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1 IntroductionThis article is concerned with techniques for building systems that learn control.We are speci�cally interested in sequential control tasks. These are tasks in whichcontrol unfolds over time through a series of control actions generated by an au-tonomous control system. In sequential control, the controller (or agent), in choos-ing a control action, must take into account not only an action's immediate e�ect,but also its impact on future states. Examples of sequential control range from thevery simple (e.g., pole balancing) to the very complex (e.g., human behavior).We are interested in learning for several reasons. First, we are interested insystems that can adapt to changing conditions and changing tasks. A system whosebehavior is completely determined ahead of time is less useful than one that canlearn a new task or adapt to changes in the environment. Also, learning can simplifydesign by relieving the developer from the burden of specifying a full controller.Instead of deriving an optimal controller by carefully analyzing a domain a priori(an impossible job in some cases), it may be more e�cient to install an initiallysuboptimal controller, which through learning is optimized.In this article we focus on the reinforcement learning paradigm. The centralconcept underlying reinforcement learning is to formulate control tasks as opti-mization problems by providing the system with state dependent payo�s (rewardsand penalties). Under this scenario, the objective of the system is to learn astate-dependent control policy that maximizes a measure of payo� received overtime. Early examples of reinforcement learning include Minsky's maze running au-tomata [26], Samuel's checker player [32], and Michie and Chamber's pole balancer[25]. Other examples include Sutton's Adaptive Heuristic Critic [37, 9], Sutton'sTemporal Di�erence Methods [38], Holland's Bucket Brigade [17], and WatkinsQ-learning [47]. More recent work addresses a wide range of issues including mod-ularity [12, 29, 24, 35, 57, 54], incremental planning [39, 49, 19], e�cient creditassignment [59, 19], intelligent exploration [18, 44], e�cient representations [27]and neural implementations [55, 34, 19].With respect to sequential control, attention has traditionally focussed on learn-ing to control Markov decision processes. Described formally in Section 2, a Markovdecision process intuitively corresponds to a control task in which at each point intime the controller has a description (or representation) of the external environ-ment which speci�es all information relevant for optimal decision-making. Thistotal information assumption is called the Markov assumption and is important fortwo reasons. First, the Markov assumption has been important to the theoreticaldevelopment of RL [47, 48, 38], since focusing on Markov decision processes hasallowed researchers to apply the classical mathematics of stochastic processes anddynamic programming. Second, existing reinforcement learning methods dependupon the Markov assumption for credit assignment and often perform badly whenthe assumption is violated. Nevertheless, there are important control problemsthat are not naturally (or easily) formulated as Markov decision processes. Thesenon-Markov tasks are commonly referred to as hidden state tasks, since the occurwhenever it is possible for a relevant piece of information to be hidden (or missing)2



from the controller's representation of the current situation.Hidden state tasks arise naturally in the context of autonomous learning robots.For example, if a robot's internal representation is de�ned solely (or largely) byits immediate sensor readings, and if there are circumstances in which the sen-sors do not provide all the information needed to uniquely identify the state ofthe environment with respect to the task, then the decision problem facing theembedded controller is non-Markov. Hidden state tasks are also a natural con-sequence of active/selective perception [7, 6, 4]. In active perception, the agenthas a degree of control over the allocation of its sensory resources (e.g., controllingvisual attention or selecting of visual processing modules). This control is usedto sense the environment in an e�cient, task-speci�c way. However, if control isnot properly maintained then the data generated by the sensors may say nothingimportant about the current state of the environment and the agent's internal rep-resentation will be ambiguous. It follows that if the agent must learn to control itssensors there will be periods of time in which the internal representation will beinadequate. Therefore the decision-task will be non-Markov.Techniques for applying reinforcement learning to non-Markov decision pro-cesses is the central focus of this article. We describe a generalized technique calledthe Consistent Representation (CR) Method that can be used to learn control insystems with active perception [50]. The principal idea underlying the CR-methodis to split control into two phases, a perceptual phase and an overt phase. Duringthe perceptual phase, the system performs sensing (or sensor con�guration) actionsin order to generate an adequate (read Markov) representation of the current exter-nal state. During the overt stage, this representation is used to select overt action;that is, actions that change the state of the external environment. Systems usingthe consistent representation method learn not only the overt actions needed toperform a task, but also the perceptual actions needed to construct an adequate,task-speci�c representation of the environment. The CR-method uni�es such re-cent algorithms as the Lion Algorithm [52], CS-QL [41], and the G-algorithm [13].However, it is limited to tasks in which the agent can identify, at each point in time,and through proper control of its sensors, the current state of the environment withrespect to the task. We refer to this limited class of tasks as adaptive perceptiontasks.Several, more general, memory-based algorithms that are not restricted to in-volving adaptive perception are also described. The simplest approach augmentsthe systems sensory inputs with a delay line to achieve a crude form of short termmemory [21]. This approach has been successful in certain speech recognition tasks[46]. Another alternative is the method of predictive distinctions [14, 21, 33, 5] Fol-lowing this approach the system learns to predict sensory inputs (or environmentalobservables) and then uses the internal state of the predictive model to drive ac-tion selection. A third approach uses a recurrent neural network in combinationwith classical reinforcement learning methods to learn a state dependent controlpolicy (and utility function) directly [21]. Each of these methods is described andanalyzed in detail.The remainder of the article is organized as follows. Section 2 provides a basic3



review of concept from reinforcement learning and the Theory of Markov decisionprocesses. Section 3 discusses sources of non-Markov processes and considers thedi�culties they cause for traditional reinforcement learning methods. Section 4presents the Consistent Representation Method as a technique for dealing withadaptive perception and reviews examples of this technique. Section 5 considersthe delay line method, the predictive distinctions method and the use of recurrentneural networks for dealing with hidden state tasks, in general. Comparisons aredrawn between approaches and preference conditions are speci�ed for each. Section6 discusses all of these methods in the broader context of scalability and conclusionsare drawn in Section 7.2 Review of Elementary ConceptsBefore getting into the details of non-Markov decision problems, the consistentrepresentation method, and techniques for dealing with hidden state, it is usefulto establish context by reviewing some of the models and techniques that are mostprevalent in the reinforcement learning literature. To this end, we now turn to abrief description of a model of agent-environment interaction that is widely used inreinforcement learning. We also review Markov decision processes and Q-learning[47], an algorithm popular in the reinforcement learning community. Unfortu-nately, a thorough review of Markov decision processes and reinforcement learningin general is beyond the scope of this article. Therefore, we focus primarily on Q-learning and the di�culties caused for it by non-Markov decision processes. Otheralgorithms found in the literature [9, 17, 55, 38] su�er a similar fate. For a morecomplete review of Markov decision processes and Q-learning, the reader may wishto consult [11] and [47]. For a review of reinforcement learning in general see [8].2.1 Modeling agent-environment interactionFigure 1 illustrates a model of agent-environment interaction that is widely used inreinforcement learning research. In this model the agent and the environment arerepresented by two synchronized �nite state automatons interacting in a discretetime cyclical process. At each point in time, the following series of events occur.1. The agent's sensory system measures properties of the environment and con-structs a description of the current state of the environment.2. Based on this internal representation, the agent's embedded controller choosesa motor command to perform.3. The motor-command is transformed through the agent's motor interface intoaction in the world.4. Based on the action issued by the agent and the current state, the environmentmakes a transition to a new state and generates a reward.5. The reward is passed back to the agent.4
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2.1.1 The EnvironmentThe automaton representing the environment is modeled as a Markov decisionprocess (also called a controllable Markov process). Formally, a Markov decisionprocess is described by the tuple (S;A; T; R), where S is a set of possible states, A isa set of possible actions, T is a state transition function, and R is a reward function.The environment at each time point occupies exactly one state from S, and acceptsat each point a single action from A. S and A are usually assumed to be discreteand �nite. The dynamics of state transitions are modeled by a transition function,T , which maps state-action pairs into new states (T : S �A! S). The transitionfunction is generally probabilistic. That is, Xt+1 = T (xt; at), where Xt+1 is therandom variable denoting the state at time t + 1, and xt and at denote the stateand action performed at time t, respectively. T is typically speci�ed in terms of aset of transition probabilities, Px;y(a), wherePx;y(a) = Prob(T (x; a) = y): (1)The rewards generated by the environment are determined by a reward function,R, which maps states into scalar-valued payo�s (rewards/penalties) (R : S ! <).In general, the reward function is also probabilistic, such that Rt = R(xt), whereRt is the random variable denoting the reward received at time t.Notice that in a MDP, the e�ects of actions (in terms of the next state andimmediate reward received) only depend upon the current state. Process modelsof this type are said to be memoryless and satisfy the Markov property. TheMarkov property is fundamental to this model of the environment since it impliesthat knowledge of the current state is precisely the information needed for optimalcontrol (that is for maximizing the reward generated over time). Thus, even thoughit may be possible to devise action-selection strategies that base their decisions uponadditional observations about the environment, these strategies cannot possiblyoutperform the best decision strategies that depend only upon knowledge of thecurrent state!2.1.2 The AgentThe agent automaton consists of three components a sensory interface, a motorinterface and an embedded controller. The sensory interface implements a mappingfrom the set of external states S to the set of possible internal representations S 0.The motor interface implements a mapping from internal motor commands A0 toexternal actions A. The embedded controller is responsible for generating controlactions. At each time step, it receives input from the sensors and generates anaction command that is interpreted by the motor interface. The controller alsoreceives rewards generated by the environment. These rewards are used as feedbackfor learning. In many cases, the sensory-motor interface between the controller andthe environment is not explicitly modeled.1 In this case, the embedded controller is1This is possible since many of these experiments occur in simulation where the boundary betweenthe \external world" and the agent's internal representation are easily blurred.6



