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ABSTRACT
This paper studies scheduling in multichannel wireless net-
works with flow-level dynamics. We consider a downlink
network with a single base station, M channels (frequency
bands), and multiple mobile users (flows). We also assume
mobiles dynamically join the network to receive finite-size
files and leave after downloading the complete files. A recent
study [16] has shown that the MaxWeight algorithm fails
to be throughput-optimal under this flow-level dynamics.
The main contribution of this paper is the development of
joint channel-assignment and workload-based scheduling al-
gorithms for multichannel downlink networks with dynamic
flow arrivals/departures. We prove that these algorithms
are throughput-optimal. Our simulations further demon-
strate that a hybrid channel-assignment and workload-based
scheduling algorithm significantly improves the network per-
formance (in terms of both file-transfer delay and blocking
probability) compared to the existing algorithms.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication

General Terms
Theory, Algorithms, Performance

Keywords
Wireless scheduling, flow-level dynamics, multichannel down-
link network

1. INTRODUCTION
Designing multi-user scheduling algorithms is a very chal-

lenging problem in wireless networks because of multi-scale
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dynamics: channel-level dynamics (channel fading), packet-
level dynamics (stochastic packet arrivals) and flow-level dy-
namics (dynamic flow arrivals/departures). A seminal result
in this area is the celebrated MaxWeight scheduling [15],
which deals with both channel-level and packet-level dy-
namics by selecting users based on the product of channel
state and queue length. Under the assumption that the set
of users/nodes is fixed and all traffic flows are persistent,
the MaxWeight scheduling is throughput optimal for gen-
eral channel and traffic models [1,7,13].

While the MaxWeight scheduling achieves the maximum
throughput under both channel-level and packet-level dy-
namics, a recent study [16] shows that the algorithm fails to
retain the throughput optimality property in the presence of
flow arrivals/departures, and can, in some instances, support
only a small fraction of the throughput region. This observa-
tion has motivated recent interest in developing new schedul-
ing algorithms for wireless networks with flow-level dynam-
ics, and throughput-optimal scheduling algorithms for single-
channel networks with flow-level dynamics have been devel-
oped in [11,14,16].

Motivated by current and next generation cellular sys-
tems (e.g., WiMax and LTE) implementing the Orthogo-
nal Frequency Division Multiplexing (OFDM), in this paper,
we consider multichannel wireless networks. These systems
have hundreds of sub-carriers, which are grouped into tens
of channels for scheduling purposes. In a multichannel net-
work, the base-station can transmit to multiple mobile users
simultaneously over different channels. Specifically, we con-
sider a downlink wireless network where a base-station is
responsible for scheduling downlink transmissions. We as-
sume mobile users dynamically join the network for receiving
finite-size files and leave the network after downloading the
files. For such multichannel wireless networks, an important
question that should be answered is the following: Are the
algorithms designed for single-channel networks [11, 14, 16]
still throughput optimal for multichannel networks in the
presence of flow-level dynamics? The answer to this ques-
tion is no. A counter example will be presented in Section 3.
In fact in multichannel wireless networks, the base-station
not only needs to decide which flow to serve on each channel,
but also how to split a flow across multiple channels. We
call the second problem the channel-assignment problem.
Designing the channel-assignment algorithm is a key contri-
bution of this paper, which makes both the algorithm and
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the analysis fundamentally different from those for single-
channel networks.

Further, one limitation of the solutions in [11,14,16] is that
they assume that each file arrives at the base station in one
chunk or is served after the complete file arrives at the base-
station, so these solutions result in a large file-transfer delay
when a file is injected slowly into the network. Therefore an-
other important question is the following: Can a throughput-
optimal scheduling algorithm serve a flow immediately after
its first packet arrives? The answer to this question is yes.
Unlike prior work, we allow each file to either arrive at the
base station in one chunk or to arrive packet-by-packet, and
a flow is considered for scheduling immediately after the flow
joins the network.

The main contributions of this paper are summarized in
the following:

• We derive the necessary conditions for the stability
of multi-channel downlink networks in the presence of
flow-level dynamics. The conditions are simple flow-
conservation constraints, which state that if the net-
work can be stabilized under a given traffic load, there
must exist a channel assignment scheme, which allo-
cates flows (complete or partial) to different channels,
such that the average workload of each channel is less
than one, where the workload is defined by the number
of channel uses.

• We develop a throughput optimal algorithm, which
we call joint channel-assignment and workload-based
scheduling (CA-WS), in which the channel assignment
algorithm is derived based on an optimization formu-
lation and its Lagrangian dual. We prove that the CA-
WS algorithm is throughput optimal in the presence
of flow-level dynamics.

• The CA-WS algorithm starts to serve a flow only af-
ter the complete file is received at the base-station,
so the performance of the CA-WS is worse than the
MaxWeight in light or medium traffic regimes. We
then propose a hybrid CA-WS algorithm, which sched-
ules those flows who are still injecting packets to the
base-station using the MaxWeight scheduling; and sched-
ules fully arrived flows (those flows who have been
completely transferred to the base-station) using an
algorithm called workload-based scheduling. It has
been observed in [11] that from the performance per-
spective, it is important to treat flows with large size
files as long-lived flows and schedule them using the
MaxWeight algorithm. The paper [11] however does
not discuss what size flows should be considered as
“long-lived” and what size flows should be considered
as “short-lived”. Also in practice, the base-station may
not know the size of a file before receiving the complete
file. The hybrid CA-WS algorithm proposed in this
paper overcomes these issues by viewing all flows as
“long-lived”flows before their last packets arrive at the
base-station, and seamlessly combines the MaxWeight
scheduling and workload-based scheduling. We prove
that the hybrid CA-WS is also throughput optimal
in multichannel downlink networks with flow-level dy-
namics.

• Finally, we use simulations to evaluate the performance
of the proposed algorithms. Our simulations confirm

that the CA-WS achieves a higher throughput com-
pared to the MaxWeight scheduling. Our simulations
also show that the hybrid CA-WS algorithm leads to
small file-transfer delays and blocking probabilities when
the network is not critically loaded (due to the MaxWeight
scheduling), and guarantees the stability of the net-
work in the heavy-traffic regime (due to the channel
assignment scheme and workload-based scheduling).

We finally comment that the stability of wireless systems
under flow-level dynamics has also been studied under a
time scale separation assumption [3–6, 10], where file sizes
are sufficiently large so that the flows “see” the time-average
throughput region which is fixed or changes slowly. This
paper (similar to [11, 14, 16]) studies the performance of
wireless scheduling algorithms without assuming such a time
scale separation, and a flow may be completely served within
one or several time slots so a flow may not “see” the time-
average throughput region, which makes the problem dif-
ferent from those studied in [3–6, 10]. A further difference
between [3–6, 10] and this paper (and [11, 14, 16]) lies in
the fact that the former ones consider utility-based sched-
ulers whereas the latter ones study workload-based (or delay-
based) schedulers.

