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Abstract

Recently, techniques based on reinforcement learning (RL) have been used to
build systems that learn to perform non-trivial sequential decision tasks. To date,
most of this work has focussed on learning tasks that can be described as Markov
decision processes (MDPs). While MDPs are useful for modeling a wide range of
control problems, there are important problems that are inherently non-Markov.
We refer to these as hidden state tasks since they arise when information relevant to
identifying the state of the environment is hidden (or missing) from the agent’s in-
ternal representation. Two important types of control problems that resist Markov
modeling are those in which 1) the system has a high degree of control over the
information collected by its sensors (e.g., as in active-vision), or 2) the system has
a limited set of sensors that do not always provide adequate information about
the current state of the environment. Not surprisingly, traditional RL algorithms,
which are based primarily upon the principles of MDPs, perform unreliably on
hidden state tasks.

This article examines several approaches to extending RL to hidden state tasks.
A generalized technique called the Consistent Representation (CR) Method is de-
scribed. This method unifies such recent approaches as the Lion algorithm, the
G-algorithm, and CS-QL; however it is restricted to a class of problems which we
call adaptive perception tasks. Several, more general, memory-based algorithms that
are not subject to this restriction are also presented. Memory-based algorithms,
though quite different in detail, share the common feature that each derives its
internal representation by combining immediate sensory inputs with internal state
which is maintained over time. The relative merits of all of these methods are
considered and conditions for their useful application are given.



1 Introduction

This article is concerned with techniques for building systems that learn control.
We are specifically interested in sequential control tasks. These are tasks in which
control unfolds over time through a series of control actions generated by an au-
tonomous control system. In sequential control, the controller (or agent), in choos-
ing a control action, must take into account not only an action’s immediate effect,
but also its impact on future states. Examples of sequential control range from the
very simple (e.g., pole balancing) to the very complex (e.g., human behavior).

We are interested in learning for several reasons. First, we are interested in
systems that can adapt to changing conditions and changing tasks. A system whose
behavior is completely determined ahead of time is less useful than one that can
learn a new task or adapt to changes in the environment. Also, learning can simplify
design by relieving the developer from the burden of specifying a full controller.
Instead of deriving an optimal controller by carefully analyzing a domain a priori
(an impossible job in some cases), it may be more efficient to install an initially
suboptimal controller, which through learning is optimized.

In this article we focus on the reinforcement learning paradigm. The central
concept underlying reinforcement learning is to formulate control tasks as opti-
mization problems by providing the system with state dependent payoffs (rewards
and penalties). Under this scenario, the objective of the system is to learn a
state-dependent control policy that maximizes a measure of payoff received over
time. Farly examples of reinforcement learning include Minsky’s maze running au-
tomata [26], Samuel’s checker player [32], and Michie and Chamber’s pole balancer
[25]. Other examples include Sutton’s Adaptive Heuristic Critic [37, 9], Sutton’s
Temporal Difference Methods [38], Holland’s Bucket Brigade [17], and Watkins
Q-learning [47]. More recent work addresses a wide range of issues including mod-
ularity [12, 29, 24, 35, 57, 54], incremental planning [39, 49, 19], efficient credit
assignment [59, 19], intelligent exploration [18, 44], efficient representations [27]
and neural implementations [55, 34, 19].

With respect to sequential control, attention has traditionally focussed on learn-
ing to control Markov decision processes. Described formally in Section 2, a Markov
decision process intuitively corresponds to a control task in which at each point in
time the controller has a description (or representation) of the external environ-
ment which specifies all information relevant for optimal decision-making. This
total information assumption is called the Markov assumption and is important for
two reasons. First, the Markov assumption has been important to the theoretical
development of RL [47, 48, 38], since focusing on Markov decision processes has
allowed researchers to apply the classical mathematics of stochastic processes and
dynamic programming. Second, existing reinforcement learning methods depend
upon the Markov assumption for credit assignment and often perform badly when
the assumption is violated. Nevertheless, there are important control problems
that are not naturally (or easily) formulated as Markov decision processes. These
non-Markov tasks are commonly referred to as hidden state tasks, since the occur
whenever it is possible for a relevant piece of information to be hidden (or missing)



from the controller’s representation of the current situation.

Hidden state tasks arise naturally in the context of autonomous learning robots.
For example, if a robot’s internal representation is defined solely (or largely) by
its immediate sensor readings, and if there are circumstances in which the sen-
sors do not provide all the information needed to uniquely identify the state of
the environment with respect to the task, then the decision problem facing the
embedded controller is non-Markov. Hidden state tasks are also a natural con-
sequence of active/selective perception [7, 6, 4]. In active perception, the agent
has a degree of control over the allocation of its sensory resources (e.g., controlling
visual attention or selecting of visual processing modules). This control is used
to sense the environment in an efficient, task-specific way. However, if control is
not properly maintained then the data generated by the sensors may say nothing
important about the current state of the environment and the agent’s internal rep-
resentation will be ambiguous. It follows that if the agent must learn to control its
sensors there will be periods of time in which the internal representation will be
inadequate. Therefore the decision-task will be non-Markov.

Techniques for applying reinforcement learning to non-Markov decision pro-
cesses is the central focus of this article. We describe a generalized technique called
the Consistent Representation (CR) Method that can be used to learn control in
systems with active perception [50]. The principal idea underlying the CR-method
is to split control into two phases, a perceptual phase and an overt phase. During
the perceptual phase, the system performs sensing (or sensor configuration) actions
in order to generate an adequate (read Markov) representation of the current exter-
nal state. During the overt stage, this representation is used to select overt action;
that is, actions that change the state of the external environment. Systems using
the consistent representation method learn not only the overt actions needed to
perform a task, but also the perceptual actions needed to construct an adequate,
task-specific representation of the environment. The CR-method unifies such re-
cent algorithms as the Lion Algorithm [52], CS-QL [41], and the G-algorithm [13].
However, it is limited to tasks in which the agent can identify, at each point in time,
and through proper control of its sensors, the current state of the environment with
respect to the task. We refer to this limited class of tasks as adaptive perception
tasks.

Several, more general, memory-based algorithms that are not restricted to in-
volving adaptive perception are also described. The simplest approach augments
the systems sensory inputs with a delay line to achieve a crude form of short term
memory [21]. This approach has been successful in certain speech recognition tasks
[46]. Another alternative is the method of predictive distinctions [14, 21, 33, 5] Fol-
lowing this approach the system learns to predict sensory inputs (or environmental
observables) and then uses the internal state of the predictive model to drive ac-
tion selection. A third approach uses a recurrent neural network in combination
with classical reinforcement learning methods to learn a state dependent control
policy (and utility function) directly [21]. Each of these methods is described and
analyzed in detail.

The remainder of the article is organized as follows. Section 2 provides a basic



review of concept from reinforcement learning and the Theory of Markov decision
processes. Section 3 discusses sources of non-Markov processes and considers the
difficulties they cause for traditional reinforcement learning methods. Section 4
presents the Consistent Representation Method as a technique for dealing with
adaptive perception and reviews examples of this technique. Section 5 considers
the delay line method, the predictive distinctions method and the use of recurrent
neural networks for dealing with hidden state tasks, in general. Comparisons are
drawn between approaches and preference conditions are specified for each. Section
6 discusses all of these methods in the broader context of scalability and conclusions
are drawn in Section 7.

2 Review of Elementary Concepts

Before getting into the details of non-Markov decision problems, the consistent
representation method, and techniques for dealing with hidden state, it is useful
to establish context by reviewing some of the models and techniques that are most
prevalent in the reinforcement learning literature. To this end, we now turn to a
brief description of a model of agent-environment interaction that is widely used in
reinforcement learning. We also review Markov decision processes and Q-learning
[47], an algorithm popular in the reinforcement learning community. Unfortu-
nately, a thorough review of Markov decision processes and reinforcement learning
in general is beyond the scope of this article. Therefore, we focus primarily on Q-
learning and the difficulties caused for it by non-Markov decision processes. Other
algorithms found in the literature [9, 17, 55, 38] suffer a similar fate. For a more
complete review of Markov decision processes and Q-learning, the reader may wish
to consult [11] and [47]. For a review of reinforcement learning in general see [8].

2.1 Modeling agent-environment interaction

Figure 1 illustrates a model of agent-environment interaction that is widely used in
reinforcement learning research. In this model the agent and the environment are
represented by two synchronized finite state automatons interacting in a discrete
time cyclical process. At each point in time, the following series of events occur.

1. The agent’s sensory system measures properties of the environment and con-
structs a description of the current state of the environment.

2. Based on this internal representation, the agent’s embedded controller chooses
a motor command to perform.

3. The motor-command is transformed through the agent’s motor interface into
action in the world.

4. Based on the action issued by the agent and the current state, the environment
makes a transition to a new state and generates a reward.

5. The reward is passed back to the agent.
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Figure 1: A simple model of agent-environment interaction. The environment is modeled
as a discrete time, discrete state Markov decision process. The agent can directly sense

the state of the environment (i.e. the state of the process) and its actions map directly
to the process model’s actions.



2.1.1 The Environment

The automaton representing the environment is modeled as a Markov decision
process (also called a controllable Markov process). Formally, a Markov decision
process is described by the tuple (5, A, T, R), where S is a set of possible states, A is
a set of possible actions, T is a state transition function, and R is a reward function.
The environment at each time point occupies exactly one state from 5, and accepts
at each point a single action from A. 5 and A are usually assumed to be discrete
and finite. The dynamics of state transitions are modeled by a transition function,
T, which maps state-action pairs into new states (7' : S X A — 5). The transition
function is generally probabilistic. That is, Xyy1 = T(2y, a;), where X1 is the
random variable denoting the state at time ¢ + 1, and 2; and a; denote the state
and action performed at time ¢, respectively. T is typically specified in terms of a
set of transition probabilities, Py ,(a), where

Py y(a) = Prob(T(z,a)=y). (1)

The rewards generated by the environment are determined by a reward function,
R, which maps states into scalar-valued payoffs (rewards/penalties) (R : S — R).
In general, the reward function is also probabilistic, such that R, = R(x;), where
R, is the random variable denoting the reward received at time 7.

Notice that in a MDP, the effects of actions (in terms of the next state and
immediate reward received) only depend upon the current state. Process models
of this type are said to be memoryless and satisfy the Markov property. The
Markov property is fundamental to this model of the environment since it implies
that knowledge of the current state is precisely the information needed for optimal
control (that is for maximizing the reward generated over time). Thus, even though
it may be possible to devise action-selection strategies that base their decisions upon
additional observations about the environment, these strategies cannot possibly
outperform the best decision strategies that depend only upon knowledge of the
current state!

2.1.2 The Agent

The agent automaton consists of three components a sensory interface, a motor
interface and an embedded controller. The sensory interface implements a mapping
from the set of external states S to the set of possible internal representations 5.
The motor interface implements a mapping from internal motor commands A’ to
external actions A. The embedded controller is responsible for generating control
actions. At each time step, it receives input from the sensors and generates an
action command that is interpreted by the motor interface. The controller also
receives rewards generated by the environment. These rewards are used as feedback
for learning. In many cases, the sensory-motor interface between the controller and
the environment is not explicitly modeled.! In this case, the embedded controller is

IThis is possible since many of these experiments occur in simulation where the boundary between
the “external world” and the agent’s internal representation are easily blurred.



given direct access to the state of the environment, and issues actions directly to the
world. When the sensory system is explicitly modeled (or implemented), it typically
corresponds to a fixed set of sensors that are carefully chosen to provide precisely
the information relevant to control.? Under these circumstances, the mapping
from internal states to external states is functional and the decision problem facing
the embedded controller is Markov. Perceptual aliasing is said to occur when the
mapping from the internal state space, S’, to the external state space, S, is not
functional[50]. In this case, a non-Markov Decision process obtains. We shall talk
about perceptual aliasing at length in Section 3. However, for the remainder of
this section, we shall neglect the sensory-motor interface and assume the controller
accesses S and A directly.

