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Abstract

The process of identifying or verifying oneself at electronic devices is part of

our daily life. It requires a PIN to start our smartphone, a password to log into

our computer user account, and a TAN code to complete an online banking

transaction.

Much has been written on the security of passphrases and consensus is reached

on following facts: the majority of users tend to use passwords easy to remem-

ber and reuses them multiple times. Especially in the booming field of mobile

devices such as smartphones and tablets users tend to not using a password at

all for a convenient frequent use. This is clearly an example where usability

gets into the way of security. That is noteworthy as these device types are

comparable likely to be stolen meanwhile they store more and more sensitive

information.

Therefore this thesis proposes an alternative user recognition method for mo-

bile devices based on the gait biometric. The goal is to develop an unobtrusive

continuous verification running in the background and allowing the user a con-

venient, but secure usage. The gait characteristics are captured using the built-

in accelerometer that has been increasingly becoming standard equipment of

smartphones in recent years. Various features are extracted from the measured

accelerations and utilized to train a support vector machine (SVM) for user

verification. Among the extracted features are power cepstrum representa-

tions like the mel-frequency cepstral coefficients (MFCC) and bark-frequency

cepstral coefficients (BFCC) which are commonly used in speech and speaker

recognition. To the author’s knowledge, MFCC and BFCC have not been used

for gait recognition previously.

The proposed method is evaluated using two databases of gait data, with 40

and 48 subjects respectively. The gait data of every subject was collected

in two different days enabling a comparison of the recognition performance

between using data of the same day for training/testing and testing with data

of another day. The best same day results were 0.39% FMR and 0.00% FNMR.

The cross day performance was significantly worse with 4.01% FMR and 22.5%

FNMR. These outcomes are consistent with published studies on the matter,

proving that influence of time is a challenging problem for gait recognition.
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Kurzfassung

Die Identifizierung und Verifizierung der eigenen Person gegenüber elektroni-

schen Geräten ist Teil unseres täglichen Lebens. Es braucht eine PIN um das

Handy zu starten, ein Passwort um sich am PC anzumelden und eine TAN um

eine Onlinebanking Transaktion abzuschließen.

Eine echte Sicherheit durch Passwörter ist aber nur oft nur bedingt gegeben, da

viele Benutzer leicht zu merkende Passwörter wählen und diese an mehreren

Systemen verwenden. Insbesondere bei den boomenden mobilen Endgeräten

wie Smartphones und Tablets geht der Trend dahin, dass Benutzer wenn mög-

lich kein Passwort einsetzen um eine bequeme häufige Benutzung zu ermög-

lichen. Das ist kritisch, da diese Geräte vergleichsweise oft gestohlen werden

und gleichzeitig immer mehr sensitive Informationen enthalten.

Deshalb wird in dieser Arbeit eine auf biometrischer Gangerkennung basieren-

de Benutzerverifizierung für mobile Endgeräte vorgestellt. Das Ziel ist dabei

eine unaufdringliche, im Hintergrund ablaufende kontinuierliche Benutzerveri-

fizierung, die eine bequeme und sichere Nutzung ermöglicht. Die Charakteris-

tiken des menschlichen Gangs werden dabei von einem im Gerät eingebauten

Beschleunigungssensor erfasst. Verschiedene Merkmale werden aus den gemes-

senen Beschleunigungen extrahiert und für das Training einer Support Vector

Machine (SVM) eingesetzt, mit der die Verifizierung implementiert wird. Un-

ter den genutzten Merkmalen sind die aus der Sprach- und Sprechererkennung

bekannten Mel-Frequenz-Cepstrum-Koeffizienten (MFCC) sowie die verwand-

ten Bark-Frequenz-Cepstrum-Koeffizienten (BFCC). Nach Kenntnis des Au-

tors wurden MFCC und BFCC bisher nicht für biometrische Gangerkennung

genutzt.

Das vorgestellte Konzept wurde mit zwei Datenbanken mit Gangdaten von 40

bzw. 48 Personen evaluiert. Da die Gangdaten bei jeder Person an zwei Tagen

erhoben wurden, konnten Vergleiche zwischen der Klassifizierungsperformanz

mit Daten vom gleichen Tag und mit Daten von verschiedenen Tagen angestellt

werden. Das beste Ergebniss für Daten eines Tages war 0.39% FMR bei 0.00%

FNMR. Die Performanz für verschiedene Tage war mit 4.01% FMR bei 22.5%

FNMR deutlich schlechter. Das entspricht dem Ergebnis anderer Studien und

beweist, dass der Einfluss von Zeit ein großes Problem für die biometrische

Gangerkennung darstellt.

7





Preface

First of all I would like to thank all the voluntary participants of last year’s data

collection, especially all summer camp attendees of the lifeguard organization

Wasserwacht Haibach who did not mind to walk the same track in the forest

over and over again.

Secondly I would like to thank my advisor Prof. Dr. Christoph Busch who

raised my interest in biometric research with his lecture at the University of

Applied Sciences Darmstadt that lead to discussions on potential topics for

my master thesis. I really appreciate that Prof. Busch introduced me to gait

recognition and provided the best research conditions for this thesis at the

Center of Advanced Security Research Darmstadt (CASED).

Next, I would like to thank Prof Dr. Michael Braun with whom I had several

talks on current IT security research topics prior to working on this thesis. I

am very thankful that he agreed to become my second advisor.

I have to especially thank Claudia Nickel, currently a PhD candidate at the

CASED institute, for her ongoing help and support. I am very grateful for her

valuable advice and feedback that helped me to stay focused on the important

parts while keeping an eye on the submission date.

Looking back I am thankful for being able to have access to resources of the

CASED institute, including the smartphone and software used in the data

collection, access to literature, the pleasant distraction through fellow students

and, maybe most important, the coffee machine.

Last, but not least I want to thank my parents and family without who I would

never have been able to be in the position to write a preface. I am thankful

that they enabled me to pursue my interests and that they taught me the

importance of education. Thank you for giving me the opportunity to realize

my own potential. Your love and support is what brought me this far.

9





Contents

1. Introduction 19

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4. Disposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2. Biometrics Overview 23

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3. Biometric Workflow . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1. Enrolment . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2. Identification . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3. Verification . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4. Biometric Performance . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1. False Match Rate . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2. False Non-Match Rate . . . . . . . . . . . . . . . . . . . 26

2.4.3. Failure to Acquire Rate . . . . . . . . . . . . . . . . . . 26

2.4.4. False Acceptance Rate . . . . . . . . . . . . . . . . . . . 27

2.4.5. False Rejection Rate . . . . . . . . . . . . . . . . . . . . 27

2.4.6. Equal Error Rate . . . . . . . . . . . . . . . . . . . . . . 27

3. Biometric Gait Recognition 29

3.1. Application Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2. Technological Approaches . . . . . . . . . . . . . . . . . . . . . 30

3.2.1. Machine Vision Based Gait Recognition . . . . . . . . . 30

3.2.2. Floor Sensor Based Gait Recognition . . . . . . . . . . . 32

3.2.3. Wearable Sensor Based Gait Recognition . . . . . . . . . 33

11



Contents

3.3. Accelerometer-based Gait Recognition . . . . . . . . . . . . . . 35

3.3.1. Feature Extraction . . . . . . . . . . . . . . . . . . . . . 37

3.3.2. Biometric Performance . . . . . . . . . . . . . . . . . . . 40

3.3.3. Other Considerations . . . . . . . . . . . . . . . . . . . . 41

3.3.4. Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4. Support Vector Machines 47

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2. Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1. Linear Separable Case . . . . . . . . . . . . . . . . . . . 47

4.2.2. Linear Inseparable Case . . . . . . . . . . . . . . . . . . 50

4.2.3. Nonlinear Separable Case . . . . . . . . . . . . . . . . . 52

4.2.4. Classification Summary . . . . . . . . . . . . . . . . . . . 56

4.3. Multi-class SVMs . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4. Benefits and Applications . . . . . . . . . . . . . . . . . . . . . 57

4.5. Challenges and Limitations . . . . . . . . . . . . . . . . . . . . 58

4.6. SVM Tools and Libraries . . . . . . . . . . . . . . . . . . . . . . 59

5. Data Collection 61

5.1. Sample Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2. Walk Extraction and Analysis . . . . . . . . . . . . . . . . . . . 65

5.2.1. Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.2. Sample Analysis . . . . . . . . . . . . . . . . . . . . . . . 66

6. Feature Extraction 71

6.1. Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.1. Linear Interpolation . . . . . . . . . . . . . . . . . . . . 71

6.1.2. Normalization . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.3. Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2. Feature Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.1. Statistical Features . . . . . . . . . . . . . . . . . . . . . 73

6.2.2. Mel-Frequency Cepstral Coefficients . . . . . . . . . . . . 74

6.2.3. Bark-Frequency Cepstral Coefficients . . . . . . . . . . . 76

12



Contents

7. Feature Selection and Optimization 79

7.1. Classification and Optimization . . . . . . . . . . . . . . . . . . 79

7.1.1. SVM Training and Testing . . . . . . . . . . . . . . . . . 79

7.1.2. Parameter Selection . . . . . . . . . . . . . . . . . . . . 81

7.2. Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2.1. Statistical Features . . . . . . . . . . . . . . . . . . . . . 83

7.2.2. Optimizing MFCC for Gait . . . . . . . . . . . . . . . . 85

7.2.3. Optimizing BFCC for Gait . . . . . . . . . . . . . . . . . 91

7.2.4. Combining Features . . . . . . . . . . . . . . . . . . . . 94

7.3. Preprocessing Optimization . . . . . . . . . . . . . . . . . . . . 95

8. Experiments and Results 97

8.1. Intra-Day and Inter-Day Performance . . . . . . . . . . . . . . . 97

8.2. Voting Scheme Performance . . . . . . . . . . . . . . . . . . . . 100

8.2.1. Cross-Day Performance . . . . . . . . . . . . . . . . . . . 101

8.2.2. Same-Day Performance . . . . . . . . . . . . . . . . . . . 102

8.2.3. Mixed Performance . . . . . . . . . . . . . . . . . . . . . 103

8.2.4. Voting Summary . . . . . . . . . . . . . . . . . . . . . . 103

8.3. Data Set Performance Comparison . . . . . . . . . . . . . . . . 105

8.4. Experiments and Performance Summary . . . . . . . . . . . . . 107

9. Conclusion 111

9.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A. Additional Results 114

A.1. BFCC Optimization . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.1. Spectrum Parameter . . . . . . . . . . . . . . . . . . . . 115

A.1.2. Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2. Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2.1. Cross-day results . . . . . . . . . . . . . . . . . . . . . . 117

A.2.2. Same-day results . . . . . . . . . . . . . . . . . . . . . . 118

A.2.3. Mixed results . . . . . . . . . . . . . . . . . . . . . . . . 119

B. Biometric Performance 121

B.1. Biometric Failures . . . . . . . . . . . . . . . . . . . . . . . . . . 121

13



Contents

B.2. Failure-to-Capture . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.3. Failure-to-eXtract . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.4. Failure-to-Enrol . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.5. Failure-to-Acquire . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.6. False-Match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.7. False-Non-Match . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.8. Verification System Performance . . . . . . . . . . . . . . . . . . 127

B.9. Identification System Performance . . . . . . . . . . . . . . . . . 128

14



List of Figures

2.1. General biometric system . . . . . . . . . . . . . . . . . . . . . . 25

3.1. Human silhouette extraction . . . . . . . . . . . . . . . . . . . . 31

3.2. Load distribution sensor . . . . . . . . . . . . . . . . . . . . . . 32

3.3. Acceleration in vertical direction of two walking persons . . . . 33

3.4. Acceleration in three spatial directions of a walking person . . . 34

3.5. Intelligent shoe . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6. Accelerometer placement on the hip . . . . . . . . . . . . . . . . 36

3.7. Cycle extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1. Example for linear discriminant planes . . . . . . . . . . . . . . 48

4.2. Example for linear separable case in R2 . . . . . . . . . . . . . 49

4.3. Example for linear inseparable case in R2 . . . . . . . . . . . . . 51

4.4. Example for linear inseparable case with slack variable in R2 . . 52

4.5. Example for nonlinear separable case in R2 . . . . . . . . . . . . 53

4.6. Example for mapped data points R3 . . . . . . . . . . . . . . . 54

5.1. Acceleration signals excerpt . . . . . . . . . . . . . . . . . . . . 62

5.2. Footway used for data collection . . . . . . . . . . . . . . . . . . 62

5.3. Position of the smartphone in the belt pouch . . . . . . . . . . . 63

5.4. Directions of the accelerometer dimensions . . . . . . . . . . . . 64

5.5. Subject age and gender distribution . . . . . . . . . . . . . . . . 65

5.6. Semiautomatic walk extraction . . . . . . . . . . . . . . . . . . 66

5.7. Walk files mean sampling rates . . . . . . . . . . . . . . . . . . 67

5.8. Walk files time lag standard deviations . . . . . . . . . . . . . . 68

5.9. Walk files maximum time lags . . . . . . . . . . . . . . . . . . . 68

5.10. Maximum time lag in collected walks . . . . . . . . . . . . . . . 69

6.1. Sliding window segmentation . . . . . . . . . . . . . . . . . . . . 72

15



List of Figures

6.2. MFCC feature creation . . . . . . . . . . . . . . . . . . . . . . . 74

7.1. SVM training and testing . . . . . . . . . . . . . . . . . . . . . 80

7.2. Grid search result example . . . . . . . . . . . . . . . . . . . . . 82

8.1. Voting scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.2. Accelerometer worn on a belt . . . . . . . . . . . . . . . . . . . 108

B.1. Failure-to-Capture (FTC) . . . . . . . . . . . . . . . . . . . . . 122

B.2. Failure-to-eXtract (FTX) . . . . . . . . . . . . . . . . . . . . . . 123

B.3. Failure-to-Enrol (FTE) . . . . . . . . . . . . . . . . . . . . . . . 125

16



List of Tables

3.1. Summary of current MV-based gait recognition studies . . . . . 31

3.2. Summary of current FS-based gait recognition studies . . . . . . 33

3.3. Smartphones with accelerometers used in research papers . . . . 37

3.4. Summary of current WS-based gait recognition studies . . . . . 40

3.5. Time influence on recognition rates . . . . . . . . . . . . . . . . 43

4.1. Examples of kernel functions . . . . . . . . . . . . . . . . . . . . 55

5.1. Data sheet LIS331DLH accelerometer . . . . . . . . . . . . . . . 61

5.2. Minimal acceleration difference . . . . . . . . . . . . . . . . . . 69

7.1. Discrimination capabilities of basic features . . . . . . . . . . . . 84

7.2. Combined discrimination capabilities of basic features . . . . . . 85

7.3. MFCC performance with Auditory Toolbox settings . . . . . . . 86

7.4. MFCC frequency mapping optimization . . . . . . . . . . . . . 87

7.5. MFCC spectrum parameter optimization . . . . . . . . . . . . . 88

7.6. MFCC window parameter optimization . . . . . . . . . . . . . . 90

7.7. MFCC optimizations combined . . . . . . . . . . . . . . . . . . 91

7.8. BFCC performance analog to Auditory Toolbox MFCC . . . . . 92

7.9. BFCC frequency mapping optimization . . . . . . . . . . . . . 92

7.10. BFCC window parameter optimization (selection) . . . . . . . . 93

7.11. Optimized features combined . . . . . . . . . . . . . . . . . . . 94

7.12. Preprocessing optimization . . . . . . . . . . . . . . . . . . . . . 95

8.1. Intra- and inter-day performance comparison . . . . . . . . . . . 99

8.2. Inter-day performance with voting . . . . . . . . . . . . . . . . . 101

8.3. Intra-day performance with voting . . . . . . . . . . . . . . . . . 103

8.4. Mixed intra-day performance with voting . . . . . . . . . . . . . 104

8.5. Comparison of optimum features of data set A and B . . . . . . 106

17



List of Tables

8.6. Performance comparison with data set B . . . . . . . . . . . . . 107

8.7. Inter-day performance comparison . . . . . . . . . . . . . . . . . 107

8.8. Intra-day performance comparison . . . . . . . . . . . . . . . . . 109

A.1. BFCC spectrum parameter optimization . . . . . . . . . . . . . 115

A.2. BFCC window parameter optimization . . . . . . . . . . . . . . 116

A.3. Additional cross-day voting results 1/4 . . . . . . . . . . . . . . 117

A.4. Additional cross-day voting results 2/4 . . . . . . . . . . . . . . 117

A.5. Additional cross-day voting results 3/4 . . . . . . . . . . . . . . 118

A.6. Additional cross-day voting result 4/4 . . . . . . . . . . . . . . . 118

A.7. Additional same-day voting results . . . . . . . . . . . . . . . . 118

A.8. Additional mixed same-day voting results . . . . . . . . . . . . . 119

18



1. Introduction

“Walks.