2. BASIC MODEL
In this section, we define the network, channel and traffic

models that will be used in this paper.
Network model: We consider a wireless downlink net-

work with multiple channels (frequency bands). We let M
denote the set of channels and let M = |M|. The network
consists of a single base station and multiple flows (mobile
users). The flows join the network for the purpose of receiv-
ing files from some remote source which is not modeled in
our framework, and leave the network after downloading the
complete file. The remote source transmits the file to the
base-station, and then the base-station transmits to the mo-
bile user. The base station can communicate with a mobile
user using any of the M channels. We assume time is slot-
ted, and that at each time slot, only one flow can be served
over a given channel (frequency band) but a flow can be
served by multiple channels simultaneously. A two-channel,
three-mobile downlink network is demonstrated in Figure 1.

Figure 1: A two-channel, three-mobile downlink net-
work

Channel model: We denote by Rif (t) the state of chan-
nel i seen by flow f in time slot t, i.e., Rif (t) denotes the
number of packets that can be served by the channel at time
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instant t. We assume that Rif (t) are a sequence of indepen-
dent random variables (across time slots and across users),
each distributed like some random variable Rif , where Rif

has a finite support. We denote by Rmax
if the largest possi-

ble value of Rif and Rmax
f =

(
Rmax

1f , . . . , Rmax
Mf

)
. We assume

that there exists pmax > 0 such that

Pr(Rif (t) = Rmax
if ) ≥ pmax

for all i, f and t.
Traffic model: We denote by F̃f the size of the file asso-

ciated with flow f and assume F̃f are a sequence of indepen-
dent random variables (across flows), each distributed like a

random variable F. Thus, F̃f is the number of packets in flow
f ’s file. We classify flows into different classes according to
the maximum-rate vector Rmax

f seen by them. So flows f1

and f2 belong to the same class if Rmax
if1 = Rmax

if2 for all i. We
let K denote the set of classes, and assume K = |K|. We fur-
ther denote by kf the class of flow f and ΛkF (t) the number
of class-k flows that have a size of F and join the network
at time t. We assume ΛkF (t) are a sequence of independent
random variables (across time slots), each distributed like
ΛkF , and λkF = E[ΛkF ]. We further assume that the size of
a file is upper bounded by Fmax and∑

k∈K,F≤Fmax

ΛkF (t) ≤ λmax

for any t. Finally, we denote by Ff (t) the number of packets
of flow f queued at the base station at time t, and F(t) the
set of flows in the network at time t.

A flow is called a transient flow if the last packet of the
file has not arrived at the base station; and otherwise, we
call the flow a resident flow. In this paper, we assume that
the base station knows when a file is completely transferred
to the base station (e.g., the base station can figure out if
a flow is a resident flow by looking for a special end-of-file
packet). We let bf denote the time flow f joins the network,
and sf the time flow f becomes a resident flow. We further
denote by L(t) the set of transient flows at time t, and S(t)
the set of resident flows at time t.

3. JOINT CHANNEL ASSIGNMENT AND
WORKLOAD BASED SCHEDULING

For single-channel networks in the presence of flow-level
dynamics, throughput-optimal scheduling algorithms have
been proposed in [11, 14, 16]. The key idea of these algo-
rithms is to minimize the number of time-slots used to serve
all traffic flows. Note that the minimum number of time
slots required to fully transmit a file f is

⌈
F̃f/Rmax

f

⌉
, where

Rmax
f is the best channel state seen by flow f and

⌈
F̃f/Rmax

f

⌉
is called the workload of flow f. So the idea is then to serve
a flow f only when Rf (t) = Rmax

f , in other words, serve
a flow only if the workload of that flow can be reduced by
one. Since the average workload injected into the network in
one time slot should be less than one given the traffic load is
within the throughput region, scheduling algorithms that re-
duce workload by one (with a high probability) during each
time slot stabilize the network.

The reader may wonder whether we can directly use this
workload-based approach to multichannel networks? For
example to be throughput-optimal, is it sufficient to serve on

each channel i a flow such that Rif (t) = Rmax
if ? The answer

unfortunately is negative, as shown in the following example.
Example: Consider a network with two channels with

constant service rates: R1f = B + 1 and R2f = 2B for all
f, and two types of flows in the network: the file size of a
type 1 flow is 2B + 2 and the file size of a type 2 flow is
4B. We assume B ≥ 4 and both types of flows arrive with a
constant rate 1/2, i.e., one new arrival every two time slots.

Under this setting, consider a channel assignment that
serves type 1 flows on channel 1 and type 2 flows on channel
2. Since each flow consumes two channel uses under this
channel assignment, the network is stable.

However, we will now show that throughput optimality
is not guaranteed by serving on each channel i a flow with
Rif (t) = Rmax

if . For this purpose, consider a scheduling pol-
icy which gives priority to type 2 flows on channel 1 and
priority to type 1 flows on channel 2.

Note that each type 1 flow requires two channel uses, ir-
respective of the channels assigned to it, so channel 2 is
fully occupied by type 1 flows with arrival rate 1/2. Each
type 2 flow requires four channel uses on channel 1, so chan-
nel 1 alone cannot support type 2 flows with arrival rate
1/2. However, since channel 2 is fully occupied by type 1
flows, the number of type 2 flows will build up and the
network is unstable. While this example considers deter-
ministic arrivals for simplicity, it is not difficult to con-
struct an example with stochastic arrivals to demonstrate
the lack of throughput optimality of a policy which sched-
ules a user with the best channel state on each channel.

�
From this example, we can see the direct adoption of the

workload-based algorithm for single channel networks may
not be throughput-optimal for multichannel networks. This
is because, in a multichannel network, a flow can be served
by more than one channel, and the channels may have differ-
ent best channel states. Therefore, to achieve the maximum
throughput, we need to intelligently split a flow among the
M channels. In the previous example, the optimal solution
is to assign all type-1 flows to channel 1 and all type-2 flows
to channel 2. Now to develop efficient channel-assignment
algorithms, our first step is to understand the throughput
region of a multichannel network.

3.1 Necessary Conditions for Stability
To describe necessary conditions for supportability, we

introduce the concept of a channel assignment vector h.
Associated with each flow is a channel assignment vector
h = (h1, h2, ..., hM ), where hi denotes the number of time
slots allocated to the flow on channel i. The parameter
hi can be viewed as the workload imposed by the flow on
channel i. For example, in a network with three channels,
hf (t) = (0, 1, 1) means that after time slot t, the base station
is allowed to serve flow f once (one time slot) over channel
2 and 3, but not allowed to serve the flow over channel 1.
Next we define Qi(t) =

∑
f∈S(t) hif (t), where hif (t) is the

ith element of vector hf (t). Now given arrival rates {λkF },
we say that {λkF } is supportable if there exists a scheduling
algorithm, under which

lim
t→∞

E

[∑
i

Qi(t)

]
< ∞

holds.
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Further, if a flow has F packets, then we only need to
consider channel assignment vectors such that

∑
i∈M hi ≤

F . If a traffic load is supportable, then the average rate
at which workload arrives on each channel should be less
than one, so we obtain the following necessary conditions
for supportability.