2.1.3 Policies and the objective of control

One way to specify an agent’s behavior is in terms of a control policy, which pre-
scribes, for each state, an action to perform. Formally, a policy f is a function
from states to actions (f : 5 — A), where f(z) denotes the action to be performed
in state z.

In reinforcement learning, the agent’s objective is to learn a control policy that
maximizes some measure of the total reward accumulated over time. In principle,
any number of reward measures can be used, however, the most prevalent measure
is one based on a discounted sum of the reward received over time. This sum is
called the return and is defined for time ¢ as

return(t) = Z Y ign (2)
n=0

where «, called the temporal discount factor, is a constant between 0 and 1, and
Ti4+n is the reward received at time ¢ 4+ n. Because the process may be stochastic,
the agent’s objective is to find a policy the maximizes the expected return.

For a fixed policy f, define V¢(2), the value function for f, to be the expected
return, given that the process begins in state z and follows policy f thereafter. The
agent’s objective is to find a policy, f*, that for every state maximizes the value
function. That is, find f*, such that

Vie(z) = m?XVf(x) Yo € 5. (3)

An important property of MDPs is that f* is well defined and guaranteed
to exist. In particular, the Optimality Theorem from dynamic programming [10]
guarantees that for a discrete time, discrete state Markov decision process there
always exists a deterministic policy that is optimal. Furthermore, a policy f is
optimal if and only if it satisfies the following relationship:

Q. f(2)) = max(Qy(x,a) Vo es. (4)

?Motor commands almost always have a one-to-one mapping to the actions in a Markov model of the
task.



Q s, is called the action-value function, and Q) ¢(z,a) is defined to be the return the
agent expects to receive given that it starts in state x, applies action a next, and
then follows policy f thereafter [10, 11]. Intuitively, Equation 4 says that a policy
is optimal if and only if in each state, the policy specifies the action that maximizes
the local “action-value.” That is,

f* = arg maXaeA[Qf*(xv a)] Ve €S, (5)
and
Vye(x) = max(Qye(z. ) Vo€ s. (6)

For a given MDP, the set of action-values for which Equation 4 holds is unique.
These values are said to define the optimal action-value function @* for the MDP.
If an MDP is completely specified a priori (including the transition probabilities
and reward distributions) then dynamic programming techniques can be used to
compute an optimal policy directly [10, 30, 11]. However, because we are interested
in learning, we assume that only the state space S and set of possible actions A
are known a priori and that the statistics governing 7" and R are unknown. Under
these circumstances the agent cannot compute the optimal policy directly, but must
explore its environment and learn an effective control policy by trial-and-error.

2.2 Q-learning

Q-learning is an incremental reinforcement learning method [47]. It is a good rep-
resentative of reinforcement learning because it is simple, elegant, mathematically
well founded, and widely used. For our purposes Q-learning is useful for illustrat-
ing the difficulties caused by non-Markov decision problems. Also, because other
reinforcement learning algorithms use similar credit assignment techniques (namely
TD-methods [38]), an understanding of the difficulties caused by non-Markov deci-
sion problems for Q-learning goes a long way toward understanding weaknesses of
other algorithms [9, 17, 56, 34]. For a detailed treatment of Q-learning see [47].

In Q-learning the agent estimates the optimal action-value function directly, and
then uses it to derive a control policy using the local greedy strategy mandated by
Equation 5. A simple Q-learning algorithm is shown in Figure 2. The first step of
the algorithm is to initialize the agent’s action-value function, ¢). ¢} is the agent’s
estimate of the optimal action-value function. If prior knowledge about the task
is available, that information may be encoded in the initial values, otherwise the
initial values can be arbitrary (e.g., uniformly zero). Next the agent’s initial control
policy, f, is established. This is done by assigning to f(z) the action that locally
maximizes the action-value. That is,

fz) — argmax, e, [Q(, a)]. (7)

Ties are assumed to be broken arbitrarily. After initialization, the agent enters
the main control/learning cycle. First, the agent senses the current state, x. It
then selects an action @ to perform next. Most of the time, this action will be



() — a set of initial values for the action-value function (e.g., uniformly zero)
For each € St f(z) < a such that Q(z,a) = max,cp Q(z,0),
Repeat forever:
1) @ < the current state
2) Select an action a to execute that is usually consistent with f
but occasionally an alternate. For example, one might choose to
follow f with probability p and choose a random action otherwise.
3) Execute action a, and let y be the next state and r be the reward
received.
4) Update Q(x,a), the action-value estimate for the state-action pair (z,a):
Qa.a) — (1- a)Q(z,a) + alr + yU(y)]
where U(y) = Q(y, f(y))-
5) Update the policy f:
fz) — argmax, ¢ 4[Q(z, 0)

Figure 2: A simple version of the 1-step QQ-learning algorithm.

the action specified by its policy f(z), but occasionally the agent will choose a
random action.? The agent executes the selected action and notes the immediate
reward r and the resulting state y. The action-value estimate for state action
pair (z,a) is then updated. In particular, an estimate for Q*(z,a) is obtained
by combining the immediate reward » with a utility estimate for the next state,

U(y) = maxpea[@(y,b)]. The sum

r+U(y), (8)

called a 1-step corrected estimator, is an unbiased estimator for Q*(x,a) when
Q) = @Q*, since, by definition

Q*(z,a) = E[R(z,a) + 7V (T(x,a))], (9)

where V*(2) = max,eq @*(2,a). The 1-step estimate is combined with the old
estimate for Q(x, a) using a weighted sum:

Q(z,a) — (1 - a)Q(z,a) + afr +7U(y)], (10)

where a is the learning rate. Finally, the agent’s control policy is updated using
Equation 5, and the cycle repeats. If, in the limit, every state-action pair is tried

3Qccasionally choosing an action at random is a particularly simple mechanism for exploring the
environment. Exploration is necessary to guarantee that the agent will eventually learn an optimal
policy. For examples of more sophisticated exploration strategies see [18, 44, 39].



infinitely often and if the learning rate is decreases according to a proper schedule,
Q-learning is guaranteed to converge to an optimal policy for any finite Markov
decision processes [48].

2.3 An Example

As a simple example, consider the maze task illustrated in Figure 3. In this problem,
the agent, “A.” is free to roam about a bounded 2-dimensional maze. It can move in
one of four principle directions, left, right, up, or down, but it cannot pass through
barriers. Actions are deterministic. The agent has longitude and latitude sensors
that accurately locate its position in the maze. The task is to navigate to the cell
labeled “G”. To entice the agent to the goal, a small positive reward is generated
each time it enters the goal cell. In other states, the agent receives no reward. To
facilitate exploration, upon entering the goal cell the agent is teleported to a new
random location in the maze. In this way, the temporal evolution of the process
resembles a sequence of repeated trials.

The state space for this task is determined by the possible values for the location
sensors. In this case, the maze size is a 10 x 10, so there are a total of 100 distinct
cells, 75 which are not occupied by a barrier. With a choice of four possible actions
per state, the agent must estimate a total 75 x 4 = 300 action-values. If the
agent is initially ignorant of the underlying structure of the environment and the
position of the reward, then it cannot accurately estimate the optimal action-value
function. Under these circumstances a particularly simple approach is to initialize
all action-values to zero. In this case, the agent’s initial performance will be random
(assuming ties are broken by choosing randomly), and useful change in the action-
value function first occurs when the agent first encounters the goal state. At that
point, the action-value for the state-action pair that immediately proceeded the
goal state is increased. On subsequent trials, the action-values of other state-action
pairs are incrementally increased as they are found to lead to either reward states
or states of high utility. In this way, reward information is “backed up” until an
accurate estimate of the optimal action-value function is obtained and an optimal
control policy is learned. Figures 3b) and c) show examples of policies learned after
10 and 100 trials, respectively (for a = 1.0). After 10 trials, reward information
has been propagated to only 11 states; whereas, after 100 trials action-values in
nearly every state have been effected by the reward generated at the goal.

3 Non-Markov Tasks

The model depicted in Figure 1 is widely used in the reinforcement learning litera-
ture and has been usefully applied to a number of simple adaptive control problems.
A key assumption made by the model is that the decision problem facing the embed-
ded controller is Markov. However, there are important tasks that are not naturally
formulated according to this model, and that lead more naturally to non-Markov
models. In particular, a non-Markov decision tasks arise any time it is possible

10



Figure 3: A simple reinforcement learning task: a) the maze; b) a policy learned after 10
trials; ¢) a policy after 100 trials. Filled arrows indicate cells whose action-values have
been effected by reward from the goal state.
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for the controller to be uncertain about the state of the external environment. In
this section, we describe two ways in which non-Markov decision problems arise in
the context of autonomous robot learning. We also describe the problems caused
by non-Markov decision problems for Q-learning, in particular, and reinforcement
learning, in general.

3.1 Active Perception

Active perception refers to the idea that an intelligent agent should actively con-
trol its sensors in order to sense and represent only the information that is relevant
to its immediate ongoing activity. That a system’s sensors should be matched to
its intended control task is clear, and for relatively simple control tasks a set of
fixed, matched sensors may be adequate. However, active perception differentiates
itself from other approaches to perceptual organization when the agent’s behavior
is scaled to include a variety of complex tasks that come and go over time. In
this case the body of information relevant at any point in time changes as differ-
ent phases of the task unfolds and as the agent moves from one task to another.
For example, the items of immediate interest to a boy on the playground varies
depending upon whether he is playing tag, kickball, baseball or soccer, and on
whether he is at bat, on second, or playing Centerfield. Under such diverse and
time dependent information needs, an active perception paradigm (and efficiency
considerations) mandate an active approach to sensing. Human vision is an ex-
ample of active perception. People efficiently move their eyes to foveate objects of
behavioral significance and register peripheral objects with much lower resolution
[58]. Similarly, work aimed at developing vision systems for robots has recently
seen a shift toward active sensing [7, 2, 45, 6, 4]

Active perception is relevant to adaptive control and reinforcement learning
for two reasons. First, agents equipped with active sensory systems pose interest-
ing and important adaptive control problems. In particular, given a robot with
an active sensory-motor system, can we build a controller, based on reinforcement
learning (or other techniques) that effectively learns to control both perception and
action. Second, adaptive control coupled with active sensing provides an opportu-
nity to overcome a limitation of our previous model (Figure 1), namely, that right
from the beginning the agent’s sensory system generates an internal representation
that uniquely identifies the state to the environment at each point in time. This
assumption implies that the designer of the system knows enough about the task
ahead of time to identify the relevant state variables and to choose sensors (and
sensing procedures) that measure them efficiently. In a learning system with active
perception, it may be possible to equip the system with a very flexible sensory
system and have it learn to extract relevant bit of information (i.e., a dynamic,
task-specific representation) as it simultaneously learns control.