given direct access to the state of the environment, and issues actions directly to theworld. When the sensory system is explicitly modeled (or implemented), it typicallycorresponds to a �xed set of sensors that are carefully chosen to provide preciselythe information relevant to control.2 Under these circumstances, the mappingfrom internal states to external states is functional and the decision problem facingthe embedded controller is Markov. Perceptual aliasing is said to occur when themapping from the internal state space, S 0, to the external state space, S, is notfunctional[50]. In this case, a non-Markov Decision process obtains. We shall talkabout perceptual aliasing at length in Section 3. However, for the remainder ofthis section, we shall neglect the sensory-motor interface and assume the controlleraccesses S and A directly.2.1.3 Policies and the objective of controlOne way to specify an agent's behavior is in terms of a control policy, which pre-scribes, for each state, an action to perform. Formally, a policy f is a functionfrom states to actions (f : S ! A), where f(x) denotes the action to be performedin state x.In reinforcement learning, the agent's objective is to learn a control policy thatmaximizes some measure of the total reward accumulated over time. In principle,any number of reward measures can be used, however, the most prevalent measureis one based on a discounted sum of the reward received over time. This sum iscalled the return and is de�ned for time t asreturn(t) = 1Xn=0 nrt+n (2)where , called the temporal discount factor, is a constant between 0 and 1, andrt+n is the reward received at time t + n. Because the process may be stochastic,the agent's objective is to �nd a policy the maximizes the expected return.For a �xed policy f , de�ne Vf (x), the value function for f , to be the expectedreturn, given that the process begins in state x and follows policy f thereafter. Theagent's objective is to �nd a policy, f�, that for every state maximizes the valuefunction. That is, �nd f�, such thatVf�(x) = maxf Vf(x) 8x 2 S: (3)An important property of MDPs is that f� is well de�ned and guaranteedto exist. In particular, the Optimality Theorem from dynamic programming [10]guarantees that for a discrete time, discrete state Markov decision process therealways exists a deterministic policy that is optimal. Furthermore, a policy f isoptimal if and only if it satis�es the following relationship:Qf(x; f(x)) = maxa2A (Qf(x; a)) 8x 2 S: (4)2Motor commands almost always have a one-to-one mapping to the actions in a Markov model of thetask. 7



Qf , is called the action-value function, and Qf(x; a) is de�ned to be the return theagent expects to receive given that it starts in state x, applies action a next, andthen follows policy f thereafter [10, 11]. Intuitively, Equation 4 says that a policyis optimal if and only if in each state, the policy speci�es the action that maximizesthe local \action-value." That is,f� = argmaxa2A[Qf�(x; a)] 8x 2 S; (5)and Vf�(x) = maxa2A [Qf�(x; a)] 8x 2 S: (6)For a given MDP, the set of action-values for which Equation 4 holds is unique.These values are said to de�ne the optimal action-value function Q� for the MDP.If an MDP is completely speci�ed a priori (including the transition probabilitiesand reward distributions) then dynamic programming techniques can be used tocompute an optimal policy directly [10, 30, 11]. However, because we are interestedin learning, we assume that only the state space S and set of possible actions Aare known a priori and that the statistics governing T and R are unknown. Underthese circumstances the agent cannot compute the optimal policy directly, but mustexplore its environment and learn an e�ective control policy by trial-and-error.2.2 Q-learningQ-learning is an incremental reinforcement learning method [47]. It is a good rep-resentative of reinforcement learning because it is simple, elegant, mathematicallywell founded, and widely used. For our purposes Q-learning is useful for illustrat-ing the di�culties caused by non-Markov decision problems. Also, because otherreinforcement learning algorithms use similar credit assignment techniques (namelyTD-methods [38]), an understanding of the di�culties caused by non-Markov deci-sion problems for Q-learning goes a long way toward understanding weaknesses ofother algorithms [9, 17, 56, 34]. For a detailed treatment of Q-learning see [47].In Q-learning the agent estimates the optimal action-value function directly, andthen uses it to derive a control policy using the local greedy strategy mandated byEquation 5. A simple Q-learning algorithm is shown in Figure 2. The �rst step ofthe algorithm is to initialize the agent's action-value function, Q. Q is the agent'sestimate of the optimal action-value function. If prior knowledge about the taskis available, that information may be encoded in the initial values, otherwise theinitial values can be arbitrary (e.g., uniformly zero). Next the agent's initial controlpolicy, f , is established. This is done by assigning to f(x) the action that locallymaximizes the action-value. That is,f(x) argmaxa2A[Q(x; a)]: (7)Ties are assumed to be broken arbitrarily. After initialization, the agent entersthe main control/learning cycle. First, the agent senses the current state, x. Itthen selects an action a to perform next. Most of the time, this action will be8



Q  a set of initial values for the action-value function (e.g., uniformly zero)For each x 2 S: f(x) a such that Q(x; a) = maxb2AQ(x; b),Repeat forever:1) x the current state2) Select an action a to execute that is usually consistent with fbut occasionally an alternate. For example, one might choose tofollow f with probability p and choose a random action otherwise.3) Execute action a, and let y be the next state and r be the rewardreceived.4) Update Q(x; a), the action-value estimate for the state-action pair (x; a):Q(x; a) (1� �)Q(x; a) + �[r+ U(y)]where U(y) = Q(y; f(y)).5) Update the policy f :f(x) argmaxa2A[Q(x; a)]Figure 2: A simple version of the 1-step Q-learning algorithm.the action speci�ed by its policy f(x), but occasionally the agent will choose arandom action.3 The agent executes the selected action and notes the immediatereward r and the resulting state y. The action-value estimate for state actionpair (x; a) is then updated. In particular, an estimate for Q�(x; a) is obtainedby combining the immediate reward r with a utility estimate for the next state,U(y) = maxb2A[Q(y; b)]. The sum r + U(y); (8)called a 1-step corrected estimator, is an unbiased estimator for Q�(x; a) whenQ = Q�, since, by de�nitionQ�(x; a) = E[R(x; a) + V �(T (x; a))]; (9)where V �(x) = maxa2AQ�(x; a). The 1-step estimate is combined with the oldestimate for Q(x; a) using a weighted sum:Q(x; a) (1� �)Q(x; a) + �[r + U(y)]; (10)where � is the learning rate. Finally, the agent's control policy is updated usingEquation 5, and the cycle repeats. If, in the limit, every state-action pair is tried3Occasionally choosing an action at random is a particularly simple mechanism for exploring theenvironment. Exploration is necessary to guarantee that the agent will eventually learn an optimalpolicy. For examples of more sophisticated exploration strategies see [18, 44, 39].9