Lemma 1. If arrival rates {λkF } are supportable, then
there exist Z∗

h|kF ≥ 0 such that

∑
k,F,h

λkF Z∗
h|kF hi ≤ 1, i = 1, 2, ..., M (1)

∑
h

Z∗
h|kF = 1, ∀k, F (2)

Z∗
h|kF = 0 if F >

∑
i∈M

hiR
max
ik (3)

�

We comment that Z∗
h|kF can be viewed as the fraction

of class k flows of size F that are assigned the channel as-
signment vector h. Inequality (1) is the capacity constraint
which says that the average workload assigned to a channel
should be less than one. Inequality (2) states that every file
should be associated with a channel assignment vector, and
(3) states that considering a flow f, the channel assignment
vector should guarantee sufficient service for transmitting
the complete file. We do not provide a proof of Lemma 1.
The proof follows along the lines of similar proofs in [15]
or [7].

3.2 Joint Channel-Assignment and Workload-
based Scheduling: An Optimization-based
Design

Now based on the necessary conditions (Lemma 1), we de-
rive an on-line channel-assignment algorithm using an opti-
mization based approach. Consider the following optimiza-
tion problem (feasibility problem):

min
Z

0∑
k,F,h

λkF Zh|kF hi ≤ 1, i = 1, 2, ..., M

∑
h

Zh|kF = 1, ∀k, F

Zh|kF = 0 if F >
∑
i∈M

hiR
max
ik

Zh|kF ≥ 0, ∀h, k, F

By appending some of the constraints to the objective using
Lagrangian multipliers, we get:

minZ

∑
i Qi

(∑
k,F,h λkF Z∗

h|kF hi − 1
)

subject to:
∑

h Zh|kF = 1,∀k, F

Zh|kF = 0 if F >
∑

i∈M hiR
max
ik

Zh|kF ≥ 0, ∀h, k, F,

where Qi is the Lagrangian multiplier associated with con-
straint

∑
k,F,h λkF Zh|kF hi ≤ 1.

The partially augmented problem can be decomposed into

subproblems associated with each pair of k and F :

minZ

∑
h

∑
i QiZh|kF hi

subject to:
∑

h Zh|kF = 1,

Zh|kF = 0 if F >
∑

i∈M hiR
max
ik

Zh|kF ≥ 0, ∀h, k, F.

Since the objective function is linear, the subproblem (for
fixed k and F ) can be further written as:

minh

∑
i Qihi

subject to: F ≤ ∑
i∈M hiR

max
ik .

Therefore for each flow, the channel-assignment problem can
be written as:

minh

∑
i Qihi

subject to: F̃f ≤ ∑
i∈M hiR

max
if .

Recall that Lagrangian multipliers can be viewed as the
price for using a given resource. Thus, if the Lagrangian mul-
tipliers are given, the channel assignment problem becomes
a load balancing problem in which channel assignment is
performed to minimize a weighted sum of channel prices.
To compute the channel prices, we use the well-known intu-
ition that the Lagrange multipliers are proportional to queue
lengths. Note that the Lagrangian multiplier Qi is asso-
ciated with the constraint

∑
k,F,h λkF Zh|kF hi ≤ 1, where∑

k,F,h λkF Zh|kF hi is the average incoming workload dur-
ing each time slot. Thus, the natural queue to consider here
is the overall workload assigned to channel i that has not yet
been served by the network. We describe it more precisely
next.

For each flow f, we define a channel assignment vector at
time slot t

hf (t) = (h1f (t), h2f (t), ..., hMf (t)) ,

where hif (t) is the number of remaining time slots assigned
to serve flow f over channel i at time slot t.

We then use Qi(t) as an estimate of the Lagrangian mul-
tiplier Qi and propose the following algorithm.

Joint Channel-Assignment and Workload-based Schedul-
ing (CA-WS):

(i) Channel-assignment: When the last packet of flow
f is received at the base station (at time slot sf ),1 the
base station computes hf (sf ) by solving the following
optimization problem:

OPTf = min
∑

i∈M Qi(bf )hif

subject to: F̃f ≤ ∑
i∈M hifRmax

if ,

where hif are non-negative integers. Clearly hf (t) = 0
for t < sf .

(ii) Workload-based scheduling: At time slot t, the
base station selects a file f for channel i such that

Rif (t) = Rmax
if and hif (t) > 0, (4)

1Here for simplicity we only consider the case where a flow
can be served only after its last packet arrives at the system.
Later we will consider a more general case where a flow may
be served before the arrival of its last packet.
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and transmits Rif (t) packets to mobile user f. Then,
the base station reduces hif (t) by one. If no flow sat-
isfies (4), the base station randomly selects a flow, say
flow f, and transmits Rif (t) packets to mobile f (in
this case, hif (t) is not updated). Ties are broken arbi-
trarily. When the file f has been completely transmit-
ted to mobile f, the base station sets hif (t) = 0 for all
i.

�

Theorem 2. Assume that sf − bf ≤ Tin for all f. Given
arrival rates {λkF } such that { 1

1−ε
λkF} are supportable, the

CS-WS algorithm guarantees

lim
t→∞

E

[∑
i

Qi(t)

]
< ∞.

Proof. The proof of this theorem follows from the proof
of Theorem 4 to be presented in the next section. Therefore,
we omit the details here.

Remark: The theorem assumes sf − bf ≤ Tin, which
means that the injection period of a flow (the time duration
from the first packet arrives at the base station to the last
packet arrives at the base station) is bounded by Tin. For
example, if the flow is a constant-bit-rate flow with rate
r, then the injection period is upper bounded by Fmax/r;
and if the flow is an elastic flow whose rate is controlled
by congestion control algorithm, then the injection period
is also bounded when the injection rate is lower bounded as
in the TCP congestion control algorithm (e.g., at least one
packet over a fixed number of time slots).
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Figure 2: Average File-transfer Delay of the CA-WS
and MaxWeight algorithms

Theorem 2 shows that the CA-WS algorithm is throughput-
optimal for multichannel downlink networks, but the algo-
rithm has two weaknesses:

• The performance of the algorithm can be poor in light
to moderate traffic regimes. This is because (i) the
base station serves a file only after the complete file is
received at the base station, which results in large wait-
ing times for large files, and (ii) the scheduling algo-
rithm is independent of queue-sizes even in a light traf-
fic regime, which again may result in large file-transfer
delays for large files. Figure 2 shows a simulation result
where we compare the MaxWeight algorithm and the
CA-WS algorithm with uniform tie-breaking rule (CA-
WSU) (the simulation setting will be described in Sec-
tion 5). We can see while the CA-WSU has a smaller

file-transfer delay than the MaxWeight in heavy traffic
regime, in light and medium traffic regimes, the perfor-
mance of the CA-WSU algorithm is much worse than
the MaxWeight algorithm.