The body advances,

while the mind flutters

around it like a bird.”

– Jules Renard

1.1. Motivation

At present time the usage of mobile devices heavily influences our daily live and

changes our common behavior. With steady growing computing capabilities

applications like handheld navigation and mobile internet become available for

more and more people and as a consequence are also picked up by people that

are not technical enthusiasts per se.

The word app, as an abbreviation for application, has entered common vo-

cabulary. The smartphones and tablets are more and more an expression of

lifestyle, the individuality of the digital natives expresses through the used

set of apps and the activity on social platforms. Analysts predict the global

customer base for mobile banking to reach 1.1 billion by the year 2015 [GIA10].

These developments might have significant downsides, though. Phone theft

has been a problem in a lot of countries for years. For example in the United

Kingdom about 228 mobile phones are reported stolen every hour which lead

to a call by the Minister of Crime Prevention to the mobile phone industry to

better protect device owners against theft [CJ10].

A few years ago the damage of a stolen phone would have been limited to the

value of the actual device and telephone costs generated by the criminal at

worst. Nowadays this might be one of the first steps to an extensive identity

theft, which has likely much more severe consequences.
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1. Introduction

A perpetrator having access to private and business emails, contacts and social

networks can easily impersonate the victim. Thus crimes which cause financial

damage and personal defamation can be committed without much time and

effort.

How can these risks be reduced? This question can be answered with well-

known technical security measures like pins, passwords and strong encryption.

Such safeguards are easy to implement and therefore a standard feature of

any phone of this age. Unfortunately such technologies are often not used by

the owner of the device even though they might be freely available. The next

section will investigate the reasons and propose a potential solution that might

improve the situation.

1.2. Background

The human factor is often considered the weakest link in the information secu-

rity chain. That this also applies to the security of mobile phones can be seen

looking at the results of the user survey presented in [BN10]. Only 13% of the

548 participants secure their phones with a PIN or visual code during standby

periods. In 74% of the cases of an unsecured phone the reason provided was

the better usability through faster access or that no thought was given to this

setting. That clearly indicates a lack of security awareness.

In this survey the participants were also asked for their willingness to use bio-

metric authentication methods instead of their current security setting. The

majority of users, 54%, would use biometric verification therefore significantly

increasing the security on mobile devices. The participants interested in adopt-

ing biometric verification were asked which biometric modalities they would

use. Here the fingerprint modality is a clear winner (87%), followed by speaker

recognition (20%), face recognition (20%) and gait recognition (9%).

There have been few exotic phones with fingerprint scanners that never really

entered mass market. The reasons are probably the rather high costs for the

extra sensor that is not needed by the average end-user. This implies that

fingerprint modality is not likely to increase the information security on mobile

phones in the near future.

The other mentioned modalities, namely speaker, face and gait recognition do
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1.3. Objectives

not have this problem as the most modern phones are capable of realizing a

biometric verification system using one or more of these modalities. Imaginable

is a face recognition utilizing the built-in phone camera or a voice recognition

using the compulsive microphone.

Gait recognition is probably the most uncommon modality in this list, which

is likely a cause for its comparable low percentage in the aforementioned study.

But it has one unique advantage: it does not require explicit user interaction

during the verification process as the phone does it literally on-the-go. This

property might be the key for increasing the security on mobile phones. The

idea is that the device continuously authenticates the owner when he is on the

move and thus more infrequently needs an explicit user authentication which

is proven one of the main refutations against security measures.

1.3. Objectives

The goal of this thesis is to develop an approach for implementing a biometric

gait recognition that can be used for authentication purposes on mobile devices

such as modern smartphones, i.e. the holder of a phone can be verified as

the owner. The employment of machine learning techniques serves as a main

concept to classify a person either as a valid user or as a perpetrator.

With the future application in mind the feasibility to use the developed con-

cepts on a mobile device is a major constraint to consider. The approach

should be developed in a way that the algorithms can be transferred to the

end-user devices so that the whole process, from the building of the classifiers

to the owner verification, works well with the computing capabilities of current

smartphones.

In order to be able to work with realistic gait acceleration characteristics, a

data collection using a smartphone shall be conducted. This data is then used

to build, test and optimize the biometric verification algorithms. An outcome

of the thesis should be the necessary knowledge to build a prototype for training

and biometric verification that works entirely on the mobile device.
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1.4. Disposition

This section will provide an outline of the structure of this thesis.

The next chapter gives a short introduction into the field of biometrics. Chap-

ter 3 reviews the current research state of the art in the area of biometric gait

recognition with a focus on approaches using a wearable sensor such as an

accelerometer.

As support vector machines are a cornerstone of the proposed concept, the

methods and capabilities of this machine learning classifier will be discussed

in chapter 4. After that the process of the conducted data collection is put

forward in chapter 5. Included is also an evaluation of the sample quality of

the collected data.

The collected gait data is a time series of acceleration measurements. As

support vector machines need fixed length feature vectors the time series data

need to be converted. This processing and the used feature types are described

in chapter 6. Chapter 7 presents how the previously introduced feature types

were evaluated and optimized in order to select the feature types that perform

best for recognition.

In chapter 8 the selected feature types are used for recognition experiments in

different settings. Most notable the intra-day and the inter-day variability of

gait are studied. Last a summary of the achieved results is offered in chapter

9. An outlook to the practical application of the developed concept is also

included as well as other future work.
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This chapter shall give an introduction into the field of biometrics for readers

that are not yet familiar with this research area and its terminology.

2.1. Introduction

Biometrics is defined as the automated recognition of individuals based on

their behavioral and biological characteristics [ISOb].

The automated recognition is typically used to implement a biometric identi-

fication or verification system. Note that verification is often also referred to

as authentication. Unlike other authentication methods like passwords, smart-

cards, or tokens biometrics cannot be stolen or forgotten.

All biometric systems can be grouped into two classes:

Physiological Biometrics directly derived from the human body. Examples

are fingerprint, face and iris recognition.

Behavioral Characteristics from the human body derived from observation.

Examples are speaker, keystroke and gait recognition.

Every biometric system considers one or more biometric modalities which are

used for the identification and verification process. Each biometrics example

given above is one biometric modality.

2.2. Terminology

There have been efforts of the ISO/IEC1 standardization committee to create

a common biometric vocabulary in order to make it easier to compare different

1 International Organization for Standardization (ISO), International Electrotechni-
cal Commission (IEC)
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research works or different biometric systems with each other. This thesis will

follow the terms and definitions published in [ISOb]. There is a website2 which

provides the most important terms and definitions and might be helpful for

the readers that do not have access to the standard document.

As they are used throughout the thesis some terms are described here:

Genuine A person who submits a biometric sample to a biometric system in

an attempt to be recognized as himself.

Imposter A person who submits a biometric sample to a biometric system in

an attempt to be recognized as another enrollee. In general considered an

intentional action to gain unauthorized access although an unintentional

impersonation is also possible.

In a biometric security system, a person who submits a biometric sample in an

attempt (either intentional or unintentional) to gain access to a system using

the identity of another enrollee.

2.3. Biometric Workflow

The following section will outline the typical processes in a biometric system.

As this is only a summary of the most important aspects, figure 2.1 is provided

as a reference for the components of a general biometric system so that the

relation of the processes is made more obvious. A closer description can be

found in [ISOc].

2.3.1. Enrolment

During enrolment the biometric samples of a person are used to extract the

biometric features in order to store them for reference in a database. This ref-

erence can be compared to the features extracted from other biometric samples

for the purpose of identification or verification.

Note that biometric features are numbers or labels extracted from biometric

samples that are reproducible for a given biometric characteristic of a person

while these features differ for other people.

2 http://www.3dface.org/media/vocabulary.html
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Figure 2.1.: General biometric system, image from [ISOc]

2.3.2. Identification

The goal of identification is to recognize a person’s identity. For this purpose

one or more biometric samples are recorded to create biometric features that

can be used to compare against the features of the biometric reference database.

Identification can be seen as a one-to-N comparison.

The output of the comparison is a similarity measurement, the comparison

score. The identity of the reference database with the highest comparison

score is most likely to be the person to identify. To make the system secure

a threshold is used that determines if the comparison score is sufficient for a

successful identification. If it wasn’t used the system would always accept a

person as a certain identity.

2.3.3. Verification

The verification process is similar to the identification. The only difference

is that the subject whose biometric sample is compared against the reference

database claims a certain identity. Therefore the feature only needs to be

compared against the features of the identity from the reference database.

Verification can be seen as a one-to-one comparison.
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Again the comparison score and a threshold-controlled decision algorithm are

used to verify the person’s identity.

2.4. Biometric Performance

A variety of metrics exists in the biometric field that measure the performance

of a certain biometric system. Again, this is an area where a standardization

process was put in place to enable a better benchmarking amongst various

systems.

This section will only introduce the most important performance metrics that

need to be known in order to follow the discussions in later chapters. The

formulas for these metrics and other biometric performance metrics can be

found in the appendix B. The definitions are based on the ISO/IEC 19795

standard [ISOa].

2.4.1. False Match Rate

The false match rate (FMR) is the proportion of zero-effort impostor attempt

samples falsely declared to match a compared non-self reference.

2.4.2. False Non-Match Rate

The false non-match rate (FNMR) is the proportion of genuine attempt sam-

ples falsely declared not to match the reference of the same characteristic from

same subject.

2.4.3. Failure to Acquire Rate

The failure to acquire rate (FTA) is the proportion of verification or identi-

fication attempts for which the system fails to capture or locate an image or

signal of sufficient quality.
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2.4.4. False Acceptance Rate

The false acceptance rate (FAR) indicates what proportion of attempts re-

sulted in a false recognition. The difference between FMR and FAR is that

in the latter the FTA is also considered. The FMR is an algorithmic level

authentication error, whereas the FAR is an authentication error of the whole

biometric system.

2.4.5. False Rejection Rate

The false rejection rate (FRR) indicates which percentage of attempts by legit-

imate users are incorrectly rejected. The difference between FNMR and FRR

is that the latter the FTA is also considered. The FNMR is an algorithmic

level authentication error, whereas the FRR is an authentication error of the

whole biometric system.

2.4.6. Equal Error Rate

The equal error rate (EER) indicates for a biometric system where the FAR and

the FRR are equal. This metric is useful to express the accuracy magnitude of

a biometric system with one error rate. In general a lower EER is an indication

for a more accurate biometric system.

27





3. Biometric Gait Recognition

The Oxford dictionary defines gait as a person’s manner of walking. It is regu-

lated by the mechanical characteristics of the human body as well as conscious

control over the limbs. The term gait recognition can be defined as using a

person’s unique style of walking to identify or verify one’s identity [KWM10].

The advantage of using human gait as a biometric modality is that it shows

sufficient unique characteristics and can be captured non-invasive and without

people’s attention. This makes it applicable for periodic identity reverification

where unobtrusiveness is an important criterion. In other words a verification

process that does not distract and annoy and is convenient in frequent use.

Being still a young biometric modality, gait recognition is currently an active

research area. This chapter will give an overview of the topic including the

different facets and the state of the art in biometric gait recognition.

3.1. Application Fields

The research efforts related to gait recognition pursuit a wide range of ap-

proaches subject to the intended application type. While the technology is

rather new there are still not many systems out in the field.

A classical biometric application area is identification and verification for se-

curity applications. The use in forensics is a related topic, for example there is

a famous case where gait recognition could be used to identify a bank robber

from video surveillance footage [LSL07].

Currently researched areas like wearable computing and ubiquitous context

aware computing also see a big potential for gait recognition and activity recog-

nition from gait [KSS03, BSR09].

Gait recognition and gait pattern analysis is already used for biomedical pur-

poses. It is considered a practical and inexpensive method for monitoring am-
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bulatory motion [Mat03]. Topics include the monitoring of long-term change in

physiological indicators such as locomotion restrictions introduced by chroni-

cally diseases and exercise efforts by the patients during rehabilitation [AGL06,

BSK07, DJJM+10]. In most medical-related applications the focus lies on de-

tecting the activity of walking in dissociation from other activities such as

running, sitting or sleeping [PTK09]. Another health related topic is the fall-

detection that is intended for automatic alarms in the case of accidents of

unsupervised elderly people [HKJ04, KKW07, ZZW09].

3.2. Technological Approaches

As it can be seen the potential application fields are widespread. From a

technological point of view the gait biometric research however can be catego-

rized in three main approaches (analog to Gafurov in [Gaf07b]). The following

sections will give a short introduction to the approaches and the specific ap-

plication fields.

3.2.1. Machine Vision Based Gait Recognition

Machine vision (MV) based gait recognition has been studied for over sixteen

years [NA94]. It is also probably the most noted form of gait recognition in

research. MV-based gait recognition captures human gait with video-recording

from a distance and uses image and video processing techniques to process the

image sequences for extraction of features in a way that they can be used for

recognition purposes.

The usual application areas are surveillance and forensics which is due to the

fact that the biggest advantage of video-based gait biometric is that it can

be captured from the distance and without cooperation of the subject. The

majority of MV-based approaches use features of the human silhouette that is

extracted from the images of a single camera [CGS02, LG02, WTN03, LS04,

CRZ06, YHKY08, DASZ09, LCW09]. Other approaches include the usage of

multiple cameras for the creation of 3D models [ZLL06] and laser rangefinders

used for automatic 3D models creation [YBS09].

Features extracted include body angles of 2D stick figure representation of the
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Figure 3.1.: Human silhouette extraction in [CRZ06]

gait [YN03, YHKY08], stride and cadence [BCD02], static body measures like

body height and distances between body parts [JB01].

Classification methods used include the nearest-neighbor approach and the K-

nearest neighbor classifier [CGS02, LG02, WTN03, CRZ06, LCW09], neural

networks [YHKY08] and support vector machines [DASZ09].

Study #S TPR

[WTN03] 20 82.50%
[ZLL06] 10 70%

[YHKY08] 30 83.3-90%
[DASZ09] 124 84.4-96.2%
[LCW09] 14 92%
[YBS09] 6 98.96-100%

Table 3.1.: Summary of current MV-based gait recognition studies

Table 3.1 gives an impression of the biometric performance that has been

achieved with MV-based approaches. The numbers in the column #S represent

the number of subjects in the respective study. TPR is the true positive rate

which is the overall correct classification rate [ISOa].
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Note that the performance results are not directly comparable as there are

significant differences in the design of the conducted experiments. Differences

include the usage of different walking speeds, different camera viewpoints and

light conditions. Therefore the table shall only give an impression of the current

overall state-of-the-art in MV-based gait recognition.

3.2.2. Floor Sensor Based Gait Recognition

Floor sensor (FS) based gait recognition utilizes sensors on or in the floor

which measure properties of the occurring footsteps. Such systems can be

deployed in access control applications in strategic locations like front doors

or foyers. Large scale deployments are imaginable that enable person tracking

and continuous identification and verification in buildings with high security

requirements.

Figure 3.2.: Load distribution sensor used in [TTA+10]

The features used in FS-based gait recognition include the pressure distribution

of footsteps [JBL03, TTA+10, QZK10], ground reaction force [OA00, MTG08],

length of heel impact [SR04], heel-to-toe-time-ratio [SR04, MBB05], stride

cadence [MBB05] and stride length [MBB05, QZK10]. See figure 3.2 for an

example of the data acquisition of FS-based gait recognition.

As can be seen in table 3.2 most studies only consider a limited field of subjects.

One of the exceptions is [MTG08] where also the influence of different speeds

and loading conditions is evaluated. EER is the equal error rate, which refers
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Study #S EER TPR

[OA00] 15 — 93%
[JBL03] 8 — 64%
[SR04] 11 — ∼70.2%

[MBB05] 15 — 80%
[MTG08] 40 — 76.25% - 98.33%
[QZK10] 11 — 92.3%
[TTA+10] 10 3.8% —

Table 3.2.: Summary of current FS-based gait recognition studies

to the setting where the false accept rate (FAR) is identical to the false reject

rate (FRR). Again it has to be mentioned that the results given are not directly

comparable because of the differences within the experiments.

3.2.3. Wearable Sensor Based Gait Recognition

Wearable sensor (WS) based gait recognition is the most recent form of gait

recognition as lately proposed as 2005 [ALM+05, MLV+05]. WS-based gait

recognition uses a sensor attached to the body. The sensor is typically an

accelerometer, which is another word for acceleration sensor.

Figure 3.3.: Acceleration in vertical direction of two walking persons
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Figure 3.4.: Acceleration in three spatial directions of a walking person: ver-
tical, lateral and anteroposterior (top down)

Accelerometers used for gait recognition generally are tri-axial accelerome-

ters that measure acceleration in three spatial dimensions. This type senses

backward-forward (anteroposterior), sideways (lateral) and vertical accelera-

tions. The magnitude of the acceleration signal is biased by gravity. The

acceleration that is sensed depends on how the sensor is positioned.