in�nitely often and if the learning rate is decreases according to a proper schedule,Q-learning is guaranteed to converge to an optimal policy for any �nite Markovdecision processes [48].2.3 An ExampleAs a simple example, consider the maze task illustrated in Figure 3. In this problem,the agent, \A," is free to roam about a bounded 2-dimensional maze. It can move inone of four principle directions, left, right, up, or down, but it cannot pass throughbarriers. Actions are deterministic. The agent has longitude and latitude sensorsthat accurately locate its position in the maze. The task is to navigate to the celllabeled \G". To entice the agent to the goal, a small positive reward is generatedeach time it enters the goal cell. In other states, the agent receives no reward. Tofacilitate exploration, upon entering the goal cell the agent is teleported to a newrandom location in the maze. In this way, the temporal evolution of the processresembles a sequence of repeated trials.The state space for this task is determined by the possible values for the locationsensors. In this case, the maze size is a 10� 10, so there are a total of 100 distinctcells, 75 which are not occupied by a barrier. With a choice of four possible actionsper state, the agent must estimate a total 75 � 4 = 300 action-values. If theagent is initially ignorant of the underlying structure of the environment and theposition of the reward, then it cannot accurately estimate the optimal action-valuefunction. Under these circumstances a particularly simple approach is to initializeall action-values to zero. In this case, the agent's initial performance will be random(assuming ties are broken by choosing randomly), and useful change in the action-value function �rst occurs when the agent �rst encounters the goal state. At thatpoint, the action-value for the state-action pair that immediately proceeded thegoal state is increased. On subsequent trials, the action-values of other state-actionpairs are incrementally increased as they are found to lead to either reward statesor states of high utility. In this way, reward information is \backed up" until anaccurate estimate of the optimal action-value function is obtained and an optimalcontrol policy is learned. Figures 3b) and c) show examples of policies learned after10 and 100 trials, respectively (for � = 1:0). After 10 trials, reward informationhas been propagated to only 11 states; whereas, after 100 trials action-values innearly every state have been e�ected by the reward generated at the goal.3 Non-Markov TasksThe model depicted in Figure 1 is widely used in the reinforcement learning litera-ture and has been usefully applied to a number of simple adaptive control problems.A key assumption made by the model is that the decision problem facing the embed-ded controller is Markov. However, there are important tasks that are not naturallyformulated according to this model, and that lead more naturally to non-Markovmodels. In particular, a non-Markov decision tasks arise any time it is possible10
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for the controller to be uncertain about the state of the external environment. Inthis section, we describe two ways in which non-Markov decision problems arise inthe context of autonomous robot learning. We also describe the problems causedby non-Markov decision problems for Q-learning, in particular, and reinforcementlearning, in general.3.1 Active PerceptionActive perception refers to the idea that an intelligent agent should actively con-trol its sensors in order to sense and represent only the information that is relevantto its immediate ongoing activity. That a system's sensors should be matched toits intended control task is clear, and for relatively simple control tasks a set of�xed, matched sensors may be adequate. However, active perception di�erentiatesitself from other approaches to perceptual organization when the agent's behavioris scaled to include a variety of complex tasks that come and go over time. Inthis case the body of information relevant at any point in time changes as di�er-ent phases of the task unfolds and as the agent moves from one task to another.For example, the items of immediate interest to a boy on the playground variesdepending upon whether he is playing tag, kickball, baseball or soccer, and onwhether he is at bat, on second, or playing Center�eld. Under such diverse andtime dependent information needs, an active perception paradigm (and e�ciencyconsiderations) mandate an active approach to sensing. Human vision is an ex-ample of active perception. People e�ciently move their eyes to foveate objects ofbehavioral signi�cance and register peripheral objects with much lower resolution[58]. Similarly, work aimed at developing vision systems for robots has recentlyseen a shift toward active sensing [7, 2, 45, 6, 4]Active perception is relevant to adaptive control and reinforcement learningfor two reasons. First, agents equipped with active sensory systems pose interest-ing and important adaptive control problems. In particular, given a robot withan active sensory-motor system, can we build a controller, based on reinforcementlearning (or other techniques) that e�ectively learns to control both perception andaction. Second, adaptive control coupled with active sensing provides an opportu-nity to overcome a limitation of our previous model (Figure 1), namely, that rightfrom the beginning the agent's sensory system generates an internal representationthat uniquely identi�es the state to the environment at each point in time. Thisassumption implies that the designer of the system knows enough about the taskahead of time to identify the relevant state variables and to choose sensors (andsensing procedures) that measure them e�ciently. In a learning system with activeperception, it may be possible to equip the system with a very exible sensorysystem and have it learn to extract relevant bit of information (i.e., a dynamic,task-speci�c representation) as it simultaneously learns control.Tasks that involve active perception lead naturally to non-Markov decision prob-lems since improper control of the sensors leads to internal representations thatfail to encode information relevant for decision making. This point is illustratedschematically in Figure 4 which shows the basic structure of a system with active12
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3.2 Other kinds of hidden state tasksOf course active perception is not the source of non-Markov decision problems. Anon-Markov task arises whenever relevant information is missing from the agent'sinternal representation. If a situated system depends solely (or largely) upon itsimmediate sensory inputs for decision making, then if for any reason a relevantpiece of information is hidden from its sensors the resultant control problem isnon-Markov. Lin [23] provides a good example:Consider a packing task which involves 4 steps: open a box, put a giftinto it, close it, and seal it. An agent driven only by its current visualprecepts cannot accomplish this task, because when facing a closed boxthe agent does not know if the gift is already in the box and thereforecannot decide whether to seal or open the box.In this case occlusion of the gift by the lid prevents immediate perception of a vitalpiece of information. Hidden state tasks also arise when temporal features (suchas velocity and acceleration) are important for optimal control, but not includedin the system's primitive sensor set.3.3 E�ects on LearningThe straightforward application of reinforcement learning to non-Markov decisionproblems in almost all cases fails to yield an optimal policy, and in most casesresults in bad performance. Perceptual aliasing and the non-Markov decision prob-lems that result from it cause two problems for existing reinforcement learning.First, like the dynamic programming methods on which they are based, most ex-isting reinforcement learning algorithms aim to learn an optimal policy that isdeterministic. However, unlike Markov processes, which are guaranteed to havea deterministic optimal policy, the optimal policies for non-Markov processes arefrequently non-deterministic.4 Second, learning algorithms like Q-learning [47],AHC [37], and Bucket Brigade [17] adapt their control policies by maximizinga local evaluation function (e.g., the action-value function in Q-learning, and astate-based utility function in AHC). However, for non-Markov decision problemsaccurate estimates for local evaluation functions cannot be obtained for states thatare perceptually aliased. This leads to localized errors in the policy function. More-over, use of temporal di�erence methods [38] for temporal credit assignment spreadsestimation errors throughout the state space, thus infecting even policy actions fornon-aliased states.To illustrate these problem more concretely, let us examine the e�ects of apply-ing Q-learning to a simple non-Markov decision problem. Consider the task shownin Figure 5. In this task, the external decision problem has a state space containingeight states, S = fs0; s1; s2; s3; s4; s5; s6; gg; two actions, AE = fl; rg; and a deter-ministic transition function, shown in Figure 5a. The goal of the external task is to4That is instead of associating a single action with each state, a optimal policy involves associatingwith each state a (non-trivial) probability distribution over possible actions.14
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enter the goal state g, whereupon the agent receives a �xed reward R(g) = 5000.Non-goal states yield zero reward, R(sk) = 0 for k = 0 to 6.The optimal value function for this external Markov task, denoted V �E, is anexponentially decreasing function of the distance to the goal. That is, V �E(s) =RE(g)(d(s)�1), where d(s) is the distance (in steps) from state s to the goal. Theoptimal policy, f�E , corresponds to choosing the action that minimizes the distanceto the goal. In this case, the optimal policy requires the agent to moving right(r) at every opportunity (i.e., for all s 2 S, f�E(s) = r). Notice that the optimalsolution path for a given trial traces out a trajectory where V �E(xt) is monotonicallyincreasing in time, and that the optimal policy corresponds to performing a gradientascent of V �E. This result is illustrated in Figure 6a, which plots V �E(xt) versus timefor a trial that begins in state s0 at time t = 0 and follows the optimal trajectory tog at time t = 7. When applied directly to this problem, the Q-learning algorithmdescribed in Figure 2 can easily learn the optimal policy. However, let us introduceperceptual aliasing into the sensory mapping and see what happens.Consider the internal decision problem that results when the agent's sensory-motor system implements a perceptual mapping that is �xed, one-to-one, and ontoexcept for states s2 and s5, which gets mapped onto the same internal state, s02;5.That is, let S 0 = fs00; s01; s02;5; s03; s04; s06; g0g, where except for s02;5, s0j (and g0) repre-sents world state sj (and g). Also let the motor mapping be such that A0 = fl0; r0g,where l0 and r0 map to l and r, respectively. The transition diagram for this inter-nal decision problem is shown in Figure 5b. Notice that this decision problem isnon-Markov since the e�ects of actions are not independent of the past but dependupon the hidden, unperceived external state (namely when the internal state readss02;5). Also note that a �xed optimal policy for this task is to always apply theaction r0.1-step Q-learning cannot learn the optimal policy for this task. In particular,when the agent's policy is initialized to the optimal policy and the controller is �xedso that the system follows the optimal policy with probability p = 0:99 and choosesa random action otherwise, and the system is run for a long series trials, whichwould otherwise be adequate to learn the optimal value and action-value functions,the following is observed. First, since the value and action-value estimates (UIand QI respectively) are based on expected returns, for the state s02;5, they take onvalues somewhere between the corresponding values for s2 and s5 in the externaldecision problem. That is, V �E(s2) � UI(s02;5) � V �E(s5); (11)Q�E(s2; r) � QI(s02;5; r0) � Q�E(s5; r); (12)and Q�E(s2; l) � QI(s02;5; l0) � Q�E(s5; l): (13)In fact, the estimated action-value function does not even converge to the true sam-pled average of the returns observed. This follows since to update its action-valuefunction, the agent uses a 1-step estimator which enforces only local constraintson the values estimated. If the learning rate is gradually decreased with time, the16
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Figure 6: Plots of utility versus time as the agent traverses from state s0 at t = 0 tog at t = 7 (for  = 0:8): a) the utility for the external decision problem, V �E ; b) theutility estimates for the internal decision problem, UI , obtained by the 1-step Q-learningalgorithm. 17



s00 s01 s03 s04 s02;5 s06UI(s) 1882 2352 2352 2352 2941 5000QI(s; l0) 1506 1506 2352 1882 1882 2352QI(s; r0) 1882 2352 1882 2352 2941 5000VS(s) 1310 1638 2560 3200 3024 5000QS(s; l0) 1048 1048 1310 1638 1935 3200QS(s; r0) 1310 1638 2560 3200 3024 5000Table 1: The utility and action-value functions estimated by the 1-step Q-learning algo-rithm and the true sampled utility and action-value functions. The estimated functionsdo not match the true sampled values since they are obtained by satisfying the localconstraints imposed by the corrected 1-step estimator. The estimated utility and action-values are denoted UI and QI , respectively, and the sampled utility and action-values aredenoted VS and QS. The values shown are for  = 0:8.action-value function estimated by the agent converges to the values that satisfythe following local relationships:QI(s06; r0) = R(g0) + 0 = 5000 (14)QI(s02;5; r0) = f1[0 + UI(s06)] + f2[0 + UI(s03)] (15)QI(s04; r0) = 0 + UI(s02;5) (16)QI(s03; r0) = 0 + UI(s04) (17)QI(s01; r0) = 0 + UI(s02;5) (18)QI(s0; r0) = 0 + UI(s01) (19)QI(s06; l0) = 0 + UI(s02;5) (20)QI(s02;5; l0) = f 01[0 + UI(s04)] + f 02[0 + UI(s01)] (21)QI(s04; l0) = 0 + UI(s03) (22)QI(s03; l0) = 0 + UI(s02;5) (23)QI(s01; l0) = 0 + UI(s00) (24)QI(s00; l0) = 0 + UI(s00) (25)where UI(x) = maxa2fl0;r0gQI(x; a).In Equation 15, f1 and f2 are the fraction of times the application of r0 instate s02;5 results in the next states being s03 and s06, respectively. Similarly, inEquation 21, f 01 and f 02 are the fraction of times the application of l0 in state s02;5results in states s01 and s04, respectively. If trials always begin in state s00, thenf1 = f2 = f 01 = f 02 = 50% and the values for the utility and action-value functionswill converge on the values shown in Table 1. Also shown in the table are thesampled utility and action-values (VS and QS , respectively), obtained by actuallymeasuring and averaging the returns received over many trials (instead of using a1-step estimator). Notice that the sampled averages match the optimal values for18