In fact, it has been observed in [11] that from the
performance perspective, we may need to serve the
files with large sizes using the MaxWeight algorithm.
The authors in [11] suggest that flows be classified as
long-lived flows and short-lived flows, and use differ-
ent scheduling algorithms for different types of flows.
However, they do not provide any criterion for the clas-
sification. Further, in practice, the base station may
not even know the size of a file before the file fully
arrives at the base station.

• The algorithm assumes that Rmax
f is known a priori,

which is unrealistic in practice.

To overcome these two weaknesses, we introduce a hybrid
CA-WS algorithm in the next section.

4. A THROUGHPUT-OPTIMAL HYBRID CA-
WS ALGORITHM

The key idea behind our hybrid algorithm is as follows:
any flow whose last packet has not arrived at the base sta-
tion (recall that these are called transient flows in the ter-
minology of Section II) is treated as a persistent flow as in
the traditional MaxWeight algorithm. The MaxWeight al-
gorithm is then used to decide schedules among these flows.
Flows that have fully arrived at the base station (called res-
ident flows in Section II) are scheduled using the CA-WS
algorithm. However, we have to further decide whether to
schedule transient flows or resident flows over each channel.
This is one of the key elements of the hybrid algorithm to
be described later.

To tackle the issue of Rmax
f , we adopt the learning idea

introduced in [11]. We define a R̃max
if (t) to be the best state

of channel i seen by flow f from bf to min{t, bf + D}, and

use R̃max
if (t) to approximate Rmax

if . The parameter D is called
the learning period.

Before we present the hybrid CS-WS algorithm, we first
define the sequence of events that take place within a slot.
We assume the new flows (mobile users) arrive at the be-
ginning of the time slot t (denoted by tb) and the channel
state of time t is also measured at tb. Then we assume that
any computation or recomputation of hf (t) occurs at time
tm. Finally, the packets are served at the end of each time
slot (denoted by te). The sequence of these events is demon-
strated in Figure 3.

m

packet departurespacket arrivals

computation or recomputation of h

t b ett

Figure 3: The sequence of flow/packet arrivals, com-
putation or recomputation of h(t) and packet depar-
tures within a time slot
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Hybrid Channel Assignment and Workload-based
Scheduling (Hybrid CA-WS):

At time slot t, the flows are served as follows:

(i) When a new flow (say flow f) joins the network, it
records Qi(bf ) for all channels i.

(ii) Channel learning: The base station measures Rif (t)
for all i and f. Consider a flow f. If t ≤ bf + D and

Rif (t) > R̃max
if (t − 1) for some i, then flow f updates

the R̃max based on the new channel state, i.e.,

R̃max
if (t) = max

{
R̃max

if (t − 1), Rif (t)
}

.

(iii) Channel-assignment: Consider a resident flow f. If

t ≤ bf + D and R̃max
if (t) �= R̃max

if (t − 1) for some i, the
base station recomputes hf (t) by solving the following
optimization problem:

OPTf (t) = min
∑

i∈M Qi(bf )hif (t)

subject to: Ff (t) ≤ ∑
i∈M hif (t)R̃max

if (t),

where hif (t) are non-negative integers. Note that the
channel assignment for flow f is recomputed every time
we have a better estimate of Rmax

if for any channel i
up to time bf +D. This is necessary because the chan-
nel assignment algorithm is derived assuming Rmax

f is
known.

(iv) Recall L(t) denotes the set of transient flows at time
t and S(t) denotes the set of resident flows at time t.
The base station first checks:∑

f∈L(t)

Ff (t) ≤
∑

f∈S(t)

Ff (t). (5)

• Workload-based scheduling: If inequality (5)
holds, the base station selects a resident file f for
channel i such that

R̃max
if (t) ≤ Rif (t) and hif (t) �= 0, (6)

and transmits Rif (t) packets to mobile user f.
Then the base station reduces hif (t) by one. If
no resident flow satisfies (6), the base station ran-
domly selects a flow, say flow f, and transmits
Rif (t) packets to mobile f. Ties are broken uni-
formly or according to the arrival time bf (giving
priority to flows with small bf may improve delay
performance in practice although it has no effect
on stability). When the file of flow f is completely
transferred to the mobile user, the base station
sets hif (t) = 0 for all i.

• MaxWeight scheduling: If inequality (5) does
not hold, then the base station selects a transient
file f∗ for channel i such that

f∗ ∈ arg max
f∈L(t)

Ff (t)Rif (t), (7)

and transmits min{Ff (t),Rif∗(t)} packets to mo-
bile user f∗ over channel i.

�

Remark 1: While each resident flow is associated with
a channel assignment vector hf (t), the packets of a flow are

stored in the same queue and served in a First-In, First-Out
(FIFO) fashion.

Remark 2: The advantages of using the MaxWeight al-
gorithm for large-size flows are two-fold: (i) the file with a
large size could experience smaller delay because it can be
served at any Rif (t) not just when the channel reaches the
best state, and (ii) when only a few large-size flows are in
the network, the MaxWeight algorithm can lead to a fair
resource allocation. These advantages will be observed in
the simulations.

In the next subsection, we will prove that the hybrid CA-
WS algorithm is also throughput optimal. We would like
to emphasize that because of the channel-assignment algo-
rithm, which is not required for single-channel networks, the
analysis is completely different from those in [11,14,16].

4.1 Throughput Optimality of the Hybrid CA-
WS Algorithm

Without loss of generality we assume that Tin = Fmax,
i.e., we assume that the injecting rate of any flow is at least
one. All of our results apply more generally, but this as-
sumption simplifies a lot of the notation. We first show that
the number of transient flows is always bounded.

Lemma 3. Assume that sf − bf ≤ Tin for all f, then no
more than λmaxFmax transient flows are in the network dur-
ing any time slot.

Proof. Recall that we assume that file sizes are upper
bounded by Fmax, and the injecting rate is at least one.
Therefore, the injection period, the time taken for a tran-
sient flow to become a resident flow, is upper bounded by
Fmax. Furthermore, the number of new files joining the net-
work at each time slot is bounded by λmax, so the num-
ber of transient files in the network is upper bounded by
λmaxFmax.

Since the number of transient flows is upper bounded at any
time slot, to prove the stability of the network, we only need
to consider the number of resident flows.

