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ACTIVE CONTROL OF SOUND FOR COMPOSITE REGIONS∗

A. W. PETERSON† AND S. V. TSYNKOV‡

Abstract. We present a methodology for the active control of time-harmonic wave fields,
e.g., acoustic disturbances, in composite regions. This methodology extends our previous approach
developed for the case of arcwise connected regions. The overall objective is to eliminate the effect
of all outside field sources on a given domain of interest, i.e., to shield this domain. In this context,
active shielding means introducing additional field sources, called active controls, that generate the
annihilating signal and cancel out the unwanted component of the field. As such, the problem of
active shielding can be interpreted as a special inverse source problem for the governing differential
equation or system. For a composite domain, not only do the controls prevent interference from
all exterior sources, but they can also enforce a predetermined communication pattern between the
individual subdomains (as many as desired). In other words, they either allow the subdomains to
communicate freely with one another or otherwise have them shielded from their peers. In the paper,
we obtain a general solution for the composite active shielding problem and show that it reduces
to solving a collection of auxiliary problems for arcwise connected domains. The general solution
is constructed in two stages. Namely, if a particular subdomain is not allowed to hear another
subdomain, then the supplementary controls are employed first. They communicate the required
data prior to building the final set of controls. The general solution can be obtained with only
the knowledge of the acoustic signals propagating through the boundaries of the subdomains. No
knowledge of the field sources is required, nor is any knowledge of the properties of the medium
needed.
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1. Introduction. Active shielding and control of noise is a very rich field with
a variety of applications. In the most general terms, exercising active control means
introducing additional sources of sound, called controls, to facilitate a specific change
in the overall acoustic field. In particular, the desired change may imply canceling
all or part of the field on a given region. Referring the reader to other, more detailed
sources for a comprehensive review (see [17, 8, 24]), we mention several representative
publications in the area. Research by Elliott, Stothers, and Nelson [7] focused on
the minimization of noise at pointwise locations. Wright and Vuksanovic expanded
the field to include directional noise cancellation in [30, 31]. A large portion of the
research done today has been motivated by the airline industry and its desire to control
unwanted engine noise in the cabin during flight. There are various methods of dealing
with in-flight noise. Damping structural vibrations is one approach to attenuating low
frequencies. This is done by placing actuators and sensors throughout the cabin at
optimized locations. Kincaid, Laba, and Padula worked extensively on this problem
[12, 11]. A comprehensive account of the area, along with many additional references,
can be found in [4]. Another method involves placing a series of microphones and
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speakers throughout the cabin and uses acoustic excitation to cancel unwanted noise.
Passive techniques such as sound insulation are more effective in dealing with high
frequencies. Van der Auweraer et al. tackled the problem of aircraft noise in [26] by
using a combination of both methods.

In [9], Fuller and von Flotow present an overview of current common practices in
active noise control. One of the most popular algorithms used today in the control
of noise is based on a least mean squares (LMS) method. It is employed to tune the
control filter to reduce unwanted noise near the sensors and was first introduced by
Burgess in [1] and by Widrow, Shur, and Shaffer in [29]. This algorithm was later
improved upon by Cabell and Fuller in [2]. While LMS methods offer good results
near the sensors in small-scale applications such as mobile phones, they do not allow
for the exact volumetric cancellation of noise desired in an airline cabin.

In the current paper, we introduce and study a new formulation of active noise
control problem. Namely, the overall region of space to be protected from noise is
assumed to be composed of a number of simple, i.e., arcwise connected, (sub)domains.
The standard part of the formulation involves shielding the overall domain, i.e., the
union of all subdomains, from the unwanted noise. In addition, the individual subdo-
mains are selectively allowed to either communicate freely with one another according
to a predetermined pattern or else be shielded from their peers. In doing so, no reci-
procity is assumed; i.e., for a given pair of subdomains one may be allowed to hear
the other, but not vice versa.

The method of analysis used in this paper builds upon the previous research
done by Lončarić, Ryaben’kii, and Tsynkov in [13] and by Tsynkov in [25] for the
case of a single arcwise connected domain, and subsequently extended in [14, 15, 16]
by investigating various optimization formulations. The approach of [13] allows for
the exact volumetric cancellation of time-harmonic noise in a given region. In other
words, this region is shielded from the unwanted sound that comes from the outside.
The shielding is achieved by first splitting the total acoustic field into the incoming
and outgoing components. This can be done unambiguously using only the knowledge
of the field and its normal derivative measured at the boundary of the region to be
protected. Subsequently, the unwanted incoming component of the field is canceled by
additional sources that are insensitive to the outgoing component. Other methods,
such as those employed by Nelson and Elliott in [17], require that the noise to be
canceled be measured at the boundary by itself, and be distinguished from other
components of the acoustic field ahead of time. This restriction does not exist in
the methodology presented herein. Moreover, our methodology requires knowledge of
neither the volumetric properties of the medium nor the location and strength of the
noise sources. Decomposition of the overall sound field into incoming and outgoing
components, as well as design of the antinoise sources, are accomplished by applying
Calderon’s potentials and projections [3]; see also [23]. This is a very convenient
and powerful apparatus that allows one to describe all appropriate control sources in
closed form. In the simplest case of constant coefficients, the Calderon operators can
be obtained using boundary integrals of classical potential theory.

There are two types of control sources that can be explored, volumetric and
surface. In [13], it is determined that the general solution for volumetric controls
g = g(x) is given by

g(x) = −Lw

outside of the region to be shielded, where w is a special auxiliary function which
must satisfy the Sommerfeld radiation condition at infinity, as well as coincide with
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1584 A. W. PETERSON AND S. V. TSYNKOV

the acoustic field u and its normal derivative ∂u
∂n at the boundary. Here L = Δ + k2I

denotes the Helmholtz operator. Since these are fairly loose restrictions, volumetric
controls define a very broad class of solutions to the problem.

Surface controls are concentrated at the boundary. They are given by

g(surf) = −
[
∂w

∂n
− ∂u

∂n

]
Γ

δ(Γ) − ∂

∂n
([w − u]Γδ(Γ)),

where the auxiliary function w is additionally required to satisfy the homogeneous
Helmholtz equation, Lw = 0, outside the boundary but is no longer required to satisfy
any boundary conditions at Γ. The general solution to the surface control problem is
discussed in [25]. It is to be noted that surface controls have the same fundamental
properties as volumetric controls. A universal framework for both volumetric and
surface controls is built by Ryaben’kii and Utyuzhnikov in the recent paper [22]; it
treats the governing equation for the field in an operator form.

We should also emphasize that the continuous formulation is not practical for
implementation. Any realistic implementation would consist only of a finite number
of sensors (microphones) and actuators (speakers). This will lead to a discretization
of the problem on a grid. Discrete active shielding problems were analyzed, and
the corresponding solutions obtained in [14, 15, 16, 25], as well as more recently in
[22]. The finite-difference analysis of [14, 15, 16, 22, 25] uses the constructs developed
previously in the works by Ryaben’kii [18] and by Veizman and Ryaben’kii [27, 28].

Specific objective of the current paper. We will extend the methodology of
[13] to the case of composite regions. This will allow two or more separate subregions
to be fully protected from the influence of outside sources. Moreover, according to a
predetermined communication pattern, each individual subregion may or may not be
allowed to hear any other subregion. As in [13], only the total acoustic field and its
normal derivative specified at the boundaries will be needed for the exact volumetric
cancellation of the outside noise, as well as for the realization of a given communication
pattern. It will not be necessary to distinguish the “adverse,” i.e., unwanted, part of
the acoustic field from its “friendly,” i.e., wanted, part as this is done automatically
by the control system. The methodology will provide a closed form general solution
for the controls, including the case of an inhomogeneous medium.

2. Two regions. In this section, the formulation for two separate domains will
be discussed. In other words, we will distinguish between the two given disjoint
regions and the rest of the space. Let it be noted, however, that the forthcoming
methodology could be presented in a more general framework. The rest of the space
outside of the two given regions can be treated as a third region on equal terms
with the first two. This formulation lends itself more naturally to surface controls
separating the three regions. A rigorous analysis of this approach for the finite-
difference setting can be found in the recent paper [21], which, in turn, builds upon
[18]. We, however, choose a simpler form of presentation in order to make it more
accessible for applications. Accordingly, the focus will be on volumetric controls,
which will allow for more flexibility in their construction.

2.1. Formulation. Let Ω1 and Ω2 be given, where Ωi ⊆ R
2 or R

3 is either
bounded or unbounded. For simplicity we will first assume that Ω1 and Ω2 are two
separate bounded regions of R

n (see Figure 2.1), and such that dist(Ω1,Ω2) ≥ ε > 0.
Let Γ1 and Γ2 be the boundaries of Ω1 and Ω2, respectively. Consider the time-
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Fig. 2.1. Two domains.

harmonic acoustic field u = u(x) governed by the inhomogeneous Helmholtz equation:

(2.1) Lu ≡ Δu + k2u = f = f+
1 + f+

2 + f−,

where for the sources we have suppf+
1 ⊂ Ω1, suppf+

2 ⊂ Ω2, and suppf− ⊂ R
n\(Ω1 ∪

Ω2). The overall acoustic field can be represented as

(2.2a) u = u+
1 + u+

2 + u−,

where

Lu+
1 = f+

1 ,(2.2b)

Lu+
2 = f+

2 ,(2.2c)

and

(2.2d) Lu− = f−.