the external decision task except for states s2 and s5. In this case,VS(s02;5) = 1=2V �E(s2) + 1=2V �E(s5) (26)QS(s02;5; l0) = 1=2Q�E(s2; l) + 1=2Q�E(s5; l) (27)QS(s02;5; r0) = 1=2Q�E(s2; r) + 1=2Q�E(s5; r): (28)Notice that the utility and action-values estimated by Q-learning, except forstate s6, do not match either the external or the sampled utility and action val-ues. This discrepancy arises because estimates for all the states up to s5 (i.e.,s00; s01; s02;5; s03; and s04) in the internal task are either directly or indirectly dependentupon the utility estimate for s5. However, since s2 and s5 are indistinguishable,their internal action-value estimates are constrained to be the same, and conse-quently inaccurate. These inaccurate utility estimates in turn get propagated backto the states in the state space.Another observation to make is that the utility function (either learned or mea-sured) for the internal decision problem no longer increases monotonically as thesystem traverses the optimal solution trajectory. This anomaly is shown graphi-cally in Figure 6b, which plots UI(xt) as a function of time as the system followsthe optimal trajectory from s00 to g0. The plot shows that a utility aberrationoccurs at t = 2 when the system �rst encounters s02;5. At this point, the environ-ment is in state s2 and the true expected return is V �E(s2) = 2048 (for  = 0:8).However, because s2 and s5 are indistinguishable in the internal representation,the internal decision system overestimates the expected return at t = 2. Similarly,another estimation error occurs the second time s02;5 is encountered, at t = 5 whenthe environment is in state s5. In this case, UI(s02;5) underestimates the expectedreturn.If we relax our hold on the decision policy and allow the system to adapt, we�nd that the optimal policy is unstable! Not only is the system unable to �nd theoptimal policy, it actually moves away from it. In general, the system will oscillateamong policies, never �nding a stable one. The instability can be understood byconsidering the e�ect of utility estimation errors on the policy. Recall that in Q-learning the system locally adjusts its policy in order to maximize the expectedreturn. Thus, after running the agent with a �xed policy for many trials andthen releasing it, the policy value for state s03 will be changed so that the systemtends to take actions that move it back to s02;5 instead of forward to s04 (sinceQI(s03; l0) > QI(s03; r0)). The large utility value for state s02;5 acts as an attractorfor nearby states, such as s03, and causes them to change their local policy awayfrom optimal. An intuitive way to understand the problem is to consider a localhomunculus that sits at s03 and can see the utilities of its neighbors. From hispoint of view, s02;5 looks more desirable than s04 since once the system is in s02;5it can execute r0, which often leads to s06 (one step from the goal). On the otherhand, choosing the action which leads to s04 leaves the system still three steps fromthe goal. From the homunculus' point of view, going to s02;5 is on average betterthan going to s04. What the homunculus cannot perceive (because of perceptualaliasing) is that going from s03 directly to s02;5 always returns the real external world19



to state s2, which cannot reach s6 directly. The problem is that the homunculuscannot distinguish between s2 and s5, as they are both represented by s02;5, andit erroneously makes the Markov assumption | that the e�ects of actions dependonly upon the current perceived state.Errors in the utility function are also unstable since they are based on a runningaverage of the expected returns. If, because of policy changes, s5 is rarely visited,the aberration at s2 will disappear. Unfortunately, as soon as the policy is changedso that s5 begins to be encountered more frequently, the aberration reappears, andso on. Thus, the system oscillates from policy to policy, unable to converge on astable one.4 Consistent Representation MethodsThe last few years has seen the development of several RL algorithms that dealwith active perception. The Lion Algorithm [52] learns to control visual atten-tion in a primitive deictic sensory-motor system; the CS-QL algorithm [41] learnse�cient, task-speci�c sensing trees; and the G-Algorithm [13] learns to extracttask-relevant bits from a large input vector. 5 In this section, we review each ofthese algorithms in turn. We then present the Consistent Representation Method, ageneralized approach to adaptive perception which uni�es each of these algorithms[54]. The uni�ed view summarizes the basic assumptions and limitations of thesealgorithms, and suggests new algorithms which extend or combine pieces of thebasic architecture in novel ways.4.1 The Lion AlgorithmThe Lion Algorithm was perhaps the �rst reinforcement learning algorithm specif-ically designed to address an adaptive perception task [51]. It was used to learn asimple manipulation task in a modi�ed blocks world. The distinguishing feature ofthis task is that the agent is equipped with a sensory-motor system that providesit with only partial access to the environment. To learn the task, the agent mustlearn to focus its visual attention on relevant objects and select appropriate motorcommands. The details of the task are as follows.4.1.1 The taskThe learning task is organized into a sequence of trails. On each trial, the agentis presented with a pile of blocks. A pile consists of a random number of blocks(ranging from 1 to 50) arranged in arbitrary stacks. Blocks are distinguishableonly by color; they may be red, green, or blue. Each pile contains a single greenblock. The agent's goal is simply to pick up the green block as quickly as possible.5Note that these methods di�er from supervised feature selection methods [28] that rely on thepresentation of preclassi�ed samples. The present algorithms operate without explicit supervision in thecontext of an embedded reinforcement learning task.20



If the robot achieves the goal before the trial's time limit expires it receives a �xedpositive reward, otherwise it receives no reward. The dynamics of the environmentare such that a block can be grasped only when it is uncovered and the agent's handis empty. Thus in some cases it is necessary to unstack blocks to reach the goal.In this task the e�ects of block manipulating actions are completely deterministic.What di�erentiates this task from other blocks world problems (and other rein-forcement learning tasks) is the agent's sensory-motor system. Instead of assuminga sensory system that provides a complete and objective description of every ob-ject in the scene, the system is equipped with a deictic sensory-motor system whichprovides the controller with an ability to exibly access a limited amount of infor-mation about the scene at a time [1]. In a deictic sensory-motor system, selectiveperception is implemented using markers [45, 1]. Conceptually, a marker corre-sponds to a focus of attention. In practice, markers are used to establish referenceframes for both perception and overt action. On the sensory side, placing a markeron an object in the environment, brings information about that object into view(i.e., into the internal representation). On the motor side, marker placement isused to select targets for overt manipulation. A speci�cation for the sensory-motorsystem used by the agent is given in Figure 7. This system employs two markers,called the action-frame marker and the attention-frame marker. On the sensoryside, the system generates a 20-bit input vector at each point in time. Most ofthese bits represent local, marker-speci�c information, such as the color and shapeof a marker's bound object. Other bits detect relational properties such as verticaland horizontal alignment, while others detect spatially non-speci�c properties suchas the presence or absence of red in the scene. By moving markers from object toobject the agent can multiplex a wide range of information into its relatively smallinput bit register.Listed on the right-hand side of Figure 7 are the internal motor commandssupported by the sensory-motor system. These commands are partitioned intotwo groups, those related to the action-frame marker and those related to theattention frame marker. Both groups contain commands for controlling markerplacement. These actions index objects by their primitive features (e.g., color) orby spatial relationship (e.g., top-of-stack). The action-frame marker has additionalcommands that are used for manipulating blocks. The \grasp-object-at-action-frame" command causes the system to grasp (if possible) the object marked bythe action-frame marker. Similarly, the \place-object-at-action-frame" commandcauses the system to place a held object at the location marked by the action-frame.The decision problem facing the agent's embedded controller is non-Markovsince improper placement of the system's markers fails to multiplex relevant infor-mation onto the agent's internal representation. This point is illustrated in Figure 8which shows two di�erent external world states (each corresponding to a di�erentstates in a Markov model of the task) that, because of an improper placement ofmarkers, generate the same internal representation.21
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Internal Rep:Figure 8: An Example of perceptual aliasing in the Block Stacking domain. In this case,two world states with di�erent utilities and optimal actions generate the same internalrepresentation.4.1.2 ControlTo tackle this non-Markov decision problem, the Lion algorithm adopts an ap-proach which attempts to select overt (manipulative) actions based only on theaction-values of internal states that are Markov. To accomplish this, the Lion algo-rithm breaks control into two stages. At the beginning of each control cycle a per-ceptual stage is performed. During the perceptual stage, a sequence of commandsfor moving the attention-frame marker are executed. These so-called \perceptualactions" cause a sequence of input vectors to appear in the input register. Thesevalues are temporarily bu�ered in a short term memory. Since perceptual actionsdo not change the state of the external environment, each bu�ered input corre-sponds to a representation of the current external state. If the perceptual actionsare selected with care one of these internal states will be Markov (i.e., will encodeall information relevant to selecting the optimal action). Once the perceptual stageis completed, the overt stage begins. During the overt stage an action for changingthe state of the external environment is selected. These so-called \overt actions"correspond to commands for the action-frame marker.6 To guide selection of anovert action, the Lion algorithm maintains a special action-value function which isde�ned over internal-state, overt-action pairs. This overt action-value function is6Notice that moving the action-frame marker from one object to another changes the state of theexternal environment since it changes the set of objects that can be e�ected by the grasp and placecommands. 23
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Figure 9: A graphical depiction of the Lion Algorithm. The large (super) graph depictsthe overt control cycle, where large nodes correspond to world states and arcs correspondto overt actions. The subgraphs embedded within each large node depict perceptualcycles, with nodes corresponding to internal representations of the current world stateand arcs corresponding to perceptual actions.special in that the action-values for non-Markov states are suppressed (i.e., ideallythey are equal to zero), whereas the action-values for Markov states are allowedto take on their nominal values. Given this action-value function, the Lion al-gorithm, during the overt stage, selects an overt action by simply examining theaction-values of each bu�ered internal state and choosing the action that is maxi-mal. Since non-Markov states tend to have suppressed action-values, the selectedaction tends to correspond to the maximal action from a Markov internal state.Figure 9 illustrates this two stage control cycle graphically.4.1.3 LearningA special learning rule is used to learn the overt action-value function. The learningprocedure operates as follows. First, the internal state with the maximal action-value is identi�ed as the Lion. The action-value for this state is updated accordingto the standard rule for 1-step Q-learning (viz. Equation 10). Next, the error termin the updating rule for the Lion state is used to update the action-values for theremaining bu�ered states. This is done so that once an accurate action-value islearned for a Markov state, further changes in the action-values for non-Markovstates cease. Finally, each bu�ered state is tested to see if it is non-Markov. If astate tests positive, its action-value is reset to zero.A very simple procedure is used to identify potentially non-Markov states. Therule simply examines the sign of the error term in the 1-step Q-learning rule (thatis, the sign of the di�erence between a state's current action-value and the action-value estimate constructed after a one step delay). If all action-values are initially24