Tasks that involve active perception lead naturally to non-Markov decision prob-
lems since improper control of the sensors leads to internal representations that
fail to encode information relevant for decision making. This point is illustrated
schematically in Figure 4 which shows the basic structure of a system with active
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Figure 4: A simple model of the structure of a system with active perception.

perception. The key feature of the diagram is the arrow that feeds from the em-
bedded controller back to the sensory system. It represents control information
(or commands) used to modulate the sensory mapping. In this case, the sensory
system can be thought of as implementing a series of sensory mappings, from states
in the external model to bits in the internal representation. The control signals
are used to select (or modify) a sensory mapping. Since the controller does not
initially know an appropriate sensing strategy it may, during the course learning,
adopt sensory mappings that neglect relevant information, a phenomenon we call
perceptual aliasing. Formally perceptual aliasing occurs whenever a state in the
internal representation maps to (or represents) two or more states in the exter-
nal Markov model of the task. Perceptual aliasing causes the embedded decision
problem to be non-Markov since, under these circumstances, it is impossible to de-
fine a set of state-based transition and reward probabilities (over the internal state
space) that accurately capture the dynamics of the external process. We define
the class of adaptive perception tasks to be those control problems in which the
agent has an active sensory system, which when properly configured can uniquely
identify each and every state in a Markov model of the external task. Moreover, we
shall assume that the sensory systems used in these tasks are such that changing
the configuration of the sensory system in no way effects the state of the external
environment.
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3.2 Other kinds of hidden state tasks

Of course active perception is not the source of non-Markov decision problems. A
non-Markov task arises whenever relevant information is missing from the agent’s
internal representation. If a situated system depends solely (or largely) upon its
immediate sensory inputs for decision making, then if for any reason a relevant
piece of information is hidden from its sensors the resultant control problem is
non-Markov. Lin [23] provides a good example:

Consider a packing task which involves 4 steps: open a box, put a gift
into it, close it, and seal it. An agent driven only by its current visual
precepts cannot accomplish this task, because when facing a closed box
the agent does not know if the gift is already in the box and therefore
cannot decide whether to seal or open the box.

In this case occlusion of the gift by the lid prevents immediate perception of a vital
piece of information. Hidden state tasks also arise when temporal features (such
as velocity and acceleration) are important for optimal control, but not included
in the system’s primitive sensor set.

3.3 Effects on Learning

The straightforward application of reinforcement learning to non-Markov decision
problems in almost all cases fails to yield an optimal policy, and in most cases
results in bad performance. Perceptual aliasing and the non-Markov decision prob-
lems that result from it cause two problems for existing reinforcement learning.
First, like the dynamic programming methods on which they are based, most ex-
isting reinforcement learning algorithms aim to learn an optimal policy that is
deterministic. However, unlike Markov processes, which are guaranteed to have
a deterministic optimal policy, the optimal policies for non-Markov processes are
frequently non-deterministic.* Second, learning algorithms like Q-learning [47],
AHC [37], and Bucket Brigade [17] adapt their control policies by maximizing
a local evaluation function (e.g., the action-value function in Q-learning, and a
state-based utility function in AHC). However, for non-Markov decision problems
accurate estimates for local evaluation functions cannot be obtained for states that
are perceptually aliased. This leads to localized errors in the policy function. More-
over, use of temporal difference methods [38] for temporal credit assignment spreads
estimation errors throughout the state space, thus infecting even policy actions for
non-aliased states.

To illustrate these problem more concretely, let us examine the effects of apply-
ing Q-learning to a simple non-Markov decision problem. Consider the task shown
in Figure 5. In this task, the external decision problem has a state space containing
eight states, S = {so, $1, S2, 83, 84, S5, S, ¢ }; two actions, Ag = {[,7}; and a deter-
ministic transition function, shown in Figure ba. The goal of the external task is to

*That is instead of associating a single action with each state, a optimal policy involves associating
with each state a (non-trivial) probability distribution over possible actions.
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a)

b)

Figure 5: An illustration of the difficulties caused by perceptual aliasing. Transition
diagrams for a simple decision task: a) the transition diagram for the external decision
problem, b) the transition diagram for the internal (or perceived) decision problem when
interpreted through a sensory-motor system with perceptual aliasing.
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enter the goal state g, whereupon the agent receives a fixed reward R(g) = 5000.
Non-goal states yield zero reward, R(s;) =0 for k£ =0 to 6.

The optimal value function for this external Markov task, denoted V}, is an
exponentially decreasing function of the distance to the goal. That is, Vj(s) =
Ri(g)y 9= where d(s) is the distance (in steps) from state s to the goal. The
optimal policy, f7, corresponds to choosing the action that minimizes the distance
to the goal. In this case, the optimal policy requires the agent to moving right
(r) at every opportunity (i.e., for all s € 5, fi(s) = r). Notice that the optimal
solution path for a given trial traces out a trajectory where V#(2¢) is monotonically
increasing in time, and that the optimal policy corresponds to performing a gradient
ascent of V. This result is illustrated in Figure 6a, which plots Vi(z¢) versus time
for a trial that begins in state sg at time ¢ = 0 and follows the optimal trajectory to
g at time t = 7. When applied directly to this problem, the Q-learning algorithm
described in Figure 2 can easily learn the optimal policy. However, let us introduce
perceptual aliasing into the sensory mapping and see what happens.

Consider the internal decision problem that results when the agent’s sensory-
motor system implements a perceptual mapping that is fixed, one-to-one, and onto
except for states s and s5, which gets mapped onto the same internal state, 5’275.
That is, let 5" = {sg, 57, 85 5, 83, 84, 85, 9'}, Where except for s5 5, " (and g') repre-
sents world state s; (and g). Also let the motor mapping be such that A" = {l',»'},
where I’ and v’ map to [ and r, respectively. The transition diagram for this inter-
nal decision problem is shown in Figure 5b. Notice that this decision problem is
non-Markov since the effects of actions are not independent of the past but depend
upon the hidden, unperceived external state (namely when the internal state reads
5’275). Also note that a fixed optimal policy for this task is to always apply the
action 1.

1-step Q-learning cannot learn the optimal policy for this task. In particular,
when the agent’s policy is initialized to the optimal policy and the controller is fixed
so that the system follows the optimal policy with probability p = 0.99 and chooses
a random action otherwise, and the system is run for a long series trials, which
would otherwise be adequate to learn the optimal value and action-value functions,
the following is observed. First, since the value and action-value estimates (U
and @ respectively) are based on expected returns, for the state 5’275, they take on
values somewhere between the corresponding values for s; and s5 in the external
decision problem. That is,

Vi(s2) < Ur(sh5) < Vi(ss), (11)
Q*E(‘S?vr) < QI(S/Z,Svrl) < Q*E(557T)7 (12)

and
Qp(s2,1) < Qr(s35. 1) < Qp(s5,1). (13)

In fact, the estimated action-value function does not even converge to the true sam-
pled average of the returns observed. This follows since to update its action-value
function, the agent uses a 1-step estimator which enforces only local constraints
on the values estimated. If the learning rate is gradually decreased with time, the
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Figure 6: Plots of utility versus time as the agent traverses from state sp at £ = 0 to
g att =7 (for v = 0.8): a) the utility for the external decision problem, V; b) the
utility estimates for the internal decision problem, U, obtained by the 1-step QQ-learning
algorithm.
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[ s [ s | 5 ] i | hs | 6 |
Ur(s) 1882 | 2352 | 2352 | 2352 | 2941 | 5000
Qr(s, ") || 1506 | 1506 | 2352 | 1882 | 1882 | 2352
Qr(s,r") || 1882 | 2352 | 1882 | 2352 | 2941 | 5000
Vs(s) 1310 | 1638 | 2560 | 3200 | 3024 | 5000
Qs(s,l') || 1048 | 1048 | 1310 | 1638 | 1935 | 3200
Qs(s,r’) || 1310 | 1638 | 2560 | 3200 | 3024 | 5000

Table 1: The utility and action-value functions estimated by the 1-step Q-learning algo-
rithm and the true sampled utility and action-value functions. The estimated functions
do not match the true sampled values since they are obtained by satisfying the local
constraints imposed by the corrected 1-step estimator. The estimated utility and action-
values are denoted Uy and (), respectively, and the sampled utility and action-values are
denoted Vs and ()s. The values shown are for v = 0.8.

action-value function estimated by the agent converges to the values that satisfy
the following local relationships:
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where Up(z) = max, ¢,y Q1(2, a).

In Equation 15, f; and f; are the fraction of times the application of r’ in
state 5’275 results in the next states being s and sf, respectively. Similarly, in
Equation 21, f{ and f; are the fraction of times the application of I’ in state s 5
results in states s| and s}, respectively. If trials always begin in state s{,, then
fi=fo= f1 = f5, = 50% and the values for the utility and action-value functions
will converge on the values shown in Table 1. Also shown in the table are the
sampled utility and action-values (Vs and Qg, respectively), obtained by actually
measuring and averaging the returns received over many trials (instead of using a
1-step estimator). Notice that the sampled averages match the optimal values for
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the external decision task except for states so and ss. In this case,

Vs(sh5) = 1/2Vi(s2) + 1/2Vi(s5) (26)
Qs(sh,5,1') = 1/2Q(s2,1) + 1/2Q(s5,1) (27)
Qs(sh5:1") = 1/2Q%(s2,7) + 1/2Q%(s5,7). (28)

Notice that the utility and action-values estimated by Q-learning, except for
state sg, do not match either the external or the sampled utility and action val-
ues. This discrepancy arises because estimates for all the states up to s5 (i.e.,
50581, 89 5,83, and sy) in the internal task are either directly or indirectly dependent
upon the utility estimate for s5. However, since sy and s5 are indistinguishable,
their internal action-value estimates are constrained to be the same, and conse-
quently inaccurate. These inaccurate utility estimates in turn get propagated back
to the states in the state space.

Another observation to make is that the utility function (either learned or mea-
sured) for the internal decision problem no longer increases monotonically as the
system traverses the optimal solution trajectory. This anomaly is shown graphi-
cally in Figure 6b, which plots Us(x¢) as a function of time as the system follows
the optimal trajectory from sj, to ¢g’. The plot shows that a utility aberration
occurs at t = 2 when the system first encounters 5’275. At this point, the environ-
ment is in state s and the true expected return is Vi(sy) = 2048 (for v = 0.8).
However, because s and s5 are indistinguishable in the internal representation,
the internal decision system overestimates the expected return at ¢ = 2. Similarly,
another estimation error occurs the second time sj 5 is encountered, at t = 5 when
the environment is in state s5. In this case, Uy(sy 5) underestimates the expected
return.

If we relax our hold on the decision policy and allow the system to adapt, we
find that the optimal policy is unstable! Not only is the system unable to find the
optimal policy, it actually moves away from it. In general, the system will oscillate
among policies, never finding a stable one. The instability can be understood by
considering the effect of utility estimation errors on the policy. Recall that in Q-
learning the system locally adjusts its policy in order to maximize the expected
return. Thus, after running the agent with a fixed policy for many trials and
then releasing it, the policy value for state s§ will be changed so that the system
tends to take actions that move it back to sj s instead of forward to sj (since
Qr(s5,l') > Qr(s3,7")). The large utility value for state s 5 acts as an attractor
for nearby states, such as s§, and causes them to change their local policy away
from optimal. An intuitive way to understand the problem is to consider a local
homunculus that sits at s; and can see the utilities of its neighbors. From his
point of view, s, 5 looks more desirable than s} since once the system is in s g
it can execute 7/, which often leads to s (one step from the goal). On the other
hand, choosing the action which leads to ) leaves the system still three steps from
the goal. From the homunculus’ point of view, going to s 5 is on average better
than going to s;. What the homunculus cannot perceive (because of perceptual
aliasing) is that going from sy directly to s} 5 always returns the real external world
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to state s, which cannot reach sg directly. The problem is that the homunculus
cannot distinguish between s, and ss5, as they are both represented by 5’275, and
it erroneously makes the Markov assumption — that the effects of actions depend
only upon the current perceived state.

