proposition 1, Condition 1 implies that F is balanced,
i.e. ϕb has weight 2n−m, for every b. These two conditions obviously imply,
by definition, that F is t-resilient. �

Consequently, the t-resiliency of vectorial functions is invariant under
the same transformations as for Boolean functions.

4.1 Constructions

4.1.1 Linear or affine resilient functions

The construction of t-resilient linear functions is easy: Bennett et al. [2]
and Chor et al. [47] established the connection between linear resilient
functions and linear codes (correlation-immune functions being related to
orthogonal arrays, see [24, 23], we should in fact refer to Delsarte [52] for
this relationship). There exists a linear (n,m, t)-function if and only if there
exists a linear [n,m, t+ 1] code.
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Proposition 22 Let G be a generating matrix for an [n, k, d] linear code C.
Define L : Fn2 7→ Fk2 by the rule L(x) = x × GT , where GT is the transpose
of G. Then L is an (n, k, d− 1)-function.

Indeed, for every nonzero v ∈ Fm2 , the vector v · L(x) = v · (x×Gt) has the
form x · u where u = v × G is a nonzero element of C. Hence, u having
weight at least d, the linear function v · L is (d− 1)-resilient, since it has at
least d independent terms of degree 1 in its ANF.
The converse of Proposition 22 is clearly also true.
Proposition 22 is still trivially true if L is affine instead of linear, that is
L(x) = x×Gt + a, where a is a vector of Fk2.
Stinson [103] considered the equivalence between resilient functions and
what he called large sets of orthogonal arrays. According to Proposition
21, an (n,m)-function is t-resilient if and only if there exists a set of 2m

disjoint binary arrays of dimensions 2n−m × n, such that, in any t columns
of each array, every one of the 2t elements of Ft2 occurs in exaclty 2n−m−t

rows and no two rows are identical.
The construction of t-resilient functions by Proposition 22 can be general-
ized by considering nonlinear codes of length n (that is subsets of Fn2 ) whose
dual distance d⊥ is greater than or equal to t + 1 (see [104]). As recalled
in the chapter “Boolean Functions for Cryptography and Error Correcting
Codes”, the dual distance of a code C of length n is the smallest nonzero
integer i such that the coefficient of the monomial Xn−iY i in the polyno-
mial

∑
x,y∈C(X +Y )n−wH(x+y)(X −Y )wH(x+y) is nonzero (when the code is

linear, the dual distance is equal to the minimum Hamming distance of the
dual code, according to MacWilliams’ identity). The nonlinear code needs
also to be systematic (that is, that there exists a subset I of {1, · · · , n} called
an information set of C, such that every possible tuple occurs in exactly one
codeword within the specified coordinates xi; i ∈ I) to allow the construc-
tion of a (d⊥ − 1)-resilient function. It is deduced in [104] that, for every
r ≥ 3, a (2r+1, 2r+1 − 2r − 2, 5)-resilient function exists (the construction is
based on the Kerdock code), and that no affine resilient function with these
parameters exists.

4.1.2 Maiorana-MacFarland resilient functions

The idea of designing resilient vectorial functions by generalizing the Maio-
rana-MacFarland construction is natural. One can find a first reference of
such construction in a paper by Nyberg [92], but for generating perfect
nonlinear functions. This technique has been used by Kurosawa et al. [83],
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Johansson and Pasalic [78], Pasalic and Maitra [98] and Gupta and Sarkar
[68] to produce functions having high resiliency and high nonlinearity10.

Definition 9 The class of Maiorana-McFarland (n,m)-functions is the set
of those functions F which can be written in the form:

F (x, y) = x×

 ϕ11(y) · · · ϕ1m(y)
...

. . .
...

ϕr1(y) · · · ϕrm(y)

+H(y), (x, y) ∈ Fr2 × Fs2 (20)

where r and s are two integers satisfying r+s = n, H is any (s,m)-function
and, for every index i ≤ r and every index j ≤ m, ϕij is a Boolean function
on Fs2.