Our first goal is to eliminate all sound from the exterior sources f− inside Ω1 and
Ω2 while allowing sound from the sources f+

1 and f+
2 to propagate freely between Ω1

and Ω2. This is to be achieved by introducing a new control source g. After that, the
total acoustic field ũ will be governed by

Lũ = f+
1 + f+

2 + f− + g.

We would like to choose the controls g to guarantee

ũ|x∈Ω1 = (u+
1 + u+

2 )|x∈Ω1

and

ũ|x∈Ω2
= (u+

1 + u+
2 )|x∈Ω2

.
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In other words, the field after the control inside either Ω1 or Ω2 should contain no
contribution from the sources f−. Notice that g = −f− is a solution to the problem,
but it can be very difficult to implement and also requires previous knowledge of the
sources f−. Therefore, other, less expensive, solutions that do not require extensive
knowledge of the exterior sources are preferable.

Our second goal is to selectively eliminate the sound that propagates between the
regions Ω1 and Ω2. This is to be done in addition to the cancellation of the common
exterior sound. For example, Ω1 may be allowed to hear Ω2, but not vice versa.

Note that the problem of active noise control as formulated above is, in fact, a
problem of enabling a desired change in the solution of a given differential equation by
appropriately modifying its source terms, i.e., by adding new sources. Consequently,
it can be interpreted as an inverse source problem for the corresponding differential
equation. Inverse source problems have been extensively studied in the literature,
both from the standpoint of physics/engineering (see, e.g., [6, 5]), as well as from the
standpoint of mathematics (see, e.g., [10]).

2.2. General solution. Let us first recall that in order to guarantee uniqueness
of the solution to the Helmholtz equation (2.1) on unbounded regions, we must require
that this solution satisfy the Sommerfeld radiation condition at infinity:

(2.3a)
∂v(x)

∂|x| + ikv(x) = o(|x|−1/2), x ∈ R
2,

or

(2.3b)
∂v(x)

∂|x| + ikv(x) = o(|x|−1), x ∈ R
3.

In particular, for any sufficiently smooth function v = v(x) that satisfies the Sommer-
feld condition we get

(2.4) v(x) =

∫
Rn

G(x− y)Lv(y)dy,

where

Lv = Δv + k2v

is the Helmholtz operator and G = G(x) is its fundamental solution on R
n. For R

2,
the fundamental solution is given by

(2.5) G(x) = − 1

4i
H

(2)
0 (k|x|),

where H
(2)
0 (z) is the Hankel function of the second kind defined by means of the Bessel

functions J0(z) and Y0(z) as H
(2)
0 (z) = J0(z) − iY0(z). For R

3, we have

(2.6) G(x) = − 1

4π

e−ik|x|

|x| .

Note that the fundamental solutions (2.5) and (2.6) satisfy the Sommerfeld radiation
condition at infinity (2.3a) and (2.3b), respectively.
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2.2.1. Straightforward cancellation. Let u = u(x) be the overall acoustic
field (see (2.1)) and n be the exterior normal to the boundary, and introduce an
auxiliary function w = w(x) such that

w
∣∣
Γ1∪Γ2

= u
∣∣
Γ1∪Γ2

and

∂w

∂n

∣∣∣
Γ1∪Γ2

=
∂u

∂n

∣∣∣
Γ1∪Γ2

(recall that dist(Γ1,Γ2) ≥ ε > 0). We also require that w(x) satisfies the Sommerfeld
condition (2.3a) or (2.3b). Next, we define the control sources as follows:

(2.7) g(x) =

{
−Lw, x ∈ {Rn\(Ω1 ∪ Ω2)},
0, x ∈ (Ω1 ∪ Ω2).

To analyze properties of the controls (2.7), we must determine their output v =
v(x) for x ∈ R

n. Using (2.4), we get1

v(x) =

∫
Rn

Ggdy = −
∫

Rn\(Ω1∪Ω2)

GLwdy

= −
(
w(x) −

∫
Ω1

GLwdy −
∫

Ω2

GLwdy

)
,

where the individual integrals on the right-hand side are computed by integrating over
Ω1 and Ω2 and are completely independent. Yet we emphasize that even though the
computation of v(x) can be reduced to integration over Ω1 and Ω2, the shape of w(x)
inside these two domains will not affect the output v(x) since the original controls g
are defined outside of Ω1 ∪ Ω2; see formula (2.7).

Let us examine the individual terms. By Green’s theorem, for x ∈ Ω1 we obtain

w(x) −
∫

Ω1

GLwdy =

∫
Γ1

(
w
∂G

∂n
− ∂w

∂n
G

)
dsy

=

∫
Γ1

(
u
∂G

∂n
− ∂u

∂n
G

)
dsy

= u−(x) + u+
2 (x), x ∈ Ω1,

where n is the normal exterior to Γ1 and u−(x) and u+
2 (x) are defined by (2.2d) and

(2.2c), respectively. This expression yields the entire incoming component of the field
for the domain Ω1. Next, we need to see what the contribution of −

∫
Ω1

GLwdy will be

outside of Ω1. Introduce a smooth auxiliary function w1(x) such that w1(x) = w(x)
on Ω1 and w1(x) is compactly supported on a small neighborhood of Ω1. Then, for

1All integrals hereafter are of the convolution type, as in formula (2.4).
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x ∈ R
n\Ω1 we have

−
∫

Ω1

GLwdy = −
∫

Ω1

GLw1dy

= −
∫

Ω1

GLw1dy + w1 − w1

=

∫
Rn\Ω1

GLw1dy − w1

=

∫
Γ1

(
w1

∂G

∂n
− ∂w1

∂n
G

)
dsy

= −u+
1 (x), x ∈ R

n\Ω1,

where the third equality in the chain is obtained with the help of formula (2.4) applied
to w1(x). Therefore, we can write

−
∫

Ω1

GLwdy =

⎧⎨
⎩−u+

1 , x ∈ R
n\Ω1,

−w + u− + u+
2 , x ∈ Ω1.

We also have a similar output from Ω2 given by

−
∫

Ω2

GLwdy =

⎧⎨
⎩−u+

2 , x ∈ R
n\Ω2,

−w + u− + u+
1 , x ∈ Ω2.

Altogether, the full output of the controls g(x) of (2.7) is as follows:

v(x) = −
(
w −

∫
Ω1

GLwdy −
∫

Ω2

GLwdy

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−(u− + u+

2 ) + u+
2 = −u−, x ∈ Ω1,

−(u− + u+
1 ) + u+

1 = −u−, x ∈ Ω2,

−(w − u+
1 − u+

2 ), x ∈ R
n\(Ω1 ∪ Ω2).

Consequently, these controls enable the cancellation of sound due to the exterior
sources f− on the domains Ω1 and Ω2 regardless of the specific choice of the auxiliary
function w. The output of the controls outside Ω1 ∪ Ω2 is given by u+

1 + u+
2 − w. It

duplicates the acoustic field generated inside the two regions with the correction −w.
Let us elaborate a little further on the structure of the control output v(x).

Assume that x ∈ Ω1. Then,

v(x) = − w(x) +

∫
Ω1

GLwdy +

∫
Ω2

GLwdy

= − w + w − (u− + u+
2 )︸ ︷︷ ︸

contribution due to Ω1

+ u+
2︸︷︷︸

due to Ω2

= − u−(x), x ∈ Ω1,
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where −(u− + u+
2 ) from the second term above renders cancellation of the entire

incoming wave for Ω1, and u+
2 is the interior sound from Ω2 duplicated by the controls.

The same is true for Ω2. Hence we conclude that the controls double the output of
the sources interior to a region on the way out and then halve it as it comes into the
other region. As such, the overall acoustic field after the control is given by

(2.8)

u = u+
1 + u+

2 + u− + v

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u+

1 + u+
2 , x ∈ Ω1,

u+
1 + u+

2 , x ∈ Ω2,

−w + u− + 2u+
1 + 2u+

2 , x ∈ R
n\(Ω1 ∪ Ω2),

allowing the domains Ω1 and Ω2 to communicate freely with each other without
interference from outside sources.

2.2.2. Selective cancellation. Now suppose that we would like Ω1 to hear Ω2

without outside interference, but we do not allow Ω2 to hear anything from outside
its boundary, including Ω1. To achieve this we must elaborate further on how the
split between the incoming and outgoing waves works. Consider just one domain Ω1

with the boundary Γ1 and again choose the auxiliary function w1 = w1(x). Let

(2.9a) w1

∣∣
Γ1

= u
∣∣
Γ1

and

(2.9b)
∂w1

∂n

∣∣∣
Γ1

=
∂u

∂n

∣∣∣
Γ1

,

where u = u−
1 + u+

1 is the total acoustic field and u−
1 = u− + u+

2 is the acoustic field
generated outside of Ω1. Then the surface integral gives us

∫
Γ1

(
w1

∂G

∂n
− ∂w1

∂n
G

)
dsy =

⎧⎨
⎩u−

1 , x ∈ Ω1,

−u+
1 , x ∈ R

n\Ω1.