zero, the task is deterministic, and all rewards are positive, then non-Markov states,due to perceptual aliasing, tend to regularly overestimate their action-values (i.e.,show a negative error), whereas Markov states tend to monotonically approach theoptimal action-value from below (i.e., positive error only). Therefore, non-Markovstates can be detected by monitoring the sign in the estimation error.7The learning rule for the perceptual stage is much simpler. For perceptual con-trol a perceptual action-value function is estimated over internal-state, perceptual-action pairs. During the perceptual stage, perceptual actions are selected by choos-ing the action that maximizes the action-value for the current input bit vector(internal state). The perceptual action-value function is updated within the per-ceptual stage, using the standard 1-step Q-learning rule except that the overt utilityof the internal state is also accounted for. Since non-Markov states tend to havesuppressed overt action-values, perceptual actions that tend to lead to Markov in-ternal states tend to have higher action-values than those that do not. (See [50]for further details).4.1.4 DiscussionThe Lion algorithm is able to learn the block manipulation task described above.It learns a perceptual control strategy that focuses the attention frame marker onthe green block, and learns an overt control policy that moves the action-framemarker as needed to unstack covering blocks. Detailed experimental results can befound in [50]. Nevertheless the assumptions exploited by the Lion algorithm makeit applicable only to tasks that meet the following restrictions:1. The e�ects of actions must be deterministic;2. Only positive rewards are allowed;3. For each external state, there must exist at least one con�guration of thesensory system that generates an internal state that is Markov.4.2 CS-QLMost work in machine learning aimed at learning classi�cation tasks focuses onlyupon the predictive power of a given piece of information, and neglects to accountfor the cost of obtaining it [28, 3]. Tan recognized that to learn classi�cation proce-dures that are e�cient it is necessary for the learning algorithm to explicitly accountfor the cost of sensing. In [41] he develops two cost-sensitive learning algorithms forclassi�cation tasks: CS-ID3 and CS-IBL, respectively [41]. CS-QL, which standsfor Cost-Sensitive Q-Learning, resulted when he combined ideas for cost-sensitivelearning with reinforcement learning [40]. In CS-QL, the reinforcement learning7Subtle interactions sometimes cause Markov states to overestimate their action-values. This some-times leads to suppression of Markov states. However these states tend to bounce back from such sup-pressions and eventually stabilize. For a detailed discussion of this technique for detecting non-Markovstates see [50] and [41]. 25



agent not only learns the overt actions needed to perform a task, but also learns ane�cient procedure for classifying the current state of the environment with respectto the task.CS-QL and the Lion algorithm share the same basic control cycle. That is,in CS-QL control is decomposed into a two stage process of sensing (perceptualcontrol) and action (overt control). However, the sensing model used in CS-QLis considerably di�erent. Instead of using a deictic sensory-motor system, CS-QLadopts a sensing model in which the agent is equipped with a set of atomic sensingtests. Each sensing test provides a speci�c piece of information about the externalenvironment.8 Also, instead of learning a perceptual control policy, as in the lionalgorithm, CS-QL constructs a classi�cation tree, where internal nodes correspondto sensing operations, branches correspond to test results, and leaves correspond tothe states in the agent's internal representation. In CS-QL, the agent has learnedan adequate classi�cation tree when every leaf in the tree is Markov; that is, wheneach leaf represents a unique state in a Markov model of the task.The classi�cation tree is learned incrementally. Initially, the tree consists of asingle root node. As non-Markov leaves are detected, they are expanded (convertedto internal nodes) by attaching sensing operations to them. The new leaf nodes thatresult introduce new distinctions into the representations. The tree is expandeduntil a Markov representation is achieved.When expanding a node, CS-QL simply selects the least expensive sensing oper-ation, among those that remain, to attach to the target leaf. This heuristic favoringlow-cost tests tends to explore inexpensive sensing procedures �rst, but may notalways generate the most e�cient trees. By incorporating a more sophisticatedselection method that accounts for both cost and the discriminatory power of eachsensing test (See the G-algorithm below) more e�cient classi�cation trees shouldresult. To detect non-Markov leafs, CS-QL uses the same overestimation principleemployed by the Lion algorithm. Thus, CS-QL is also limited to deterministicdomains.CS-QL has been demonstrated successfully in a simulated robot navigation tasksimilar to the one shown in Figure 3. However, unlike other navigation tasks studiedin reinforcement learning (e.g., [39, 53, 19]), the robot is not automatically providedwith knowledge of its current position. Instead, it must employ its sensors to gatherinformation about its local surround and deduce its position from the surroundinggeographic structure. The robot's sensing operations allow it to detect properties(e.g., empty, barrier, cup) of nearby cells in the maze. The cost of sensing a cellis assumed to be proportional to its distance from the robot. By accumulatingfeatures from nearby cells the system can successfully identify its position withingthe maze. An example of a classi�cation tree learned by CS-QL, along with severalstate descriptors are shown in Figure 10.8Note, tests are atomic in that they cannot be composed in any meaningful way.26
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4.3 The G-AlgorithmThe G-algorithm is a third technique developed to address a kind of adaptiveperception task. However, unlike the Lion algorithm and CS-QL, its developmentwas not speci�cally motivated by the desire to minimize the cost of sensing orby the need to control an active sensory system. Instead the G-algorithm wasdeveloped to mitigate problems caused by the availability of too much information.In particular, when Chapman and Kaelbling tried to apply Q-learning to learn asimple align-and-shoot subtask in the context of a more general video-game domain(called Amazon), they found the the learning system was being overwhelmed bythe shear volume of information generated by the sensory system. The subtaskinvolves aligning the agent with a target, orienting to it, and �ring a weapon. Ateach point in time, the agent's sensory system generates 100 bits of input. Usingall this information results in an internal state space containing 2100 states. Mostof the bits in the input are irrelevant to this speci�c task and just interfere withlearning by introducing unnecessary distinctions in the internal representation. Onthe other hand, the bits that are speci�cally relevant are not necessarily knownahead of time and at other stages of the game, the \irrelevant bits" are vitallyimportant. The G-algorithm was developed to learn a control policy which couldgeneralization over irrelevant information in input.The G-algorithm works by identifying bits in the input vector that are signi�-cant/important to control. It is very similar to CS-QL in that both incrementallygrow classi�cation trees. That is, both start with an single root node (i.e., assum-ing no information is relevant), then construct a tree-structure classi�cation circuitby recursively splitting nodes based on the values of sensory inputs. In CS-QL,the information used to split nodes in the tree corresponds to the results of sensingacts (or tests), in the G-algorithm nodes are split based on the values of bits inthe input. As in CS-QL, the leaves of the G-algorithm's tree de�ne the agent'sinternal state space. Unlike CS-QL, the G-algorithm does not associate a cost withsensing/reading a bit.What sets the G-algorithm apart from both CS-QL and the Lion algorithm,is the method it uses to detect non-Markov internal states. CS-QL and the Lionalgorithm both monitor the sign in estimation error to detect non-Markov states;a method that is limited to deterministic tasks only. The G-algorithm uses a muchmore general statistical test. In general, a leaf in the classi�cation tree is non-Markov if it can be shown there are bits in the input vector (that have not alreadybeen tested in traversing the tree from node-to-leaf) that are statistically relevantto predicting future rewards. To detect if a leaf is non-Markov, the G-algorithmuses the Student's T-test [36] to �nd statistically signi�cant bits. That is, overtime as the agent experiences a variety of state, and for a given bit and a give leaf,situations that are classi�ed into the leaf are divided into two blocks. One blockcorresponds to situations where the bit in question is on, the other when the bit iso�. Data about the occurrence of reward (either immediate or future) is collectedfor each block. Given these two sets of data, a Student's T-test is used to determinehow probable it is that distinct distributions gave rise to them. If after su�cient28



sampling, this probability estimate is above a threshold, the bit is deemed relevantand the leaf is split.The insight provided by the G-algorithm is to use statistical methods to test bitrelevance (and consequently detect non-Markov states). The speci�c algorithm islimited in that the T-test assumes that the underlying distributions being comparedare Gaussian. This is clearly not the case in general, since reward distributions canbe arbitrary. However, this problem can be mitigated by comparing distributions ofcumulative rewards which (via the central limit theorem) tend toward normality asthe number summed increases. Also, the G-algorithm is not guaranteed to detectbits that are relevant in higher order pairings. A bit's relevance must be apparentin isolation. Finally, additional memory and sensing is required to gather statisticsfor relevance testing. Nevertheless these di�culties and limitations seem to be aminor price to pay for a method that extends to stochastic domains.The G-algorithm was successfully demonstrated on the orient-and-shoot task.In particular, it was found to signi�cantly outperform an alternative approach thatused error backpropagation in a neural network. See [13] for details and a discussionof some di�culties they did encounter.4.4 The Consistent Representation MethodWhile the algorithms described above vary considerably in their detail, they allshare the same basic approach. We refer to this common framework as the Con-sistent Representation (CR) Method.9 The key features of the CR-method are:1. At each time step, control is partitioned into two stages: a perceptual stagefollowed by an action (or overt) stage.2. The perceptual stage aims to generate an internal representation that isMarkov.3. The action stage generates (external) state modifying actions in an e�ort tomaximize cumulative reward4. Learning occurs in both control stages. For the action-stage, traditional rein-forcement learning techniques are used. These techniques impose a Markovconstraint on the internal state space. This constraint, in turn, drives adapta-tion in the perceptual stage in that the perceptual stage constantly monitorsthe internal representation for non-Markov states. When one is found, theperceptual process is modi�ed to eliminate it.5. It is assumed that the external state can always be identi�ed from immediatesensory inputs.9The term Consistent Representation is derived from the fact that it is not strictly necessary for theinternal state space to be absolutely Markov. In particular, it is su�cient for each state to be Markov withrespect to predicting future rewards (but not necessarily future states). This slightly weaker conceptof being \partially Markov" or \Markov with respect to reward" has been associated with the term\consistent". See [50] for a further discussion of this distinction.29