The concatenation of t-resilient functions being still t-resilient, if the trans-
pose matrix of the matrix involved in Equation (20) is the generator matrix
of a linear [r,m, d]-code for every vector y ranging over Fs2, then the (n,m)-
function F is (d− 1)-resilient.

Any Maiorana-McFarland’s (n,m)-function F can be written in the form:

F (x, y) =

(
r⊕
i=1

xiϕi1(y)⊕ h1(y), . . . ,
r⊕
i=1

xiϕim(y)⊕ hm(y)

)
(21)

where H = (h1, ..., hm).

After denoting, for every i ≤ m, by φi the (s, r)-function which admits
the Boolean functions ϕ1i, ..., ϕri for coordinate functions, we can rewrite
Relation (21) as :

F (x, y) = (x · φ1(y)⊕ h1(y), . . . , x · φm(y)⊕ hm(y)) . (22)

- Resiliency: As a direct consequence of Proposition 22, we have (equiv-
alently to what is written above in terms of codes):

Proposition 23 Let n, m, r and s be three integers such that n = r + s.
Let F be a Maiorana-McFarland’s (n,m)-function defined as in Relation
(22) and such that, for every y ∈ Fs2, the family (φi(y))i≤m is a basis of an
m-dimensional subspace of Fr2 having t+ 1 for minimum Hamming weight,
then F is at least t-resilient.

10But, as recalled at Section 3.2, this notion of nonlinearity is not relevant to S-boxes
for stream ciphers. The unrestricted nonlinearity of resilient functions and of Maiorana-
MacFarland functions has to be further studied.
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- Nonlinearity: According to the known facts about the Walsh transform
of the Boolean Maiorana-MacFarland functions, the nonlinearity NL(F )
of any Maiorana-McFarland’s (n,m)-function defined as in Relation (22)
satisfies

NL(F ) = 2n−1 − 2r−1 max
(u,u′)∈Fr

2×Fs
2,v∈Fm

2
∗

∣∣∣∣∣∣
∑

y∈Eu,v

(−1)v·H(y)+u′·y

∣∣∣∣∣∣ (23)

where Eu,v denotes the set {y ∈ Fs2;
∑m

i=1 viφi(y) = u}.
The bounds proved in the chapter “Boolean Functions for Cryptography
and Error Correcting Codes”, Subsection 7.3.1, for the nonlinearities of
Maiorana-McFarland’s Boolean functions imply that the nonlinearityNL(F )
of a Maiorana-McFarland’s (n,m)-function defined as in Relation (22) sat-
isfies

2n−1−2r−1 max
u∈Fr

2,v∈Fm
2
∗
|Eu,v| ≤ NL(F ) ≤ 2n−1−2r−1

⌈√
max

u∈Fr
2,v∈Fm

2
∗
|Eu,v|

⌉
.

If, for every element y, the vectorspace spanned by the vectors φ1(y), ...,
φm(y) admits m for dimension and has a minimum Hamming weight strictly
greater than k (so that F is t-resilient with t ≥ k), then we have

NL(F ) ≤ 2n−1 − 2r−1

 2s/2√∑r
i=k+1

(
r
i

)
 . (24)

The nonlinearity can be exactly calculated in two situations (at least): if,
for every vector v ∈ Fm2 ∗, the (s, r)-function y 7→

∑
i≤m viφi(y) is injective,

then F admits 2n−1−2r−1 for nonlinearity; and if, for every vector v ∈ Fm2 ∗,
this same function takes exactly two times each value of its image set, then
F admits 2n−1 − 2r for nonlinearity.
Johansson and Pasalic described in [78] a way to specify the vectorial func-
tions φ1, ..., φm so that this kind of condition is satisfied. Their result can
be generalized in the following form:

Lemma 1 Let C be a binary linear [r,m, t + 1] code. Let β1, . . . , βm be a
basis of the F2-vectorspace F2m, and let L0 be a linear isomorphism be-
tween F2m and C. Then the functions Li(z) = L0(βiz), i = 1, . . . ,m,
have the property that, for every vector v ∈ Fm2 ∗, the function z ∈ F2m 7→∑m

i=1 viLi(z) is a bijection from F2m into C.
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Proof. For every vector v in Fm2 and every element z of F2m , we have∑m
i=1 viLi(z) = L0 ((