With respect to the domain Ω1, the field u−
1 is incoming, and u+

1 is outgoing. Assum-
ing that w1(x) also satisfies the appropriate Sommerfeld radiation condition (2.3a)
or (2.3b), the surface integral can be replaced by the volumetric integral, so that for
x ∈ Ω1 we have∫

Γ1

(
w1

∂G

∂n
− ∂w1

∂n
G

)
dsy = w1 −

∫
Ω1

GLw1dy
∣∣∣
x∈Ω1

=

∫
Rn\Ω1

G(x− y)Lw1(y)dy
∣∣∣
x∈Ω1

.

This is precisely why we would choose the controls as g1(x) = −Lw1|Rn\Ω1
if we were

to completely eliminate all of the outside sound on Ω1—because they produce −u−
1

on Ω1. At the same time, on the complementary domain R
n\Ω1 the output of the
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controls g1(x) is the duplicate of the outgoing field u+
1 corrected by −w1:

(2.10)

∫
Rn

G(x− y)g1(y)dy = −
∫

Rn\Ω1

G(x− y)Lw1(y)dy

= w1 −
∫

Rn\Ω1

GLw1dy − w1

= −
∫

Γ1

(
w1

∂G

∂n
− ∂w1

∂n
G

)
dsy − w1 = u+

1 − w1.

Having described individual controls g1 for a single domain Ω1, we are now ready
to construct the controls so that Ω1 will hear Ω2 without outside interference, but Ω2

will not hear anything from outside its boundary, including Ω1. The procedure will
consist of two stages. At the first stage, we will use the controls g1(x) as a supple-
mentary tool. Namely, choose an auxiliary function w1(x) that satisfies conditions
(2.9a) and (2.9b), as well as the Sommerfeld condition at infinity. In addition, require
that w1 be compactly supported near Ω1, in particular, that w1(x) = 0 near Ω2. This
is clearly possible since the distance between the subdomains Ω1 and Ω2 is positive.
Then, build the supplementary controls

(2.11) g1(x) = −Lw1|Rn\Ω1
, g1(x) = 0|Ω1

.

According to formula (2.10), the output of these controls on R
n\Ω1 is

(2.12) v1 =

∫
Rn

Gg1dy = u+
1 − w1, x ∈ R

n\Ω1,

and since w1 is compactly supported near Ω1, we have v1 = u+
1 near Ω2.

At the second stage of building the controls, we begin as usual with our auxiliary
function w. It is still required that w satisfy the Sommerfeld condition at infinity,
while on Γ1 we still impose the same boundary conditions (2.9a) and (2.9b):

w
∣∣
Γ1

= u
∣∣
Γ1

and

∂w

∂n

∣∣∣
Γ1

=
∂u

∂n

∣∣∣
Γ1

,

where u is the given total acoustic field. The difference is in the boundary conditions
on Γ2. Here it is required that

w
∣∣
Γ2

= (u + v1)
∣∣
Γ2

≡ (u + u+
1 )
∣∣
Γ2

and

∂w

∂n

∣∣∣
Γ2

=
∂(u + v1)

∂n

∣∣∣
Γ2

≡ ∂(u + u+
1 )

∂n

∣∣∣
Γ2

,

where v1 was obtained at the first stage; see (2.12). Then, defining the controls as

g(x) = −Lw|Rn\(Ω1∪Ω2), g(x) = 0|(Ω1∪Ω2)
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yields the output

(2.13)

v(x) = −
(
w −

∫
Ω1

GLwdy −
∫

Ω2

GLwdy

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−(u− + u+

2 ) + u+
2 = −u−, x ∈ Ω1,

−(u− + 2u+
1 ) + u+

1 = −(u− + u+
1 ), x ∈ Ω2,

−(w − u+
1 − u+

2 ), x ∈ R
n\(Ω1 ∪ Ω2).

Therefore, we see that Ω1 hears Ω2 without outside interference, but Ω2 does not hear
anything from outside its boundary, including Ω1.

2.2.3. Proofs. We will now prove that what we have obtained is, in fact, a
general solution for the controls with the prescribed properties. That is, we will prove
that our method of construction gives all possible controls.

Theorem 2.1. Suppose that Ω1 ⊂ R
n and Ω2 ⊂ R

n are two disjoint regions:
dist(Ω1,Ω2) ≥ ε > 0, with the boundaries ∂Ω1 = Γ1 and ∂Ω2 = Γ2. Assume that the
total acoustic field in R

n is governed by Lu ≡ Δu + k2u = f = f+
1 + f+

2 + f−, where
the sources f are located according to suppf+

1 ⊂ Ω1, suppf+
2 ⊂ Ω2, and suppf− ⊂

R
n\(Ω1 ∪ Ω2). Let the overall acoustic field u be represented as u = u+

1 + u+
2 + u−.

Let a control source g = g(x) be added to the other sources f(x) such that the
overall field ũ governed by Lũ = f+

1 + f+
2 + f− + g satisfies

(2.14) ũ =

{
u+

1 + u+
2 , x ∈ Ω1,

u+
1 + u+

2 , x ∈ Ω2.

Then the general solution for the desired control is given by

(2.15) g = −Lw|Rn\(Ω1∪Ω2), g = 0|(Ω1∪Ω2),

where w satisfies the Sommerfeld condition (2.3a) or (2.3b) at infinity, as well as the
interface conditions

(2.16a) w
∣∣
Γ1∪Γ2

= u
∣∣
Γ1∪Γ2

and

(2.16b)
∂w

∂n

∣∣∣
Γ1∪Γ2

=
∂u

∂n

∣∣∣
Γ1∪Γ2

.

Proof. We need to prove that any control g given by (2.15) is an appropriate
control and, conversely, that any appropriate control g can be obtained by using a
suitable auxiliary function w. Suppose we have a function w(x) that satisfies (2.16a),
(2.16b), and the Sommerfeld condition at infinity. Then, according to formula (2.8),
the corresponding control g given by formula (2.15) yields the desired properties by
eliminating u− on Ω1 ∪ Ω2.

Conversely, suppose that a control g achieves the desired cancellation; see formula
(2.14). Then, substituting ũ = ũ(x) into the equation Lũ = f+

1 + f+
2 + f− + g, we

immediately obtain that g(x) = 0 for x ∈ (Ω1 ∪ Ω2). In other words, supp g ⊂
R

n \ (Ω1 ∪ Ω2). Consequently, the output v of the control g is as follows:

v(x) =

∫
Rn\(Ω1∪Ω2)

Ggdy =

⎧⎨
⎩−u−, x ∈ Ω1,

−u−, x ∈ Ω2.
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Consider the equation −Lw = g − f+
1 − f+

2 , where f+
1 and f+

2 are the sound sources
from Ω1 and Ω2, respectively. Its solution, subject to the Sommerfeld condition at
infinity (2.3a) or (2.3b), satisfies

w = −v + u+
1 + u+

2

=

⎧⎨
⎩u− + u+

1 + u+
2 = u, x ∈ Ω1,

u− + u+
1 + u+

2 = u, x ∈ Ω2.

Since w(x) is at least C1 smooth on R
n, we can claim that it satisfies relations (2.16a)

and (2.16b). Therefore, the control g(x) can be obtained by formula (2.15), since
suppf+

1 ⊂ Ω1 and suppf+
2 ⊂ Ω2.

Theorem 2.2. Suppose that Ω1 ⊂ R
n and Ω2 ⊂ R

n are two disjoint regions:
dist(Ω1,Ω2) ≥ ε > 0, with the boundaries ∂Ω1 = Γ1 and ∂Ω2 = Γ2. Assume that the
total acoustic field in R

n is governed by Lu ≡ Δu + k2u = f = f+
1 + f+

2 + f−, where
the sources f are located according to suppf+

1 ⊂ Ω1, suppf+
2 ⊂ Ω2, and suppf− ⊂

R
n\(Ω1 ∪ Ω2). Let the overall acoustic field u be represented as u = u+

1 + u+
2 + u−.

Let a control source g = g(x) be added to the other sources f(x) such that the
overall field ũ governed by Lũ = f+

1 + f+
2 + f− + g satisfies

(2.17) ũ =

⎧⎨
⎩u+

1 + u+
2 , x ∈ Ω1,

u+
2 , x ∈ Ω2.

Then the general solution for the desired control is given by

(2.18) g = −Lw|Rn\(Ω1∪Ω2), g = 0|(Ω1∪Ω2),

where w = w(x) satisfies the Sommerfeld condition (2.3a) or (2.3b) at infinity and
the following interface conditions:

(2.19a) w
∣∣
Γ1

= u
∣∣
Γ1
, w

∣∣
Γ2

= (u + u+
1 )
∣∣
Γ2

and

(2.19b)
∂w

∂n

∣∣∣
Γ1

=
∂u

∂n

∣∣∣
Γ1

,
∂w

∂n

∣∣∣
Γ2

=
∂(u + u+

1 )

∂n

∣∣∣
Γ2

.