Figure 11 illustrates an architectural embodiment of the CR-method. The ma-jor components include: a selective sensory-motor interface, a perception module,a controller module, and a representation monitor. The line from the perceptionmodule to the sensory-motor interface represents perceptual control (or selection)acts. The line from the controller module to the sensory-motor interface representsovert acts. Both the controller and the perceptual modules are adaptive. Rewardfrom the environment is received by both the controller and the representation mon-itor. The representation monitor detects non-Markov states and provides feedbackto the perception module.The correspondence between the components of this architecture and each of theprevious algorithms is as follows. The Lion algorithm assumes a deictic sensory-motor system which includes commands for moving perceptual (or attentional)markers; CS-QL assumes a sensory-motor interface that consists of a set of dis-crete sensing acts; and the G-algorithm assumes a binary input vector from whichindividual bits are selected. The identi�cation procedure implemented in the per-ception module takes the form of a \perceptual policy" in the Lion algorithm, andthe form of a binary classi�cation tree in CS-QL and the G-algorithm. The task-speci�c internal representation generated by the Lion algorithms corresponds to asubset of input bit vectors; while in CS-QL and the G-algorithm it is de�ned bythe leaves of a classi�cation tree. The Lion, CS-QL, and G-algorithm all use a formof Q-learning for overt control. For representation monitoring, both the Lion andCS-QL algorithm use an overestimation technique, while the G-algorithm relies ona more general statistical method.10Relating the Lion, CS-QL and G-algorithms in the common framework of theCR-method is useful for two reasons. First, it promotes cross-fertilization of ideasbetween speci�c algorithms. For instance, the statistical methods used by theG-algorithms can be incorporated into Lion and CS-QL to yield algorithms thatfunction in stochastic domains. Second, the structure provided by the CR-methodhighlights shared assumptions and limitations, and it suggests extensions to over-come them. In particular, a fundamental assumption made by all these algorithmsis that all external states can be identi�ed at each point in time from immediatesensor inputs. This assumption makes these techniques inappropriate for manyinteresting tasks that require memory to keep track of information that for onereason or another has become perceptually inaccessible. These more general hid-den state tasks and several memory-based approaches to them are the subject ofthe next section.10A version of the Lion algorithm has also been developed where feedback from an external supervisoris used to detect non-Markov states. This external supervision dramatically improves both perceptualand overt learning [50]. 30
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Figure 11: The basic architecture of a system using the Consistent RepresentationMethod. Control is accomplished in two stages: a perceptual stage, followed by anovert stage. The goal of the perceptual stage is to generate a Markov, task-dependentinternal state space. The goal of overt control is to maximize future discounted reward.Both control stages are adaptive. Standard reinforcement learning algorithms can beused for overt learning, while perceptual learning is driven by feedback generated by arepresentation analysis module, which monitors the internal state space for non-Markovstates. 31



5 Memory-Based MethodsOne obvious approach to dealing with inadequate perception and non-Markov de-cision problems is to to allow the agent to have a memory of its past. This memorycan help the agent identify hidden states, since it can use di�erences in memorytraces to distinguish situations that based on immediate perception appear iden-tical. The problem is: given a huge volume of information available about thepast, how should the agent decide what to remember, how to encode it, and howto use it. There are two approaches to this problem that have been discussed inthe literature. In one approach the agent keeps a sliding window of its history,in the other approach the agent builds a state-dependent predictive model of en-vironmental observables [33, 43, 5, 14, 23]. In addition to these two approaches,this section describes a new third approach, which learns a history-sensitive controlpolicy directly from reinforcement.5.1 Three Memory ArchitecturesFigure 12 depicts three memory architectures for reinforcement learning in non-Markov domains. In all three architectures a neural network (Q-net) is trainedusing temporal di�erence methods to incrementally learn an action-value function(Q-function).In the window-Q architecture, instead of relying only upon immediate sensoryinputs (or sensations) to de�ne its internal representation, this architecture uses itsimmediate sensations, the sensations for the N most recent time steps, and the Nmost recent actions to represent its current state. In other words, the window-Qarchitecture allows direct access to the information in the past through a slidingwindow. N is called the window size. The window-Q architecture is simple andstraightforward. However, to use this architecture one must choose a window size,which may be di�cult to do in advance. On the one hand, if the selected windowsize is too small, the internal representation may not be su�cient to de�ne a statespace that is Markov. On the other hand, an em input generalization problem mayarise if the window size is chosen to be too large, or if the window must necessarilybe large to capture relevant information that is sparsely distributed in time. Underthese circumstances excessive amounts of training may be required before the neuralnetwork can accurately learn the action-value function and generalize over theirrelevant inputs. In spite of these problems, the window-Q architecture is worthyof study, since 1) this kind of time-delayed neural network ahs been found to beuseful in speech recognition tasks [46], and 2) the architecture can be used toestablish a baseline for comparing other methods.The window-Q architecture is sort of a brute force approach to using memory.An alternative is to distill a (small) set of contextual features out of the large volumeof information about the past. This historical context together with the agent'scurrent sensory inputs can then be used to de�ne its internal representation. If thecontext features are constructed correctly then the resultant internal state spacewill be Markov and standard RL methods be used to learn an optimal control32
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feedbackFigure 13: An Elman Network.to distinguish between di�erent external states that generate the same immediatesensory inputs.The recurrent-model architecture (Figure 12c) consists of two concurrent learn-ing components: a 1-step prediction module or simply \the model," and a Q-learning module. The prediction module is responsible for learning to predictthe immediate sensory inputs (and rewards) that result from performing an ac-tion. Because the agent's immediate inputs do not completely code the state ofthe external environment, the model must learn and use a context features to ac-curately predict the e�ects of an action on the the environment. If we assume thata accurate predictive model can be learned, and that the models context featurescan be extracted, then a Markov state space can be generated for the Q-learningcomponent by de�ning its inputs (internal state space) to be the conjunction ofthe agent's immediate sensory input and the context features. This follows since,at any given time, the next state of the environment can be completely determinedby this new state representation and the action taken.In general, the predictive model must be trained to predict not only the newsensory inputs but also the immediate reward. To see why, consider a packing taskwhich has 3 steps: put a gift into an open box, seal the box so that it cannot beopened again, place the box in the proper bucket depending on the color of giftin the box. Further, suppose a reward is given only when the box is placed inthe correct bucket. Note that the agent is never required to know the gift color inorder to predict future sensory inputs, since the box cannot be opened once sealed.Therefore a model that only predicts sensations may not have a set of contextfeatures adequate for control since it these features may not encode informationabout the color of the present.Both the recurrent-Q and recurrent-model architectures learn context featuresusing a gradient descent, least-mean-square method (e.g., error back-propagation),but they di�er in an important way. In learning the predictive model, the goal isto minimize errors between actual and predicted sensory inputs and rewards. Inthis case, the environment provides all the needed training information, which is34



consistent over time as long as the environment does not change. For recurrent Q-learning, the goal is to minimize errors between temporally successive predictionsof action- and utility-values, (see Equation 10). In this case, the error signalsare computed based partly on information from the environment and partly on theagent's current estimate of the optimal action-value function. Since this latter termchanges over time and carries little or no useful information during the early stagesof learning, these error signals may be in general weak, noisy, and even inconsistentover time. Because of this the practical viability of the recurrent-Q architecture isuncertain.Having introduced these architectures, it is worthwhile to note that combina-tions of these approaches are also possible. For example, we can combine the �rsttwo architectures: the inputs to the recurrent Q-net could include not just the cur-rent sensory input but also recent inputs and recent actions. We can also combinethe last two architectures. For instance one approach would be to share the contextunits between the model network and the Q-network such that the context featureslearned would based on prediction errors from both networks. Although there aremany possibilities, this article is only concerned with the three basic architectures.Further investigation is needed to see if other combinations will result in betterperformance than the basic versions.5.2 Network TrainingThe (non-recurrent) Q-nets of the window-Q and recurrent-model architectures canbe trained using a straightforward combination of temporal di�erence methods [38]and the connectionist back-propagation algorithm [31]. This combination has beensuccessfully applied to solve several nontrivial reinforcement learning problems [20,23, 42].Training the model of the recurrent-model architecture is slightly more com-plicated. Recurrent networks can be trained by a recurrent version of the back-propagation algorithm called back-propagation through time (BPTT) or unfolding oftime [31]. BPTT is based on the observation that any recurrent network spanningT steps can be converted into an equivalent feed-forward network by duplicatingthe network T times. Once a recurrent network is unfolded, back-propagation canbe directly applied. The Q-net of the recurrent-Q architecture can also be trainedby BPTT together with temporal di�erence. For detailed network structures andimplementation, see [23].5.3 Simulation ResultsThis subsection presents experimental results of a study in which the three memory-based architectures were applied to a series of non-Markov decision tasks. Throughthis study, we have gained insight into the behavior of these architectures, and abetter understanding of the relative merits of each and the conditions for theiruseful application. (Detailed descriptions of the simulation and results can befound in [23].) 35