Errors in the utility function are also unstable since they are based on a running
average of the expected returns. If, because of policy changes, s5 is rarely visited,
the aberration at s; will disappear. Unfortunately, as soon as the policy is changed
so that s5 begins to be encountered more frequently, the aberration reappears, and
so on. Thus, the system oscillates from policy to policy, unable to converge on a
stable one.

4 Consistent Representation Methods

The last few years has seen the development of several RL algorithms that deal
with active perception. The Lion Algorithm [52] learns to control visual atten-
tion in a primitive deictic sensory-motor system; the CS-QL algorithm [41] learns
efficient, task-specific sensing trees; and the G-Algorithm [13] learns to extract
task-relevant bits from a large input vector. ® In this section, we review each of
these algorithms in turn. We then present the Consistent Representation Method, a
generalized approach to adaptive perception which unifies each of these algorithms
[54]. The unified view summarizes the basic assumptions and limitations of these
algorithms, and suggests new algorithms which extend or combine pieces of the
basic architecture in novel ways.

4.1 The Lion Algorithm

The Lion Algorithm was perhaps the first reinforcement learning algorithm specif-
ically designed to address an adaptive perception task [51]. It was used to learn a
simple manipulation task in a modified blocks world. The distinguishing feature of
this task is that the agent is equipped with a sensory-motor system that provides
it with only partial access to the environment. To learn the task, the agent must
learn to focus its visual attention on relevant objects and select appropriate motor
commands. The details of the task are as follows.

4.1.1 The task

The learning task is organized into a sequence of trails. On each trial, the agent
is presented with a pile of blocks. A pile consists of a random number of blocks
(ranging from 1 to 50) arranged in arbitrary stacks. Blocks are distinguishable
only by color; they may be red, green, or blue. Each pile contains a single green
block. The agent’s goal is simply to pick up the green block as quickly as possible.

®Note that these methods differ from supervised feature selection methods [28] that rely on the
presentation of preclassified samples. The present algorithms operate without explicit supervision in the
context of an embedded reinforcement learning task.
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If the robot achieves the goal before the trial’s time limit expires it receives a fixed
positive reward, otherwise it receives no reward. The dynamics of the environment
are such that a block can be grasped only when it is uncovered and the agent’s hand
is empty. Thus in some cases it is necessary to unstack blocks to reach the goal.
In this task the effects of block manipulating actions are completely deterministic.

What differentiates this task from other blocks world problems (and other rein-
forcement learning tasks) is the agent’s sensory-motor system. Instead of assuming
a sensory system that provides a complete and objective description of every ob-
ject in the scene, the system is equipped with a deictic sensory-motor system which
provides the controller with an ability to flexibly access a limited amount of infor-
mation about the scene at a time [1]. In a deictic sensory-motor system, selective
perception is implemented using markers [45, 1]. Conceptually, a marker corre-
sponds to a focus of attention. In practice, markers are used to establish reference
frames for both perception and overt action. On the sensory side, placing a marker
on an object in the environment, brings information about that object into view
(i.e., into the internal representation). On the motor side, marker placement is
used to select targets for overt manipulation. A specification for the sensory-motor
system used by the agent is given in Figure 7. This system employs two markers,
called the action-frame marker and the attention-frame marker. On the sensory
side, the system generates a 20-bit input vector at each point in time. Most of
these bits represent local, marker-specific information, such as the color and shape
of a marker’s bound object. Other bits detect relational properties such as vertical
and horizontal alignment, while others detect spatially non-specific properties such
as the presence or absence of red in the scene. By moving markers from object to
object the agent can multiplex a wide range of information into its relatively small
input bit register.

Listed on the right-hand side of Figure 7 are the internal motor commands
supported by the sensory-motor system. These commands are partitioned into
two groups, those related to the action-frame marker and those related to the
attention frame marker. Both groups contain commands for controlling marker
placement. These actions index objects by their primitive features (e.g., color) or
by spatial relationship (e.g., top-of-stack). The action-frame marker has additional
commands that are used for manipulating blocks. The “grasp-object-at-action-
frame” command causes the system to grasp (if possible) the object marked by
the action-frame marker. Similarly, the “place-object-at-action-frame” command
causes the system to place a held object at the location marked by the action-frame.

The decision problem facing the agent’s embedded controller is non-Markov
since improper placement of the system’s markers fails to multiplex relevant infor-
mation onto the agent’s internal representation. This point is illustrated in Figure 8
which shows two different external world states (each corresponding to a different
states in a Markov model of the task) that, because of an improper placement of
markers, generate the same internal representation.
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Figure 7: A specification for the deictic sensory-motor system used by Meliora-II in
(Whitehead, 1991). The system has two markers, an action-frame marker and an
attention-frame marker. The system has a 20-bit input vector, 8 overt actions, and 6
perceptual actions. The values registered in the input vector and the effects of inter-
nal action commands depend upon the bindings between markers in the sensory-motor
system and objects in the environment.
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Figure 8: An Example of perceptual aliasing in the Block Stacking domain. In this case,
two world states with different utilities and optimal actions generate the same internal
representation.

4.1.2 Control

To tackle this non-Markov decision problem, the Lion algorithm adopts an ap-
proach which attempts to select overt (manipulative) actions based only on the
action-values of internal states that are Markov. To accomplish this, the Lion algo-
rithm breaks control into two stages. At the beginning of each control cycle a per-
ceptual stage is performed. During the perceptual stage, a sequence of commands
for moving the attention-frame marker are executed. These so-called “perceptual
actions” cause a sequence of input vectors to appear in the input register. These
values are temporarily buffered in a short term memory. Since perceptual actions
do not change the state of the external environment, each buffered input corre-
sponds to a representation of the current external state. If the perceptual actions
are selected with care one of these internal states will be Markov (i.e., will encode
all information relevant to selecting the optimal action). Once the perceptual stage
is completed, the overt stage begins. During the overt stage an action for changing
the state of the external environment is selected. These so-called “overt actions”
correspond to commands for the action-frame marker.® To guide selection of an
overt action, the Lion algorithm maintains a special action-value function which is
defined over internal-state, overt-action pairs. This overt action-value function is

5Notice that moving the action-frame marker from one object to another changes the state of the
external environment since it changes the set of objects that can be effected by the grasp and place
commands.
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Figure 9: A graphical depiction of the Lion Algorithm. The large (super) graph depicts
the overt control cycle, where large nodes correspond to world states and arcs correspond
to overt actions. The subgraphs embedded within each large node depict perceptual
cycles, with nodes corresponding to internal representations of the current world state
and arcs corresponding to perceptual actions.

special in that the action-values for non-Markov states are suppressed (i.e., ideally
they are equal to zero), whereas the action-values for Markov states are allowed
to take on their nominal values. Given this action-value function, the Lion al-
gorithm, during the overt stage, selects an overt action by simply examining the
action-values of each buffered internal state and choosing the action that is maxi-
mal. Since non-Markov states tend to have suppressed action-values, the selected
action tends to correspond to the maximal action from a Markov internal state.
Figure 9 illustrates this two stage control cycle graphically.

4.1.3 Learning

A special learning rule is used to learn the overt action-value function. The learning
procedure operates as follows. First, the internal state with the maximal action-
value is identified as the Lion. The action-value for this state is updated according
to the standard rule for 1-step Q-learning (viz. Equation 10). Next, the error term
in the updating rule for the Lion state is used to update the action-values for the
remaining buffered states. This is done so that once an accurate action-value is
learned for a Markov state, further changes in the action-values for non-Markov
states cease. Finally, each buffered state is tested to see if it is non-Markov. If a
state tests positive, its action-value is reset to zero.

A very simple procedure is used to identify potentially non-Markov states. The
rule simply examines the sign of the error term in the 1-step Q-learning rule (that
is, the sign of the difference between a state’s current action-value and the action-
value estimate constructed after a one step delay). If all action-values are initially
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zero, the task is deterministic, and all rewards are positive, then non-Markov states,
due to perceptual aliasing, tend to regularly overestimate their action-values (i.e.,
show a negative error), whereas Markov states tend to monotonically approach the
optimal action-value from below (i.e., positive error only). Therefore, non-Markov
states can be detected by monitoring the sign in the estimation error.”

The learning rule for the perceptual stage is much simpler. For perceptual con-
trol a perceptual action-value function is estimated over internal-state, perceptual-
action pairs. During the perceptual stage, perceptual actions are selected by choos-
ing the action that maximizes the action-value for the current input bit vector
(internal state). The perceptual action-value function is updated within the per-
ceptual stage, using the standard 1-step Q-learning rule except that the overt utility
of the internal state is also accounted for. Since non-Markov states tend to have
suppressed overt action-values, perceptual actions that tend to lead to Markov in-
ternal states tend to have higher action-values than those that do not. (See [50]
for further details).

4.1.4 Discussion

The Lion algorithm is able to learn the block manipulation task described above.
It learns a perceptual control strategy that focuses the attention frame marker on
the green block, and learns an overt control policy that moves the action-frame
marker as needed to unstack covering blocks. Detailed experimental results can be
found in [50]. Nevertheless the assumptions exploited by the Lion algorithm make
it applicable only to tasks that meet the following restrictions:

1. The effects of actions must be deterministic;
2. Only positive rewards are allowed;

3. For each external state, there must exist at least one configuration of the
sensory system that generates an internal state that is Markov.

4.2 CS-QL

Most work in machine learning aimed at learning classification tasks focuses only
upon the predictive power of a given piece of information, and neglects to account
for the cost of obtaining it [28, 3]. Tan recognized that to learn classification proce-
dures that are efficient it is necessary for the learning algorithm to explicitly account
for the cost of sensing. In [41] he develops two cost-sensitive learning algorithms for
classification tasks: CS-ID3 and CS-IBL, respectively [41]. CS-QL, which stands
for Cost-Sensitive Q-Learning, resulted when he combined ideas for cost-sensitive
learning with reinforcement learning [40]. In CS-QL, the reinforcement learning

"Subtle interactions sometimes cause Markov states to overestimate their action-values. This some-
times leads to suppression of Markov states. However these states tend to bounce back from such sup-
pressions and eventually stabilize. For a detailed discussion of this technique for detecting non-Markov
states see [50] and [41].
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agent not only learns the overt actions needed to perform a task, but also learns an
efficient procedure for classifying the current state of the environment with respect
to the task.

CS-QL and the Lion algorithm share the same basic control cycle. That is,
in CS-QL control is decomposed into a two stage process of sensing (perceptual
control) and action (overt control). However, the sensing model used in CS-QL
is considerably different. Instead of using a deictic sensory-motor system, CS-QL
adopts a sensing model in which the agent is equipped with a set of atomic sensing
tests. Each sensing test provides a specific piece of information about the external
environment.® Also, instead of learning a perceptual control policy, as in the lion
algorithm, CS-QL constructs a classification tree, where internal nodes correspond
to sensing operations, branches correspond to test results, and leaves correspond to
the states in the agent’s internal representation. In CS-QL, the agent has learned
an adequate classification tree when every leaf in the tree is Markov; that is, when
each leaf represents a unique state in a Markov model of the task.

The classification tree is learned incrementally. Initially, the tree consists of a
single root node. As non-Markov leaves are detected, they are expanded (converted
to internal nodes) by attaching sensing operations to them. The new leaf nodes that
result introduce new distinctions into the representations. The tree is expanded
until a Markov representation is achieved.