The function u+
1 on Γ2 can be obtained as the output v1 given by formula (2.12) of

the supplementary controls g1 of (2.11).
Theorem 2.2 essentially implies that the controls (2.18) are obtained by means

of a predictor-corrector procedure. The predictor stage consists of computing v1 of
(2.12) as the output of the control g1 of (2.11), whereas the corrector stage consists of
obtaining the overall composite controls g(x) with the help of the auxiliary function
w(x) defined via (2.19).

Proof. We need to prove that any control g given by (2.18) is an appropriate
control and, conversely, that any appropriate control g can be obtained by using a
suitable auxiliary function w. Suppose we have a function w(x) that satisfies (2.19a),
(2.19b), and the Sommerfeld condition at infinity. Then, according to formula (2.13),
the corresponding control given by (2.18) provides the desired properties eliminating
u− on Ω1 ∪ Ω2 and additionally eliminating u+

1 on Ω2.
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Conversely, suppose that a control g achieves the desired cancellation; see formula
(2.17). Then, supp g ∈ R

n \ (Ω1 ∪Ω2), and the output of the control, v, is as follows:

v(x) =

∫
Rn\(Ω1∪Ω2)

Ggdy =

⎧⎨
⎩−u−, x ∈ Ω1,

−u− − u+
1 , x ∈ Ω2.

Consider the equation −Lw = g − f+
1 − f+

2 . Its solution, subject to the Sommerfeld
condition at infinity (2.3a) or (2.3b), satisfies

w = −v + u+
1 + u+

2

=

⎧⎨
⎩u− + u+

1 + u+
2 = u, x ∈ Ω1,

u− + 2u+
1 + u+

2 = u + u+
1 , x ∈ Ω2.

Since w(x) is at least C1 smooth on R
n, it satisfies relations (2.19a) and (2.19b).

Therefore, the control g(x) can be obtained by formula (2.18) since suppf+
1 ⊂ Ω1 and

suppf+
2 ⊂ Ω2.

3. Multiple regions.

3.1. Formulation. Let Ω1,Ω2, . . . ,ΩN be given, where Ωi ⊆ R
2 or R

3 is either
bounded or unbounded. For simplicity we will assume that Ω1,Ω2, . . . ,ΩN are sepa-
rate bounded regions of R

n. Let Γ1,Γ2, . . . ,ΓN be the boundaries of Ω1,Ω2, . . . ,ΩN

respectively. Consider the time-harmonic acoustic field u governed by the inhomoge-
neous Helmholtz equation:

Lu ≡ Δu + k2u = f = f+
1 + f+

2 + · · · + f+
N + f−,

where the sources are suppf+
1 ⊂ Ω1, suppf+

2 ⊂ Ω2, . . . , suppf+
n ⊂ ΩN , and suppf− ⊂

R
n\(Ω1 ∪ Ω2 ∪ · · · ∪ ΩN ). Therefore, the overall acoustic field can be represented as

u = u+
1 + u+

2 + · · · + u+
N + u−,

where

Lu+
1 = f+

1 ,

Lu+
2 = f+

2 ,

. . .

Lu+
N = f+

N ,

and

Lu− = f−.

Our goal is to eliminate all sound from the sources f− inside Ω1,Ω2, . . . ,ΩN , while
allowing sound from the sources f+

1 , f+
2 , . . . , f+

N to propagate between Ω1,Ω2, . . . ,ΩN

as we see fit. That is, we wish to selectively eliminate unwanted sound from various
regions while leaving other regions free to receive predetermined communications.
This is done as before by introducing a new control source g. Therefore, the total
acoustic field is now governed by the modified equation

Lũ = f+
1 + f+

2 + · · · + f+
N + f− + g.
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3.2. General solution.

3.2.1. Straightforward cancellation. We will first demonstrate how to elimi-
nate all sound in Ω1∪Ω2∪· · ·∪ΩN that originates from R

n\(Ω1∪Ω2∪· · ·∪ΩN ) . As
before, we introduce an auxiliary function w = w(x), which satisfies the Sommerfeld
condition (2.3a) or (2.3b) at infinity, and is such that

w
∣∣
Γi

= u
∣∣
Γi

and

∂w

∂n

∣∣∣
Γi

=
∂u

∂n

∣∣∣
Γi

for all i = 1, . . . , N .

Next, we define the control sources as (cf. formula (2.7))

g(x) =

⎧⎨
⎩−Lw, x ∈ {Rn\(Ω1 ∪ Ω2 ∪ · · · ∪ ΩN )},

0, x ∈ (Ω1 ∪ Ω2 ∪ · · · ∪ ΩN ),

and see that their output v = v(x), x ∈ R
n, is given by

v(x) =

∫
Rn

Ggdy = −
∫

Rn\(Ω1∪Ω2∪···∪ΩN )

GLwdy

= −
(
w(x) −

∫
Ω1

GLwdy −
∫

Ω2

GLwdy − · · · −
∫

ΩN

GLwdy

)
,

where the individual integrals are computed by integrating over Ω1,Ω2, . . . ,ΩN and
are completely independent. Again, all integrals are convolutions, as in section 2.

Let us examine the individual terms. By Green’s theorem, for x ∈ Ωi, where
i ∈ {1, 2, . . . , N}, we obtain

w(x) −
∫

Ωi

GLwdy =

∫
Γi

(
w
∂G

∂n
− ∂w

∂n
G

)
dsy

=

∫
Γi

(
u
∂G

∂n
− ∂u

∂n
G

)
dsy

= u−(x) +
∑

j=1,2,...,N
j �=i

u+
j (x), x ∈ Ωi.

This is the entire incoming component for the domain Ωi. Now the effect of the
integral −

∫
Ωi

GLwdy outside of Ωi must be examined. To do this, we introduce a

smooth auxiliary function wi(x) such that wi(x) = w(x) on Ωi and wi(x) is compactly
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supported on a small neighborhood of Ωi. Consequently, for x ∈ R
n\Ωi we have

−
∫

Ωi

GLwdy = −
∫

Ωi

GLwidy

= −
∫

Ωi

GLwidy + wi − wi

=

∫
Rn\Ωi

GLwidy − wi

=

∫
Γi

(
wi

∂G

∂n
− ∂wi

∂n
G

)
dsy

= −u+
i (x), x ∈ R

n\Ωi.

Therefore we can write

−
∫

Ωi

GLwdy =

⎧⎪⎪⎨
⎪⎪⎩
−u+

i , x ∈ R
n\Ωi,

−w + u− +
∑

j=1,2,...,N,
j �=i

u+
j , x ∈ Ωi.

Altogether, the full output of the controls g(x) is as follows:

(3.1)

v(x) = −

⎛
⎝w −

∫
Ωi

GLwdy −
∑
j �=i

∫
Ωj

GLwdy

⎞
⎠

=

⎧⎪⎪⎨
⎪⎪⎩
−u−, x ∈ Ωi, i = 1, 2, . . . , N,

−

⎛
⎝w −

∑
j=1,2,...,N

u+
j

⎞
⎠ , x ∈ R

n\(Ω1 ∪ Ω2 ∪ · · · ∪ ΩN ).

Consequently, these controls enable the cancellation of sound due to the exterior
sources on the domains Ω1,Ω2, . . . ,ΩN regardless of the specific choice of the auxil-
iary function w. The output of the controls outside Ω1 ∪ Ω2 ∪ · · · ∪ ΩN is given by∑

j=1,2,...,N u+
j − w. It basically duplicates the acoustic field generated inside the re-

gions with the correction −w. More specifically, for any given Ωi the controls double
the output of the sources interior to a region on the way out and then halve the result
as it comes into another region. As such, the overall acoustic field is given by

u = u+
1 + u+

2 + · · · + u+
N + u− + v

=

⎧⎨
⎩u+

1 + u+
2 + · · · + u+

N , x ∈ Ωi, i = 1, 2, . . . , N,

−w + u− + 2u+
1 + 2u+

2 + · · · + 2u+
N , x ∈ R

n\(Ω1 ∪ Ω2 ∪ · · · ∪ ΩN ),

which means that the subdomains Ω1,Ω2, . . . ,ΩN can communicate freely with each
other without interference from outside sources.

Theorem 3.1. Suppose that Ω1,Ω2, . . . ,ΩN are given, where Ωi ⊆ R
n are dis-

joint regions: dist(Ωi,Ωj) ≥ ε > 0 if i �= j, with the boundaries ∂Ω1 = Γ1, ∂Ω2 =
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Γ2, . . . , ∂Ωn = ΓN . Assume that the total acoustic field in R
n is governed by Lu ≡

Δu+ k2u = f = f+
1 + f+

2 + · · ·+ f+
N + f−, where the sources are located according to

suppf+
1 ⊂ Ω1, suppf+

2 ⊂ Ω2, . . . , suppf+
n ⊂ ΩN , and suppf− ⊂ R

n\(Ω1 ∪ Ω2 ∪ · · · ∪
ΩN ). Let the overall acoustic field u be represented as u = u+

1 + u+
2 + · · · + u+

N + u−.
Let a control source g = g(x) be added to the other sources f(x) such that the

overall field ũ governed by Lũ = f+
1 + f+

2 + · · · + f+
N + f− + g satisfies

(3.2) ũ =
∑

j=1,2,...,N

u+
j , x ∈ Ωi, i = 1, 2, . . . , N.