See figure 3.3 for an example of the acceleration captured from two persons

walking at normal speed over about five seconds.

Note that the figure shows the acceleration of the axis that is aligned with the

gravity, so the mean acceleration is approximately−10m
s2

. Gravity is sometimes

referred to as static acceleration whereas other accelerations are called dynamic

acceleration.
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In figure 3.4 on the facing page the acceleration signal in three directions of

the walk of one person is compared. As can be seen from the top graph the

accelerometer is again positioned aligned to the gravity, but this time facing

in the opposite direction so that the signal has a positive offset of the amount

of the gravity. The acceleration of the graph in the middle is the acceleration

in walk direction, the bottom graph shows the side-ways acceleration.

Figure 5.4 on page 64 shows the device used for capturing the acceleration and

the orientation of the accelerometer’s built-in coordinate system.

Figure 3.5.: Intelligent shoe proposed in [HCH07]

The majority of WS-based gait recognition studies use one or more tri-axial

accelerometers. One of the exceptions is the work described in [HCH07] where

intelligent shoes were developed. One of those shoes is shown in figure 3.5.

It has a variety of sensors such as force sensitive resistors, bend sensors, a

gyroscope and an accelerometer installed. In [Now09] only a gyroscope is used

to measure gait characteristics.

As this thesis utilizes an accelerometer this gait recognition approach will be

described more elaborate than the other approaches in the next section.

3.3. Accelerometer-based Gait Recognition

The acceleration signals acquired are the result of the acceleration of the per-

son’s body due to movement, gravity, external forces like vibration of the

accelerometer device and sensor noise.

35



3. Biometric Gait Recognition

Figure 3.6.: Accelerometer placement on the hip in [GS09]

Accelerometers were worn for gait recognition purposes on various body parts

including waist [ALM+05, MLV+05, GSB07, RJM07, GS09, SZ09], ankle [GS09,

GSB10, GHS06], arm [GS09], pocket [VML+06, VML+07, GS09, KWM10],

hand [VML+06] and shoe [HCY06, HCH07]. Lower leg and foot motion has

been recognized as the most discriminative motion during human gait, but

acceleration of the hip and torso also seem to provide sufficient discrimination

[GS09]. There were also efforts in combining accelerometer measures from

multiple body parts [PZW09].

The accelerometers used in the mentioned papers have a wide range of sampling

rates. Beginning from 16Hz [GHS06], over 37Hz [SZ09] and 100Hz [GSB10] to

256Hz [ALM+05, MLV+05].

The interesting aspect of WS-based gait recognition is that the accelerome-

ters are more and more part of mobile devices like smartphones and tablets.

Because of the ubiquitous nature of mobile handsets and smartphones, with

accelerometers an ideal “off-the-shelf” platform for gait analysis and recogni-

tion is available. The big advantage is that only new software is needed to

be developed with no additional hardware cost and customizations opposed to

biometric-only sensors like fingerprint readers.

The fact that accelerometers are already included in a lot of customer de-

vices makes WS-based gait recognition especially useful for an alternative user
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verification solution. This method was proposed first in [GSB07]. Also, re-

search was already conducted that used end-user equipment like smartphones

[SZ09, TAH09, DNB10, KWM10] for data collection.

Table 3.3 presents the used devices. To the authors knowledge there has been

no on-device online learning and classification, i.e. training with the device

and live verification on the device has not been implemented yet.

Phone Operating System Sampling Rate Used in

Nokia N95 Symbian S60 ∼37Hz [SZ09]
Apple iPhone iOS Unknown [TAH09]

Google G1 Android ∼40Hz [DNB10, NBR11]
Several Phones Android 20Hz [KWM10]

Table 3.3.: Smartphones with accelerometers used in research papers

There are researchers who believe that at some stage there will be intelli-

gent clothes with integrated computing and sensor capabilities. WS-based gait

recognition’s unique advantage is the unobtrusive verification which is highly

desirable in wearable ubiquitous computing [GSB06]. Furthermore it has been

shown that the gait contains information like the weight a person carries that

can be used for context-aware systems [BSR09].

3.3.1. Feature Extraction

The process of feature extraction is needed to identify valid and useful pat-

terns in the data of biometric gait samples. The problem involved is reducing

the data to a manageable level (also known as dimension reduction) while still

keeping the import features of the data by only eliminating redundant or ir-

relevant features. The extracted features are usually utilized for training and

testing of machine learning algorithms. Feature extraction is a crucial step as

the classification accuracy hugely depends on the recognition and selection of

stable features for the intended application.

In the case of gait recognition the challenge for feature extraction is that it

has to be robust to small variations in the acceleration patterns and to sam-

pling noise. Gait sample data is a form of time-series data with the typical

property of high dimensional data. For this kind of data, feature extraction is

a mandatory process as otherwise the data amount is not processable.
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There are two common ways to achieve the data reduction in gait analysis:

the selection of key features from the time-series data or transformation of the

time-series into a smaller data set [BB06].

Before discussing the used feature extraction methods the next section will give

preliminary information on the two major approaches for the representation of

gait features: cycle-based and non-cycle-based feature extraction.

Cycle-based versus Non-Cycle-based Gait Representation

A gait cycle physically corresponds to two consecutive steps, i.e. the period

after one foot touches the ground until the same foot touches the ground again.

Note that the end of one gait cycle is the beginning of the following cycle.

Cycle-based features are created by identifying gait cycles in time-series data

representing a walking person. Then the feature extraction is conducted on

identified cycles and the resulting features are used for biometric template

creation and sample comparison. This recognition attempt is based on the

assumption that the cycles of one person’s gait are similar to each other and

the cycles of two different persons are dissimilar.

Figure 3.7.: Cycle extraction

Currently this approach for representing gait is the predominantly used method
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in gait recognition research. Figure 3.7 shows an example of the extraction of

cycles from the acceleration signal.

In the second approach, a non-cycle-based gait representation, features are

extracted from the times-series data without prior identifying the contained

gait cycles. One of the few studies that are based on this approach is [KWM10].

The concept developed for this thesis also follows a non-cycle-based approach,

the details will be discussed at a later point in chapter 6.

As mentioned earlier the next two sections will discuss commonly used feature

extraction methods used in the gait recognition research.

Key Features Selection Feature Extraction

An example for this approach is the identification of key moments in a gait

cycle, e.g. the moment the toe lifts off the ground or foot strikes the ground

again. A possible feature is then the mean time between subsequent occurring

events of the same type. This feature extraction approach enables one to

incorporate high level knowledge from experts for feature selection. In the

area of gait recognition this applies to outcomes from biomedical research of

human movement [BB06]. The benefits of selecting important features are

also the possible downside: the subjective parameter choice might lead to

discriminatory features being dropped.

In [KWM10] features derived from the gait acceleration signals include the

mean acceleration, mean difference acceleration , the standard deviation and

the binned distribution of the acceleration signals.

Data Transformation Feature Extraction

The goal of this approach is to transform time-series data into a set of coef-

ficients that approximately preserve the inherent structure of the data while

being lower dimensional than the time-series data. A potential disadvantage of

using a data transformation is the reduced interpretability of the transformed

parameters [BB06].

One of the most common approaches in this area is the spectral decomposition

with a Fourier analysis using a fast Fourier transformation (FFT). This decom-

position was already proposed in the beginning of WS-based gait recognition
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[ALM+05] and is used also in recent studies [HCH07, RJM07, BSR09].

Another data transformation that also converts a time-series representation

into the frequency domain is the wavelet transform which was used for gait

recognition purposes in [IY06].

The last transformation that needs to be considered is a combined time-

frequency analysis: the principal component analysis (PCA). It has not been

largely used in gait recognition, but this is likely to change as it was successfully

applied in [BS10].

3.3.2. Biometric Performance

Like the other approaches, WS-based gait recognition enables one to recognize

individuals with reasonable performance which confirms the distinctive prop-

erties of gait patterns. Although it is the most recent form of gait recognition

competitive recognition rates could be achieved. Table 3.4 gives an overview

of current WS-based gait recognition studies.

Study Sensor location #S EER TPR TG Sep. by day

[ALM+05] Waist 36 6.4% — 5 days Yes
[RZJ07] Waist 35 6.7% — 3 weeks (?) No (?)
[HCH07] Shoe 10 — 98% (?) (?)
[DBH10] Hip 60 5.7% — 0 No
[BS10] Hip 60 1.6% — 0 No

[GSB10] Ankle 30 1.6% — 0 No

Table 3.4.: Summary of current WS-based gait recognition studies

The column TG provides information on the time gap between the sessions

of the gait data collection conducted for the respective study. In the last

column information is given whether the reported error rates were obtained

while verifying with gait data recorded on a different day.

For example in [ALM+05] the time gap between the two data collection ses-

sions was five days and the gait data of the first day was used for creating

the biometric templates whereas the data from the second day was used for

conducting the cross validation.

This information is given as the human gait has significant day-to-day varia-

tions affecting classification performance substantially. A more detailed discus-
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sion regarding the matter will follow in section 3.3.4 on page 43. Unfortunately,

not all studies do provide those details.

In [RZJ07] it is not clear which process took the reported 3 weeks and if that

means that there were multiple weeks between two or more data collection

sessions for one person. This is in [HCH07] even worse, as no information is

provided. In the case of [DBH10, BS10, GSB10] information could only be

gathered as the authors kindly answered enquiries in this regard. The ideal

case, a time gap of multiple day and the separation between reference day

data and testing day data, can be found in the pioneer work of WS-based gait

recognition [ALM+05].

3.3.3. Other Considerations

In this section a short overview of other WS-based gait recognition work will

be given. Although these topics are not directly of relevance for this thesis, a

brief description is supplied to complete the current research review.

Attack Scenarios and Testing

In [HCH07] human gait is considered as a unique, dynamic biometrical fea-

ture that is complex and difficult to imitate. It is concluded that it is more

secure than static features such as password, fingerprints and facial features.

Although the conclusion is a rather bold statement which can be argued it is

correct with respect to the difficulty to imitate another person’s gait which has

the potential to be a more secure biometric feature then static features.

But this only applies when the biometric performance is sufficient so that

minimal-effort impersonation attacks have no prospects of success. There have

been some efforts towards studying the security of the gait biometric, although

not nearly as much as with other biometric modalities.

In [GSB07] two types of attack scenarios were considered, the minimal ef-

fort impersonation and a closest-person attack in which the imposter knew

the person with the most similar gait in relation to the stored templates in

the database. Another attack scenario was examined in [Gaf07a], where the

imposter knows the gender of a person in the database.

A general result of these studies is that the biometric gait is robust to minimal
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effort impersonation attacks. However, the gait recognition systems can be

vulnerable to imposters with the knowledge that can be used to carry out a

more elaborate attack. One of the possible counter-measures is combining the

gait modality with other biometric modalities. The efforts in this study area

shall be discussed in the following.

Multi-Biometrics

It is a well known fact in biometric research that the usage of multiple biometric

modalities and other multibiometric fusion, in short multi-biometrics [ISOd],

improves performance in most cases compared to single biometric measure

[RJ04].

In [VML+06] gait recognition is utilized as an enhancement to voice recogni-

tion that helps to improve the biometric performance in noisy environments.

This concept is further developed in [VML+07] where cascading of unobtrusive

(voice, gait) and obtrusive (fingerprint) biometrics is proposed. Both studies

use the gait modality to offer an alternative verification in cases where a dif-

ferent modality is not available.

The automatic identification of people was done in [TJD09] using preinstalled

infrastructure cameras and comparing the visually observed walking patterns

with the wireless transmitted signals of an accelerometer with a unique ID

carried by each subject.

The work in [DGL+10] proposes a multi-modal biometric authentication on

mobile devices using gait signals and fingerprint images yielding improved per-

formance.

Enhancements

Interesting applications related to gait recognition are those that include cer-

tain situation awareness. In [TAH09] the GPS sensor of a mobile phone is used

to determine whether the device is in a familiar place of the owner to control

the threshold for the gait matching score. This means that the threshold is

adapted at familiar places so that rather average comparison scores will be

accepted whereas in unfamiliar locations it will be changed so that only quite

exact scores are accepted.
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Study Study Type Same day Cross day Time gap

[SPL+05] MV 78% 3% 6 months
[LS04] MV > 80% 0% 6 months

[LMS04] MV 42 - 52% 10 - 11% 6 months
[CKC03] MV — 29 - 50% —
[CGS02] MV — < 50% —
[TB01] MV 73% 42% 1 month

[GHS10] WS 80-90% 26-59% 16 days

Table 3.5.: Time influence on recognition rates, modified from [GHS10]

The adaptation of the verification security is also proposed in [VML+07]: the

unobtrusive verification through gait or voice can fail multiple times without

the device requiring an explicit user authentication through fingerprint veri-

fication. But when a certain time period without successful verification has

passed or if a sensible application like mobile banking, is started, an explicit

verification is required.

3.3.4. Challenges

Most research papers try to exploit the fact that the human gait is a cyclical

pattern. The biggest problems in that approach are all effects that introduce

noise in the cycle. This result of changes in walking speed, different ground

surfaces and inclines as well as temporary changes in the health condition of

the person because of diseases, intoxication, overworking or injuries.

The results are also affected by varying type of clothing and footwear or the

transportation of objects by the subjects.

All influences that change human gait really become a challenge when gait

samples are compared against gait samples that were created days, months or

even years ago. The influence of time on the recognition rates have been studied

in a number of MV-based gait recognition studies [TB01, CGS02, CKC03,

LS04, LMS04, SPL+05], but only in few WS-based study [BSR09, GHS10].

Table 3.5 is taken and modified from [GHS10] and compares the recognition

rates achievable with a same-day recognition with a cross day recognition after

the given time gap. By looking at the results it gets apparent that the influence

of time is a problem that is unsolved yet.
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Interestingly in [HHR07] it is reported that changing surfaces do not have sig-

nificant impact on the gait recognition performance. But the role of changing

surfaces probably needs more investigation as the number of subjects and the

tested surface types were quite limited.

That changing walking speeds are not a trivial problem was found in [BSR09]

as well as that shoes have a large influence on the gait acceleration profile.

This was confirmed in [GS08] and [GSB10] where heavy shoes were found to

decrease the discriminative power of gait.

In nearly all reported experiments an ideal walking situation is used for data

collection: the subjects walk on an even surface and are fully focused on walk-

ing as such. In [BSR09] even a treadmill was utilized for the data collection.

This is of course not a very realistic scenario as people often change their

movement while walking (e.g. stop, turn, run, jump and climb stairs) and

are distracted by the surrounding and from simultaneously performed activ-

ities like typing a text message on the mobile phone. Only few studies have

attempted to do gait recognition in a more realistic setting. An example is

[KWM10] in which different movements (walk, jog and climb stairs up and

down) were performed during data collection.

3.4. Summary

Every biometric modality has constraints in terms of achievable performance

and reliability. The provided performance measures of the different gait recog-

nition approaches and the discussed challenges of WS-based gait recognition

make it obvious that there is a lot of potential for improvements.

Especially WS-based gait recognition is considered being a biometric field in its

infancy [Der10]. An indication for this is also that there is no public database

available which would enable a true comparison between different research

approaches.

Nevertheless it is likely that biometric gait recognition will enter more practi-

cal applications as it offers unique advantages like an unobtrusive sample cap-

turing. The usage of WS-based gait recognition on mobile devices has great

potential as the initial situation is normally not nearly as fortunate as with any

other biometric modality or system: there is no need to purchase additional
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sensors as accelerometers are included in nearly all modern phones. Therefore

a new biometric system can be introduced by applying a suitable software so-

lution. The additional safeguard could help to mitigate the consequences of a

phone theft while not distracting the user in the daily use.
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4. Support Vector Machines

4.1. Introduction

The support vector machine (SVM) was introduced by Vladimir Vapnik in 1982

[Vap82] as a supervised learning method based on the theory of structural risk

minimization. A SVM is a classifier which is inherently a solution for two

class problems. The basic idea of the SVM is to construct a hyperplane as the

decision plane, which separates the patterns of the two classes with the largest

margin.

SVMs can also be used for tasks than two class separation, for example multi-

class classification. This is discussed in more detail in sections 4.3 and 4.4.

4.2. Classification

In this section an introduction will be given in the underlining concepts of the

classification with SVMs.

4.2.1. Linear Separable Case

The simplest case possible is a machine trained on separating linear separable

data. The goal of the machine is to do a binary classification task with d-

dimensional data points as input (xi ∈ Rd i = 1, ...,m) where the two classes

to separate have labels yi ∈ {−1,+1}. The general case - nonlinear machines

trained on non-separable data - results in a similar quadratic programming

problem thus this case is worth looking at.