To study the performance of the hybrid CA-WS, we first
define a sampled version of the network, sampled once every
T time slots, as follows:

M(n) = {Yf (nT ), Ff (nT ), R̃max
f (nT ),min{D, nT − bf},

Q(bf ),hf (nT )}f∈L(t)∪S(t),

where Yf (nT ) is the number of packets of flow f that have
not been transmitted to the base station. It is easy to see
that M(n) is a Markov chain. We also assume that the ar-
rival process is such that the Markov chain is irreducible
and aperiodic. The sampling interval T in the definition
of M(n) above will be chosen later. The reason we need
this T is that our proof uses the standard drift argument in
Foster’s criterion (see [2]), but the drift of M(n) may not
be negative over successive time instants. The drift will be
negative only after most flows in the network get reason-
ably accurate estimates of their channel assignment vectors,
which may take several recomputations due to updates in
the estimate of Rmax. The parameter T tries to capture the
time interval that it takes for most flows to get sufficiently
accurate estimates of their channel assignment vectors.

Theorem 4. Assume that sf − bf ≤ Tin for all f. Given
arrival rates {λik} such that { 1

1−ε
λik} are supportable, there
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exists a Dε such that the Markov chain M(n) is positive-
recurrent under the hybrid CA-WS algorithm with D ≥ Dε,
which implies that limt→∞ E

[∑
i Qi(t)

]
< ∞.

Proof. We consider the Lyapunov function

V (n) =
∑
i∈M

Q2
i (nT ),

and introduce the following notations:

• C(t) : We define C(t) to be the set of flows who become
resident flows at the beginning of time slot t.

• Ai(t) : We define Ai(t) =
∑

f∈C(t) hif (tm), which is the
increase in workload for channel i due to new resident
flows, i.e., the flows in C(t).

• μi(t) : We define μi(t) =
∑

f∈S(t) (hif (tm) − hif (te)) ,
which is the decrease in workload for channel i when
a resident flow is served over channel i.

• Ar
i (t) : We define Ar

i (t) =
∑

f∈S(t)\C(t)

(hif (tm) − hif (tb))
+ ,

which is the increase in workload for channel i due to
the adjustment of the channel assignment vectors of
existing resident flows (in other words, due to the re-
computation of hf ).

• μr
i (t) : We define μr

i (t) =
∑

f∈S(t)\C(t)

(hif (tb) − hif (tm))+ ,

which is the decrease in workload for channel i due to
the adjustment of channel assignments of existing res-
ident flows.

Without causing confusion, we let hif (t) = hif (tm), i.e.,
hif (t) is the value after recomputation at time t. Now based
on the notations above, the dynamics of Qi(t) can be written
as

Qi(t + 1) = Qi(t) + Ai(t) − μi(t) + Ar
i (t) − μr

i (t).

Note that the number of flows joining the network at each
time slot is bounded by λmax, and the file size is also bounded
by Fmax. Further each flow recomputes hf for at most D
time slots. Therefore Ai(t), μi(t), Ar

i (t), and μr
i (t) are all

bounded:

Ai(t) ≤ λmaxFmax

μi(t) ≤ Fmax

Ar
i (t) ≤ λmaxFmaxD

μr
i (t) ≤ λmaxFmaxD.

Note that in general μi(t) ≤ 1 since only one channel use
is allowed in one time slot. The case μi(t) > 1 occurs when
the flow is completely transmitted to the mobile user and
we set hif (t) = 0. Note that when there is no flow having

Rif (t) = R̃max
if (t), the base station serves a flow f at rate

Rif (t) but does not reduce hif (t). So it is possible that even
after almost all packets of a flow have been transmitted, we
still have hif (t) > 1.

Now based on the definitions and notations above, we have

|Qi(nT ) − Qi(s)| ≤ T (Fmax + λmaxFmax(2D + 1))

for all s ∈ [nT, (n + 1)T − 1], and

E[V (n + 1) − V (n)|M(n)] ≤ Φ1

+ 2
∑

i

Qi(nT )E

⎡
⎣ (n+1)T−1∑

t=nT

Ai(t) + Ar
i (t) − μr

i (t)

∣∣∣∣∣∣M(n)

⎤
⎦
(8)

− 2
∑

i

Qi(nT )E

⎡
⎣ (n+1)T−1∑

t=nT

μi(t)

∣∣∣∣∣∣M(n)

⎤
⎦ , (9)

where Φ1 = M (T (Fmax + λmaxFmax(2D + 1)))2 .
In the following analysis, we will show that there exists a

finite set W such that when M(n) �∈ W, we have

E[V (n + 1) − V (n)|M(n)] ≤ − ε

2M

∑
i

Qi(nT ). (10)

The theorem then follows from the Foster’s criterion [2]. To
prove (10), we will first analyze (8) and (9) separately, and
then show that

Φ1 + (8) + (9) ≤ − ε

2M

∑
i

Qi(nT )

when M(n) �∈ W.

Analysis of (8)
Denote by G(n) the set of resident flows that are in the net-
work at least in one of the time slots belonging to [nT, (n +
1)T −1]. We further divide G(n) into five subsets (see Figure
4):

• GA(n) : The set of resident flows that (i) become resi-
dent during [nT, (n + 1)T −D − 1], (ii) are not served
during [nT, (n + 1)T − 1], and (iii) have learned Rmax

by time (n + 1)T − 1.

• GB(n) : The set of resident flows that (i) become resi-
dent during [nT, (n + 1)T −D − 1], (ii) are not served
during [nT, (n + 1)T − 1], and (iii) have not learned
Rmax by time (n + 1)T − 1.

• GC(n) : The set of resident flows that become resident
during [nT, (n + 1)T − D − 1] and are served at least
once during [nT, (n + 1)T − 1].

• GD(n) : The set of resident flows that become resident
during [(n + 1)T − D, (n + 1)T − 1].

• GE(n) : The set of resident flows that are in the system
at nT.

Class A+B+C

nT (n+1)T−D−1 (n+1)T−1

Class E Class D

Figure 4: Five subsets of G(n)

It is obvious to see that

G(n) = GA(n) ∪ GB(n) ∪ GC(n) ∪ GD(n) ∪ GE(n).
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Recall that sf denotes the time flow f becomes a resident
flow, so (8) can be rewritten as

(n+1)T−1∑
t=nT

(Ai(t) + Ar
i (t) − μr

i (t)) (11)

=
∑

f∈G(n)

(n+1)T−1∑
t=max{sf ,nT}

(Aif (t) + Ar
if (t) − μr

if (t)),(12)

where Aif (t), Ar
if (t) and μr

if (t) are workload adjustments
related to flow f. Next we analyze (12) case by case. To sim-

plify our notations, we assume D ≥ max{Fmax, λmaxFmax

mink,F λkF
}.

In the following analysis, we will show that the subset of
flows that determines the value of (8) is GA(n). Since the
flows in GA(n) learn the correct Rmax

f by (n+1)T−1 and are
not served during [nT, (n+1)T −D−1], we can compare the
channel assignment vector under the hybrid CA-WS with
that defined in the necessary conditions, which will lead to
(10) by combining the analysis of (9).