When expanding a node, CS-QL simply selects the least expensive sensing oper-
ation, among those that remain, to attach to the target leaf. This heuristic favoring
low-cost tests tends to explore inexpensive sensing procedures first, but may not
always generate the most eflicient trees. By incorporating a more sophisticated
selection method that accounts for both cost and the discriminatory power of each
sensing test (See the G-algorithm below) more efficient classification trees should
result. To detect non-Markov leafs, CS-QL uses the same overestimation principle
employed by the Lion algorithm. Thus, CS-QL is also limited to deterministic
domains.

CS-QL has been demonstrated successfully in a simulated robot navigation task
similar to the one shown in Figure 3. However, unlike other navigation tasks studied
in reinforcement learning (e.g., [39, 53, 19]), the robot is not automatically provided
with knowledge of its current position. Instead, it must employ its sensors to gather
information about its local surround and deduce its position from the surrounding
geographic structure. The robot’s sensing operations allow it to detect properties
(e.g., empty, barrier, cup) of nearby cells in the maze. The cost of sensing a cell
is assumed to be proportional to its distance from the robot. By accumulating
features from nearby cells the system can successfully identify its position withing
the maze. An example of a classification tree learned by CS-QL, along with several
state descriptors are shown in Figure 10.

8Note, tests are atomic in that they cannot be composed in any meaningful way.
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Figure 10: A simple example of CS-QL: (a) a 3 by 3 grid world, (b) a learned mapping
between state descriptions and states, (¢) a learned optimal decision policy, and (d) a
learned cost-sensitive classification tree. (Reproduced with permission).
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4.3 The G-Algorithm

The G-algorithm is a third technique developed to address a kind of adaptive
perception task. However, unlike the Lion algorithm and CS-QL, its development
was not specifically motivated by the desire to minimize the cost of sensing or
by the need to control an active sensory system. Instead the G-algorithm was
developed to mitigate problems caused by the availability of too much information.
In particular, when Chapman and Kaelbling tried to apply Q-learning to learn a
simple align-and-shoot subtask in the context of a more general video-game domain
(called Amazon), they found the the learning system was being overwhelmed by
the shear volume of information generated by the sensory system. The subtask
involves aligning the agent with a target, orienting to it, and firing a weapon. At
each point in time, the agent’s sensory system generates 100 bits of input. Using
all this information results in an internal state space containing 2!%° states. Most
of the bits in the input are irrelevant to this specific task and just interfere with
learning by introducing unnecessary distinctions in the internal representation. On
the other hand, the bits that are specifically relevant are not necessarily known
ahead of time and at other stages of the game, the “irrelevant bits” are vitally
important. The G-algorithm was developed to learn a control policy which could
generalization over irrelevant information in input.

The G-algorithm works by identifying bits in the input vector that are signifi-
cant/important to control. It is very similar to CS-QL in that both incrementally
grow classification trees. That is, both start with an single root node (i.e., assum-
ing no information is relevant), then construct a tree-structure classification circuit
by recursively splitting nodes based on the values of sensory inputs. In CS-QL,
the information used to split nodes in the tree corresponds to the results of sensing
acts (or tests), in the G-algorithm nodes are split based on the values of bits in
the input. As in CS-QL, the leaves of the G-algorithm’s tree define the agent’s
internal state space. Unlike CS-QL, the G-algorithm does not associate a cost with
sensing/reading a bit.

What sets the G-algorithm apart from both CS-QL and the Lion algorithm,
is the method it uses to detect non-Markov internal states. CS-QL and the Lion
algorithm both monitor the sign in estimation error to detect non-Markov states;
a method that is limited to deterministic tasks only. The G-algorithm uses a much
more general statistical test. In general, a leaf in the classification tree is non-
Markov if it can be shown there are bits in the input vector (that have not already
been tested in traversing the tree from node-to-leaf) that are statistically relevant
to predicting future rewards. To detect if a leaf is non-Markov, the G-algorithm
uses the Student’s T-test [36] to find statistically significant bits. That is, over
time as the agent experiences a variety of state, and for a given bit and a give leaf,
situations that are classified into the leaf are divided into two blocks. One block
corresponds to situations where the bit in question is on, the other when the bit is
off. Data about the occurrence of reward (either immediate or future) is collected
for each block. Given these two sets of data, a Student’s T-test is used to determine
how probable it is that distinct distributions gave rise to them. If after sufficient
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sampling, this probability estimate is above a threshold, the bit is deemed relevant
and the leaf is split.

The insight provided by the G-algorithm is to use statistical methods to test bit
relevance (and consequently detect non-Markov states). The specific algorithm is
limited in that the T-test assumes that the underlying distributions being compared
are Gaussian. This is clearly not the case in general, since reward distributions can
be arbitrary. However, this problem can be mitigated by comparing distributions of
cumulative rewards which (via the central limit theorem) tend toward normality as
the number summed increases. Also, the G-algorithm is not guaranteed to detect
bits that are relevant in higher order pairings. A bit’s relevance must be apparent
in isolation. Finally, additional memory and sensing is required to gather statistics
for relevance testing. Nevertheless these difficulties and limitations seem to be a
minor price to pay for a method that extends to stochastic domains.

The G-algorithm was successfully demonstrated on the orient-and-shoot task.
In particular, it was found to significantly outperform an alternative approach that
used error backpropagation in a neural network. See [13] for details and a discussion
of some difficulties they did encounter.

4.4 The Consistent Representation Method

While the algorithms described above vary considerably in their detail, they all
share the same basic approach. We refer to this common framework as the Con-
sistent Representation (CR) Method.? The key features of the CR-method are:

1. At each time step, control is partitioned into two stages: a perceptual stage
followed by an action (or overt) stage.

2. The perceptual stage aims to generate an internal representation that is
Markov.

3. The action stage generates (external) state modifying actions in an effort to
maximize cumulative reward

4. Learning occurs in both control stages. For the action-stage, traditional rein-
forcement learning techniques are used. These techniques impose a Markov
constraint on the internal state space. This constraint, in turn, drives adapta-
tion in the perceptual stage in that the perceptual stage constantly monitors
the internal representation for non-Markov states. When one is found, the
perceptual process is modified to eliminate it.

5. It is assumed that the external state can always be identified from immediate
sensory inputs.

9The term Consistent Representation is derived from the fact that it is not strictly necessary for the
internal state space to be absolutely Markov. In particular, it is sufficient for each state to be Markov with
respect to predicting future rewards (but not necessarily future states). This slightly weaker concept
of being “partially Markov” or “Markov with respect to reward” has been associated with the term
“consistent”. See [50] for a further discussion of this distinction.
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Figure 11 illustrates an architectural embodiment of the CR-method. The ma-
jor components include: a selective sensory-motor interface, a perception module,
a controller module, and a representation monitor. The line from the perception
module to the sensory-motor interface represents perceptual control (or selection)
acts. The line from the controller module to the sensory-motor interface represents
overt acts. Both the controller and the perceptual modules are adaptive. Reward
from the environment is received by both the controller and the representation mon-
itor. The representation monitor detects non-Markov states and provides feedback
to the perception module.

The correspondence between the components of this architecture and each of the
previous algorithms is as follows. The Lion algorithm assumes a deictic sensory-
motor system which includes commands for moving perceptual (or attentional)
markers; CS-QL assumes a sensory-motor interface that consists of a set of dis-
crete sensing acts; and the G-algorithm assumes a binary input vector from which
individual bits are selected. The identification procedure implemented in the per-
ception module takes the form of a “perceptual policy” in the Lion algorithm, and
the form of a binary classification tree in CS-QL and the G-algorithm. The task-
specific internal representation generated by the Lion algorithms corresponds to a
subset of input bit vectors; while in CS-QL and the G-algorithm it is defined by
the leaves of a classification tree. The Lion, CS-QL, and G-algorithm all use a form
of Q-learning for overt control. For representation monitoring, both the Lion and
CS-QL algorithm use an overestimation technique, while the G-algorithm relies on
a more general statistical method.'®

Relating the Lion, CS-QL and G-algorithms in the common framework of the
CR-method is useful for two reasons. First, it promotes cross-fertilization of ideas
between specific algorithms. For instance, the statistical methods used by the
G-algorithms can be incorporated into Lion and CS-QL to yield algorithms that
function in stochastic domains. Second, the structure provided by the CR-method
highlights shared assumptions and limitations, and it suggests extensions to over-
come them. In particular, a fundamental assumption made by all these algorithms
is that all external states can be identified at each point in time from immediate
sensor inputs. This assumption makes these techniques inappropriate for many
interesting tasks that require memory to keep track of information that for one
reason or another has become perceptually inaccessible. These more general hid-
den state tasks and several memory-based approaches to them are the subject of
the next section.

10A version of the Lion algorithm has also been developed where feedback from an external supervisor
1s used to detect non-Markov states. This external supervision dramatically improves both perceptual
and overt learning [50].
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Figure 11: The basic architecture of a system using the Consistent Representation
Method. Control is accomplished in two stages: a perceptual stage, followed by an
overt stage. The goal of the perceptual stage is to generate a Markov, task-dependent
internal state space. The goal of overt control is to maximize future discounted reward.
Both control stages are adaptive. Standard reinforcement learning algorithms can be
used for overt learning, while perceptual learning is driven by feedback generated by a
representation analysis module, which monitors the internal state space for non-Markov
states.
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5 Memory-Based Methods

One obvious approach to dealing with inadequate perception and non-Markov de-
cision problems is to to allow the agent to have a memory of its past. This memory
can help the agent identify hidden states, since it can use differences in memory
traces to distinguish situations that based on immediate perception appear iden-
tical. The problem is: given a huge volume of information available about the
past, how should the agent decide what to remember, how to encode it, and how
to use it. There are two approaches to this problem that have been discussed in
the literature. In one approach the agent keeps a sliding window of its history,
in the other approach the agent builds a state-dependent predictive model of en-
vironmental observables [33, 43, 5, 14, 23]. In addition to these two approaches,
this section describes a new third approach, which learns a history-sensitive control
policy directly from reinforcement.

5.1 Three Memory Architectures

Figure 12 depicts three memory architectures for reinforcement learning in non-
Markov domains. In all three architectures a neural network (Q-net) is trained
using temporal difference methods to incrementally learn an action-value function
(Q-function).

In the window-@Q architecture, instead of relying only upon immediate sensory
inputs (or sensations) to define its internal representation, this architecture uses its
immediate sensations, the sensations for the N most recent time steps, and the N
most recent actions to represent its current state. In other words, the window-Q
architecture allows direct access to the information in the past through a sliding
window. N is called the window size. The window-Q architecture is simple and
straightforward. However, to use this architecture one must choose a window size,
which may be difficult to do in advance. On the one hand, if the selected window
size is too small, the internal representation may not be sufficient to define a state
space that is Markov. On the other hand, an em input generalization problem may
arise if the window size is chosen to be too large, or if the window must necessarily
be large to capture relevant information that is sparsely distributed in time. Under
these circumstances excessive amounts of training may be required before the neural
network can accurately learn the action-value function and generalize over the
irrelevant inputs. In spite of these problems, the window-Q architecture is worthy
of study, since 1) this kind of time-delayed neural network ahs been found to be
useful in speech recognition tasks [46], and 2) the architecture can be used to
establish a baseline for comparing other methods.