Then the general solution for the desired control is given by

(3.3) g = −Lw|Rn\(Ω1∪Ω2∪···∪ΩN ), g = 0|(Ω1∪Ω2∪···∪ΩN ),

where w = w(x) satisfies the Sommerfeld condition at infinity and the following in-
terface conditions:

(3.4a) w
∣∣
Γi

= u
∣∣
Γi

and

(3.4b)
∂w

∂n

∣∣∣
Γi

=
∂u

∂n

∣∣∣
Γi

for all i = 1, . . . , N .
Proof. We need to prove that any control g given by (3.3) is an appropriate control

and, conversely, that any appropriate control g can be obtained by using a suitable
auxiliary function w. Suppose we have a function w(x) that satisfies (3.4a), (3.4b),
and the Sommerfeld condition (2.3a) or (2.3b) at infinity. Then, formula (3.1) implies
that the corresponding control (3.3) provides the desired properties eliminating the
exterior sound u− on Ω1 ∪ Ω2 ∪ · · · ∪ ΩN .

Conversely, suppose a control g achieves the desired cancellation, so that equality
(3.2) holds. Then, clearly, g(x) = 0 for x ∈ Ω1 ∪ Ω2 ∪ · · · ∪ ΩN . Consequently, the
output v of the control g is as follows:

v(x) =

∫
Rn\(Ω1∪Ω2∪...ΩN )

Ggdy = −u−, x ∈ Ωi, i = 1, . . . N.

Consider the equation −Lw = g − f+
1 − f+

2 − · · · − f+
N . Its solution, subject to

the Sommerfeld condition at infinity (2.3a) or (2.3b), satisfies

w = −v + u+
1 + u+

2 + · · · + u+
N

= u, x ∈ Ωi, i = 1, 2, . . . , N.

Since w(x) is at least C1 smooth on R
n, it satisfies relations (3.4a) and (3.4b).

Therefore the control g(x) can be obtained by formula (3.3) applied to this particular
w(x), since suppf+

1 ⊂ Ω1, suppf+
2 ⊂ Ω2, . . . , suppf+

N ⊂ ΩN .

3.2.2. Selective cancellation. Now suppose that in each subdomain Ωi, we
would like to eliminate all outside interference and, in addition, selectively eliminate
sound from some other subdomains. It will be helpful to formulate a convenient way
of keeping track of communications between the subdomains. For that purpose, let us
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introduce an N ×N matrix M, such that each row i corresponds to a region Ωi, and
the entry (0 or 1) in each column is used to determine whether this Ωi hears a region
corresponding to that column or not. In other words, if the entry at the intersection
of row i and column j is 0, then Ωi hears Ωj . If this entry is 1, then it does not.
Obviously the diagonal of M is filled with zeros since the regions hear themselves. So,
in the case of Theorem 2.1 we have

M =

(
0 0
0 0

)

and for Theorem 2.2 we get

M =

(
0 0
1 0

)
.

Notice that no reciprocity in the communication pattern is assumed; i.e., the matrix
M is not necessarily symmetric.

For a given matrix M that corresponds to a specific communication pattern be-
tween the regions Ω1,Ω2, . . . ,ΩN , we will now build the auxiliary function w(x) and
the controls g(x) as before, i.e., in two stages. At the first stage, we take the auxiliary
functions wi(x) for all Ωi, i = 1, . . . , N , that satisfy

wi

∣∣
Γi

= u
∣∣
Γi

and

∂wi

∂n

∣∣∣
Γi

=
∂u

∂n

∣∣∣
Γi

,

as well as the Sommerfeld condition at infinity. We also require that each wi be
compactly supported near the corresponding Ωi. Then, we build the supplementary
controls:

gi(x) = −Lwi|Rn\Ωi
, gi(x) = 0|Ωi

.

According to formula (2.10) applied to a given subdomain Ωi, the output of these
controls on R

n\Ωi is

(3.5) vi =

∫
Rn

Ggidy = u+
i − wi, x ∈ R

n\Ωi,

and since wi is taken compactly supported near Ωi, we have vi = u+
i near Ωj , where

j = 1, 2, . . . , N and j �= i.
At the second stage, we start with introducing the auxiliary function w(x), which

satisfies the Sommerfeld radiation condition (2.3a) or (2.3b) at infinity. In addition,
on each Γi we require that

w
∣∣
Γi

= (u + eTi Mv)
∣∣
Γi

and

∂w

∂n

∣∣∣
Γi

=
∂(u + eTi Mv)

∂n

∣∣∣
Γi

.
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In these formulae, ei is a vector with its ith component equal to 1 and all other
components equal to 0, and

v =

⎛
⎜⎜⎜⎝

v1

v2

...
vN

⎞
⎟⎟⎟⎠ ,

where each vi is obtained at the first stage with the help of the supplementary controls
gi(x) according to formula (3.5).

Next, we define the control sources g(x) as

g(x) = −Lw|Rn\(Ω1∪Ω2∪···∪ΩN ), g(x) = 0|(Ω1∪Ω2∪···∪ΩN ).

Their output v = v(x), x ∈ R
n, is given by

(3.6)

v(x) =

∫
Rn

Ggdy

= −
∫

Rn\(Ω1∪Ω2∪···∪ΩN )

GLwdy

= −
(
w(x) −

∫
Ω1

GLwdy −
∫

Ω2

GLwdy − · · · −
∫

ΩN

GLwdy

)
,

=

⎧⎨
⎩−(u− + eTi Mv), x ∈ Ωi,

−(w − u+
1 − u+

2 − · · · − u+
N ), x ∈ R

n\(Ω1 ∪ Ω2 ∪ · · · ∪ ΩN ),

which obviously enables the desired cancellation.
We now prove that this is in fact the general solution for the controls with the

prescribed properties, i.e., that we obtain all possible controls.
Theorem 3.2. Suppose that Ω1,Ω2, . . . ,ΩN are given, where Ωi ⊆ R

n are dis-
joint regions: dist(Ωi,Ωj) ≥ ε > 0 if i �= j, with the boundaries ∂Ω1 = Γ1, ∂Ω2 =
Γ2, . . . , ∂Ωn = ΓN . Assume that the total acoustic field in R

n is governed by Lu ≡
Δu+ k2u = f = f+

1 + f+
2 + · · ·+ f+

N + f−, where the sources are located according to
suppf+

1 ⊂ Ω1, suppf+
2 ⊂ Ω2, . . . , suppf+

n ⊂ ΩN , and suppf− ⊂ R
n\(Ω1 ∪ Ω2 ∪ · · · ∪

ΩN ). Let the overall acoustic field u be represented as u = u+
1 + u+

2 + · · · + u+
N + u−.

Let a control source g = g(x) be added to the other sources f(x) such that the
overall field ũ governed by Lũ = f+

1 + f+
2 + · · · + f+

N + f− + g satisfies

(3.7) ũ = eTi (1 − M)u, x ∈ Ωi, i = 1, 2, . . . , N,

where 1 is an N ×N matrix with all entries equal to 1, and

u =

⎛
⎜⎜⎜⎜⎜⎜⎝

u+
1

u+
2

...

u+
N

⎞
⎟⎟⎟⎟⎟⎟⎠ .
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Then, the general solution for the desired control is given by

(3.8) g = −Lw|Rn\(Ω1∪Ω2∪···∪ΩN ), g = 0|(Ω1∪Ω2∪···∪ΩN ),

where w = w(x) satisfies the Sommerfeld condition at infinity and the following in-
terface conditions:

(3.9a) w
∣∣
Γi

= (u + eTi Mv)
∣∣
Γi

and

(3.9b)
∂w

∂n

∣∣∣
Γi

=
∂(u + eTi Mv)

∂n

∣∣∣
Γi

for all i = 1, . . . , N . Note that if M = 0, then (3.7) reduces to (3.2), and the current
theorem becomes the same as Theorem 3.1.

Similarly to Theorem 2.2, Theorem 3.2 implies that the controls (3.8) are built
using a predictor-corrector procedure. The predictor stage consists of computing v of
(3.5), whereas the corrector stage consists of obtaining the overall composite controls
g(x) by means of the auxiliary function w(x) defined via (3.9).

Proof. We need to prove that any control g given by (3.8) is an appropriate
control and, conversely, that any appropriate control g can be obtained by using a
suitable auxiliary function w. Suppose we have a function w(x) that satisfies (3.9a),
(3.9b), and the Sommerfeld condition at infinity. Then, according to formula (3.6),
the corresponding control (3.8) provides the desired properties as it eliminates u−

on Ω1 ∪ Ω2 ∪ · · · ∪ ΩN and selectively allows the sound to propagate between the
subdomains following a predetermined pattern M.