Case 1: We first consider a flow in GA(n), and have

(n+1)T−1∑
t=sf

Aif (t) + Ar
if (t) − μr

if (t) (13)

= hif (sf ) +

(n+1)T−1∑
t=sf+1

(Ar
if (t) − μr

if (t)). (14)

Since f is not served before (n + 1)T, according to the defi-
nitions of Aif , Ar

if , and μr
if , we have

hif (t + 1) − hif (t) = Ar
if (t + 1) − μr

if (t + 1)

for any sf ≤ t ≤ (n + 1)T − 2, which implies that

hif (sf ) +

(n+1)T−1∑
t=sf+1

(Ar
if (t) − μr

if (t)) = hif ((n + 1)T − 1),

and

E

⎡
⎣ ∑

f∈GA(n)

(n+1)T−1∑
t=bf

(Aif (t) + Ar
if (t) − μr

if (t))

∣∣∣∣∣∣M(n)

⎤
⎦

= E
[∑

f∈GA(n) hif ((n + 1)T − 1)
∣∣∣M(n)

]
.

Case 2: Following the analysis of Case 1, for any f ∈
GB(n), we obtain

(n+1)T−1∑
t=nT

(Aif (t) + Ar
if (t) − μr

if (t)) = hif ((n + 1)T − 1).

Since hif ((n + 1)T − 1) ≤ Fmax for any f and any channel
i,

E

⎡
⎣ ∑

f∈GB(n)

(n+1)T−1∑
t=sf

(Aif (t) + Ar
if (t) − μr

if (t))

∣∣∣∣∣∣M(n)

⎤
⎦

= E

⎡
⎣ ∑

f∈GB(n)

hif ((n + 1)T − 1) |M(n)

⎤
⎦

≤ FmaxE

⎡
⎣ ∑

f∈GB(n)

1

⎤
⎦ .

Now we study the size of GB(n). According to Lemma
3, the network has at most λmaxFmax transient flows at
time slot nT − 1, which may become resident flows during
[nT, (n+1)T −1]. Also at each time slot, at most λmax flows
join the network. For a resident flow with sf ≤ (n+1)T −D,
the probability that the flow has not learned the Rmax by
time (n+1)T −1 is less than M (1 − pmax)D . Therefore, we
have

E

⎡
⎣ ∑

f∈GB(n)

1

⎤
⎦

≤ (λmaxFmax + (T − D)λmax) M (1 − pmax)D ,

and

E

⎡
⎣ ∑

f∈GB(n)

(n+1)T−1∑
t=sf

(Aif (t) + Ar
if (t) − μr

if (t))

∣∣∣∣∣∣M(n)

⎤
⎦

≤ Fmax (λmaxFmax + (T − D)λmax) M (1 − pmax)D

≤ FmaxλmaxTM (1 − pmax)D ,

where the last inequality holds under the assumption that
D ≥ Fmax.

Case 3: We now study the flows in GC(n). Since flows f
are served before (n+1)T, according to the definition of the
notations, we have

hif (t + 1) − hif (t) = Ar
if (t + 1) − μr

if (t + 1) − μif (t)

for any sf ≤ t ≤ (n + 1)T − 2, which implies that

(n+1)T−1∑
t=sf

Aif (t) + Ar
if (t) − μr

if (t)

= hif (sf ) +

(n+1)T−1∑
t=sf+1

(Ar
if (t) − μr

if (t))

= hif ((n + 1)T − 1) +

(n+1)T−1∑
t=sf+1

μif (t)

≤ Fmax,

and

E

⎡
⎣ ∑

f∈GC(n)

(n+1)T−1∑
t=bf

(Aif (t) + Ar
if (t) − μr

if (t))

∣∣∣∣∣∣M(n)

⎤
⎦

= FmaxE
[∑

f∈GC(n) 1
∣∣∣M(n)

]
.

Note that the number of flows that become resident during
[nT, (n + 1)T − D − 1] is no more than

λmaxFmax + λmax(T − D) ≤ λmaxT

since we have at most λmaxFmax transient flows at time
nT −1 and at most λmax new flows join the network at each
time slot t.

Now according to Lemma 5, which is presented in the
appendix, that given any δ, there exists Qδ such that if
Qi(nT ) ≥ Qδ, then the probability that a flow with sf ≥ nT
is served any given time slot in [nT, (n+1)T −1] is less than
δ. Therefore, if Qi(nT ) ≥ Qδ, we have that

E

⎡
⎣ ∑

f∈GC(n)

1

∣∣∣∣∣∣M(n)

⎤
⎦ ≤ λmaxT 2δ;
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and otherwise

Qi(nT )E

⎡
⎣ ∑

f∈GC(n)

(n+1)T−1∑
t=sf

Aif (t) + Ar
if (t) − μr

if (t)

∣∣∣∣∣∣M(n)

⎤
⎦

≤ Qδλ
maxFmaxT.

We then conclude that

∑
i

Qi(nT )E

⎡
⎣ ∑

f∈GC(n)

(n+1)T−1∑
t=sf

Aif (t) + Ar
if (t) − μr

if (t)

∣∣∣∣∣∣M(n)

⎤
⎦

≤
∑

i

(
Qi(nT )λmaxFmaxT 2δ + Qδλ

maxFmaxT
)
.

Case 4: We now study the flows in GD(n). Following the
analysis of Case 3, the size of set GD(n) is upper bounded
by

λmaxFmax + λmaxD.

Therefore,

E

⎡
⎣ ∑

f∈GD(n)

(n+1)T−1∑
t=sf

(Aif (t) + Ar
if (t) − μr

if (t))

∣∣∣∣∣∣M(n)

⎤
⎦

= E

⎡
⎣ ∑

f∈GD(n)

hif ((n + 1)T − 1) +

(n+1)T−1∑
t=sf+1

μif (t)

∣∣∣∣∣∣M(n)

⎤
⎦

≤ Fmax (λmaxFmax + λmaxD) .

Case 5: We now analyze the last case: the set GE(n). For
a flow f ∈ GE(n), we have the following facts:

• Aif (t) = 0,

• |Ar
if (t) − μr

if (t)| ≤ Fmax for any nT ≤ t < nT + D,
and

• Ar
if (t) = μr

if (t) = 0 for t ≥ nT + D.

The last equality holds because a resident flow adjusts its
hf (t) for at most D time slots after joining the network.

Now note that at most λmaxD flows join the network dur-
ing [nT − D, nT − 1], which are the only flows in set GE(n)
that recompute hf during [nT, (n + 1)T − 1]. Therefore, we
obtain

E

⎡
⎣ ∑

f∈GE(n)

(n+1)T−1∑
t=nT

(Aif (t) + Ar
if (t) − μr

if (t))

∣∣∣∣∣∣M(n)

⎤
⎦

≤ λmaxD2Fmax.