The window-Q architecture is sort of a brute force approach to using memory.
An alternative is to distill a (small) set of contextual features out of the large volume
of information about the past. This historical context together with the agent’s
current sensory inputs can then be used to define its internal representation. If the
context features are constructed correctly then the resultant internal state space
will be Markov and standard RL methods be used to learn an optimal control
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Figure 12: Three memory architectures for reinforcement learning in non-Markov do-
mains: (a) window-Q architecture, (b) recurrent-Q architecture, and (c¢) recurrent-model
architecture.

policy. The recurrent-@) and recurrent-model architectures illustrated in Figure 12
are based on this basic idea. However, they differ in the way they construct their
context features. Unlike the window-Q architecture, both of these architectures can
in principle discover and utilize historical information that depend on sensations
arbitrarily deep in the past, although in practice this has been difficult to achieve.

Recurrent neural networks, such as Elman networks [16], provide one approach
to constructing relevant context features. As illustrated in Figure 13, the input
units of an Elman network are divided into two groups: the (immediate) sensory in-
put units and the context units. The context units are used to encode a compressed
representation of relevant information from the past. Since these units function as
a kind of memory and encode an aggregate of previous network states, the output
of the network depends upon past as well as current inputs.

The recurrent-Q architecture uses a recurrent network to estimate the action-
value function directly. To predict action-values correctly, the recurrent network
(called recurrent Q-net) must learn contextual features which enable the network
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to distinguish between different external states that generate the same immediate
sensory inputs.

The recurrent-model architecture (Figure 12¢) consists of two concurrent learn-
ing components: a I-step prediction module or simply “the model,” and a Q-
learning module. The prediction module is responsible for learning to predict
the immediate sensory inputs (and rewards) that result from performing an ac-
tion. Because the agent’s immediate inputs do not completely code the state of
the external environment, the model must learn and use a context features to ac-
curately predict the effects of an action on the the environment. If we assume that
a accurate predictive model can be learned, and that the models context features
can be extracted, then a Markov state space can be generated for the Q-learning
component by defining its inputs (internal state space) to be the conjunction of
the agent’s immediate sensory input and the context features. This follows since,
at any given time, the next state of the environment can be completely determined
by this new state representation and the action taken.

In general, the predictive model must be trained to predict not only the new
sensory inputs but also the immediate reward. To see why, consider a packing task
which has 3 steps: put a gift into an open box, seal the box so that it cannot be
opened again, place the box in the proper bucket depending on the color of gift
in the box. Further, suppose a reward is given only when the box is placed in
the correct bucket. Note that the agent is never required to know the gift color in
order to predict future sensory inputs, since the box cannot be opened once sealed.
Therefore a model that only predicts sensations may not have a set of context
features adequate for control since it these features may not encode information
about the color of the present.

Both the recurrent-Q and recurrent-model architectures learn context features
using a gradient descent, least-mean-square method (e.g., error back-propagation),
but they differ in an important way. In learning the predictive model, the goal is
to minimize errors between actual and predicted sensory inputs and rewards. In
this case, the environment provides all the needed training information, which is
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consistent over time as long as the environment does not change. For recurrent Q-
learning, the goal is to minimize errors between temporally successive predictions
of action- and utility-values, (see Equation 10). In this case, the error signals
are computed based partly on information from the environment and partly on the
agent’s current estimate of the optimal action-value function. Since this latter term
changes over time and carries little or no useful information during the early stages
of learning, these error signals may be in general weak, noisy, and even inconsistent
over time. Because of this the practical viability of the recurrent-Q architecture is
uncertain.

Having introduced these architectures, it is worthwhile to note that combina-
tions of these approaches are also possible. For example, we can combine the first
two architectures: the inputs to the recurrent Q-net could include not just the cur-
rent sensory input but also recent inputs and recent actions. We can also combine
the last two architectures. For instance one approach would be to share the context
units between the model network and the Q-network such that the context features
learned would based on prediction errors from both networks. Although there are
many possibilities, this article is only concerned with the three basic architectures.
Further investigation is needed to see if other combinations will result in better
performance than the basic versions.

5.2 Network Training

The (non-recurrent) Q-nets of the window-Q and recurrent-model architectures can
be trained using a straightforward combination of temporal difference methods [38]
and the connectionist back-propagation algorithm [31]. This combination has been
successfully applied to solve several nontrivial reinforcement learning problems [20,
23, 42].

Training the model of the recurrent-model architecture is slightly more com-
plicated. Recurrent networks can be trained by a recurrent version of the back-
propagation algorithm called back-propagation through time (BPTT) or unfolding of
time [31]. BPTT is based on the observation that any recurrent network spanning
T steps can be converted into an equivalent feed-forward network by duplicating
the network 7" times. Once a recurrent network is unfolded, back-propagation can
be directly applied. The Q-net of the recurrent-Q architecture can also be trained
by BPTT together with temporal difference. For detailed network structures and
implementation, see [23].

5.3 Simulation Results

This subsection presents experimental results of a study in which the three memory-
based architectures were applied to a series of non-Markov decision tasks. Through
this study, we have gained insight into the behavior of these architectures, and a
better understanding of the relative merits of each and the conditions for their
useful application. (Detailed descriptions of the simulation and results can be
found in [23].)
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Figure 14: Task 1: A 2-cup collection task.

5.3.1 Task 1: 2-Cup Collection

We begin with a simple 2-cup collection task (Figure 14). This task requires
the learning agent to pick up two cups located in a 1-D space. The agent has 3
actions: walking right one cell, walking left one cell, and pick-up. When the agent
executes the pick-up action, it will pick up a cup if and only if the cup is located
at the agent’s current cell. The agent’s sensory input includes 4 binary bits: 2 bits
indicating if there is a cup in the immediate left or right cell, and 2 bits indicating
if the previous action results in a collision from the left or the right. An action
attempting to move the agent out of the space will cause a collision.

The cups are placed far enough apart that once the agent picks up the first cup,
it cannot see the other one. To act optimally, the agent has to somehow remember
the location of the second cup. This task is non-trivial for several reasons: 1) the
agent cannot sense a cup in front of it, 2) the agent gets no reward until both
cups are picked up, and 3) the agent often operates with no cup in sight especially
after picking up the first cup. In this experiment, each trial begins in one of two
possible initial states, as shown in Figure 14. This restriction simplifies the task
by avoiding perceptual aliasing at the onset of a trial when no history information
is available.

The three memory architectures were tested on this cup collection task. The
experiment was repeated 5 times, and every time each successfully learned an op-
timal control policy within 500 trials. (The window size N was 5.) One interesting
observation, however, was the following: The recurrent-model architecture never
learned a perfect model within 500 trials. For instance, if the agent has not seen a
cup for 10 steps or more, the model normally is not able to predict the appearance
of the cup. But this imperfect model did not prevent Q-learning from learning an
optimal policy.

This experiment revealed two lessons:
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e All of the three architectures worked for this simple cup-collection problem.

e For the recurrent-model architecture, just a partially correct model may pro-
vide sufficient context features for optimal control. This is good news, since
a perfect model is often difficult to obtain.

5.83.2 Task 2: Task 1 With Random Features

Task 2 is simply Task 1 with two random bits in the agent’s sensation. The ran-
dom bits simulate two difficult-to-predict and irrelevant features accessible to the
learning agent. In the real world, there are often many features which are difficult
to predict but fortunately not relevant to the task to be solved. For example, pre-
dicting whether it is going to rain outside might be difficult, but it does not matter
if the task is to pick up cups inside. The ability to handle difficult-to-predict but
irrelevant features is important for a learning system to be practical.

The simulation results are summarized as follows: The two random features gave
little impact on the performance of the window-Q architecture or the recurrent-Q
architecture, while the noticeable negative impact on the recurrent-model architec-
ture was observed.

The system using the recurrent-model architecture exhibited streaks of optimal
performance during the course of 300 trials. However, it apparently could not
stabilize on the optimal policy; it oscillated between the optimal policy and several
sub-optimal policies. It was also observed that the model tried in vain to reduce the
prediction errors on the two random bits. There are two possible explanations for
the poorer performance compared with that obtained when there are no random
sensation bits. First, the model might fail to learn the context features needed
to solve the task, because much of the effort was wasted on trying to learn to
predict the random bits. Second, because the activations of the context units were
shared between the model network and the Q-net, a change to the representation
of context features on the model part could simply destabilize a well-trained Q-net,
if the change was significant. The first explanation is ruled out, since the optimal
policy indeed was found many times. To test the second explanation, we fixed the
model at some point of learning and allowed only changes to the Q-net. In such a
setup, the agent found the optimal policy and indeed stuck to it.

This experiment revealed two lessons:

e The recurrent-Q architecture is more economic than the recurrent-model ar-
chitecture in the sense that the former will not try to learn a context feature
if it does not appear to be relevant to predicting action-values.

e A potential problem with the recurrent-model architecture is that changes to
the representation of context features on the model part may cause instability
on the Q-net part.

5.8.3 Task 3: Task 1 With Control Errors

Noise and uncertainty prevail in the real world. To study the capability of these
architectures to handle noise, we added 15% control errors to the agent’s actuators,
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Figure 15: The pole balancing problem.

so that 15% of the time the executed action would not have any effect on the
environment. (The 2 random bits were removed.)

In 3 out of the 5 runs, the window-Q architecture successfully found the optimal
policy, while in the other two runs, it only found suboptimal policies. In contrast,
the recurrent-Q architecture always learned the optimal policy (with little instabil-
ity).

The recurrent-model architecture always found the optimal policy after 500
trials, but again its policy oscillated between the optimal one and some sub-optimal
ones due to the changing representation of context features, much as happened in
Task 2. If we can find some way to stablize the model (for example, by gradually
decreasing the learning rate to 0 at the end), we should be able to obtain a stable
and optimal policy.

Two lessons have been learned from this experiment:

o All of the three architectures can handle small control errors to some degree.

¢ Among the architectures, recurrent-Q seems to scale best in the presence of
control errors.

5.3.4 Task 4: Pole Balancing

In the pole balancing problem, the system’s objective is apply forces to the base of
a movable cart in order to balance a pole that is attached to the cart via a hinge
(Figure 15). This problem has been studied widely in the reinforcement learning
literature. It is of practical interest because of its resemblance to problems in
aerospace (e.g., missile guidance) and robotics (e.g., biped balance and locomotion).
It is of theoretical interest because of the difficult credit assignment problem which
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arises due to sparse reinforcement signals. In particular, in most formulations of
the problem, the system only receives non-zero reinforcement when the pole falls
over. For instance in our simulations the system receives a penalty of —1 when the
pole tilt exceeds 12 degrees from vertical.

In the traditional pole balancing task, the system’s sensory inputs include the
position and velocity of the cart and the angular position and velocity of the pole
[37]. This information completely characterizes the state of the system and yields
control problem that is Markov. In our experiments, only the cart position and
pole angle are given. This yields a non-Markov decision problem, and in order
to learn an adequate control policy the system must construct contextual features
resembling velocities for the cart and pole. In this experiment, a policy was consid-
ered satisfactory whenever the pole could be balanced for over 5000 steps in each
of the 7 test trials where the pole starts with an angle of 0, £1, 2, or £3 degrees.
(The maximum initial pole angle with which the pole can be balanced indefinitely
is about 3.3 degrees.) In the training phase, pole angles and cart positions were
generated randomly. The initial cart velocity and pole velocity are always set to 0.
N =1 was used here.

The input representation used here was straightforward: one real-valued input
unit for each of the pole angle and cart position. The following table shows the
number of trials taken by each architecture before a satisfactory policy was learned.
These numbers are the average of the results from the best 5 out of 6 runs. (A
satisfactory policy was not always found within 1000 trials.).

method | window-Q | recurrent-Q | recurrent-model
# of trials 206 552 247

A lesson has been learned from this experiment:

e While the recurrent-Q architecture was the most suitable architecture for the
cup collection tasks, it was outperformed by the other two architectures for
the pole balancing task.