Conversely, suppose that a control g achieves the desired cancellation; see formula
(3.7). Then, g(x) = 0 for x ∈ Ω1 ∪Ω2 ∪ · · · ∪ΩN , and the output v of the control g is

v(x) =

∫
Rn\(Ω1∪Ω2∪···∪ΩN )

Ggdy

= −(u− + eTi Mv), x ∈ Ωi, i = 1, 2, . . . , N.

Consider the equation −Lw = g − f+
1 − f+

2 − · · · − f+
N . Its solution, subject to the

Sommerfeld condition at infinity (2.3a) or (2.3b), satisfies

w = −v + u+
1 + u+

2 + · · · + u+
N

= eTi (1 − M)u, x ∈ Ωi, i = 1, 2, . . . , N.

Since w(x) is at least C1 smooth on R
n, it satisfies the interface conditions (3.9a) and

(3.9b). Therefore, the control g(x) can be obtained by formula (3.8) applied to this
w(x), because suppf+

1 ⊂ Ω1, suppf+
2 ⊂ Ω2, . . . , suppf+

N ⊂ ΩN .

4. Generalized Calderon’s potentials. We will now show how the split be-
tween u+

1 , u
+
2 , . . . , u

+
N , and u− can be conveniently described in terms of the gener-

alized potentials and boundary projection operators of Calderon’s type. For more
detail, the reader is referred to the work of Lončarić, Ryaben’kii, and Tsynkov [13].

Consider some function u(x) that satisfies Lu = 0, where x ∈ Ωi for a given i.
Then the Green’s formula yields

(4.1) u(x) =

∫
Γi

(
u
∂G

∂n
− ∂u

∂n
G

)
dsy, x ∈ Ωi.
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Note than the direction of the normal n is fixed to always point outward from a
given domain Ωi. A generalized potential of Calderon’s type with vector density
ξΓi = (ξ0, ξ1) specified on Γi is defined by the following formula:

(4.2) PΩiξΓi(x) =

∫
Γi

(
ξ0

∂G

∂n
− ξ1G

)
dsy, x ∈ Ωi,

which is similar to (4.1) except that we do not require ahead of time that ξ0 and ξ1
in (4.2) be the boundary values of some function u that solves Lu = 0 on Ωi and its
normal derivative. With the help of (4.2), formula (4.1) can be rewritten as

u = PΩi

(
u,

∂u

∂n

) ∣∣∣∣
Γi

, x ∈ Ωi.

Next, for any sufficiently smooth function v specified on Ωi, we define its vector trace
on Γi as

(4.3) Tri v =

(
v,

∂v

∂n

)∣∣∣∣
Γi

and then introduce the boundary operator as PΓi as a combination of the potential
PΩi

of (4.2) and trace Tri of (4.3):

(4.4) PΓiξΓi
= Tri PΩiξΓi .

Note that the operator PΓi is a projection, P 2
Γi

= PΓi .
The previous construction can easily be changed from the use of surface integrals

to that of volume integrals. Given a vector density ξΓi
= (ξ0, ξ1), we take a sufficiently

smooth auxiliary function w(x) that is compactly supported near Γi and such that

(4.5) Tri w = ξΓi
.

Then, the potential (4.2) can be redefined as follows:

(4.6)

PΩi
ξΓi(x) = w(x) −

∫
Ωi

GLwdy

=

∫
Rn\Ωi

GLwdy, x ∈ Ωi.

Note that PΩiξΓi
(x) of (4.6) does not depend on the specific choice of w(x) as long as

condition (4.5) is satisfied. We can also define the exterior potential, QRn\Ωi
ξΓi

(x),
x ∈ R

n\Ωi, for the complementary domain R
n\Ωi as

(4.7)

QRn\Ωi
ξΓi

(x) =w(x) −
∫

Rn\Ωi

GLwdy

=

∫
Ωi

GLwdy, x ∈ R
n\Ωi.

The exterior projection operator QΓi will be given by

(4.8) QΓiξΓi = Tri QRn\Ωi
ξΓi .
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Combining (4.2), (4.6), and (4.7), we obtain a scalar function defined on both Ωi and
R

n\Ωi:

(4.9)

∫
Γi

(
ξ0

∂G

∂n
− ξ1G

)
dsy =

⎧⎨
⎩PΩi

ξΓi
(x), x ∈ Ωi,

−QRn\Ωi
ξΓi(x), x ∈ R

n\Ωi.

As has already been seen, we can calculate each branch of (4.9) using volumetric
integrals instead of surface integrals.

Now let u = u+
i + u−

i , where u+
i originates inside its corresponding Ωi and u−

i

originates from outside of Ωi. That is, u−
i = u− +

∑
j �=i u

+
i is the entire incoming

component for Ωi. Also denote ξΓi
= (u, ∂u

∂n )|Γi and

ξ+
Γi

=
(
u+
i ,

∂u+
i

∂n

)∣∣∣
Γi

,

ξ−Γi
=
(
u−
i ,

∂u−
i

∂n

)∣∣∣
Γi

.

According to formula (4.9) and definitions of the projections (4.4) and (4.8), we then
have

(4.10)
PΓi

ξΓi
= ξ−Γi

,

QΓiξΓi = ξ+
Γi
.

Hence the sum of the two projections is the identity PΓi+QΓi = I. Formula (4.10) ren-
ders the wave split. The space ΞΓi

of all two-dimensional vector functions ξΓi
is split

into a direct sum of two subspaces: ΞΓi
= Ξ+

Γi
⊕ Ξ−

Γi
, where Ξ−

Γi
= ImPΓi ≡ KerQΓi

contains traces of all incoming waves and Ξ+
Γi

= ImQΓi ≡ KerPΓi contains traces of
all outgoing waves. The split is done only on the boundary, and no knowledge of the
wave sources is needed. Any function ξΓi is represented as ξ−Γi

+ ξ+
Γi

, where ξ−Γi
can be

extended to Ωi and ξ+
Γi

can be extended to R
n\Ωi, as solutions of the homogeneous

equation Lu = 0. The extensions are given by the incoming and outgoing branches
of the potential:

PΩiξΓi = PΩiξ
−
Γi

= u−
i , x ∈ Ωi,

and

QRn\Ωi
ξΓi = QRn\Ωi

ξ+
Γi

= u+
i , x ∈ R

n\Ωi,

respectively. If a given ξΓi satisfies the boundary equation with projection

(4.11) PΓiξΓi = ξΓi ,

then this function is the trace of some u−
i . That is, it is extendible to Ωi as a solution

of Lu = 0. In other words, those and only those ξΓi that are traces of solutions to the
homogeneous equation Lu = 0 on Ωi satisfy the Calderon boundary equation (4.11).
A reciprocal result holds for QΓi

ξΓi
= ξΓi

.
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Having defined the potentials and projections for individual domains Ωi, we will
now extend the definitions to the entire composite domain Ω = Ω1 ∪ Ω2 ∪ · · · ∪ ΩN .
Denote Γ = Γ1 ∪ Γ2 ∪ · · · ∪ ΓN , and let ξΓ be a two-dimensional vector function on
this composite boundary. The interior branch of the potential with the density ξΓ is
defined similarly to (4.6):

PΩξΓ(x) =

∫
Rn\Ω

GLwdy, x ∈ Ω,

where w = w(x) is an auxiliary function that satisfies the interface conditions

Tr w = ξΓ ⇐⇒
{
Tri w = ξΓ

∣∣
Γi
, i = 1, 2, . . . , N

}
and the appropriate Sommerfeld condition (2.3a) or (2.3b) at infinity. Other than
that, w(x) may be arbitrary. Likewise, the exterior branch of the potential is given
by

QRn\ΩξΓ(x) =

∫
Ω

GLwdy, x ∈ R
n\Ω.

Using definition (4.7), for the exterior region R
n\Ω we can write

(4.12) QRn\ΩξΓ(x) =

N∑
i=1

QRn\Ωi
ξΓi(x) =

N∑
i=1

u+
i (x), x ∈ R

n\Ω,

whereas for the interior of Ωi, i = 1, 2, . . . , N , we have according to (4.6) and (4.7)

(4.13)

PΩξΓ(x) = PΩiξΓi(x) −
N∑
j=1
j �=i

QRn\Ωj
ξΓj (x)

= u−
i −

N∑
j=1
j �=i

u+
j (x) = u−(x), x ∈ Ωi.

In formula (4.13), u−
i denotes the entire incoming field with respect to the domain

Ωi. In other words, u−
i is composed of u− and u+

j from all Ωj except j = i.

The projections for composite domains are defined as traces of the potentials:

(4.14)
PΓξΓ = Tr PΩξΓ,

QΓξΓ = Tr QRn\ΩξΓ.

They possess the same properties as the projections built previously for individual
subdomains. Namely, PΓ + QΓ = I, and the projections render the wave split at the
interface Γ into incoming waves ξ−Γ = PΓξΓ and outgoing waves ξ+

Γ = QΓξΓ.