�
Summarizing the five cases above, we obtain

(8)

≤2
∑

i

Qi(nT )E

⎡
⎣ ∑

f∈GA(n)

hif ((n + 1)T − 1)

∣∣∣∣∣∣M(n)

⎤
⎦

+2
∑

i

Qi(nT )
(
FmaxλmaxTM (1 − pmax)D +

λmaxFmaxT 2δ + 2λmaxFmaxD + λmaxFmaxD2)
+MQδλ

maxFmaxT. (15)

Analysis of (9)
Next we consider (9) under the assumption that

∑
i

Qi(nT ) > (Fmax)2 λmax + TMFmax. (16)

It can be easily verified that under assumption (16), the base
station always serves resident flows during [nT, (n+1)T −1]
because we have at most λmaxFmax transient flows in the
network at any given time.

Since hif (t) ≤ Fmax for any i and f, there are at least
Qi(t)/Fmax flows having hif (t) > 0 at time t. Therefore, we
obtain that

Pr(μi(t) = 1) ≥ 1 − (1 − pmax)
Qi(t)
Fmax ,

and

E [μi(t)|M(n)] ≥ 1 − (1 − pmax)
Qi(nT)−√

Φ1
Fmax . (17)

Analysis of (8)+(9)
Recall that the theorem assumes that there exists Z∗

h|kF such
that

∑
k,F,h

λkF Z∗
h|kF hi ≤ 1 − ε, i = 1, 2, ..., M (18)

∑
h

Z∗
h|kF = 1, ∀k, F (19)

Zh|kF = 0 if F >
∑
i∈M

hiR
max
ik , . (20)

Next we define

HkF (n) = {f : f ∈ GA(n), kf = k, F̃f = F},

i.e., HkF (n) is the set of class-k flows that belong to set
GA(t) and with file length F. For any f ∈ HkF (n), since
Rmax

f has been correctly learned at time (n + 1)T − 1, we
have

∑
i

Qi(bf )hif ((n + 1)T − 1) ≤
(∑

i

Qi(bf )hi

)

for any h such that
∑

i hiR
max
if ≥ F. Based on (19), we

further obtain

∑
i

Qi(bf )hi,f ((n + 1)T − 1) ≤
∑
h

Z∗
h|kF

(∑
i

Qi(bf )hi

)

=
∑

i

Qi(bf )
∑
h

Z∗
h|kF hi.

(21)

Now based on inequality (21) and assume T > Fmax, we
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obtain

∑
k,F

∑
i

Qi(nT )E

⎡
⎣ ∑

f∈HkF (n)

hi,f ((n + 1)T − 1)

∣∣∣∣∣∣M(n)

⎤
⎦

≤(a)Φ1 +
∑
k,F

E

⎡
⎣ ∑

f∈HkF (n)

∑
i

Qi(bf )hi,f ((n + 1)T − 1)

∣∣∣∣∣∣M(n)

⎤
⎦

≤Φ1 +
∑
k,F

E

⎡
⎣ ∑

f∈HkF (n)

∑
i

Qi(bf )
∑
h

Z∗
h|kF hi

∣∣∣∣∣∣M(n)

⎤
⎦

≤(a)2Φ1 +
∑
k,F

∑
i

(
Qi(nT )

(∑
h

Z∗
h|kF hi

)
×

E

⎡
⎣ ∑

f∈HkF (n)

1

∣∣∣∣∣∣M(n)

⎤
⎦
⎞
⎠

≤(b)2Φ1 +
∑
k,F

∑
i

(
Qi(nT )

(∑
h

Z∗
h|kF hi

)
×

E

⎡
⎣ |L(nT )| +

∑
f :(n+1)T−D−1≥bf≥nT

1

∣∣∣∣∣∣M(n)

⎤
⎦
⎞
⎠

≤2Φ1 +
∑
k,F

∑
i

(
Qi(nT )

(∑
h

Z∗
h|kF hi

)
×

(λmaxFmax + λkF (T − D)))

≤2Φ1 +
∑
k,F

∑
i

Qi(nT )TλkF

∑
h

Z∗
h|kF hi, (22)

where inequality (a) holds because (n + 1)T − 1 ≥ bf ≥
nT − Fmax for any f ∈ HkF (n) and |Qi(nT ) − Qi(bf )| ≤
T (Fmax + λmaxFmax(2D + 1)) , and inequality (b) holds be-
cause the flows in HkF (n) must arrive during [nT, (n+1)T−
1] or are transient flows at time nT.

Now by combining inequalities (15) and (22), we get that

(8) − 2
∑

i Qi(nT )
∑(n+1)T−1

t=nT

∑
h,k,F λk,F Z∗

h|k,F hi

≤ 4Φ1 + MQδλ
maxFmaxT

+2
∑

i Qi(nT )
(
FmaxλmaxTM (1 − pmax)D +

λmaxFmaxT 2δ + 2λmaxFmaxD + λmaxFmaxD2
)

(23)

Further, based on inequality (17), we have

2
∑

i

Qi(nT )

(n+1)T−1∑
t=nT

∑
h,k,F

λk,F Z∗
h|k,F hi + (9)

= 2
∑

i

Qi(nT )×

E

⎡
⎣ (n+1)T−1∑

t=nT

⎛
⎝ ∑

h,k,F

λk,F Z∗
h|k,F hi − μi(t)

⎞
⎠
∣∣∣∣∣∣Q(nT )

⎤
⎦

≤ 2
∑

i

Qi(nT )

(
−εT + T (1 − pmax)

Qi(nT )−√
Φ1

Fmax

)
. (24)

Combining inequalities (23) and (24), we have

E[V (n + 1) − V (n)|M(n)]

≤ Φ1 + (8) + (9)

≤ 5Φ1 + MQδλ
maxFmaxT

+2
∑

i Qi(nT )
(
FmaxλmaxTM (1 − pmax)D +

λmaxFmaxT 2δ + 2λmaxFmaxD + λmaxFmaxD2
)

+2
∑

i Qi(nT )

(
−εT + T (1 − pmax)

Qi(nT )−√
Φ1

Fmax

)
.

Now we define a set W such that if M(n) ∈ W, then∑
i

Qi(nT ) ≤ 2M
εT

(5Φ1 + MQδλ
maxFmaxT

+2MT
√

Φ1 + 2MTFmax log(ε/4)
log(1−pmax)

)
,

where δ = ε
16TλmaxFmax and Qδ is the constant defined in

Lemma 5 in the appendix.
We now choose D and T such that

D ≥ log ε
16MλmaxFmax

log(1 − pmax)

T ≥ 32λmaxFmaxD2

ε
.

We can see that W is a set with a finite number of elements,
and can verify that if M(n) �∈ W, then

E[V (n + 1) − V (n)|M(n)] < − ε

2M

∑
i

Qi(nT ).

Now according to the Foster’s criterion, the Markov chain
is positive recurrent, and further, limt→∞ E[

∑
i Qi(t)] < ∞

[12].