∑m
i=1 viβi)z). If the vector v is nonzero, then the ele-

ment
∑m

i=1 viβi is nonzero. Hence, the function z ∈ F2m 7→
∑m

i=1 viLi(z) is
a bijection. �

Since the functions L1, L2, · · · , Lm vanish at (0, . . . , 0), they do not satisfy
the hypothesis of Proposition 23 (i.e. the vectors L1(z), ...., Lm(z) are not
linearly independent for every z ∈ F2m). A solution to derive a family of
vectorial functions also satisfying the hypothesis of Proposition 23 is then to
right-compose the functions Li with a same injective (or two-to-one) function
π from Fs2 into F∗2m . Then, for every nonzero vector v ∈ Fm2 ∗, the function
y ∈ Fs2 7→

∑m
i=1 viLi[π(y)] is injective from Fs2 into C∗.

This gives the following construction11:
Given two integers m and r (m < r), construct an [r,m, t + 1]-code C
such that t is as large as possible (Brouwer gives in [11] a precise overview
of the best known parameters of codes). Then, define m linear functions
L1, ..., Lm from F2m into C as in Lemma 1. Choose an integer s strictly
lower than m (resp. lower than or equal to m) and define an injective
(resp. two-to-one) function π from Fs2 into F∗2m. Choose any (s,m)-function
H = (h1, . . . , hm) and denote r+ s by n. Then the (n,m)-function F whose
coordinate functions are defined by fi(x, y) = x · [Li ◦ π] (y) ⊕ hi(y) is t-
resilient and admits 2n−1 − 2r−1 (resp. 2n−1 − 2r) for nonlinearity.
All the primary constructions presented in [78, 83, 98, 93] are based on
this principle. Also, the recent construction of (n,m, t)-functions defined by
Gupta and Sarkar in [68] is also a particular application of this construction,
as shown in [42].

4.1.3 Other constructions

Constructions of highly nonlinear resilient vectorial functions, respectively
based on elliptic curves theory and on the trace of some power functions
x 7→ xd on finite fields, have been designed respectively by Cheon [46] and
by Khoo, Gong and Nyberg [82, 92, 93, 94]. However, it is still an open
problem to design highly nonlinear functions with high algebraic degrees
and high resiliency orders with Cheon’s method. On the other hand, the

11Another construction based on Lemma 1 is given by Johansson and Pasalic in [78]. It
involves a family of nonintersecting codes, that is a family of codes having the same pa-
rameters (same length, same dimension and same minimum distance) and whose pairwise
intersections are reduced to the null vector. However, this construction is often worse for
large resiliency orders, as shown in [42].
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number of functions which can be designed by these methods are very small.
Zhang and Zheng proposed in [109, 110] a secondary construction consist-
ing in the composition F = G ◦ L of a linear resilient (n,m, t)-function L
with a highly nonlinear (m, k)-function. F is obviously t-resilient, admits
2n−mNL(G) for nonlinearity where NL(G) denotes the nonlinearity of G
and its degree is the same as that of G. Taking for function G the inverse
function x 7→ x−1 on the finite Field F2m studied by Nyberg in [94] (and later
used for designing the S-boxes of the AES), Zhang and Zheng obtained t-
resilient functions having a nonlinearity larger than or equal to 2n−1−2n−m/2

and having m − 1 for algebraic degree. But the linear (n,m)-functions in-
volved in the construction of Zhang and Zheng introduce a weakness: their
unrestricted nonlinearity being null, this kind of functions can not be used
as a multi-output combination function in stream ciphers. Nevertheless, this
drawback can be avoided by concatenating such functions (recall that the
concatenation of t-resilient functions gives t-resilient functions, and a good
nonlinearity can be obtained by concatenating functions with disjoint Walsh
supports). We obtain this way a modified Maiorana-McFarland’s construc-
tion, that should be investigated.

Other secondary constructions of resilient vectorial functions can be derived
from the secondary constructions of resilient Boolean functions. (see e.g.
[23, 35]).
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