5.4 Discussion

The above experiments provide some insight into the performance of the three mem-
ory architectures. This section considers task characteristics that may be useful
in determining when one architecture may be preferred over another. Some of the
features (or parameters) of a task that effect the applicability of these architectures
are:

¢ Memory depth. One important problem parameter is the length of time
over which the agent must remember previous inputs in order generate an
internal representation that is Markov. For example, the memory depth for
Task 1 is 2, as evidenced by the fact that the window-Q agent was able to
obtain the optimal control based only on a window of size 2. The memory
depth for the pole balancing task is 1. Note that learning an optimal policy
may require a larger memory depth than that needed to represent the policy.
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¢ Payoff delay. In cases where the payofl is zero except for the goal state, we
define the payoff delay of a problem to be the length of the optimal action se-
quence leading to the goal. This parameter is important because it influences
the overall difficulty of Q-learning. As the payofl delay increases, learning
an accurate Q-function becomes increasingly difficult due to the increasing
difficulty of credit assignment.

¢ Number of context features to be learned. In general, the more per-
ceptual aliasing an agent faces, the more context features the agent has to
discover, and the more difficult the task becomes. In general, predicting sen-
sations (i.e., a model) requires more context features than predicting action-
values (i.e., a Q-net), which in turn requires more context features than rep-
resenting optimal policies. Consider Task 1 for example. Only two binary
context features are required to determine the optimal actions: “is there a cup
in front?” and “is the second cup on the right-hand side or left-hand side?”.
But a perfect Q-function requires more features such as “how many cups have
been picked up so far?” and “how far is the second cup from here?”. A perfect
model for this task requires the same features as the perfect Q-function. But
a perfect model for Task 2 requires even more features such as “what is the
current state of the random number generator?”, while a perfect Q-function
for Task 2 requires no extra features.

It is important to note that we do not need a perfect Q-function or a perfect
model in order to obtain an optimal policy. A Q-function just needs to assign
a value to each action in response to a given situation such that their relative
values are in the correct order, and a model just needs to provide sufficient
features for constructing a good Q-function.

5.4.1 Architecture Characteristics

Given the above problem parameters, we would like to understand which of the
three architectures is best suited to particular types of problems. Here we consider
the key advantages and disadvantages of each architecture, along with the problem
parameters which influence the importance of these characteristics.

¢ Recurrent-model architecture. The key difference between this architec-
ture and the recurrent-Q architecture is that its learning of context features is
driven by learning an action model rather than the Q-function. One strength
of this approach is that the agent can obtain better training data for the action
model than it can for the Q-function, making this learning more reliable and
efficient. In particular, training examples of the action model (<sensation,
action, next-sensation, payoff> quadruples) are directly observable with each
step the agent takes in its environment. In contrast, training examples of the
Q-function (<sensation, action, utility> triples) are not directly observable
since the agent must estimate the training utility values based on its own
changing approximation to the true action-value function.
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The second strength of this approach is that the learned features are de-
pendent on the environment and independent of the reward function (even
though the action model may be trained to predict rewards as well as sen-
sations). As a result, these features can be reused if the agent has several
different reward functions, or goals, to learn to achieve.

¢ Recurrent-Q architecture. While this architecture suffers the relative dis-
advantage that it must learn from indirectly observable training examples,
it has the offsetting advantage that it need only learn those context features
that are relevant to the control problem. The context features needed to
represent the optimal action model are a superset of those needed to repre-
sent the optimal Q-function. This is easily seen by noticing that the optimal
control action can in principle be computed from the action model (by using
look ahead search). Thus, in cases where only a few features are necessary for
predicting utilities but many are needed to predict completely the next state,
the number of context features that must be learned by the recurrent-Q archi-
tecture can be much smaller than the number needed by the recurrent-model
architecture.

¢ Window-Q architecture. The primary advantage of this architecture is
that it does not have to learn the state representation recursively (as do the
other two recurrent network architectures). Recurrent networks typically take
much longer to train than non-recurrent networks. This advantage is offset by
the disadvantage that the history information it can use are limited to those
features directly observable in its fixed window which captures only a bounded
history. In contrast, the two recurrent network approaches can in principle
represent context features that depend on sensations that are arbitrarily deep
in the agent’s history.

Given these competing advantages for the three architectures, one would imag-
ine that each will be the preferred architecture for different types of problems:

¢ One would expect the advantage of the window-Q architecture to be greatest
in tasks where the memory depths are the smallest (for example, the pole
balancing task).

¢ One would expect the recurrent-model architecture’s advantage of directly
available training examples to be most important in tasks for which the pay-
off delay is the longest (for example, the pole balancing task). It is in these
situations that the indirect estimation of training Q-values is most problem-
atic for the recurrent-Q architecture.

e One would expect the advantage of the recurrent-Q architecture — that it
need only learn those features relevant to control — to be most pronounced
in tasks where the ratio between relevant and irrelevant context features is
the lowest (for example, the cup collection task with two random features).
Although the recurrent-model architecture can acquire the optimal policy
as long as just the relevant features are learned, the drive to learning the
irrelevant features may cause problems. First of all, representing the irrelevant
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features may use up many of the limited context units at the sacrifice of
learning good relevant features. Secondly, as we have seen in the experiments,
the recurrent-model architecture is also subject to instability due to changing
representation of the context features— a change which improves the model
is also likely to deteriorate the Q-function, which then needs to be re-learned.

The tapped delay line scheme, which the window-Q architecture uses, has been
widely applied to speech recognition [46] and turned out to be quite a useful
technique. However, we do not expect it to work as well for control tasks as it does
for speech recognition, because of an important difference between these tasks. A
major task of speech recognition is to find the temporal structure that already
exists in a given sequence of speech phonemes. Whereas in reinforcement learning,
the agent must look for the temporal structure generated by its own actions. If
the actions are generated randomly as it is often the case during early learning, it
is unlikely to find sensible temporal structures within the action sequence so as to
improve its action selection policy.

6 Discussion

In principle, the memory-based architectures described in the previous section are
applicable to non-Markov tasks in general. This raises the question of whether
or not they might be usefully applied to adaptive perception tasks. For example,
can these memory-based architectures learn to control the a deictic sensory-motor
system similar to the one described in Figure 77 As of this writing, the question
remains open. In principle, the memory-based architectures should work. However,
only experimental studies will tell for sure, and preliminary results cast a shadow of
doubt. In particular, in [13], a neural network using backpropagation was tested on
the adaptive perception task (described in Section 4.3) in which the agent, to learn
efficiently, had to select the relevant features in a 100 bit input. The G-algorithm
(an instance of a CR-method) was able to learn the task, but the backpropagation
network could not. Apparently the neural network had difficulty dealing with the
noise introduced by the irrelevant bits in the input. Similar, kinds of difficulties
can be expected to arise in controlling an active sensory system where the system
has access to a tremendous volume of irrelevant information. However, to be fair
it should be noted that network experiments were preliminary, and used a simple
version of the backpropagation algorithm. More sophisticated methods, such as
those using momentum terms in the updating rule, may yield better results.

It may also be possible to extend the CR-method to deal with more general
hidden state problems. One simple approach along these lines would be to extend
an agent’s selective sensory system to include remembered sensory-motor events.
That is, instead of selecting bits of information from the current sensory input only,
the system could also select bits from a memory trace of previous inputs and actions.
This approach is similar to the Window-Q architecture in that a memory trace is
maintained, however it differs in that only a relatively small amount of information
would be selected at each point in time. Moreover, under this scheme it might be
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possible to devise use (or reference-based) rules for updating the memory-trace in
a way that would preserve relevant memories while dropping irrelevant ones.

Other architectures that combine features from both the CR-method and memory-
based architectures may also be very useful. For example, one problem with the
CR-method as it currently stands is that the system uses no information about the
previous state of the environment when trying to identify the current state. In a
sense the system re-identifies the state of the environment starting from “scratch”
after each action. Knowledge of the last state and the most recent action could
considerably reduce the effort required to identify the current state, since in most
environments transitions between states tend to be local and predictable. Thus
instead of “rediscovering” the state after each action, the agent could merely verify
the current state, or in the worst case, identify the outcome from a limited number
of possibilities.

In addition to further exploring variations on the above architectures, future
work must also assess the scalability to these algorithms. These algorithms were
derived from a desire to extend reinforcement learning beyond Markov decision
problems and to problems that involve active perception and/or hidden state. At
to some extent we have been successful. Nevertheless, the tasks we have explored
remain painfully simple compared to the scale of problems required for truly au-
tonomous, intelligent behavior. A few of the issues that must be addressed to
achieve scalability include:

o Learning Bias: Reinforcement learning can be viewed as a kind of search
through the space of possible control policies. If that search can be biased
in an appropriate direction, learning can proceed much more quickly than it
might otherwise. One approach to introducing bias into a learning agent is
to allow it to interact with other intelligent agents performing similar tasks.
Other agents can serve as role models, advice givers, instructors, critics, and
supervisors, and in general can strongly bias an agent’s learning. Simple
versions of these methods have been demonstrated in the context of rein-
forcement learning and have produced significant improvements in learning
time [53, 15, 22]. However, much more work is needed.

o Intelligent Credit Assignment: Credit assignment is the fundamental problem
in reinforcement learning: viz given that the agent has received a payoff, which
parts of the agent were responsible for generating that payoff and how should
the system be changed to improve performance. Most RL algorithms solve this
problem by making incremental changes to the system over the course of many,
many trials. However, this can take along time. If additional knowledge about
the causal structure of the environment can be made available, more efficient
credit assignment methods can be developed (e.g., see [59] for an example of

this idea).

o Increased State Space and Action Space Complezity: To date much of the work
in reinforcement learning has been on problems that are small compared to the
control problems facing real robotic systems. For example, a walking robot
may require precise (continuous) information from dozens of sensors, and
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may need to control dozens for effectors. The combinatorics associated with
such problems quickly overwhelm the simplest RL methods. Moreover, real
problems (such as robot walking) often suffer from a kind of severe temporal
credit assignment problem, in which control must be administered at a very
fine grain, whereas feedback for learning arrives at a relatively course grain.
This delay, combined with the increased scale of multi-dimensional tasks,
leads to tasks that are impractical for most existing techniques (though see
[27] for promising work in this direction).

o Multi-purpose Behavior: Another source of complexity arises when we con-
sider agents that must coordinate their behavior in order to achieve multiple
goals. Under these circumstances, an agent’s internal state space may increase
exponentially in the number of possible goals, and it is necessary to develop
methods for managing this explosion carefully. (See [35, 54] for work in this
direction).

Of course there are many other issues that stand between current technology and
the development of intelligent autonomous agents, and reinforcement learning is
no panacea. However, the autonomy afforded by reinforcement learning methods
makes them likely to play an important role. Moreover, the ubiquity of perceptual
aliasing and non-Markov decision tasks in autonomous control makes these issues
central.

7 Conclusions

Intelligent control systems must deal with information limitations imposed by their
sensors. When inadequate information is available from the agent’s sensors or when
the agent must actively control its sensors in order to select relevant features, the
internal decision problem it faces is necessarily non-Markov. Learning these control
tasks can be very difficult since traditional reinforcement learning methods typically
yield poor performance.