The classification function can be defined as f(x) = sign(〈w, x〉 + b). The

vector w determines the orientation of a plane separating the classes, the so

called discriminant plane. The scalar b is the offset of the plane from the
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origin of the d dimensional space. The discriminant plane is defined as the

hyperplane H = {x | 〈w, x〉+ b = 0}.

Figure 4.1.: Example for linear discriminant planes

Figure 4.1 shows two classes to separate, indicated by red squares and green

circles and some possible discriminant planes. As implied with this simple

example there are infinite possible solutions to define the borders between

the class representatives. The question is, which hyperplane is the optimal

discriminating one and thus performs best.

The intuitive approach is to maximize the margin between the clouds of data

points. Thus the closest examples of the two classes have to be taken into

account. We define d+ and d− as the shortest distance from the separating

hyperplane to those examples. Those are either on H1 : xi · w + b = +1 with

the perpendicular distance from the origin |1−b|
||w|| or on H2 : xi · w + b = −1

with the perpendicular distance from the origin |−1−b|
||w|| . The margin of the

separating hyperplane is the sum d+ + d−. Therefore the margin is 2
||w|| . To

find the optimum discriminating hyperplane we have to maximize this sum by

minimizing 1
2
||w||2. This can be expressed with the following inequalities:

min
w,b

1

2
||w||2 (4.1)

subject to 〈w, xi〉+ b ≥ +1 for yi = +1
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and 〈w, xi〉+ b ≤ −1 for yi = −1

This can be combined to

min
w,b

1

2
||w||2 (4.2)

subject to yi(〈w, xi〉+ b) ≥ 1 ∀i

The problem is often referred to as the hard-margin SVM formulation as it is

non-solvable when the data is not linearly separable. When there is a solution

a unique global minimum value can be found as the problem is convex [BC99].

It is important to understand that the solution only relies on the data points

closest to the hyperplane, those are called support vectors. In contrast to

other machine learning algorithms used for classification it is not relevant for

the classification result whether the instances of a class lie dense or sparse,

only the support vectors determine the location of the hyperplane.

See figure 4.2 for the optimum hyperplane along with the maximized margin.

The support vectors are marked with black crosses.

Figure 4.2.: Example for linear separable case in R2

The problem can be reformulated to a Lagrangian formulation to enable a rep-

resentation in the form of dot products between vectors in the training algo-

rithms that is needed to generalize the problem to the nonlinear case discussed
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in section 4.2.3. The Lagrangian dual of the supporting plane’s quadratic

programming (QP) problem yields the following dual QP [Vap99]:

min
α

1

2

m∑
i=1

m∑
j=1

yiyjαiαj 〈xi, xj〉 −
m∑
i=1

αi (4.3)

subject to
m∑
i=1

yiαi = 0 and αi ≥ 0 i = 1, ...,m

The variables αi are the Lagrange multipliers. The method of Lagrange multi-

pliers provides a strategy for optimizations with the goal of finding the maxima

and minima of a function subject to constraints. Only the support vectors have

αi 6= 0 which illustrates that only these points have influence on the location

of the hyperplane:

w =

#sv∑
i=1

αiyix
sv
i (4.4)

The decision function for the classification is

f(xnew) = sign(〈w, xnew〉+ b) = sign(
m∑
i=1

αiyi 〈xi, xnew〉+ b) (4.5)

Data point xnew represents a new instance which is a class label assigned by

the decision function.

4.2.2. Linear Inseparable Case

Let us consider a scenario like it is given in figure 4.3. The only difference

compared to the previous example is an additional red square within the group

of green circles.

As can be seen from the plotted convex hulls the two point classes are not linear

separable with this additional point. If this single point would be removed or

ignored the classification could be done as in section 4.2.1 described. For that

reason the margin criterion is relaxed so that some points can lie within the

margin or even on the wrong side of the hyperplane. This is the so called

soft-margin SVM formulation.
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Figure 4.3.: Example for linear inseparable case in R2

The previous optimization problem is modified by the introduction of the slack

variables ξi for each constraint as follows [Bur98]:

min
w,b,ξ

1

2
||w2||+ C

m∑
i=1

ξi (4.6)

subject to yi(〈w, xi〉+ b) ≥ 1− ξi ∀i and ξi ≥ 0

The slack variables are added as a weighted penalty term to the optimization

problem. The goal is trying to maintain ξi to zero while maximizing the margin.

Soft margins are a good approach to cope with noise in the data that makes

the data not linearly separable. The trade-off-parameter C is set by the user

and controls the influence of errors and typically has to be chosen experimental

during training of the SVM.

The literature refers to C most commonly as the cost or penalty parameter. A

larger C corresponds to assigning a higher penalty to errors. When C goes to

infinity the solution gets closer to the hard-margin solution which means fewer

errors are tolerated, but overfitting is likely to occur [HCY06]. The advantage

of the soft-margin solution is that it always has a solution and that it is more

robust to outliers. The hard-margin solution benefit is that is does not require

to guess the penalty parameter C.
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Figure 4.4.: Example for linear inseparable case with slack variable in R2

The Lagrangian dual changes only slightly with the introduction of parameter

C as an upper bound for the Lagrange multipliers αi :

min
α

1

2

m∑
i=1

m∑
j=1

yiyjαiαj 〈xi, xj〉 −
m∑
i=1

αi (4.7)

subject to
m∑
i=1

yiαi = 0 and C ≥ αi ≥ 0 ∀i

Figure 4.4 visualizes the role of the slack variables ξi with the previous example

for linear inseparable data.

With this approach linear classifications can be built with theoretical as well

as practical generalization properties even in very high-dimensional feature

spaces. Luckily, as quadratic programming is a well studied area, robust and

efficient algorithms exist for solving the dual formulations [BC00].

4.2.3. Nonlinear Separable Case

Although we have expanded our classification algorithm being able to always

find a solution, there are a lot of situations where this might not perform well

enough. To motivate this figure 4.5 shows a simple example for data points
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4.2. Classification

Figure 4.5.: Example for nonlinear separable case in R2

that cannot be separated linearly and where the misclassification rate would

be high when a soft-margin approach is used. The blue ellipse-style border is

good nonlinear separation solution, but it is quite complicated in relation to a

soft-margin solution.

Let us assume the points in the figure are in R2 and we map them with the

function φ : (x1, x2) 7−→ (z1, z2, z3) := (x21,
√

2x1x2, x
2
2) to R3. As can be seen

in figure 4.6 this representation enables one to separate the data linearly with

a hyperplane between the point clouds. The resulting classification function

is f(x) = sign(〈w, φ(x)〉 + b) = sign(w1x
2
1 + w2

√
2x1x2 + w3x

2
2 + b) . This

principle can be generalized.

The general idea is the introduction of a function φ that maps the data into

a higher dimensional data space F in order to make it linear separable. The

justification for that can be found in Cover’s theorem on the separability of

patterns. The theorem states that a nonlinear separable set of training data can

be transformed with high probability into a data set that is linearly separable

by projecting it into a higher dimensional space via a non-linear transformation

[Cov65].

The mapping function can be formally defined as

φ : x ∈ X 7−→ φ(x) ∈ F (4.8)

53



4. Support Vector Machines

Figure 4.6.: Example for mapped data points R3

Finding an appropriate mapping function is a nontrivial task which is briefly

discussed in section 4.5. The higher dimensional data space is often referred

to as feature space or VC-dimension (Vapnik–Chervonenkis dimension).

The problem with this mapping is that the naive approach, an explicit map-

ping, can be quite expensive in terms of computational effort and/or memory

consumption. When processing a lot of data while using high dimensional

target spaces the computational costs might even be infeasible. This prob-

lem origins from the fact that the dimensionality of the feature space grows

exponentially.

There is however an alternative mapping method which reduces processing

costs significantly by using kernel functions that map the data implicitly.

The dot products of our example φ(x) = (x21,
√

2x1x2, x
2
2) ∈ R3 can be rewrit-

ten as:

〈φ(x), φ(z)〉 =
〈

(x21,
√

2x1x2, x
2
2), (z

2
1 ,
√

2z1z2, z
2
2)
〉

= x21z
2
1 + 2x1x2z1z2 + x22z

2
2

= (x1z1 + x2z2)
2

= 〈x, z〉2 = κ(x, z)

From this evaluation it can be observed that the mapping only enters through
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Kernel name Kernel function K(x, z)

Linear Kernel 〈x, z〉+ c
Polynomial Kernel of degree n (γ 〈x, z〉+ c)n

Gaussian Radial Basis Function (RBF) exp(−γ||x− z||2)

Table 4.1.: Examples of kernel functions

inner products. This means that for training purposes information on pairwise

inner products is sufficient. Therefore a kernel is an efficient way to compute

dot products of mapped data without any explicit mapping through extensive

calculation.

The definition of a kernel is as follows [CST00]: A kernel is a function K, such

that K(x, z) = 〈φ(x), φ(z)〉 for all x, z ∈ X where φ is a mapping from X to

an (inner product) feature space F .

It remains the question when is a function an actual kernel function? The

answer is given by Mercer’s theorem [Bur98]:

1. Function K is symmetrical, i.e. K(xi, xj) = K(xj, xi)

2. The Kernel-Matrix Kij := K(xi, xj) is positive semi-definite for all train-

ing data x1, x2, ..., xn, i.e.
∑

i,j aiajKij ≥ 0 ∀a ∈ X

Kernels are closed under the following operations, so we can combine known

kernel functions in order to yield valid kernels again [CST00]:

1. K(x, z) = K1(x, z) +K2(x, z)

2. K(x, z) = αK1(x, z), α ∈ R+

3. K(x, z) = K1(x, z)K2(x, z)

4. K(x, z) = K1(x, z) + c, c ∈ R+

5. K(x, z) = x′Bz,X ⊆ Rn, B positive semi-definite

See table 4.1 for some examples for common used kernel functions. The param-

eter c is a constant term, the parameter γ is an adjustable kernel parameter

that plays a major role in the performance of the kernel and has to be experi-

mentally tuned to the classification problem. The selection of the best kernel

is also of high importance for the performance of the classification. Section 4.5

touches briefly on that.

The learning algorithms of SVMs are laid out such that all references to the

input data are within inner products so that all these occurrences can be
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replaced with the kernel function of choice. After that the usual linear training

algorithms can be applied.

The quadratic programming problem with the mapping is defined as [BC00]:

min
α

1

2

m∑
i=1

m∑
j=1

yiyjαiαj 〈φ(xi), φ(xj)〉 −
m∑
i=1

αi (4.9)

subject to
m∑
i=1

yiαi = 0 and C ≥ αi ≥ 0 ∀i

Still missing from the discussion is the nonlinear inseparable case which is the

general case mentioned in the beginning of this chapter. By now we already

have all tools to tackle that kind of problem. The kernel maps the data into a

higher dimensional data space in order to make the instances of the two classes

linear separable. In the cases where this fails the penalty parameter C controls

the influence of errors introduced through noise and outlier.

The implementation of the optimization methods that are used to solve the

quadratic programming problem in equation 4.9 is not in the scope of this

thesis. However, according to [BC00] common methods include interior-point

methods [PW00] and sequential minimal optimization [Pla99].

4.2.4. Classification Summary

This section will give a short summary on kernels and SVMs to aggregate

the most important facts that should be kept in mind when the conducted

experiments are introduced and discussed in chapter 8.

Unlike other well-known machine learning classifiers such as Gaussian mixture

models SVMs work by increasing the dimensionality of the input data space -

and not reducing it. The workflow of a SVM is as follows: first the input data is

mapped into a higher dimensional space where linear classification techniques

can be used. The learning algorithm where the margin between the classes is

maximized is implemented so that the mapped data is only used in pairwise

dot products. This enables an efficient computation by a corresponding kernel

function on the unmapped data.

Goal of the SVM training is the maximization of the margin in the implicit

feature space to maximize the generalization performance and avoid overfitting.
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To be able to work with somewhat noisy data, slack variables are introduced

so that outliers have a limited influence on the training result. In order to

achieve the best performance experiments have to be carried out that evaluate

different parameter settings.

The optimization method of a support vector machine is quadratic program-

ming, which is a well-studied and understood mathematical programming tech-

nique.

4.3. Multi-class SVMs

As discussed before SVMs inherently offer solutions for two class problems.

There are of course ways to extend the concept to solve multi-class problems

as well. The two most often used techniques used to transform the multi-class

problem into one or multiple two class problems are: One-separates-rest and

One-separates one.

The first approach, One-separates-rest, trains one binary SVM classifier per

class, separating the data vectors of this class from all other classes’ data

vectors. The classification is done with a winner-takes-all approach, where the

classifier with the highest output score is the one to which the instances are

assigned.

With the second technique, One-separates-one, a total of N(N−1)
2

(N is the

number of classes) binary SVM classifiers are built, where each one is trained

using data vectors from a pair of classes. Here the classification is based on a

max-wins voting technique, where each classifier assigns the instance to one of

its two classes. The class with the most votes are the instances assigned to.

Multi-class SVMs are not of relevance for the practical application discussed in

this thesis, therefore the concepts are not discussed further. However, further

reading can be found in [CSC+01, DK05].

4.4. Benefits and Applications

In recent years many machine learning related applications have successfully

adapted SVMs implementations.
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Not only classification, but also regression [SS04] and novelty detection [SPST+01]

belong to the problems that can be solved with SVMs. The underlying concepts

of margin maximization, duality and kernel functions enable one to extend and

combine the methodology in order to solve the particular problem.

Compared to other popular machine learning techniques such as neural net-

works or decision trees SVMs do not suffer from problems like local minima or

overfitting as the results are stable and reproducible. The number of training

parameters is low, e.g. if the Gaussian radial basis function (RBF) is used

for classification it comes down to choosing two parameters: the width of the

Gaussian kernel γ and the penalty parameter C. A further benefit is that

state-of-the-art research optimization problems can be used for solving the

quadratic programming problem of the SVM model [BC00]. The application

of SVMs on practical problems is rather uncomplex and as discussed in section

4.6 supported by public available software tools.

The benefits of SVMs can be confirmed with a wide range of successful ap-

plication areas. These include DNA analysis [TCD+00], handwritten digit

recognition [DS02] and Steganography detection [LF02]. In [MLH03] the clas-

sification and regression performance of SVMs was compared to a range of

other machine learning methods good and overall competitive performance on

33 different machine learning data sets.

Especially in biometrics SVMs are often used as the classification backend

processing the extracted biometric features for identification or verification.

Biometric modalities used include fingerprints [BSC04, TTT06], iris [ASW08],

face [RPL99] and speech [CLG09]. Machine-vision-based gait recognition is

also among the successful biometric applications of SVMs [LY09].

Another notable form of SVM application in the area of biometrics is when

multi-biometrics are used [DDV07, FAE08, JK08].

4.5. Challenges and Limitations

Despite the benefits there are still issues to solve to make SVMs an ultimate

tool for machine learning tasks.

It was mentioned that the parameters of SVM kernels are not numerous, but

this is already one step beyond the selection of the kernel type which is impor-
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tant for the results. In [HCL03] the RBF kernel is recommended along with a

description in which cases to prefer another kernel type. As briefly discussed

the most common approach for kernel and parameter selection is an experi-

mental one which is typically done with cross validation. This can be quite

expensive in terms of computational efforts.

Also, SVMs do not solve the problem of selecting well performing, stable and

complete attributes prior to training a model. This is still an area which is

largely dependent on domain-knowledge and the intuition of the researchers.

The inputs of SVMs are real-valued vectors hence there has to be a conversion

of non-real-vectors like categories into such values, where different conversion

methodologies can be applied. Scaling of the data is considered a good practice

because it avoids values in greater numeric ranges dominating those in smaller

ranges. There is also the possibility that large values cause numerical problems

when used in the inner products of features vectors. It is still not entirely clear

which scaling approach is best for which problem [BC00].

Although being not always of relevance, it is straight forward that one limi-

tation of SVMs is that the results, the trained models, are not interpretable.

This means that the separating characteristics of the two classes cannot be

recognized by interpreting the position of the support vectors.

4.6. SVM Tools and Libraries

One of the mentioned benefits of SVMs is the availability of mature software

toolkits that are comparable easy to use and often available both as Open

Source and for free.

The major requirements for this project was that the software provides an ef-

ficient implementation, is well documented and most importantly is also avail-

able for programming languages that can be used in smartphone applications.

The LIBSVM library could fulfill all those needs and more. It is actively de-

veloped, the latest version was released in September 2010, it is free and the

source code is available as well.