3 actions: walk left, walk right & pick up
4 binary inputs: left cup, right cup, left collision & right collision
reward: 1 when the last cup is picked up

0 otherwise

2 possible initial states:

Figure 14: Task 1: A 2-cup collection task.5.3.1 Task 1: 2-Cup CollectionWe begin with a simple 2-cup collection task (Figure 14). This task requiresthe learning agent to pick up two cups located in a 1-D space. The agent has 3actions: walking right one cell, walking left one cell, and pick-up. When the agentexecutes the pick-up action, it will pick up a cup if and only if the cup is locatedat the agent's current cell. The agent's sensory input includes 4 binary bits: 2 bitsindicating if there is a cup in the immediate left or right cell, and 2 bits indicatingif the previous action results in a collision from the left or the right. An actionattempting to move the agent out of the space will cause a collision.The cups are placed far enough apart that once the agent picks up the �rst cup,it cannot see the other one. To act optimally, the agent has to somehow rememberthe location of the second cup. This task is non-trivial for several reasons: 1) theagent cannot sense a cup in front of it, 2) the agent gets no reward until bothcups are picked up, and 3) the agent often operates with no cup in sight especiallyafter picking up the �rst cup. In this experiment, each trial begins in one of twopossible initial states, as shown in Figure 14. This restriction simpli�es the taskby avoiding perceptual aliasing at the onset of a trial when no history informationis available.The three memory architectures were tested on this cup collection task. Theexperiment was repeated 5 times, and every time each successfully learned an op-timal control policy within 500 trials. (The window size N was 5.) One interestingobservation, however, was the following: The recurrent-model architecture neverlearned a perfect model within 500 trials. For instance, if the agent has not seen acup for 10 steps or more, the model normally is not able to predict the appearanceof the cup. But this imperfect model did not prevent Q-learning from learning anoptimal policy.This experiment revealed two lessons:36



� All of the three architectures worked for this simple cup-collection problem.� For the recurrent-model architecture, just a partially correct model may pro-vide su�cient context features for optimal control. This is good news, sincea perfect model is often di�cult to obtain.5.3.2 Task 2: Task 1 With Random FeaturesTask 2 is simply Task 1 with two random bits in the agent's sensation. The ran-dom bits simulate two di�cult-to-predict and irrelevant features accessible to thelearning agent. In the real world, there are often many features which are di�cultto predict but fortunately not relevant to the task to be solved. For example, pre-dicting whether it is going to rain outside might be di�cult, but it does not matterif the task is to pick up cups inside. The ability to handle di�cult-to-predict butirrelevant features is important for a learning system to be practical.The simulation results are summarized as follows: The two random features gavelittle impact on the performance of the window-Q architecture or the recurrent-Qarchitecture, while the noticeable negative impact on the recurrent-model architec-ture was observed.The system using the recurrent-model architecture exhibited streaks of optimalperformance during the course of 300 trials. However, it apparently could notstabilize on the optimal policy; it oscillated between the optimal policy and severalsub-optimal policies. It was also observed that the model tried in vain to reduce theprediction errors on the two random bits. There are two possible explanations forthe poorer performance compared with that obtained when there are no randomsensation bits. First, the model might fail to learn the context features neededto solve the task, because much of the e�ort was wasted on trying to learn topredict the random bits. Second, because the activations of the context units wereshared between the model network and the Q-net, a change to the representationof context features on the model part could simply destabilize a well-trained Q-net,if the change was signi�cant. The �rst explanation is ruled out, since the optimalpolicy indeed was found many times. To test the second explanation, we �xed themodel at some point of learning and allowed only changes to the Q-net. In such asetup, the agent found the optimal policy and indeed stuck to it.This experiment revealed two lessons:� The recurrent-Q architecture is more economic than the recurrent-model ar-chitecture in the sense that the former will not try to learn a context featureif it does not appear to be relevant to predicting action-values.� A potential problem with the recurrent-model architecture is that changes tothe representation of context features on the model part may cause instabilityon the Q-net part.5.3.3 Task 3: Task 1 With Control ErrorsNoise and uncertainty prevail in the real world. To study the capability of thesearchitectures to handle noise, we added 15% control errors to the agent's actuators,37
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xFigure 15: The pole balancing problem.so that 15% of the time the executed action would not have any e�ect on theenvironment. (The 2 random bits were removed.)In 3 out of the 5 runs, the window-Q architecture successfully found the optimalpolicy, while in the other two runs, it only found suboptimal policies. In contrast,the recurrent-Q architecture always learned the optimal policy (with little instabil-ity).The recurrent-model architecture always found the optimal policy after 500trials, but again its policy oscillated between the optimal one and some sub-optimalones due to the changing representation of context features, much as happened inTask 2. If we can �nd some way to stablize the model (for example, by graduallydecreasing the learning rate to 0 at the end), we should be able to obtain a stableand optimal policy.Two lessons have been learned from this experiment:� All of the three architectures can handle small control errors to some degree.� Among the architectures, recurrent-Q seems to scale best in the presence ofcontrol errors.5.3.4 Task 4: Pole BalancingIn the pole balancing problem, the system's objective is apply forces to the base ofa movable cart in order to balance a pole that is attached to the cart via a hinge(Figure 15). This problem has been studied widely in the reinforcement learningliterature. It is of practical interest because of its resemblance to problems inaerospace (e.g., missile guidance) and robotics (e.g., biped balance and locomotion).It is of theoretical interest because of the di�cult credit assignment problem which38



arises due to sparse reinforcement signals. In particular, in most formulations ofthe problem, the system only receives non-zero reinforcement when the pole fallsover. For instance in our simulations the system receives a penalty of �1 when thepole tilt exceeds 12 degrees from vertical.In the traditional pole balancing task, the system's sensory inputs include theposition and velocity of the cart and the angular position and velocity of the pole[37]. This information completely characterizes the state of the system and yieldscontrol problem that is Markov. In our experiments, only the cart position andpole angle are given. This yields a non-Markov decision problem, and in orderto learn an adequate control policy the system must construct contextual featuresresembling velocities for the cart and pole. In this experiment, a policy was consid-ered satisfactory whenever the pole could be balanced for over 5000 steps in eachof the 7 test trials where the pole starts with an angle of 0, �1, �2, or �3 degrees.(The maximum initial pole angle with which the pole can be balanced inde�nitelyis about 3.3 degrees.) In the training phase, pole angles and cart positions weregenerated randomly. The initial cart velocity and pole velocity are always set to 0.N = 1 was used here.The input representation used here was straightforward: one real-valued inputunit for each of the pole angle and cart position. The following table shows thenumber of trials taken by each architecture before a satisfactory policy was learned.These numbers are the average of the results from the best 5 out of 6 runs. (Asatisfactory policy was not always found within 1000 trials.).method window-Q recurrent-Q recurrent-model# of trials 206 552 247A lesson has been learned from this experiment:� While the recurrent-Q architecture was the most suitable architecture for thecup collection tasks, it was outperformed by the other two architectures forthe pole balancing task.5.4 DiscussionThe above experiments provide some insight into the performance of the three mem-ory architectures. This section considers task characteristics that may be usefulin determining when one architecture may be preferred over another. Some of thefeatures (or parameters) of a task that e�ect the applicability of these architecturesare:� Memory depth. One important problem parameter is the length of timeover which the agent must remember previous inputs in order generate aninternal representation that is Markov. For example, the memory depth forTask 1 is 2, as evidenced by the fact that the window-Q agent was able toobtain the optimal control based only on a window of size 2. The memorydepth for the pole balancing task is 1. Note that learning an optimal policymay require a larger memory depth than that needed to represent the policy.39



� Payo� delay. In cases where the payo� is zero except for the goal state, wede�ne the payo� delay of a problem to be the length of the optimal action se-quence leading to the goal. This parameter is important because it inuencesthe overall di�culty of Q-learning. As the payo� delay increases, learningan accurate Q-function becomes increasingly di�cult due to the increasingdi�culty of credit assignment.� Number of context features to be learned. In general, the more per-ceptual aliasing an agent faces, the more context features the agent has todiscover, and the more di�cult the task becomes. In general, predicting sen-sations (i.e., a model) requires more context features than predicting action-values (i.e., a Q-net), which in turn requires more context features than rep-resenting optimal policies. Consider Task 1 for example. Only two binarycontext features are required to determine the optimal actions: \is there a cupin front?" and \is the second cup on the right-hand side or left-hand side?".But a perfect Q-function requires more features such as \how many cups havebeen picked up so far?" and \how far is the second cup from here?". A perfectmodel for this task requires the same features as the perfect Q-function. Buta perfect model for Task 2 requires even more features such as \what is thecurrent state of the random number generator?", while a perfect Q-functionfor Task 2 requires no extra features.It is important to note that we do not need a perfect Q-function or a perfectmodel in order to obtain an optimal policy. A Q-function just needs to assigna value to each action in response to a given situation such that their relativevalues are in the correct order, and a model just needs to provide su�cientfeatures for constructing a good Q-function.5.4.1 Architecture CharacteristicsGiven the above problem parameters, we would like to understand which of thethree architectures is best suited to particular types of problems. Here we considerthe key advantages and disadvantages of each architecture, along with the problemparameters which inuence the importance of these characteristics.� Recurrent-model architecture. The key di�erence between this architec-ture and the recurrent-Q architecture is that its learning of context features isdriven by learning an action model rather than the Q-function. One strengthof this approach is that the agent can obtain better training data for the actionmodel than it can for the Q-function, making this learning more reliable ande�cient. In particular, training examples of the action model (<sensation,action, next-sensation, payo�> quadruples) are directly observable with eachstep the agent takes in its environment. In contrast, training examples of theQ-function (<sensation, action, utility> triples) are not directly observablesince the agent must estimate the training utility values based on its ownchanging approximation to the true action-value function.40