Now that we have defined the potentials and projections for individual subdo-
mains and for the composite domain, we can once again obtain the controls for com-
posite domains. First, we will investigate the simple case of fully eliminating the
exterior noise inside Ω = Ω1 ∪ Ω2 ∪ · · · ∪ ΩN , i.e., eliminating the entire incoming
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component of the acoustic field with respect to Ω. Our control function g = g(x) is
defined as

(4.15) g(x) = −Lw|Rn\Ω, g(x) = 0|Ω,
giving the output v = v(x) in the form

(4.16) v(x) =

⎧⎨
⎩−PΩξΓ(x), x ∈ Ω,

−w(x) + QRn\ΩξΓ(x), x ∈ R
n\Ω.

Hence we achieve the desired cancellation on Ω, because for x ∈ Ω according to (4.13)
we have v(x) = −PΩξΓ(x) = −u−(x). As for the exterior region R

n\Ω, formulae
(4.12), (4.13), and (4.16) indicate that the controls basically duplicate the output of
a given Ωi and subsequently halve it as it enters another subdomain Ωj .

Next, we will explore the operator interpretation of the selective cancellation for
individual subdomains. As before, assume that the N ×N communication matrix M
is given that determines which regions are allowed to hear one another. If the entry
mij of this matrix at the intersection of row i and column j is equal to zero, then Ωi

hears Ωj ; otherwise, if mij = 1, then Ωi does not hear Ωj . In doing so, no reciprocity
is assumed; i.e., the matrix M is not necessarily symmetric. At the first stage of
building the selective controls, we will modify the boundary trace ξΓ with the help of
the matrix M.

Let u = u(x) be the overall acoustic field from all original sources, and let ξΓ =
Tr u. Denote ξΓi

= ξΓ
∣∣
Γi

and introduce

(4.17) ξ̃Γ
def
=

⎧⎪⎪⎨
⎪⎪⎩ξ̃Γi

, i = 1, 2, . . . , N
∣∣∣ ξ̃Γi

= ξΓi
+

N∑
j=1

mij=1

Tri QRn\Ωj
ξΓj

⎫⎪⎪⎬
⎪⎪⎭ .

At the second stage, we obtain the controls g̃ according to the same formula (4.15)
as we used previously, but substituting a different auxiliary function w̃ = w̃(x). In
addition to the appropriate Sommerfeld condition (2.3a) or (2.3b) at infinity, this new
auxiliary function is supposed to satisfy an alternative interface condition at Γ:

(4.18) Tr w̃ = ξ̃Γ,

where ξ̃Γ is defined by formula (4.17). The output of the control sources g̃(x) on the
domain Ω = Ω1 ∪ . . . ∪ ΩN is given by the potential

v(x) = − PΩξ̃Γ(x) = −PΩi ξ̃Γi(x) +

N∑
j=1
j �=i

QRn\Ωj
ξ̃Γj

= − PΩi
ξΓi

(x) −
N∑
j=1

mij=1

QRn\Ωj
ξΓj

+

N∑
j=1
j �=i

QRn\Ωj
ξ̃Γj

= − u− −
N∑
j=1
j �=i

u+
j −

N∑
j=1

mij=1

u+
j +

N∑
j=1
j �=i

u+
j

= − u− −
N∑
j=1

mij=1

u+
j , x ∈ Ωi,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1604 A. W. PETERSON AND S. V. TSYNKOV

where we have taken into account that PΩi
TriQRn\Ωj

ξΓj
= QRn\Ωj

ξΓj
for x ∈ Ωi if

i �= j. Consequently, the overall field on Ω after applying the control g̃ is given by

ũ(x) = u(x) + v(x)

= u−(x) +

N∑
j=1

u+
j (x) − u−(x) −

N∑
j=1

mij=1

u+
j (x)

=
N∑
j=1

mij=0

u+
j (x), x ∈ Ωi.

In other words, the unwanted exterior noise u−(x) gets canceled out on all Ωi,
i = 1, . . . , N , as before. Moreover, the sound field on a given Ωi contains only the
contributions from those Ωj for which mij = 0, i.e., from those regions that Ωi is
allowed to hear. This is precisely the type of selective cancellation that we strived to
achieve. Note also that even though we did not formulate the results in this section
as theorems, it is clear that they are equivalent to the theorems of section 3.

5. A more realistic formulation. As of yet, we have only used the Calderon
potentials and projections of section 4 to recast the results of section 3 in a more
convenient yet equivalent operator form. However, the operator framework introduced
in section 4 will also allow us to analyze a more elaborate formulation of the problem
compared to that from section 3.

Instead of the Helmholtz equation (2.1), consider a general variable coefficient
differential (or operator) equation

(5.1) Lu = f,

where both the unknown solution u = u(x) and the given right-hand side f = f(x) are
defined on some domain Ω0 that may, but does not have to, coincide with the entire
space R

n. In the context of acoustics, (5.1) may, for example, govern the propagation
of sound through a nonhomogeneous medium, where the propagation speed depends
on the location.

A very important consideration is to define the solvability class for (5.1) on Ω0.
In most generic terms, let us require that u ∈ U , where U is a certain linear subspace
of the space of all sufficiently smooth functions on Ω0. We will assume that the
solution u = u(x) of (5.1) exists and is unique in U , provided that the right-hand side
f belongs to another appropriate class F . Note that in the context of sections 2, 3,
and 4, we had Ω0 = R

n and the class U was defined by the Sommerfeld condition
(2.3a) or (2.3b) at infinity.

Since for any f ∈ F there is a unique solution u ∈ U of (5.1), we can introduce
the inverse operator G : F �−→ U that provides the solution for a given right-hand
side:

(5.2) u = Gf, u ∈ U, f ∈ F.

Note that previously (in the context of constant coefficients) the operator G was
introduced by means of the convolution (2.4) with the fundamental solution (2.5) or
(2.6). For variable coefficients, and/or when the domain Ω0 is smaller than the entire
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space R
n, the apparatus of fundamental solutions does not apply. Yet the inverse

operator G of (5.2) is well defined. In practice, it can be computed; i.e., problem (5.1)
subject to the condition u ∈ U can be discretized on Ω0 and solved numerically.

Another very important consideration is the structure of the boundary trace that
corresponds to the new operator L of (5.1). For the Laplace and Helmholtz operators,
the vector traces on Γ are defined as traces of the solution itself and of the normal
derivative; see formula (4.3). In the general theory of Calderon’s operators (see [19]),
the traces are constructed to guarantee a key property of the potentials (4.6), (4.7) and
projections (4.4), (4.8), namely, their independence of the auxiliary function w(x) as
long as it has the correct trace, i.e., as long as the interface condition (4.5) is satisfied.
For the second order variable coefficient operators L that have the form

(5.3) Lv = ∇(p∇v) + {lower order terms}, p = p(x),

the Neumann data reduce to the standard normal derivative, and, consequently, the
previous definition of the trace (see (4.3)) applies with no change. Hereafter, we will
assume for simplicity that this is the case. This assumption does not entail a consid-
erable loss of generality because operators (5.3) cover many important applications.

Having introduced the operator equation (5.1), defined the inverse (5.2), and
identified the boundary trace Tr (4.3), we can extend all the operator constructions
of section 4 in a straightforward manner, as done in [13] for a single domain. The
only thing that will change is that every time a volumetric convolution with the
fundamental solution appears in an equation, it ought to be replaced by the operator
G of (5.2) applied to the corresponding source function. This way, we define the
generalized Calderon potentials (cf. formulae (4.6) and (4.7))

PΩiξΓi
(x) = G

{
Lw
∣∣
Rn\Ωi

}
, x ∈ Ωi,(5.4)

QRn\Ωi
ξΓi(x) = G

{
Lw
∣∣
Ωi

}
, x ∈ R

n\Ωi,(5.5)

and the boundary projection operators (cf. formulae (4.4) and (4.8))

PΓi
ξΓi

= TriPΩiξΓi ,(5.6)

QΓiξΓi = TriQRn\Ωi
ξΓi

(5.7)

for all i = 1, 2, . . . , N . Combined operators for the composite domain Ω = Ω1 ∪ Ω2 ∪
· · ·∪ΩN are also introduced similarly to section 4, according to formulae (4.12), (4.13),
and (4.14), where the individual operators are now given by (5.4)–(5.7).

The fundamental properties of the projections (5.6) and (5.7) are the same as
before. Namely, the function u ∈ U is a solution to the homogeneous equation Lu = 0
on the domain Ωi if and only if its boundary trace ξΓi = Triu satisfies the boundary
equation with projection,

(5.8) PΓiξΓi = ξΓi .

Similarly, the function u ∈ U is a solution to the homogeneous equation Lu = 0 on the
complementary domain Ω0 \ Ωi if and only if its boundary trace ξΓi = Triu satisfies
the boundary equation with projection,

(5.9) QΓi
ξΓi

= ξΓi
.
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Accordingly, if the solutions to (5.1) are interpreted as waves, then one can say that
the boundary equations with projections (5.8) and (5.9) render the wave split into
incoming and outgoing with respect to a given Ωi. If u ∈ U and Triu = ξΓi , then

ξΓi = PΓiξΓi + QΓiξΓi

def
= ξ−Γi

+ ξ+
Γi
,

where the component ξ−Γi
is the trace of the incoming field due to the sources outside

Ωi,

ξ−Γi
= Triu

−
i , Lu−

i = 0 for x ∈ Ωi,

and the component ξ+
Γi

is the trace of the outgoing field due to the sources inside Ωi,

ξ+
Γi

= Triu
+
i , Lu+

i = 0 for x ∈ R
n \ Ωi.