5. SIMULATIONS
In this section, we use simulations to evaluate the hybrid

CA-WS algorithm and compare its performance with the
MaxWeight scheduling scheme and the CA-WS scheduling
scheme. Both the CA-WS and hybrid CA-WS algorithms
in the simulations use learning to estimate the maximum
transmission rate in each channel.

We consider a network with a single base station and five
channels. We further assume there are three classes of flows
(mobile users) in network. Class 1 users represent those close
to the base station. The channel conditions of class 1 users
therefore are better than those of other classes. Class 3 users
represent those who are at the edge of the cell. The channel
conditions of class 3 users are the worst. Class 2 users are
assumed to be located in the middle of the cell. We assume
that users in the same class experience the same channel
fading, i.e., have the same channel distributions. We further
assume that each channel has two possible states (high and
low), and each of them happens with probability 0.5. The
channel rate distributions of the five channels for the three
classes are shown in Table 1.

The flow arrival rates of the three classes follow the same
Poisson distribution with rate λ. In the simulation, we vary λ
to compare the performances of different scheduling schemes
under different traffic loads. The file size of a flow follows the
Pareto distribution with minimum possible value xm = 50,
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Table 1: The Distributions of Channel Rates
Class Channel High rate Low rate

Class 1

Channel 1 50 25
Channel 2 48 24
Channel 3 46 23
Channel 4 44 22
Channel 5 42 21

Class 2

Channel 1 40 20
Channel 2 38 19
Channel 3 36 18
Channel 4 34 17
Channel 5 32 16

Class 3

Channel 1 30 15
Channel 2 28 14
Channel 3 26 13
Channel 4 24 12
Channel 5 22 11

and decay factor α = 2.2 A transient flow keeps injecting
packets into the base station until the complete file is trans-
ferred to the base station. The packet arrival rate of file f
is controlled by the following congestion controller [8,9]:

Xf (t) = min

{⌈
50

Ff (t)

⌉
, 50

}
.

In the simulations, the learning period D is chosen to be
20. We name the CA-WS algorithm with the uniform tie-
breaking rule as CA-WSU.

Simulation I: Number of Flows and File-Transfer
Delay
We first consider the case where the base station does not
limit the number of flows in the network. From the base
station’s perspective, it wants to minimize the total number
of flows to reduce the buffer occupancy and computation
complexity. From a user’s perspective, the user wants to
have small file-transfer delay. Therefore, we use simulations
to compare the average numbers of flows in the network and
the average file-transfer delays under the three scheduling
algorithms.

The results are shown in Figure 5 and 6. We can see
that when traffic load is light (i.e., λ is small), the hybrid
CA-WSU algorithm and the MaxWeight have similar per-
formance, while the CA-WSU algorithm has much higher
delays. The reason is that the CA-WSU scheme starts to
serve a flow only after the complete file is received at the base
station, which significantly increases the file-transfer delay.
When λ is large, the file-transfer delay of the MaxWeight al-
gorithm becomes very large. This is because the MaxWeight
is not throughput optimal.

Interestingly, the hybrid CA-WSU algorithm also performs
much better than the CA-WSU algorithm even when λ is
large. Specifically, the average number of flows and file-
transfer delay of the hybrid CA-WSU algorithm with λ =
0.48 are smaller than those under the MaxWeight or the
CA-WSU algorithms with λ = 0.4.

2In the simulation, in order to see the performance of our
algorithm under a general setting, we do not set an upper
bound for file size distribution and flow arrival rate distri-
bution.
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Figure 5: The average numbers of flows under the
CA-WSU, hybrid CA-WSU and MaxWeight algo-
rithms
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Figure 6: The average file-transfer delays under the
CA-WSU, hybrid CA-WSU and MaxWeight algo-
rithms

Simulation II: Blocking probability of three al-
gorithms
In practical systems, the base station can only support a
finite number of mobiles at any given time slot. In this
simulation, we assume the base station can accommodate
at most 50 flows simultaneously. New flows are blocked if
the number of flows in the network already reaches 50. We
use the blocking probability as the performance metric to
compare the three scheduling algorithms.

The result is shown in Figure 7. We can see under a
small λ, all three algorithms have small blocking probabili-
ties. However, when λ = 0.5, the blocking probability of the
hybrid CA-WSU is only 6%, while the blocking probability
of the MaxWeight algorithm is around 20% and the blocking
probability of the CA-WSU algorithm is around 40%. Thus,
our algorithm which was designed for throughput optimal-
ity assuming no limit on the number of simultaneous flows
in the network also performs well in situations where the
number of allowed flows is limited.

6. CONCLUSION
In this paper, we have developed a hybrid channel as-

signment and workload-based scheduling algorithm that is
throughput optimal for multichannel downlink wireless net-
works in the presence of flow-level dynamics. The algorithm
has been proved to be throughput optimal and the perfor-
mance, including delay and blocking probability, has been
shown to be much superior to other alternatives.
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Appendix
Lemma 5. Consider the hybrid CA-WS with oldest-first

or uniform tie-breaking rule and define Ri(t) to be the event
that a resident flow f with sf ≥ nT is served over channel
i at time t. Given any δ > 0, there exists Qδ such that if
Qi(nT ) > Qδ, then for any nT ≤ t ≤ (n + 1)T − 1,

Pr (Ri(t)) < δ.

Proof. For any t ∈ [nT, (n + 1)T − 1], we denote by
Oi(t) the set of resident flows that arrived before nT − D
(D ≥ Fmax) and have hif (t) > 0. It can be easily verified
that

|Oi(t)| ≥ Qi(nT )

Fmax
− λmaxD − T.

Consider the hybrid CA-WS with the oldest-first tie-breaking
rule. Only if none of flows in Oi(t) have Rif (t) = Rmax

if , the
base station will serve a flow which becomes a resident flow
in [nT, (n + 1)T − 1] over channel i. Therefore, we have

Pr (Ri(t)) ≤ (1 − pmax)
Qi(nT )
Fmax −λmaxD−T ,

and the lemma holds for the oldest-first tie-breaking rule.
Consider the hybrid CA-WS with the uniform tie-breaking

rule. For any t such that nT ≤ t ≤ (n+1)T −1, the number
of flows becoming resident flows after nT is no more than
λmax(T + Fmax). Furthermore, according to the Chernoff’s
bound, we have

Pr
(∣∣{f : f ∈ Oi(t) and Rif (t) = Rmax

if }∣∣ ≥ (1 − δ)Θ
)

≥ 1 − exp

(
− δ2Θ

3

)
,

where Θ = pmax(Qi(nT )
Fmax − λmaxD − T ).

Therefore, it can be easily shown that

Pr (Ri(t)) ≤ λmax(T + Fmax)

λmax(T + Fmax) + (1 − δ)Θ
+ exp

(
− δ2Θ

3

)
,

and the lemma holds for the uniform tie-breaking rule.
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