In this article we have presented several approaches to dealing with non-Markov
decision problems. The Consistent Representation Method was proposed as an
approach to dealing with tasks that involve control/selection in an active sensory
system. In the CR-method, control is partitioned into two phases: a perceptual
control phase, which aim to identify the current state of the environment; and
an overt control phase, which aims to control the state of the environment. Three
instances of this method, the Lion algorithm [52], the G-algorithm [13], and CS-QL
[40], were described and examples of their uses presented. The major assumption
made by the CR-method is that the state of the environment can be identified at
each point in time by appropriately controlling/selecting aspects of sensory system.
This assumption prevents it from being applied to tasks in which relevant state
information is temporarily hidden from view.

For these tasks memory-based methods are more appropriate. Three differ-
ent memory-based architectures were described: window-Q, recurrent-model, and
recurrent-Q. The window-(Q architecture uses a tapped-delay line to maintain a

44



fixed length history of recent sensory-motor events. The recurrent-model architec-
ture constructs predictive model of the external environment, whose own internal
state is used, in conjunction with sensory inputs to drive control. The recurrent-
Q architecture uses a recurrent neural network to learn the action-value function
for the non-Markov task directly. Because the recurrent network can encode state
information across time steps, its own internal state is used to resolve ambiguities
caused by inadequate sensory input. These three architectures were demonstrated
on a series of hidden-state tasks, and conditions for their useful application were
discussed.

The methods described in this article are preliminary in that they have only
been demonstrated on relatively simple tasks and they have not been extensively
tested or compared in very complicated domains. Nevertheless, these algorithms
represent a significant advance over traditional reinforcement learning algorithms,
which do not address non-Markov tasks at all. Perhaps these rather modest algo-
rithms will serve as stepping stones to more sophisticated and capable methods for
dealing with the ubiquitous problems of hidden state.

References

[1] Philip E. Agre. The Dynamic Structure of Fveryday Life. PhD thesis, MIT
Artificial Intelligence Lab., 1988. (Tech Report No. 1085).

[2] Philip E. Agre. The Dynamic Structure of Fveryday Life. Cambridge Univer-
sity Press, Cambridge, forthcoming.

[3] David Aha. Incremental, instance-based learning of independent and graded
concept descriptions. In Proceedings of the Sixzth International Workshop on
Machine Learning, Ithaca, NY, 1989. Morgan Kaufmann.

[4] John Aloimonons, Isaac Weiss, and Amit Bandyopadhyay. Active vision. In-
ternational Journal of Computer Vision, 1(4):333-356, 1988.

[5] J.R. Bachrach. Connectionist Modeling and Control of Finite State Environ-
ments. PhD thesis, University of Massachusetts, Department of Computer
and Information Sciences, 1992.

[6] R.Bajcsy and P. Allen. Sensing strategies. In U.S.-France Robotics Workshop,
Univ. of Pennsylvania, Philadelphia, PA, November 1984.

[7] Dana H. Ballard. Animate vision. Technical Report 329, Department of
Computer Science, University of Rochester, 1990.

[8] A.B. Barto, S.J. Bradtke, and S.P. Singh. Real-time learning and control using
asynchronous dynamic programming. Technical Report 91-57, University of
Massachusetts, Amherst, MA, 1991.

[9] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuron-like
elements that can solve difficult learning control problems. IEEFE Trans. on
Systems, Man, and Cybernetics, SMC-13(5):834-846, 1983.

45



[10]
[11]
[12]

[13]

[14]

[15]

[16]
[17]

[22]

[23]

[24]

R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton,

NJ, 1957.

D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, 1987.

Lashon B. Booker. Triggered rule discovery in classifier systems. In Proceedings
of the Third International Conference on Genetic Algorithms, June 1989.

David Chapman and Leslie Pack Kaelbling. Learning from delayed reinforce-
ment in a complex domain. In Proceedings of IJCAI 1991. (Also Teleos
Technical Report TR-90-11, 1990).

L Chrisman. Reinforcement learning with perceptual aliasing: The predictive

distinctions approach. In Proceedings of the Tenth National Conference on
Artificial Intelligence, pages 183-188. AAAI Press/The MIT Press, 1992.

Jeffery Clouse and Paul Utgoff. A teaching method for reinforcement learning.
In Proceedings of the Ninth International Conference on Machine Learning.
Morgan Kaufmann, 1992.

J.L. Elman. Finding structure in time. Cognitive Science, 14:179-211, 1990.

John H. Holland. Escaping brittleness: the possibilities of general-purpose
learning algortihms applied to parallel rule-based systems. In Machine Learn-
ing: An Artificial Intelligence Approach. Volume Il. Morgan Kaufmann, San
Mateo, CA, 1986.

Leslie P. Kaelbling. Learning in Embedded Systems. PhD thesis, Stanford
University, 1990.

Long-Ji Lin. Self-improving reactive agents: case studies of reinforcement
learning frameworks. In Proceedings of the First International Conference on
the Simulation of Adaptive Behavior, September 1990.

Long-Ji Lin. Programming robots using reinforcement learning and teaching.
In Proceedings of the Ninth National Conference on Artificial Intelligence,
pages 781-786. AAAT Press/The MIT Press, 1991.

Long Ji Lin. Memory approaches to reinforcement learning in non-markov
domains. Technical Report 138, Dept. of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, May 1992.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, 8:293-321, 1992.

Long-Ji Lin and T.M. Mitchell. Memory approaches to reinforcement learn-
ing in non-Markovian domains. Technical Report CMU-CS-92-138. School of
Computer Science, Carnegie Mellon University, 1992.

Sridhar Mahadevan and Jonathan Connell. Automatic programming of

behavior-based robots using reinforcement learning. Research Report RC
16359, IBM T.J. Watson Research Center, December 1990.

46



[25]

[26]

D. Michie and R. Chambers. Boxes: An experiment in adaptive control. In
E. Dale and D. Michie, editors, Machine Intelligence 2, pages 137-152. Oliver
and Boyd, Edinburgh, 1968.

Marvin L. Minsky. Theory of Neural-Analog Reinforcement Systems and Its
Application to The Brain-Model Problem. PhD thesis, Princeton University,
1954.

Andrew Moore. Variable resolution dynamic programming: efficiently learning
action maps in multivariate real-values state spaces. In Proceedings of the
ewghth international conference on machine learning, pages 333-337, 1991.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

Rick L. Riolo. Empirical Studies of Default Heirarchies and Sequences of Rules
in Learning Classifier Systems. PhD thesis, Dept. of Computer Science and
Engineering, University of Michigan, 1988.

S. Ross. Introduction to Stochastic Dynamic Programming. Academic Press,
New York, NY, 1983.

David. E. Rumelhart, Geoffery. E. Hinton, and Ronald. J. Williams. Learning
internal representations by error propagation. In Parallel Distributed Process-
ing: Fzxplorations in the Microstructure of Cognition; Vol. 2: Psychological
and Biological Models (J. L. Mcclelland and D. F. Rumelhart FEds.), pages
318-362. MIT Press, Camgridge, MA, 1986.

A. L. Samuel. Some studies in machine learning using the game of checkers.
In E. Feigenbaum and J. Feldman, editors, Computers and Thought, pages
71-105. Krieger, Malabar, FL, 1963.

J. Schmidhuber. Reinforcement learning in Markovian and non-Markovian
environments. In D.S. Touretzky, editor, Advances in Neural Information
Processing Systems 3, pages 500-506. Morgan Kaufmann, 1991.

Jurgen Schmidhuber. Making the world differentiable: on using self-supervised
fully recurrent neural networks for dynamic reinforcement learning and plan-
ning in non-stationary environments. Technical Report Report FKI-126-90
(revised), Technische Universitat Munchen, 1990.

Satinder Singh. Transfer of learning across compositions of sequential tasks.
In Proceedings of the Fighth International Workshop on Machine Learning,
pages 348-352. Morgan Kaufmann, 1991.

George W. Snedecor. Statistical Methods. lowa State University Press, Ames,
Towa, 1989.

Richard S. Sutton. Temporal Credit Assignment In Reinforcement Learning.
PhD thesis, University of Massachusetts at Amherst, 1984. (Also COINS Tech
Report 84-02).

Richard S. Sutton. Learning to predict by the method of temporal differences.
Machine Learning, 3(1):9-44, 1988.

47



[39]

[52]

[53]

Richard S. Sutton. Integrating architectures for learning, planning, and re-
acting based on approximating dynamic programming. In Proceedings of the
Seventh International Conference on Machine Learning, Austin, TX, 1990.
Morgan Kaufmann.

Ming Tan. Cost sensitive reinforcement learning for adaptive classification
and control. In Proceedings of the Ninth International Conference on Artificial
Intelligence, 1991.

Ming Tan. Cost Sensitive Robot Learning. PhD thesis, Carnegie Mellon Uni-
versity, 1991.

G. Tesauro. Practical issues in temporal difference learning. Machine Learning,
8:257-277, 1992.

S. Thrun and K. Moller. Planning with an adaptive world model. In D. S.
Tourtezky and R. Lippmann, editors, Advances in Neural Information Pro-
cessing Systems 3. Morgan Kaufmann, 1991.

Sebastian Thrun. Efficient exploration in reinforcement learning. Technical
Report CMU-CS-92-102, School of Computer Science, Carnegie Mellon Uni-
versity, 1992.

Shimon Ullman. Visual routines. Cognition, 18:97-159, 1984. (Also in: Visual
Cognition, S. Pinker ed., 1985).

A. Waibel. Modular construction of time-delay neural networks for speech
recognition. Neural Computation, 1:39-46, 1989.

Chris Watkins. Learning from delayed rewards. PhD thesis, Cambridge Uni-
versity, 1989.

Christopher Watkins and Peter Dayan. Q-learning. Machine Learning, 1992.

Steven D. Whitehead. Scaling in reinforcement learning. Technical Report
TR 304, Computer Science Dept., University of Rochester, 1989.

Steven D. Whitehead. Reinforcement Learning for the Adaptive Control of
Perception and Action. PhD thesis, Department of Computer Science, Uni-
versity of Rochester, Rochester, NY, November 1991.

Steven D. Whitehead and Dana H. Ballard. Active perception and reinforce-
ment learning. Newral Computation, 2(4), 1990. (Also In the Proceedings
of the Seventh International Conference on Machine Learning, Morgan Kauf-
mann, June 1990).

Steven D. Whitehead and Dana H. Ballard. Learning to perceive and act by
trial and error. Machine Learning, 7(1), 1991. (Also Tech. Report # 331,
Department of Computer Science, University of Rochester, 1990.).

Steven D. Whitehead and Dana H. Ballard. A study of cooperative mech-
anisms for faster reinforcement learning. TR 365, Computer Science Dept.,
University of Rochester, Feburary 1991.

48



[54]

[55]

[56]

Steven D. Whitehead, Jonas Karlsson, and Josh Tenenberg. Learning multiple
goal behavior via task decomposition and dynamic policy merging. In Robot
Learning. MIT Press, Cambridge, MA, forthcoming.

Ronald J. Williams. Reinforcement learning in connectionist networks. Tech-
nical Report Technical Report ICS 8605, Institute for Cognitive Science, Uni-
versity of California at SanDiego, 1986.

Ronald J. Williams. Reinforcement-learning connectionist systems. Technical
Report NU-CCS-87-3, College of Computer Science, Northeastern University,
Boston, MA, 1987.

Lambert E. Wixson and Dana H. Ballard. Learning efficient sensing sequences
for object search. In AAAI Fall Symposium, November 1991.

A.L. Yarbus. Fye Movements and Vision. Plenum Press, 1967.
Richard C. Yee, Sharad Saxena, Paul E. Utgoff, and Andrew G. Barto. Ex-

plaining temporal-differences to create useful concepts for evaluating states. In
Proceedings of the Ninth National Conference on Artificial Intelligence, 1990.

49