Besides both a Java and C++ implementation it comes along with a variety

of interfaces to other languages and toolkits like Python, R, MATLAB, Perl,

Ruby and others [CL01]. This flexibility allows one to use the most efficient
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C++ implementation with the MATLAB interface to work on powerful work-

station computers in order to experiment with different attributes and model

parameters. The best solution and the generated SVM models can then be

used within the smartphone environment and, for example on Android-based

smartphones, with the Java implementation of the library.
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5. Data Collection

A data collection was conducted to construct a set of training and test data

that is used to create, test and optimize the gait recognition algorithms. This

chapter describes the actual collection process and the quality of the collected

gait characteristics.

5.1. Sample Collection

For the acquisition of the acceleration data a Motorola Milestone smartphone

was used. It has a built-in 3 axes accelerometer sensor, a STMicroelectronics

LIS331DLH [And10]. The technical capabilities of it are given in table 5.1.

Accelerometer Type 3 axes
Data scales User selectable ±2g/±4g/±8g

Output data rates 0.5 Hz to 1 kHz
Data resolution 16 bit

Table 5.1.: Data sheet LIS331DLH accelerometer [STM09]

The smartphone has the Android platform as operation system which provides

an API to access the sensor data values. For the data collection a custom

application was used that writes the acceleration values for the x-, y- and z-

direction along with a timestamp into a local database. Later, the content

of the database is exported to files. The application was developed within

CASED as part of the biometric authentication framework MBASSy [WN10].

The Android API does not provide a way to get acceleration values in fixed

time intervals and there is no way to ensure that a certain minimum data

rate is met. An example of captured sensor values is given in figure 5.1. The

first column contains timestamps in milliseconds, the other columns are the x-,
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y- and z-direction (left to right) acceleration values. Note the different time

intervals between consecutive measurements.

Figure 5.1.: Acceleration signals excerpt

Every subject that took part in the data acquisition process was asked to walk

on a tarred footway, figure 5.2 is a photo of the path. During this walk each

subject carried a horizontal belt pouch at the right hip which contained the

Motorola Milestone.

Figure 5.2.: Footway used for data collection
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Figure 5.3.: Position of the smartphone in the belt pouch

The phone was positioned with the display to the body and the upper side

facing to the walking direction. See figure 5.3 for the position of the pouch and

the phone. The direction of the three spatial dimensions of the accelerometer

is visualized in figure 5.4 on the following page.

The detailed data capture steps were as follows:

• The subject got the belt pouch attached to the belt or to the trousers

• The capture process was started and the phone was put into the pouch

• The subject had to wait until the smartphones vibrated, then the subject

had to start walking

• All acceleration data that was captured during this walk belongs to the

first walk

• After the next vibration the subject had to stop, turn and wait for the

next vibration

• When the smartphone vibrated again, the subject had to start walking

back

• The acceleration data that was captured during this walk belongs to the

second walk

• The next and last vibration signaled the end of the capturing process
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Figure 5.4.: Directions of the accelerometer dimensions

The phone was positioned with the display to the body and the upper side

facing to the walking direction.

The time per walk was set to be 18 seconds. Thus the walk distance covered

depends on the walking speed of each subject. The time between the walks

was seven seconds which is enough time for the subject to stop, turn and wait

for the beginning of the second walk.

Three settings were captured for each subject. First the subjects were asked

to walk in their normal pace. Then this procedure was repeated with a slower

walking speed and, in the third and final pass, with a faster pace.

As the walking style of each person varies over time it is a good approach to

capture gait data on different days to enable a more realistic testing. Thus

the three capture settings were repeated a few days (2-3) later. So in total six

settings with two walks per setting were recorded for each person. Note that

the subjects were asked to wear the same shoes that they wore on the first

data collection session on the second session again.

A total number of 41 persons took part in the first walking session, and except

one participant all attended the second session. The participants were 19

female and 22 male persons. The detailed age and gender distribution is given

in figure 5.5.
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Figure 5.5.: Subject age and gender distribution

5.2. Walk Extraction and Analysis

The files with the acceleration data that had been acquired during the data

collection were processed and analyzed to do a basic quality assurance.

As a first step Matlab scripts were developed that perform basic quality checks.

These steps ensured that

• for every subject six files (one per setting on a day) were created

• the data of the single subject that did not return for second day data

collection was dropped

• all sample files covered the same time period, i.e. full 18 seconds

5.2.1. Extraction

In the next step the two walks per file were extracted into two separate files.

For the extraction the WalkExtraction Matlab GUI program, also developed

within CASED, was used.

The process was done in a semiautomatic fashion: first the starts and ends

of the walks were determined automatically. This is easy to implement, as
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the timestamp change between subsequent values is here five seconds at least.

Next, the signals were visually controlled. If there were unusual walk cycles

during the start phase of a walk these were omitted by manually adapting the

selection range of the respective walk.

Figure 5.6.: Semiautomatic walk extraction

After the separation into one walk per file a total number of 480 walk files

existed, which result from 40 persons with six sample files with two walks

each. In figure 5.6 an example of an extraction setting is given. The data from

the original file is visible in the upper large window and the two extracted

walks below.

5.2.2. Sample Analysis

As mentioned in section 5.1 there is no guaranteed sampling rate due to the

architecture of the Android platform and developer API. To check that the

variability of the sampling rate is not too high the mean sampling rate of each

walk file was calculated.

The results can be seen in figure 5.7 on the next page. It is apparent that overall

the sampling rate is more than 125 samples per second with few outliers.
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Figure 5.7.: Walk files mean sampling rates

The impression of a sufficiently good data quality can be further enforced by

looking at the standard deviations of the time differences of the walk files.

The standard deviation of the time differences of a walk file is generally under

10ms. This can be seen in figure 5.8 on the following page.

Furthermore it was examined whether there had been significant lags between

subsequent data values by analyzing the maximum time differences of the walk

files.

Though figure 5.9 on the next page reveals there are few rather big outliers,

the overall maximum time lag is smaller than 100ms. Of course, the maximum

time lags resemble the distribution of the discussed standard deviations.

The reason that time lags of this magnitude occur cannot be clarified as it

is unknown how the Android operating system handles the output of the ac-

celeration sensor. Most likely in such moments other background services or

tasks are executed that have a higher priority and thus lead to a delay in the

updating of the measured accelerations.
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Figure 5.8.: Walk files time lag standard deviations

Figure 5.9.: Walk files maximum time lags
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Figure 5.10 shows the setting with the worst delay throughout the whole data

collection of about 800ms.

Figure 5.10.: Maximum time lag in collected walks

The acceleration sensor has of course limits in terms of accuracy. Although for

our purposes it is not primary that the sensor is perfectly calibrated it makes

sense however to look at the sensor resolution.

This can be done by producing a set of all measured acceleration values for each

of the three directions. Then, all duplicate entries are removed from the sets

resulting in three sets of unique values. These sets are sorted and the difference

of subsequent entries is calculated. Now, the minimum is determined for each

set. The resulting values can be seen in table 5.2. As a result we can speak of

a maximal resolution of approximately 0.01m
ss
.

Direction Min. Acc. Difference (m/s²)

x 0.009802
y 0.009805
z 0.009803

Table 5.2.: Minimal acceleration difference

Although it is not possible to guarantee a certain sampling rate by using the

Android operating system it seems that most of time the sampling rate is suf-

ficiently high compared to the devices used in other WS-based gait recognition

studies. In the cases of the big time lags the signal should not be used for gait

recognition as false results are likely to occur.
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This chapter will outlay how the gait characteristics in the form of a time series

of acceleration measurements are processed to be usable as features for SVMs.

The evaluation of the feature types that are described here can be found in

chapter 7.

6.1. Preprocessing

The collected gait samples are preprocessed such that the feature extraction

works with consistent and portioned data. The walk files serve as input, in

this section also referred to as raw data. Note that for the experiments of this

thesis only the walks of the normal pace setting were used.

6.1.1. Linear Interpolation

The first step is a linear interpolation to a fixed sampling rate as this is not

given with the collected raw data as discussed in section 5.1. The average

sampling rate of the raw data is about 125 samples per second.

To find the optimum target sampling rate various settings have been tested,

this is later described in chapter 7.

6.1.2. Normalization

After the interpolation the signals sx, sy, sz are normalized by the mean accel-

eration µa of the respective acceleration direction sa

s̄a(t) = sa(t)− µa a = x, y, z
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The intention is to be able to extract features that need an input signal with

a near-zero mean value. An example is the zero crossings metric. Before the

normalization the mean signal of the acceleration direction aligned with the

gravitation is about 10m
ss
.

Normalization also helps to limit the influence of sensor inaccuracy and noise

which can be seen from the non-zero acceleration measured when the device is

not moved at all.

6.1.3. Segmentation

One of the goals of this thesis is to find a representation of human gait that is

suitable for distinguishing between individuals for the verification purpose. As

mentioned during the discussion of current research efforts in accelerometer-

based gait recognition in section 3.3 an often implemented idea is to compare

the characteristics of a gait cycle.

The downside of this approach is that the correct identification of a gait cycle

is not trivial. Unsteadiness within gait cycles as well as noise influences of the

environment (e.g. changing surfaces) might lead to failures to select valid gait

cycles from the signal and thus the genuine user can be rejected.

Figure 6.1.: Sliding window segmentation

To avoid these problems a different approach will be followed in this work. The

acceleration samples are separated into parts of several seconds using a sliding
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window approach with overlapping rectangular windows. This means that the

original signal of length l is splitted into segments of length t and a distance d

between consecutive segments. The remaining part of length r = (l− t)mod(d)

is dropped and not used any further. The segmentation process is visualized

in figure 6.1.

The segmentation is done for all interpolated walks. Note although we referred

to the process as segmenting a signal actually three normalized acceleration

signals s̄x, s̄y, s̄z are segmented, so that the signals are still correctly aligned to

each other.

6.2. Feature Types

Although the acceleration signals are segmented at this stage they are still

represented as time series. As the intention was to benefit from the well-

performing classification capabilities of SVMs a transformation to a fixed length

vector of discrete values has to be conducted. For each segment one feature

vector is created.

The next sections will describe the implemented and evaluated features. The

first section describes statistical features whereas the two sections after that

focus on features best known from the study fields speech and speaker recog-

nition. All the evaluation results can be found in chapter 7.

6.2.1. Statistical Features

Mean Arithmetic mean of the acceleration signal

Maximum Maximum (positive) acceleration

Minimum Minimum acceleration (maximum negative acceleration)

Mean absolute difference Arithmetic mean of the difference between consec-

utive accelerations values

Standard deviation Standard deviation of the acceleration signal

Root mean square Square root of the arithmetic mean of the squares of the

original acceleration

Binned distribution Histogram distribution using a number of equally spaced

bins ranging from the maximum to the minimum acceleration value for
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each acceleration signal. The distribution was used relatively, i.e. the

values were in the range [0; 1].

Zero crossings Number of sign changes within the acceleration signal. As

mentioned the normalization during the preprocessing ensures that also

the direction under influence of the gravitation has meaningful zero cross-

ings.

Mean, mean absolute difference, standard deviation and binned distribution

have also been used in [KWM10].

6.2.2. Mel-Frequency Cepstral Coefficients

The mel-frequency cepstral coefficients (MFCC) belong to the most widely

used spectral representations of audio signals for automatic speech recognition

and speaker verification [SH04, GFK05]. This section will give a quick overview

of the processing steps that are involved in creating the MFCC features. A

more elaborate discussion can be found in [RJ93].

The general workflow for creating MFCC is laid out in figure 6.2.

Figure 6.2.: MFCC feature creation

Note that in literature some descriptions denote the so called pre-emphasis

as a first step of the MFCC creation. This is a filter which increases higher

frequencies. In some of the experiments described in the following chapter

pre-emphasis was used, in some others not.

In the next step the signal is divided into overlapping frames. The length is

in speech related applications typical at 10 to 25 ms. This is usually done

with a windowing function like a Hamming window so that edge effects are

removed. Note that we distinguish between segmentation during preprocessing

producing segments and windowing within MFCC producing frames. Multiple

frames are generated from one segment. For each frame a cepstral feature

vector is created.
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Afterwards the DFT (Discrete Fourier Transform) is computed for each frame.

Only the logarithm amplitude spectrum is used further.

The third step is to smooth the spectrum while emphasizing the meaningful

frequencies. This is done by arranging the spectral components into frequency

bins that are spaced according to the Mel-frequency scale. The scale is based

on findings that for speech lower frequencies are perceptually more important

than higher frequencies.

The Mel-scale approximates the mapping between actual frequency and per-

ceived pitch for the human auditory system. It is approximately linear below

1 kHz and logarithmic above [UCN99]. The classic work of Stevens and Volk-

mann [SV40] is the foundation for all variations of the Mel-scale [UCN99].

A Mel is a unit of pitch, see equation 6.1 for the definition of an often used

representation [O’S99].

Mel(f) = 2595log10(1 +
f

700
) (6.1)

In the last step the DCT is used to approximate the Karhunen-Loeve transform

[Log00]. The motivation is to reduce the highly correlated Mel-spectral vectors

to fewer decorrelated parameters [Log00]. In the area of speech and speaker

recognition it is common to extract 13 cepstral features for each frame. To yield

one feature vector for a segment the mean cepstral feature vector is calculated

at the basis of the feature vectors the frames.

Note that a variety of MFCC implementations have been proposed for speaker

verification tasks, in [GFK05] four of the most popular versions are compared.

To the best of the author’s knowledge, MFCC have not been used for gait

recognition previously. The MFCC transformation of a signal is optimized to

the characteristics of human hearing, therefore it has to be studied whether it

can be successfully applied to gait recognition as well.

The motivation is to study which MFCC implementation variation works best

for gait data and to optimize the discriminative power of the coefficients

through an optimization process which will be described in the next chapter.

Therefore, to carry out the optimization, a versatile MFCC implementation

was needed.
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Three MFCC implementations for Matlab that are often used for speaker recog-

nition were evaluated:

• Auditory Toolbox 1

• Dan Ellis Script Collection 2

• Voicebox 3

All of these are available for free and in source code. The MFCC implemen-

tation of the Auditory Toolbox only provides the basic parameters sampling

rate and frame rate whereas the others provide much more elaborate settings.

An example is the setting of the frequency bandwidth which is in most MFCC

implementations per default in the range from 0 Hz to 4000-8000 Hz whereas

the useful frequency spectra of human motions is considered to be between 0

and 10 Hz [Win09].

As Dan Ellis’ MFCC implementation was created with the intention to be able

to reproduce the output of other MFCC programs such as the Auditory toolbox

or the HTK4 it was favored over the Voicebox implementation. Dan Ellis also

published the results of the reproduction of the MFCC feature outputs of

common programs on his website [Ell].

6.2.3. Bark-Frequency Cepstral Coefficients

Similar to MFCC the bark-frequency cepstral coefficients (BFCC) are an ap-

plication of a scale to a signal spectrum. The only difference is that instead of

the Mel-scale the Bark-scale is applied.

The Bark-scale was proposed in 1961 [Zwi61]. A difference of one bark corre-

sponds nearly to a pitch interval of 100 mels. For the conversion of frequencies

to bark the following mapping from [Tra90] is often used:

Bark(f) =
26.81f

1960 + f
− 0.53 (6.2)

1 Auditory Toolbox Version 2 by Malcolm Slaney, URL:
http://cobweb.ecn.purdue.edu/˜malcolm/interval/1998-010/

2 PLP and RASTA (and MFCC, and inversion) in Matlab, URL:
http://labrosa.ee.columbia.edu/matlab/rastamat/

3 VOICEBOX: Speech Processing Toolbox for MATLAB, URL:
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

4 Hidden Markov Model Toolkit, URL: http://htk.eng.cam.ac.uk/
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In the chosen MFCC implementation an option is available to use the bark-

scale for calculating the cepstral coefficients. This program is implementing

the bark-scale as shown as in equation 6.2 just like its mel-scale is based on

equation 6.1.

Again, a vector of 13 features is produced per segment by calculating the mean

feature vector of the frames of the segment.

77





7. Feature Selection and

Optimization

This chapter documents the experiments conducted to select the best perform-

ing features. Additional results can be found in part A of the appendix.

The gait data collected from the 40 subjects was used for conducting the

experiments described in this chapter.

7.1. Classification and Optimization

The process of converting the raw acceleration data to feature vectors that

are used for SVM training and testing has, as previously mentioned, quite a

lot of possible approaches. Therefore a systematic evaluation is needed which

approach performs best in terms of biometric performance while making sure

to keep the computational effort needed reasonable low to enable a usage on

mobile devices.

In order to evaluate the chosen preprocessing steps and features an automated

process was developed that experimentally determines the performance.

7.1.1. SVM Training and Testing

The main application scenario is the verification where a person claims a certain

identity. Hence the classification differentiates between the one genuine subject

and all other subjects (imposters), which is a One-separates-rest classifier.