The second strength of this approach is that the learned features are de-pendent on the environment and independent of the reward function (eventhough the action model may be trained to predict rewards as well as sen-sations). As a result, these features can be reused if the agent has severaldi�erent reward functions, or goals, to learn to achieve.� Recurrent-Q architecture. While this architecture su�ers the relative dis-advantage that it must learn from indirectly observable training examples,it has the o�setting advantage that it need only learn those context featuresthat are relevant to the control problem. The context features needed torepresent the optimal action model are a superset of those needed to repre-sent the optimal Q-function. This is easily seen by noticing that the optimalcontrol action can in principle be computed from the action model (by usinglook ahead search). Thus, in cases where only a few features are necessary forpredicting utilities but many are needed to predict completely the next state,the number of context features that must be learned by the recurrent-Q archi-tecture can be much smaller than the number needed by the recurrent-modelarchitecture.� Window-Q architecture. The primary advantage of this architecture isthat it does not have to learn the state representation recursively (as do theother two recurrent network architectures). Recurrent networks typically takemuch longer to train than non-recurrent networks. This advantage is o�set bythe disadvantage that the history information it can use are limited to thosefeatures directly observable in its �xed window which captures only a boundedhistory. In contrast, the two recurrent network approaches can in principlerepresent context features that depend on sensations that are arbitrarily deepin the agent's history.Given these competing advantages for the three architectures, one would imag-ine that each will be the preferred architecture for di�erent types of problems:� One would expect the advantage of the window-Q architecture to be greatestin tasks where the memory depths are the smallest (for example, the polebalancing task).� One would expect the recurrent-model architecture's advantage of directlyavailable training examples to be most important in tasks for which the pay-o� delay is the longest (for example, the pole balancing task). It is in thesesituations that the indirect estimation of training Q-values is most problem-atic for the recurrent-Q architecture.� One would expect the advantage of the recurrent-Q architecture | that itneed only learn those features relevant to control | to be most pronouncedin tasks where the ratio between relevant and irrelevant context features isthe lowest (for example, the cup collection task with two random features).Although the recurrent-model architecture can acquire the optimal policyas long as just the relevant features are learned, the drive to learning theirrelevant features may cause problems. First of all, representing the irrelevant41



features may use up many of the limited context units at the sacri�ce oflearning good relevant features. Secondly, as we have seen in the experiments,the recurrent-model architecture is also subject to instability due to changingrepresentation of the context features| a change which improves the modelis also likely to deteriorate the Q-function, which then needs to be re-learned.The tapped delay line scheme, which the window-Q architecture uses, has beenwidely applied to speech recognition [46] and turned out to be quite a usefultechnique. However, we do not expect it to work as well for control tasks as it doesfor speech recognition, because of an important di�erence between these tasks. Amajor task of speech recognition is to �nd the temporal structure that alreadyexists in a given sequence of speech phonemes. Whereas in reinforcement learning,the agent must look for the temporal structure generated by its own actions. Ifthe actions are generated randomly as it is often the case during early learning, itis unlikely to �nd sensible temporal structures within the action sequence so as toimprove its action selection policy.6 DiscussionIn principle, the memory-based architectures described in the previous section areapplicable to non-Markov tasks in general. This raises the question of whetheror not they might be usefully applied to adaptive perception tasks. For example,can these memory-based architectures learn to control the a deictic sensory-motorsystem similar to the one described in Figure 7? As of this writing, the questionremains open. In principle, the memory-based architectures should work. However,only experimental studies will tell for sure, and preliminary results cast a shadow ofdoubt. In particular, in [13], a neural network using backpropagation was tested onthe adaptive perception task (described in Section 4.3) in which the agent, to learne�ciently, had to select the relevant features in a 100 bit input. The G-algorithm(an instance of a CR-method) was able to learn the task, but the backpropagationnetwork could not. Apparently the neural network had di�culty dealing with thenoise introduced by the irrelevant bits in the input. Similar, kinds of di�cultiescan be expected to arise in controlling an active sensory system where the systemhas access to a tremendous volume of irrelevant information. However, to be fairit should be noted that network experiments were preliminary, and used a simpleversion of the backpropagation algorithm. More sophisticated methods, such asthose using momentum terms in the updating rule, may yield better results.It may also be possible to extend the CR-method to deal with more generalhidden state problems. One simple approach along these lines would be to extendan agent's selective sensory system to include remembered sensory-motor events.That is, instead of selecting bits of information from the current sensory input only,the system could also select bits from a memory trace of previous inputs and actions.This approach is similar to the Window-Q architecture in that a memory trace ismaintained, however it di�ers in that only a relatively small amount of informationwould be selected at each point in time. Moreover, under this scheme it might be42



possible to devise use (or reference-based) rules for updating the memory-trace ina way that would preserve relevant memories while dropping irrelevant ones.Other architectures that combine features from both the CR-method and memory-based architectures may also be very useful. For example, one problem with theCR-method as it currently stands is that the system uses no information about theprevious state of the environment when trying to identify the current state. In asense the system re-identi�es the state of the environment starting from \scratch"after each action. Knowledge of the last state and the most recent action couldconsiderably reduce the e�ort required to identify the current state, since in mostenvironments transitions between states tend to be local and predictable. Thusinstead of \rediscovering" the state after each action, the agent could merely verifythe current state, or in the worst case, identify the outcome from a limited numberof possibilities.In addition to further exploring variations on the above architectures, futurework must also assess the scalability to these algorithms. These algorithms werederived from a desire to extend reinforcement learning beyond Markov decisionproblems and to problems that involve active perception and/or hidden state. Atto some extent we have been successful. Nevertheless, the tasks we have exploredremain painfully simple compared to the scale of problems required for truly au-tonomous, intelligent behavior. A few of the issues that must be addressed toachieve scalability include:� Learning Bias: Reinforcement learning can be viewed as a kind of searchthrough the space of possible control policies. If that search can be biasedin an appropriate direction, learning can proceed much more quickly than itmight otherwise. One approach to introducing bias into a learning agent isto allow it to interact with other intelligent agents performing similar tasks.Other agents can serve as role models, advice givers, instructors, critics, andsupervisors, and in general can strongly bias an agent's learning. Simpleversions of these methods have been demonstrated in the context of rein-forcement learning and have produced signi�cant improvements in learningtime [53, 15, 22]. However, much more work is needed.� Intelligent Credit Assignment: Credit assignment is the fundamental problemin reinforcement learning: viz given that the agent has received a payo�, whichparts of the agent were responsible for generating that payo� and how shouldthe system be changed to improve performance. Most RL algorithms solve thisproblem by making incremental changes to the system over the course of many,many trials. However, this can take a long time. If additional knowledge aboutthe causal structure of the environment can be made available, more e�cientcredit assignment methods can be developed (e.g., see [59] for an example ofthis idea).� Increased State Space and Action Space Complexity: To date much of the workin reinforcement learning has been on problems that are small compared to thecontrol problems facing real robotic systems. For example, a walking robotmay require precise (continuous) information from dozens of sensors, and43



may need to control dozens for e�ectors. The combinatorics associated withsuch problems quickly overwhelm the simplest RL methods. Moreover, realproblems (such as robot walking) often su�er from a kind of severe temporalcredit assignment problem, in which control must be administered at a very�ne grain, whereas feedback for learning arrives at a relatively course grain.This delay, combined with the increased scale of multi-dimensional tasks,leads to tasks that are impractical for most existing techniques (though see[27] for promising work in this direction).� Multi-purpose Behavior: Another source of complexity arises when we con-sider agents that must coordinate their behavior in order to achieve multiplegoals. Under these circumstances, an agent's internal state space may increaseexponentially in the number of possible goals, and it is necessary to developmethods for managing this explosion carefully. (See [35, 54] for work in thisdirection).Of course there are many other issues that stand between current technology andthe development of intelligent autonomous agents, and reinforcement learning isno panacea. However, the autonomy a�orded by reinforcement learning methodsmakes them likely to play an important role. Moreover, the ubiquity of perceptualaliasing and non-Markov decision tasks in autonomous control makes these issuescentral.7 ConclusionsIntelligent control systems must deal with information limitations imposed by theirsensors. When inadequate information is available from the agent's sensors or whenthe agent must actively control its sensors in order to select relevant features, theinternal decision problem it faces is necessarily non-Markov. Learning these controltasks can be very di�cult since traditional reinforcement learning methods typicallyyield poor performance.In this article we have presented several approaches to dealing with non-Markovdecision problems. The Consistent Representation Method was proposed as anapproach to dealing with tasks that involve control/selection in an active sensorysystem. In the CR-method, control is partitioned into two phases: a perceptualcontrol phase, which aim to identify the current state of the environment; andan overt control phase, which aims to control the state of the environment. Threeinstances of this method, the Lion algorithm [52], the G-algorithm [13], and CS-QL[40], were described and examples of their uses presented. The major assumptionmade by the CR-method is that the state of the environment can be identi�ed ateach point in time by appropriately controlling/selecting aspects of sensory system.This assumption prevents it from being applied to tasks in which relevant stateinformation is temporarily hidden from view.For these tasks memory-based methods are more appropriate. Three di�er-ent memory-based architectures were described: window-Q, recurrent-model, andrecurrent-Q. The window-Q architecture uses a tapped-delay line to maintain a44
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