In doing so, the entire space ΞΓi =
{
ξΓi

}
can be represented as a direct sum of the

traces of incoming waves and those of the outgoing waves:

ΞΓi = Ξ−
Γi

⊕ Ξ+
Γi
.

The exact same results automatically extend to the operators built for the composite
domain Ω = Ω1 ∪ Ω2 ∪ · · · ∪ ΩN as well.

Moreover, all the conclusions of sections 3 and 4 regarding the active control
sources are also preserved. Namely, to cancel out the unwanted exterior sound u− on
Ω = Ω1 ∪ Ω2 ∪ · · · ∪ ΩN , we build the controls according to formula (4.15):

(5.10) g(x) = −Lw|Rn\Ω, g(x) = 0|Ω,

where the auxiliary function w = w(x) satisfies w ∈ U and Trw = Tru, and u = u(x)
is the overall acoustic field. We emphasize that in order to obtain the controls g(x) of
(5.10), we only need to know Tru at the boundary Γ = Γ1 ∪Γ2 ∪ · · · ∪ΓN . Moreover,
the coefficients of the operator L, i.e., the properties of the medium, only need to be
known outside Ω on the region where the auxiliary function w(x) �= 0. This region can
be a narrow layer outside Γ right next to it. This conclusion seems counterintuitive
at first glance, because the controls g(x) of (5.10) are supposed to eliminate the
unwanted component of the field inside Ω, and yet it seems that the properties of the
medium do not need to be known. The explanation, however, is quite simple. Both
the unwanted noise u−(x) and the output of the controls v(x) = Gg propagate across
one and the same medium, and to achieve cancellation we do not necessarily need
to know what this medium is inside Ω. Equivalently, one can think that the entire
incoming component u−(x) is canceled by the controls (5.10) right at the entry to Ω
so that it does not propagate any further; see [13, sections 4.2 and 4.3].

Active controls g̃(x) that will render the selective cancellation of sound on the
system of subdomains Ωi, i = 1, 2, . . . , N , according to a predetermined communica-
tion pattern M are also obtained with the help of formula (5.10). The only difference
is that as before, the application of this formula requires a preliminary stage. At this
preliminary stage, we construct a modified boundary trace ξ̃Γ according to formula
(4.17), where the operators QRn\Ωj

are defined by (5.5). At the final stage, we take

an auxiliary function w̃ = w̃(x) that satisfies w̃ ∈ U and Trw̃ = ξ̃Γ and substitute it
into (5.10), thus obtaining the desired selective controls g̃(x).

For more detail on the theory of generalized Calderon potentials and projections,
as well as their efficient computation by means of the method of difference potentials,
we refer the reader to the monograph [19].
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6. Conclusions. We have introduced and studied the problem of active control
of sound for composite regions. This problem is, in fact, a particular inverse source
problem for the differential equation (or system) that governs the sound field. Al-
lowing for composite domains is a key innovation proposed here as compared to our
previous work on the subject (see [13] and related references). We obtained a closed
form general solution for the control sources. This solution allows all individual sub-
domains to either communicate freely with one another or else be shielded from their
peers. In doing so, no reciprocity is assumed; i.e., for a given pair of subdomains one
may be allowed to hear the other but not necessarily vice versa.

If the controls in the composite case are built exactly as in the previously analyzed
case of simple, i.e., arcwise connected, domains, then the communications between all
subdomains is allowed. In other words, by default all subdomains hear one another. If,
however, a particular subdomain is not allowed to hear another given subdomain, then
the supplementary controls are employed prior to building the final set of controls.
The role of the supplementary controls (one can call it the predictor stage) is to
communicate the specific acoustic output of the domain not to be heard to the domain
that is not allowed to hear it. Subsequently, the final controls (corrector stage) use
these data to render the desired sound cancellation.

Moreover, the general solution requires no information on the original acoustic
sources and can be constructed based solely on the knowledge of the field quantities
at the boundaries of the subdomains. In practice, those quantities can be obtained
by measurements. In doing so, the methodology guarantees the exact volumetric
cancellation of the unwanted noise, as opposed to many other techniques available in
the literature that would only provide for a pointwise or directional cancellation, and
would not even offer an approach to selective cancellation on composite domains.

The problem is solved for a general formulation that allows the propagation of
sound across a medium with variable characteristics. In doing so, to cancel out the
outside sound on a given domain, no actual knowledge of the medium properties on
this domain is required. The explanation of this seemingly counterintuitive behavior
is simple—both the original sound and the output of the controls propagate across
one and the same medium, and for building the control sources we do not necessarily
need to know what this medium is.

It is also important to mention that for every subdomain there is a component of
the acoustic field to be canceled out and another component to be left unaffected. Yet
the quantities at the boundary that need to be measured in order to build the control
system can pertain to the overall field rather than only to its unwanted component,
and the methodology will automatically distinguish between the two. Of course, the
locations and shapes of the subdomains need to be known ahead of time.

Finally, it is clear that in the context of implementation, obtaining the continuous
data, as well as providing a continuous excitation (control sources), along the interface
Γ is not practical. Instead, the problem needs to be discretized so that only finite
arrays of individual sensors (microphones) and actuators (loudspeakers) are used. A
powerful apparatus for the analysis of discrete active shielding problems is provided by
the method of difference potentials [19]. This method offers a comprehensive finite-
difference theory, which is fully analogous to the continuous theory of Calderon’s
operators [3, 23] and in many instances even goes beyond it. As mentioned in section 1,
discrete active controls have been built, and their properties established, for various
settings; see [14, 15, 16, 18, 22, 25, 27, 28]. In particular, the case of a composite
region in the discrete framework is analyzed in [21]. A brief account of the method
of difference potentials, along with the analysis of discrete active shielding problems,
can be found in [20, Chapter 14].
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[13] J. Lončarić, V. S. Ryaben’kii, and S. V. Tsynkov, Active shielding and control of noise,
SIAM J. Appl. Math., 62 (2001), pp. 563–596.
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[16] J. Lončarić and S. V. Tsynkov, Quadratic optimization in the problems of active control of
sound, Appl. Numer. Math., 52 (2005), pp. 381–400.

[17] P. A. Nelson and S. J. Elliott, Active Control of Sound, Academic Press, San Diego, 1999.
[18] V. S. Ryaben’kii, A difference screening problem, Funct. Anal. Appl., 29 (1995), pp. 70–71.
[19] V. S. Ryaben’kii, Method of Difference Potentials and Its Applications, Springer Ser. Comput.

Math. 30, Springer-Verlag, Berlin, 2002.
[20] V. S. Ryaben’kii and S. V. Tsynkov, A Theoretical Introduction to Numerical Analysis,

Chapman & Hall/CRC, Boca Raton, FL, 2007.
[21] V. S. Ryaben’kii, S. V. Tsynkov, and S. V. Utyuzhnikov, Inverse source problem and active

shielding for composite domains, Appl. Math. Lett., 20 (2007), pp. 511–516.
[22] V. S. Ryaben’kii and S. V. Utyuzhnikov, Differential and finite-difference problems of active

shielding, Appl. Numer. Math., 57 (2007), pp. 374–382.
[23] R. T. Seeley, Singular integrals and boundary value problems, Amer. J. Math., 88 (1966),

pp. 781–809.
[24] M. O. Tokhi and S. M. Veres, eds., Active Sound and Vibration Control: Theory and

Applications, IEE Control Ser. 62, The Institution of Electrical Engineers, London, 2002.
[25] S. V. Tsynkov, On the definition of surface potentials for finite-difference operators, J. Sci.

Comput., 18 (2003), pp. 155–189.
[26] H. Van der Auweraer, M. Iadevaia, U. Emborg, and M. Gustavsson, Derivation of ex-

perimental vibro-acoustical models for ANC configuration design, AIAA Paper 97-1618,
in Proceedings of the 3rd AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, 1997,
pp. 222–234.

[27] R. I. Veizman and V. S. Ryaben’kii, Difference problems of screening and simulation, Dokl.
Akad. Nauk, 354 (1997), pp. 151–154.

[28] R. I. Veizman and V. S. Ryaben’kii, Difference simulation problems, Trans. Moscow Math.
Soc., 58 (1997), pp. 239–248.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ACTIVE CONTROL OF SOUND FOR COMPOSITE REGIONS 1609

[29] B. Widrow, D. Shur, and S. Shaffer, On adaptive inverse control, in Proceedings of the
15th IEEE Asilomar Conference on Circuits, Systems and Computers, Pacific Grove, CA,
1981, pp. 185–189.

[30] S. E. Wright and B. Vuksanovic, Active control of environmental noise, J. Sound Vibration,
190 (1996), pp. 565–585.

[31] S. E. Wright and B. Vuksanovic, Active control of environmental noise, II: Non-compact
acoustic sources, J. Sound Vibration, 202 (1997), pp. 313–359.