Cross-validation was used to verify that the performance results obtained are

reasonable stable for biometric samples of various persons. Consequently, for

each experiment N One-separates-rest classifiers were built for the N subjects

in the utilized data set.
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The available data had been first preprocessed as discussed in section 6.1 and

then the features introduced in 6.2 were extracted. Half of the resulting feature

vector instances were used for training, the other half for testing. Note that

only the instances from the genuine subject occur in both data sets to be able

to test that the genuine is recognized correctly. The tests were carried out

with previously unseen biometric samples.

For the SVM training and testing the Matlab interface of LIBSVM was used

that enables one to call functions in the compiled binaries of the LIBSVM C

implementation.

Figure 7.1.: SVM training and testing

Figure 7.1 gives an overview of the process of building one One-separates-rest

classifier and the performance evaluation using the test instances.

Prior to training each feature of the training instances is scaled to the range

[0; 1]. The information that is needed to transform the original features to

this range is saved in order to be able to apply the same transformation to

the features of the test instances. This approach is considered best practice in

[HCL03].

As the correct class labels are known during the testing the number of false
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matches and the number of false matches can be calculated. To evaluate the

performance of the system the false matches and the false non-matches of all

N classifiers are counted. Using the sums and the number of imposter and

genuine samples the false match rate and the false non-match rate can be

calculated.

7.1.2. Parameter Selection

As discussed in 4.4 the performance of SVM models largely depends on the

selection of the kernel, the kernel’s parameters and penalty parameter C. The

Gaussian radial basis function kernel was used as it is considered being a good

choice for most classification tasks [HCL03]. To find the best setting for the

kernel parameter γ and penalty parameter C a grid search was implemented

which is described in [HCL03]. In this approach the cross validation perfor-

mance is compared for certain parameter ranges that are spaced logarithmical.

As opposed to other machine learning tasks the classification rate is not of

primary interest during this optimization. The reason is that the number

of imposters’ attempts is much higher than the number of genuine subjects.

Therefore a high classification rate might hide the fact that the genuine subjects

are not accepted whereas the imposters are correctly rejected. To have a more

reliable optimization indicator the sum of FMR and FNMR was used.

That means that for each parameter combination of C and γ the cross vali-

dation is conducted giving a FMR and FNMR each time. If reasonable, the

best performing parameter ranges are searched again with a finer grid in a

second step. The goal is in any case to find the optimum parameters yielding

the lowest sum of FMR and FNMR. Figure 7.1 visualizes what part of SVM

training and testing is done within the grid search process.

Furthermore, the error rates received were stored so that a graphical represen-

tation of the performance against the parameter settings could be generated.

An example is given in figure 7.2 where the results of a grid search for the

parameter ranges γ ∈ {2−8, 2−7, ..., 2−3, 2−2} and C ∈ {26, 27, ..., 215, 216} are

visualized in a 3D figure viewed from two sides.
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Figure 7.2.: Grid search result example

The corners of the colored rectangles are the results for the error rates, the

planes are build by linear interpolation between subsequent parameter settings.

The upper plane represents the results for the FNMR and the lower plane the

corresponding results for the FMR. As it can be seen there are parameter

settings which would lead to a poor performing biometric system although the

features have enough classification significance as can be seen from the area

with comparable low error rates.

A second or third parameter search with a finer grid is only reasonable when

the classification performance is quite unstable with the chosen grid. Of course,

it is preferable to have results that are stable for larger parameter ranges. The

graphical representation makes it easy to have an impression of the stability

of the results and of the potential for a better classification performance with

a finer grid search.
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7.2. Feature Selection

In a first step the dissimilarity capabilities of single features and of combined

features were evaluated. The acceleration directions were also used separately

to study their different contribution to the classification result.

To have comparable results the experiments are conducted with identical pre-

processing and parameter selection settings:

Again, the collected gait data was used for this experiment where the signals

collected on the first day were used for training and the signals collected on

the second data collection session were used for calculation of the performance.

First of all the data was interpolated to 100 Hz. After the normalization to the

mean the segmentation was carried out. The segment length t was 5000ms,

the distance d between consecutive segments was 2500ms.

A parameter selection was done each time for γ ∈ {2−15, 2−14, ..., 24, 25} and

C ∈ {25, 26, ..., 219, 220}. In each parameter setting combination a cross valida-

tion was carried out for all 40 users as described in section 7.1.1.

7.2.1. Statistical Features

First, the features introduced in 6.2.1 on page 73 were evaluated: binned

distribution (bin. dist.), maximum (max.), minimum (min.), mean (mean),

standard deviation (std. dev.), mean absolute difference (diff.), root mean

square (rms) and zero crossings (zero cross.).

Five test passes were done for each feature type using different data sources,

namely the x-, y-, z-acceleration, the resulting acceleration, and all of them.

The resulting vector is also referred to as the magnitude vector and is calculated

as follows:

sres(t) =
√
sx(t)2 + sy(t)2 + sz(t)2

Here sx(t), sy(t), sz(t) are the accelerations measured in the corresponding di-

rections at time t.

The results are given in figure 7.1. The number behind bin distributions is

the number of bins that were used for the binned distribution. All numbers in

parentheses are the lengths of the feature vector. Of course when the features
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are combined the length is four times this number. The last column is the

sum of FMR and FNMR for all directions combined. The background color is

formatted subject to the sum error rate to allow an easier identification of the

best performing feature types.

Table 7.1.: Discrimination capabilities of basic features

As can be observed the statistical features provide a quite limited verification.

Furthermore the results yield no apparently best performing acceleration axis.

The best performing feature type is the standard deviation followed by root

mean square and the binned distribution.

In further experiments based on the statistical features different feature types

were combined. For each feature type the feature was calculated for x-,y-,z-

direction and the resulting acceleration. The feature vectors were as follows:

Set 1 (8) Std. dev, rms

Set 2 (48) Bin. dist. (10), std. dev., rms

Set 3 (52) Bin. dist. (10), std. dev., rms, zero cross.

Set 4 (64) Bin. dist. (10), max., min., mean, std. dev., rms, zero cross.

Set 5 (68) Bin. dist. (10), max., min., mean, std. dev., rms, zero cross., diff.

Again, the total feature vector length is provided in parenthesis. The results

for these feature vector settings are provided in table 7.2.
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Table 7.2.: Combined discrimination capabilities of basic features

Set 1 consists of the two best performing feature types of the previous exper-

iment, the standard deviation and the root mean square. Interestingly this

combination does not perform better than the standard deviation alone.

In set 2 the next better feature type, the binned distribution with ten bins,

was added yielding a worse result. When the next better feature type, the zero

crossings, were added the FNMR further increased significantly. Set 4 is built

from all feature types except the bad performing mean absolute difference. In

set 5 this feature type is also added. As can be seen the result is better when

using the previously not good performing feature yielding a result that is worse

than the two best performing features.

The conducted experiments clearly show that the statistical features alone are

not capable of correctly classifying the respective genuine user.

7.2.2. Optimizing MFCC for Gait

As mentioned in 6.2.2 the MFCC calculation is done with the scripts pub-

lished by Dan Ellis. As a starting point, a common MFCC implementation in

speaker recognition was considered: the reproduction of the 13 Auditory Tool-

box MFCC as described in [Ell]. The following list gives the most important

settings:

• Window length: 0.016 sec [WL]

• Window hop time (distance): 0.01 sec [WHT]

• Sampling rate: 16000 Hz [SR]

• Minimum frequency: 133.33 Hz [MinF]

• Maximum frequency: 6855.6 Hz [MaxF]

• Pre-emphasis filter (0.97) [PRE]

85



7. Feature Selection and Optimization

• Number of warped spectral bands: 40 [NB]

• Number of cepstral features: 13 [NC]

• No cepstral liftering [CL]

• No equal-loudness weighting and cube-root compression [PLP]

• Integration of FFT bins into Mel bins as absolute values (not squared)

[SP]

As these settings are changed a lot during the optimizations each experiment

configuration will be provided in a short form in a footnote. Only the values

that are constant throughout the sub experiment are provided. An example

is given for the above described setting1. The preprocessing settings are also

included as the first three values: interpolation rate, segment length and seg-

ment distance. A full reference for the parameter abbreviations can be found

in appendix A with additional results.

Please note that a sampling rate of 16000 Hz was specified even though the

gait acceleration signals were only interpolated to 100 Hz. This is not an

issue as the original signal with a length of 5 seconds is then regarded as a

signal of 5∗100
16000

= 0.03125 seconds. The frequencies also change linearly. As

mentioned in 6.2.2, 10 Hz is considered to be the highest frequency in the

measured acceleration originating from walking. That would be regarded as a

frequency of 10∗16000
100

= 1600 Hz which is within the frequency range of 133.33

Hz to 6855.6 Hz that is used in this first experiment.

Table 7.3.: MFCC performance with Auditory Toolbox settings

See table 7.3 for the results first obtained with these settings and a grid search

parameter range of γ ∈ {2−15, 2−14, ..., 24, 25} and C ∈ {25, 26, ..., 219, 220}.

Although at this stage no optimization of the MFCC settings was done this

feature type is better performing than the basic statistical features discussed

in the last section. With this setup the y-acceleration signal performs best

1 IR=100, SL=5000, SD=2500, WL=0.016, WHT=0.01, SR=16000, MinF=133.33,
MaxF=6855.6, PRE=0.97, NB=40, NC=13, CL=0, PLP=0, SP=0
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whereas the z-acceleration signal performs worst, just like the resulting accel-

eration. This is probably the reason that the combined classification perfor-

mance is only slightly better than the y-acceleration. Therefore only the x-

and y-acceleration were used in the last experiment yielding a better result

with 1.61% FMR and 62.36% FNMR.

This classification performance will be considered as the base line for the fol-

lowing optimizations. All results are based on the same preprocessing settings

and grid search parameters for a better comparison. The optimizations are

briefly discussed in the next sections.

MFCC Optimization 1: Frequency Mapping

As a first optimization the frequency range is remapped so that the relevant

frequency range of 0 to 10 Hz is represented better by the MFCC. Obviously,

the lowest band edge of mel filters is set to 0 Hz. As discussed, the setting

for the highest band edge of mel filters is dependent on the used interpolation

rate. Therefore, the maximum frequency is set to 1600 Hz.

To validate this approach three more frequency ranges were evaluated exper-

imentally. The results are given in table 7.42, as expected, improved with a

better frequency mapping.

Table 7.4.: MFCC frequency mapping optimization

The error rates yielded do not really differ from each other, therefore 1600 Hz

will be used from now on as the maximum frequency for the highest band edge

mel filter.

2 IR=100, SL=5000, SD=2500, WL=0.016, WHT=0.01, SR=16000, PRE=0.97,
NB=40, NC=13, CL=0, PLP=0, SP=0
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MFCC Optimization 2: Spectrum Parameter

In the next step some basic variations of the above listed settings are used for

experiments. One setting was modified at a time to have a better idea how the

changes affect the classification performance. In the following list an overview

is given on what was evaluated step per step:

1. Mel bins were squared: FFT bins were integrated into Mel bins

using the squared domain

2. Pre-emphasis filter was disabled

3. Cepstral liftering with an exponent of 0.6: liftering means filtering

cepstra, done by multiplying with a so called liftering exponent. A

thorough discussion of liftering can be found in [JRW86]

4. HTK sinus cepstral liftering: liftering analog to implementation in

Hidden Markov Toolkit

5. – 8. The number of warped spectral bands was decreased to 5/10/20/30

bands

9. Equal-loudness weighting and cube-root compression were applied.

Techniques typically used in the perceptual linear predictive (PLP)

analysis of speech, more information can be found in [Her90]

10. Number of MFCC decreased to 7

11. Number of MFCC increased to 19

Table 7.5.: MFCC spectrum parameter optimization
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The results of the MFCC spectrum parameter optimization are presented in

table 7.53. As can be seen these experiments were not rewarded with significant

decreased error rates, except for the case of the decreased number of warped

spectral bands.

MFCC Optimization 3: Windows

The experiment in this section uses the same spectrum parameters as the sec-

tion 7.2.2 on page 85 although one potential optimization was found. The idea

is to see later whether the different optimizations can be combined successfully.

Until now the size of the windows within the MFCC implementation was nom-

inal set to 0.016 seconds window length with 0.010 seconds hop time. Again,

this does not represent the actual length of the gait signals as of the frequency

multiplication because of the sampling rate of 16000 Hz at an original inter-

polation rate of 100 Hz. Therefore these numbers relate to 0.016 ∗ 16000
100

= 2.56

seconds and 0.010 ∗ 16000
100

= 1.6 seconds respectively.

Now it is evaluated if the classification errors can be reduced with adapting the

window lengths and overlaps. Table 7.64 provides the result for the experiments

with the window parameters. Improved error rates are marked with a green

background. As previously, the window settings given in the table reflect to

the actual implementation settings and are not the corresponding real time

measure. To calculate the real window length and hop time in seconds the

numbers have to be multiplied with 16000
100

as shown above.

It is apparent that optimizing the MFCC window parameter is important for

the classification outcome. The setting of 0.0090 window length combined with

0.0030 hop time is chosen for evaluating the combination with the previously

found optimization.

3 IR=100, SL=5000, SD=2500, WL=0.016, WHT=0.01, SR=16000, MinF=0,
MaxF=1600

4 IR=100, SL=5000, SD=2500, SR=16000, MinF=0, MaxF=1600, PRE=0.97,
NB=40, NC=13, CL=0, PLP=0, SP=0
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Table 7.6.: MFCC window parameter optimization

MFCC Optimization Results and Combination

Improvements could be found with the following settings:

• Frequency range of 0 - 1600 Hz (equates to 0 - 10 Hz in real time domain)

• Usage of 10 warped spectral bands

• Windows of 0.0090 seconds with 0.0030 seconds hop time (equates to

1.44 seconds and 0.48 seconds in real time domain)

The frequency range was adapted for the experiments with the spectrum and

window parameters. Now the optimum settings found in those experiments

are combined.
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The other settings5 were constant. The results are presented in table 7.7.

Table 7.7.: MFCC optimizations combined

When combined the error rates are unfortunately slightly worse. Therefore

the window parameter optimization is considered the best approach for using

MFCC for gait recognition and used later on.

7.2.3. Optimizing BFCC for Gait

Throughout all MFCC optimization experiments the best classification per-

formances were yielded when combining features extracted from the x- and

y-direction. Therefore only this combination is evaluated for the similar BFCC

feature optimization that is described in this section.

The approach to this process is similar to the MFCC optimization. First, the

best performing frequency range is selected. Afterwards an optimization of

the spectrum parameter and of the window parameter is conducted separately.

With the best results at hand the combination is tested. Here only the good

performing settings are reported. The complete experiment results, analog

arranged to the MFCC optimization, can be found in appendix A.

Again the starting point for the optimizations is the reproduction of the 13

Auditory Toolbox MFCC, except that the bark scale is used and thus BFCC

are produced. The result for this configuration6 is provided in table 7.8.

5 IR=100, SL=5000, SD=2500, SR=16000, MinF=0, MaxF=1600, PRE=0.97,
NC=13, CL=0, PLP=0, SP=0

6 IR=100, SL=5000, SD=2500, WL=0.016, WHT=0.01, SR=16000, MinF=133.33,
MaxF=6855.6, PRE=0.97, NB=40, NC=13, CL=0, PLP=0, SP=0
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Table 7.8.: BFCC performance analog to Auditory Toolbox MFCC

BFCC Optimization 1: Frequency Mapping

With the bark scale one can limit the frequency band to a smaller range as can

be seen from the results in table 7.9. This was not possible to the full extent for

the MFCC which is most likely due to an implementation issue of the MFCC

implementation. Furthermore notable is that this setting7 modification alone

gives a better classification performance than the MFCC.

Table 7.9.: BFCC frequency mapping optimization

BFCC Optimization 2: Spectrum Parameter

The same spectrum parameter modification as described with the MFCC op-

timization was conducted. As these experiments did not improve the overall

classification performance, the results are only provided in the appendix, see

section A.1.1.

BFCC Optimization 3: Windows

Again, a large variety of experiments were conducted to find the best perform-

ing window parameters. The results presented in table 7.10 are only a selection

7 IR=100, SL=5000, SD=2500, WL=0.016, WHT=0.01, SR=16000, PRE=0.97,
NB=40, NC=13, CL=0, PLP=0, SP=0
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of good performing settings8.

All other outcomes can be found in section A.1.2 of the appendix.

Table 7.10.: BFCC window parameter optimization (selection)

The best performance was yielded with 0.0070 seconds window length and

0.0020 hop time. When looking at the results with similar hop times it looks

like it is an unusually good result. For that reason it was decided to proceed

with the 0.0070/0.0002 setting that also gave a reasonable improved perfor-

mance.

BFCC Optimization Results

When starting with spectrum parameters similar to the reproduction of the

13 Auditory Toolbox MFCC, improvements could be found when a frequency

range of 0 - 1200 Hz (equates to 0 - 7.5 Hz in real time domain) was combined

with windows of 0.0070 seconds and 0.0002 seconds hop time (equates to 1.12

seconds and 0.032 seconds in real time domain).

8 IR=100, SL=5000, SD=2500, SR=16000, MinF=0, MaxF=1200, PRE=0.97,
NB=40, NC=13, CL=0, PLP=0, SP=0
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7.2.4. Combining Features

In this section the previously tested and optimized features will be combined

to evaluate if one can improve the performance by combining several good

performing features.

The following list gives the tested combinations, the number in parenthesis is

the total length of the feature vector.

Set 1 (30) MFCC, std dev.

Set 2 (30) BFCC, std dev.

Set 3 (52) MFCC, BFCC

Set 4 (56) MFCC, BFCC, std dev.

Set 5 (60) MFCC, BFCC, std dev., rms

Note that for MFCC and BFCC only the x- and the y-direction were considered

whereas for the statistical features all directions plus the resulting acceleration

were used. The results are presented in table 7.11.

Table 7.11.: Optimized features combined

Again, the combination of features does not improve the classification per-

formance. Especially the combination of the optimized MFCC and BFCC

features was interesting, but unfortunately not rewarded with an increased

classification performance.

This comparison concludes the feature selection process. Therefore, the opti-

mized BFCC of the x- and y-direction will be solely used for the classification.

The BFCC settings can be found in the footnote9. With the feature type

selected one area remains to be optimized: the preprocessing.

9 WL=0.0070, WHT=0.0002, SR=16000, MinF=0, MaxF=1200, PRE=0.97,
NB=40, NC=13, CL=0, PLP=0, SP=0
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7.3. Preprocessing Optimization

All experiments to this stage were performed with the same preprocessing

settings: 100 Hz interpolation rate, 5000 ms segments with 2500 ms distance

between consecutive segments.

Now it shall be evaluated how different preprocessing settings, e.g. longer

segments and higher interpolation rates, affect the classification performance.

Four different segment sizes, from 3000 to 10000 ms length, and four differ-

ent interpolation rates, from 50 to 400 Hz, were used generating 16 possible

combinations.

It is important to note that the previous optimizations are based on the in-

terpolation of 100 Hz and using a nominal sampling rate of 16000 Hz for the

cepstral features. When the interpolation rate is changed the nominal sampling

rate has to be changed accordingly.

For example when an interpolation rate of 200 Hz is used in the preprocessing,

the nominal rate has to be set to 200
100
∗ 16000 = 32000 Hz. Otherwise an-

other nominal frequency range and window parameters need to be used which

effectively means to repeat the previous optimization steps.

Table 7.12.: Preprocessing optimization

The results can be found in table 7.12. As previously, the sum of FMR and

FNMR is also provided to allow an easier comparison of the overall perfor-

mance. The grid search range for the SVM parameter selection was still

γ ∈ {2−15, 2−14, ..., 24, 25} and C ∈ {25, 26, ..., 219, 220}.

All settings with the table entry marked green do perform better than the

previously found optimum. It is apparent that larger segment sizes increase

the classification performance significantly and that smaller interpolation rates

perform comparatively better.
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The preprocessing setting with an interpolation rate of 50 Hz and 7500 ms

segments is considered the best setting and therefore selected. In the following

preprocessing and feature creation settings10 will be constant for all experi-

ments unless otherwise stated.

10 IR=50, SL=7500, SD=3000, WL=0.0070, WHT=0.0002, SR=8000, MinF=0,
MaxF=1200, PRE=0.97, NB=40, NC=13, CL=0, PLP=0, SP=0
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With the selection and optimization process described in the previous chapter a

recognition performance of 38.75% FNMR and 1.64% FMR could be achieved.

This chapter will focus on reviewing this result by conducting experiments that

assess the performance with different training and testing data sets. Thereby

an intra-day versus inter-day performance comparison can be done.

In the second section of this chapter a voting scheme is introduced and tested

in order to improve the overall recognition performance.

8.1. Intra-Day and Inter-Day Performance

The influence of time is a non-trivial challenge for biometric gait recognition.

Despite this fact many studies do not test their algorithms with gait data

recorded on different days. To point out the flaw with this approach, a com-

parison of the intra-day and inter-day performance is presented in this section.

As discussed, the preceding feature selection and optimization was done with

the collected gait data while using the data from the first data collection ses-

sion for training and the data from the second day for testing. Therefore the

optimization result is the inter-day result.

For the new experiments the grid search range for the C parameter was

slightly modified to C ∈ {20, 21, ..., 214, 215} based on the position of the pre-

viously found optimums which were in γ ∈ {2−15, 2−14, ..., 21, 20} and C ∈
{21, 22, ..., 211, 212}.
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On each session of the data collection two walks were collected, therefore we

have four walks per subject. The walks are named as follows:

S1W1 First session, first walk

S1W2 First session, second walk

S2W1 Second session, first walk

S2W2 Second session, second walk

It is distinguished between three experiment types:

Cross-day The case considered until now: data of the first session is used for

training, data from the second session is used for testing

Same-day A walk of one session is used for training, a different walk from the

same session is used for testing

Mixed Data from both sessions is used for training, different data from

both sessions is used for testing

Table 8.1 presents the results for the tested combinations. Note that each

training and testing set combination was also evaluated vice versa. The result

of the reversed combination is always given directly after the other result and

marked with the same background color.

In regard to the cross-day experiments it is striking that there are combinations

were the recognition performance is much worse than the optimized setting. In

the cases where data from the first day was used for training always a better

performance is yielded in comparison to the reversed setting. This indicates

that the optimization does not perfectly generalize.

That time is a major influence on the recognition performance is evident

through the overall good results of the same-day experiments.

For the last group of experiments the data sets were mixed so that both the

training and the testing data set contained gait data from both sessions. This

basically is equivalent to a same-day comparison with more data and an in-

creased in-day gait variety of the gait profiles. As can be seen from the results

the algorithm performs in this scenario also reasonable well.
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Table 8.1.: Intra- and inter-day performance comparison

At this stage the conclusion can be drawn, that the inter-day variety of human

gait has a large influence on the recognition performance of the developed

algorithm. Furthermore it can be established that error rates reported in gait

recognition studies need to be linked to the exact experiment settings as it is

not expected that the recognition performance is that stable with gait data

collected on different days.

The results of the mixed-day setting lead to the question whether training

with data from several days can improve the generalization. This can only

be confirmed with a data set consisting of three or more days where the data

from one day can be used solely for testing while more than one day is used

for training. As such a data set has not been created yet the question remains

to be answered.

All in all, especially in the more realistic cross-day tests, the recognition per-

formance not sufficient as the FNMR is too high. At the same time, the FMR

is comparable small. One can try to improve the overall performance by com-

bining several classification results by a voting mechanism. The next section

describes that approach in more detail.
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8.2. Voting Scheme Performance

With the discussed recognition performance it is very likely that a genuine

is incorrectly rejected. An imposter on the other side is comparable rarely

wrong classified and thus seldom accepted as a genuine. An approach that

would reduce the number of false rejects is to use multiple classifications for

one recognition decision while incorporating a different confidence in the clas-

sification correctness.

More specifically one uses #V segments of a gait sample instead of only one

segment for the recognition. For each segment the classification is carried out

as usually. Then, the #V results are combined. An imaginable straightforward

approach is majority voting, but it is not likely to perform well as the two error

cases are so unevenly distributed. Therefore a minority voting for a genuine

is implemented.

This means that at least #GV positive classification results are needed for an

accept, otherwise the sample is rejected. #GV is set to a number in [1;
⌈
#V
2

⌉
].

The described concept is visualized in figure 8.1. Note that #Vg is the number

of results that classify the respective segment as a sample of the genuine, in

other words #Vg is the number of votes for genuine.

Figure 8.1.: Voting scheme
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8.2. Voting Scheme Performance

Of course, while the FNMR is decreased by this approach the number of false

accepts and thus the FMR will increase. The following experiment aims to

find a more balanced setting where both error rates are more even.

For the evaluation groups of segments are built that occur in the same walk

consecutively. The motivation is to simulate the case were a signal is continu-

ously captured and then a certain part of signal is used for preprocessing and

feature extraction. The voting results will be reported separated by the three

experiment types: cross-day, same-day and mixed.

8.2.1. Cross-Day Performance

The results given in table 8.2 are only for the case where both sessions of a

day were used for training and testing.

Table 8.2.: Inter-day performance with voting
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The first line, with #V and #GV both 1, the result equates of course to the

results reported in table 8.1 on page 99. For the complete cross-day voting

results see appendix A.2.1.

As the available data is limited, not any number of #V can be used. For the

data set, when using segments of 7500 ms length and 3000 ms distance, eight

segments are available for training and eight segments are available for testing.

This is based on the fact, that each walk is max. 18 seconds long. As described

in 5.2.1 on page 65 for some walks were parts shorter than 2 seconds dropped

during the walk extraction. Therefore, for each walk b(18− 7.5)/3 + 1c = 4

segments can be extracted. As two walks are used for both training in testing

in this scenario a total of 8 segments are available.

Like assumed, in general the FNMR can be decreased while the FMR increases.

For some settings the FNMR is slightly bigger even though more number of

votes #V were considered, this is due to the grid search optimization that

finds a different optimum because of the small changes in the training data.

The FNMR+FMR sum is reduced significantly when #V is increased while

keeping #GV as low as one or two. For the optimized case where the walks

from the first day were used for training, and the ones from the second day for

testing, a FMR+FNMR sum of 26.51% was reached.

In the case when the walks from the second day were used for training a

very poor performance was previously achieved with a FMR+FNMR sum of

65.94%. Thanks to the voting approach this sum could be reduced to 40.46%.

8.2.2. Same-Day Performance

Again, this section gives only a selection of the results for the same-day voting

performance, additional results can be found in appendix A.2.2.

Table 8.3 provides the voting-based result for the same day experiment having

the worst performance in section 8.1: using the two walks from the first data

collection day. As only one walk of a session is used for training and the other

walk is used for testing, a maximum of 4 segments is available for a voting

decision.

The FNMR decreases significantly from 21.88% to 12.50% and 15.63% to 7.50%

respectively. Of course these results are only of limited validity as the data
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set size is not sufficiently large. More specifically, in the case of 4 votes per

recognition decision all available testing data is needed and therefore only one

decision is made for each person combination of the cross validation.

Table 8.3.: Intra-day performance with voting

8.2.3. Mixed Performance

Table 8.4 on the following page provides the voting-based result for the mixed

experiment setting having the worst performance in section 8.1: combining

S1W1, S2W1 and S1W2, S2W2. Additional results can be found in appendix

A.2.3.

The FNMR can be brought down to even 0.00% with a reasonable low FMR.

Again it should be noted that the error rates are of restricted validity because of

the size of the data set. Nevertheless it provides an impression of the magnitude

of performance that can be achieved.

8.2.4. Voting Summary

As a consequence of the results one can assume that a voting based recognition

can achieve an even better performance when more gait data is taken into

consideration for the decision. As the developed gait recognition concept is

intended to be a passive, continuously authentication system there is virtually

no restriction of the time period captured and used for gait recognition. Of

course the number of required genuine votes has to be chosen reasonable, so

that the FMR does not become too high.

The reported error rates are based on less than 36 seconds of gait data used
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Table 8.4.: Mixed intra-day performance with voting
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for the recognition. Imaginable is an authentication system were always the

last minute of acceleration data is temporarily stored and used for verification.

The results of the mixed experiment look very promising, but need to be

verified with a data set that was collected on more than two days so that

walks of a previously unseen day can be used for testing.

8.3. Data Set Performance Comparison

As already mentioned were experiments also carried out with another data

set. This is the same data set that was also used in [DNB10] and [NBR11]. To

distinguish between the data sets the following naming is introduced:

Data set A The data set of 40 persons that was collected as described in 5.

Data set B The data set that was also used in [DNB10] and [NBR11]. Gait

samples of each subject were collected on two sessions with several

days in between. Data of 48 subjects could be used, the walks of

three people were dropped due to insufficient data quality.

The motivation was to compare the presented approach with truly similar data.

Similar because in the two mentioned studies no strict day to day separation

of the used data is given and therefore still different training (i.e. enrolment)

and verification data sets are used.

To yield optimal results an optimization was carried out for data set B. There-

fore, the steps described in chapter 7 were repeated for data set B. In short

the process was as follows:

1. Determine discriminative power of statistical features separated by ac-

celeration direction and feature type

2. Evaluate combined directions for each statistical feature type

3. Combine statistical feature types to find features that can be successfully

used together

4. Optimize MFCC

a) Determine best frequency range

b) Find best spectrum parameters

c) Optimize window size and hop time

d) Combine found optimizations
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5. Repeat step 4 a) - d) for BFCC

6. Evaluate combinations of optimized MFCC, BFCC and statistical fea-

tures to get optimum feature selection

7. Optimize preprocessing settings for optimum feature selection

The found optimal feature settings are provided in table 8.5, the preprocessing

settings along with the BFCC settings are also included. The abbreviations

of the BFCC settings are still the ones previously used and described at the

beginning of appendix A.

Table 8.5.: Comparison of optimum features of data set A and B

It is not surprising that the found optimum settings differ from the settings

that were found for data set A. The simple reason is, that the data collection

of data set B was done with a different device with a significant lower mean

sampling rate of ∼40 Hz compared to the mean sampling rate of ∼125 Hz of the
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data collection described in chapter 5. Naturally the different data collection

locations and involved subjects cause different optimum settings.

Table 8.6 provides the comparison of the developed gait recognition approach

with the two other studies reporting performances based on data set B.

Study FMR FNMR FMR+FNMR

[DNB10] 20.1% 20.1% 40.2%
[NBR11] 9.31% 10.42% 19.73%

This study (mixed) 0.91% 2.08% 2.99%

Table 8.6.: Performance comparison with data set B

As provided in the table, the mixed intra-day experiment setting was used as it

is closest to the data set utilization in [NBR11]. The proposed approach using

non-cycle-based features and SVMs clearly outperforms the cycle extraction

based approach in [DNB10] as well as application of Hidden Markov Models

in [NBR11].

8.4. Experiments and Performance Summary

In this section the performance of state the art WS-based gait recognition is

revisited and compared with the results of this thesis for data set A.

The inter-day performance can be compared with the results in [ALM+05] as

here a strict day-wise separation of the data used for the template creation

and the data used for the cross validation tests is given. Luckily the study

reports beside the EER also the total error rate (TER) which is the sum of

the false accept rate and false reject rate. Therefore it is comparable to the

sum of FMR and FNMR. Find the results in table 8.7.

Study Sensor location #S EER TER TG

[ALM+05] Waist 36 6.4% 11.9% 5 days
This study Hip 40 — 26.51% 2 - 3 days

Table 8.7.: Inter-day performance comparison

Although the comparability is limited, it is apparent that the results reported

in [ALM+05] are superior to the proposed method. It would be worthwhile to

compare the methods for a common data set to verify this.
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Figure 8.2.: Accelerometer worn on a belt in [ALM+05]

The reason is that one potential reason for the significant better performance

could be the used sensor. In this study, acceleration data with a mean sampling

rate of about 125 Hz was available. In [ALM+05] a sensor with 256 Hz sampling

rate was used. Besides the double sampling rate another sensor-related advan-

tage is the fixed sampling rate which is not given with the Android operating

system.

A further influence on the error rates is possibly the position and fixation of the

sensor in [ALM+05]: the sensor position is shown in figure 8.2. It is obvious,

that the data collection setup of data set A is closer to a realistic setup as a

normal phone pouch worn on the hip was used. An image showing the position

of the pouch is provided with figure 5.2 on page 62.

Although it is not clear whether this has a significant influence or not, it should

be noted that the subjects of data set A were comparable young as nearly half

of them were underage. The data set used in [ALM+05] was created with only

adult participants.

The picture of an unsatisfactory performance does not hold for the intra-day

performance when compared to other recent gait recognition studies. The

studies given in table 8.8 only provide the EER. To compare it with the results

of this study one can approximate the TER with multiplying the EER by two

[Toh07]. This would give for a 1.6% EER an approximately TER of 3.2%

which is significantly worse than the 0.39% TER of this study.
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Study Sensor location #S EER TER

[DBH10] Hip 60 5.7% —
[BS10] Hip 60 1.6% —

[GSB10] Ankle 30 1.6% —
This study Hip 40 — 0.39%

Table 8.8.: Intra-day performance comparison

It is quite clear at this stage that the performance of WS-based gait recognition

is, largely influenced from day to day variability of the human gait. Thus,

future studies should also probe inter-day performance to provide information

on the stability regarding gait variability.

Except of [NBR11], all the aforementioned studies use, in opposition to this

thesis, cycle-based representations of gait. From the presented results can be

concluded that also non-cycle-based approaches, like the discussed segments-

based one, are capable of producing competitive performing gait representa-

tions.
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9. Conclusion

9.1. Summary

Biometric gait recognition using wearable sensors like accelerometers is a young

research area with promising future applications. Although the biometric per-

formance is still far from being competitive compared to more established

biometric systems, such as fingerprint or face recognition, it offers the unique

advantage of a truly unobtrusive sample capturing. Therefore gait recognition

could establish itself as an additional authentication method in environments

where convenience is a critical factor. The usage as alternative to other authen-

tication methods is also imaginable. As previously mentioned an application

scenario could be a multi-biometrical system using gait recognition where the

primary authentication method, for example face recognition, is not available

due to environmental influences like lighting conditions.

Accelerometer-based gait recognition is especially interesting for mobile devices

that today commonly come with the needed sensor already. The introduction

of a new biometric system which costs are limited to the development of the

software is very promising and could lead to a wide adoption across different

devices, vendors and operating systems. A passive, lazy authentication ap-

proach might be the key for establishing a better information security on such

devices.

This thesis presents an approach to biometric gait recognition using the built-in

sensor of a modern smartphone. A data collection of the acceleration charac-

teristics was carried out using the phone enabling a realistic optimization of

the developed algorithm. Support vector machines were used for recognizing

the respective genuine. As probably the first gait recognition study, cepstral

features like MFCC and BFCC were used to represent the characteristics of

human gait yielding a competitive performance.
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With future applications in mind the experiments in this study carefully distin-

guish between the recognition performance on the same day and the recognition

performance cross-days. That this is necessary is proven by the very good re-

sults with same-day tests compared to a rather weak performance cross-day

tests. Unfortunately this has not been sufficiently addressed in the most of the

other WS-based gait recognition studies. Therefore it is questionable if the re-

ported performances were capable of providing a good cross-day performance.

In general it is also hardly possible to compare different studies because of the

large differences that begin with different methodologies at the data collection.

One important step for biometric WS-based gait recognition research as a

whole is yet to be done: the collection and publication of a large gait sample

database that can be used to compare different gait recognition approaches.

9.2. Outlook

There are numerous facets of WS-based gait recognition that were not ade-

quately studied as of today, but are potentially of critical importance for a

practical application. Current studies intentionally limit the influence of ac-

tivity variations, environmental differences and health condition changes. As

each of these influences imply numerous challenges, a strategy has to be devel-

oped to stepwise solve the issues and bring WS-based gait recognition closer

to a practical usage in real-life conditions.

In regard to the work carried out for this thesis the next task will be the porting

of the developed program to the Android platform. Further algorithms have

to be developed that introduce context awareness through activity recognition

to, for example, behave in a certain way during non-movement phases.

In addition, algorithms have to be developed for conducting an efficient live

quality ensurance of the measured acceleration data. The motivation is to

identify data with a low sampling rate, or time lags of several hundred mil-

liseconds. That way data with insufficient quality can be dropped before it

would be used for verification.

One limitation of the current approach is that the training of the SVM requires

feature vector instances of imposters. An implication is that a complete prod-

uct would need to ship with a database with the feature instances. Although
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this is not impractical, from a privacy point of view, it would be preferable

to have a pre-trained SVM that is only further trained with the instances

of the genuine user during enrolment. Therefore incremental SVM learning

approaches (e.g. [WZC08]) should be evaluated as well.

Another issue that needs to be addressed is whether the parameter selection,

i.e. the grid search, needs to be a part of the application on the device or one

parameter selection would work reasonable well for all future enrollees.

These enhancements will lead to a self-contained biometric gait recognition

system for mobile devices. That allows one to work on the mentioned challenges

and to verify the progress with realistic on-device tests.

To improve the recognition performance further other features can be compared

and combined with the BFCC that were selected in this study. Furthermore

one should evaluate cepstral features in cycle-based recognition approaches.

As these sensors also become more common the usage of the orientation in-

formation of a gyroscope sensor might help to mitigate the influence of the

changing position of the device in question.

Another open question is whether the training of the SVMs can yield a better

generalization in terms of a tolerance against inter-day gait variability when

data from several days is used for training. To answer this question a multi-day

gait database is needed.
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Feature Settings Abbreviations

CL Cepstral liftering exponent

IR Interpolation rate (Hz)

MaxF Maximum frequency of highest band edge of scale filter (Hz)

MinF Minimum frequency of lowest band edge of scale filter (Hz)

NB Number of warped spectral bands

NC Number of cepstra coefficients

PLP Similar to PLP: Equal-loudness weighting and cube-root compression (0

= No, 1 = Yes)

PRE Pre-emphasis filter (0 = No)

SD Segment distance (ms)

SL Segment length (ms)

SP Integration of FFT bins into Mel bins are squared (0 = No, 1 = Yes)

WHT Window hop time (sec)

WL Window length (sec)
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A.1. BFCC Optimization

A.1.1. Spectrum Parameter

Experiment settings: IR=100, SL=5000, SD=2500, WL=0.016, WHT=0.01,

SR=16000, MinF=0, MaxF=1200

Table A.1 provides the experiment results.

Table A.1.: BFCC spectrum parameter optimization
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A.1.2. Windows

Experiment settings: IR=100, SL=5000, SD=2500, SR=16000, MinF=0, MaxF=1200,

PRE=0.97, NB=40, NC=13, CL=0, PLP=0, SP=0

Table A.2provide the experiment results. A selection of these results was pre-

sented in 7.2.3 in table 7.10 on page 93.

Table A.2.: BFCC window parameter optimization
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A.2. Voting

The walks are named subject to the day and order of the data collection. The

naming scheme is as follows:

S1W1 First session, first walk

S1W2 First session, second walk

S2W1 Second session, first walk

S2W2 Second session, second walk

A.2.1. Cross-day results

For this experiment data of the first session is used for training, data from the

second session is used for testing. The experiments provided in this section

only use one walk for training and one for testing. The results of the cross-day

experiments were both walks of a session were used are provided in table 8.2

in section 8.2.1.

Table A.3.: Additional cross-day voting results 1/4

Table A.4.: Additional cross-day voting results 2/4
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Table A.5.: Additional cross-day voting results 3/4

Table A.6.: Additional cross-day voting result 4/4

A.2.2. Same-day results

In this experiments a walk of one session is used for training, a different walk

from the same session is used for testing. Here are the results using the walks

of the second session. The results that were obtained using the walks from the

first session were presented in table 8.3 in section 8.2.2.

Table A.7.: Additional same-day voting results
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A.2.3. Mixed results

For these experiments data from both sessions is used for training while dif-

ferent data from both sessions is used for testing. The results of another

combination are provided in table 8.4 in section 8.2.3.

Table A.8.: Additional mixed same-day voting results
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B. Biometric Performance

The content of chapter B on biometric performance was created by Prof. Dr.

Christoph Busch’s lecture “Biometric Systems” at the Hochschule Darmstadt,

Germany. It is used with his permission.

B.1. Biometric Failures

There are multiple failure associated with a acquisition of a biometric sample

or with its processing. In Sections B.2 to B.4 we will discuss the failures that

are associated with the deficiency of a biometric system to create a biomet-

ric reference for a data subject and subsequently in Sections B.8 to B.9 will

consider errors that are attributed to biometric verification and identification

systems.

B.2. Failure-to-Capture

A Failure-to-Capture Rate (FTC) is constituted, when the capture process

could not generate a biometric sample of sufficient quality. This can be caused

due to one of the following reasons:

1. The sample is not generated, as the characteristic is not placed properly

on the capture device (e.g finger not covering the sensor area)

2. The captured signal is rejected by the automatic sample quality control

algorithm.

3. The captured signal is stored as file, but rejected by the operator (staff

expert) subsequent to visual inspection as it is not of sufficient quality

The ISO-definition [ISOb] for the FTC is given by:
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Failure-to-Capture Rate: proportion of failures of the biometric capture pro-

cess to produce a captured biometric sample that is acceptable for use.

To estimate the FTC we use the following formula:

FTC =
Ntca +Nnsq

Ntot

(B.1)

where Ntca is the number of terminated capture attempts, Nnsq is the number

of images created with insufficient sample quality and Ntot is the total number

of capture attempts. In consequence of a Failure-to-Capture are new capture

attempt is initiated. This is illustrated in figure B.1 .

Figure B.1.: Failure-to-Capture (FTC)

B.3. Failure-to-eXtract

A Failure-to-eXtract is constituted, when the feature extraction process was

not able to generate a biometric template. This can be caused due to one of

the following reasons:

1. The algorithm itself declares that it cannot create a template from the

input sample. This could be caused by a insufficient number of features

that were identified e.g. only five minutia could be extracted from a

fingerprint image.

2. Processing time of feature extraction algorithm exceeds the specified limit

and thus the feature extraction is terminated
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3. The feature extraction algorithm might suddenly crash during processing.

In this case, some actions will be undertaken (e.g. start over application,

repeat process, etc.) but if the crash happens all the time with the same

sample then for this image a failure to extract feature will be constituted.

There is currently no ISO-definition for the Failure-to-eXtract Rate.

To estimate the Failure-to-eXtract Rate (FTX) we use the following formula:

FTX =
Nngt

Nsub

(B.2)

where Nngt is the number of cases, where no template was generated and

and Nsub is the total number of biometric samples being submitted to the

feature extraction component (i.e. the template generator). In an operational

scenario the consequence of a Failure-to-eXtract is a new attempt including a

new biometric sample creation and it subsequent processing. This is illustrated

in figure B.2 .

Figure B.2.: Failure-to-eXtract (FTX)

B.4. Failure-to-Enrol

A Failure-to-Enrol is constituted, when the biometric system is not capable

to create for data subject a biometric reference. Thus the Failure-to-Enrol

Rate (FTE) expresses the proportion of the population, for which the system
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fails to complete the enrolment process. This can be caused due to one of the

following reasons:

1. The biometric characteristic of the subject (e.g. its fingerprint images)

can not be captured at all.

2. For each evaluation setting, and if required instances of the same charac-

teristic (e.g. left index finger instead right index finger) it is not possible

to create for this subject a template of sufficient quality (e.g. a feature

set with minimum number of minutia)

There are currently two ISO-definitions for the FTE. The original definition

in the performance testing standard [ISOa] and the more recent one from the

harmonized biometric vocabulary [ISOb]:

Failure-to-Enol Rate (ISO 19795-1): proportion of the population for whom

the system fails to complete the enrolment process.

Failure-to-Enrol Rate (ISO SC37 SD2): proportion of biometric enrolment

(that did not fail for non-biometric reasons), that resulted in a failure

to create and store an enrolment data record for an eligible biometric

capture subject, in accordance with an enrolment policy. .

To estimate the FTE we use the following formula:

FTE =
Nnec

N
(B.3)

where Nnec is the number of cases, where we meet one of the two Failure-to-

Enrol criteria and N is the total number of subjects, intended to be enroled

in the biometric application. The consequence of a Failure-to-Enrol In an

operational scenario is that for the capture subject a fallback procedure must

be activated that should treat the individual in a non-discriminatory manner.

The Failure-to-Enrol is illustrated in figure B.3 .

B.5. Failure-to-Acquire

The Failure-to-Acquire Rate (FTA) is essential for the verification process and

estimates the likelihood that biometric comparison can not be completed due

to potential deficiencies in the live sample that is submitted as a probe. If

there is no feature vector that can be compared to a biometric reference this
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Figure B.3.: Failure-to-Enrol (FTE)

can be caused due to one of the following reasons:

1. The is no biometric sample generated, which is expressed by the FTC.

2. The feature extraction componen failed to extract features as the number

and/or quality of extracted features is not sufficient. This is expressed

by the FTX.

There are currently two ISO-definitions for the FTA. The original definition

in the performance testing standard [ISOa] and the more recent one from the

harmonized biometric vocabulary [ISOb]:

Failure-to-Acquire Rate (ISO 19795-1): proportion of verification or identifi-

cation attempts for which the system fails to capture or locate an image

or signal of sufficient quality.

Failure-to-Acquire Rate (ISO SC37 SD2): proportion of a specified set of

probe acquisitions that failed to create a biometric probe.

Note that in ISO SC37 SD2 a probe is defined as biometric data input to an

algorithm for comparison to a biometric reference(s).To estimate the Failure-

to-Acquire Rate we use the following formula:

FTA = FTC + FTX ∗ (1− FTC) (B.4)
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B.6. False-Match

For imposter comparisons a False-Match constitutes the undesired case that

an imposter probe is matching a biometric reference, which has not been cre-

ated for himself. There are currently two ISO-definitions for the corresponding

False-Match-Rate (FMR). The original definition in the performance testing

standard [ISOa] and the more recent one from the harmonized biometric vo-

cabulary [ISOb]:

False-Match-Rate (ISO 19795-1): proportion of zero-effort impostor attempt

samples falsely declared to match the compared non-self template.

False-Match-Rate (ISO SC37 SD2): proportion of the completed biometric

non-match comparison trials that result in a false match.

FMR(t) =

ˆ 1

t

Φi(s)ds (B.5)

Together with the False-Non-Match-Rate (FNMR) the FMR is the key metric

to be used in biometric technology testing and is understood to characterize

a security property of a biometric system. Note that some literature is using

the term False-Accept-Rate in the meaning of FMR.

B.7. False-Non-Match

For genuine comparisons a False-Non-Match constitutes the undesired case

that an genuine probe is not matching to biometric reference, which has

been created for the same subject from the same source (e.g. same index

finger). There are currently two ISO-definitions for the corresponding False-

Non-Match-Rate (FNMR). The original definition in the performance testing

standard [ISOa] and the more recent one from the harmonized biometric vo-

cabulary [ISOb]:

False-Non-Match-Rate (ISO 19795-1): proportion of genuine attempt sam-

ples falsely declared not to match the template of the same characteristic

from the same data subject supplying the sample.

False-Non-Match-Rate (ISO SC37 SD2): proportion of the completed bio-

metric match comparison trials that result in a false non-match.
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FNMR(t) =

ˆ t

0

Φg(s)ds (B.6)

Together with the False-Match-Rate (FMR) the FNMR is the key metric to

be used in biometric technology testing and is understood to characterize a

convenience property of a biometric system. Note that some literature is using

the term False-Reject-Rate in the meaning of FNMR.

B.8. Verification System Performance

The first order estimation of the performance for a verification system that

is based on transactions allowing multiple attempts can be derived from the

detection error trade-off curve. However if this is applied the potential cor-

relations between the attempts are neglected. Such correlations could be

due to habituation of the capture subject with the human- computer inter-

face of the biometric system. The relevant measures for a verification system

are the False-Accept-Rate (FAR) and the False-Reject-Rate (FRR). The ISO-

definition [ISOa] for both metrics are the following:

False-Accept-Rate (ISO 19795-1): proportion of verification transactions with

wrongful claims of identity that are incorrectly confirmed.

False-Reject-Rate (ISO 19795-1): proportion of verification transactions with

truthful claims of identity that are incorrectly denied.

For the simplified case that the verification system does allow only a single

attempt per transaction then the FAR and FRR can be estimated as follows.

FAR = FMR ∗ (1− FTA) (B.7)

and

FRR = FTA+ FNMR ∗ (1− FTA) (B.8)

If the biometric application is likely to be confronted with a large number

of failure to enrol cases (e.g. as it is a fingerprint system for mine workers)

and the biometric performance shall be predicted based on a gallery that was

collected for a technology testing then the equations B.7 and B.8 do not suf-

ficiently express the performance to be expected. The reason for this is that

in a technology evaluation biometric references are generated from the gallery
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that do not cause a failure-to-enrol and probes that do not cause a failure-to-

acquire. For such a case the generalized versions of the above equations are

more appropriate, which are given by:

GFAR = FMR ∗ (1− FTA) ∗ (1− FTE) (B.9)

and

GFRR = FTE+(1−FTE)∗FTA+(1−FTE)∗(1−FTA)∗FNMR (B.10)

B.9. Identification System Performance

The first order estimation of the false positive and false negative identification

rates for open-set systems, can be derived from FMR and FNMR and the

DET curve. However, such estimates cannot take account of correlations in

the comparisons involving the same data subject, and consequently can be

quite inaccuraten [ISOa].

FPIR = (1− FTA) ∗ (1− (1− FMR)N) (B.11)

where FPRI is the False-Positive-Identification-Rate. For a small FMR we

can substitue in equation B.11

(1− FMR)N ≈ 1−N ∗ FMR (B.12)

and thus under the assumption of FTA = 0 we derive

FPIR = (1− 0) ∗ (1− (1−N ∗ FMR) (B.13)

FPIR = N ∗ FMR (B.14)
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