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a b s t r a c t

Adaptive Resonance Theory, or ART, is a cognitive and neural theory of how the brain autonomously
learns to categorize, recognize, and predict objects and events in a changing world. This article reviews
classical and recent developments of ART, and provides a synthesis of concepts, principles, mechanisms,
architectures, and the interdisciplinary data bases that theyhavehelped to explain andpredict. The review
illustrates that ART is currently the most highly developed cognitive and neural theory available, with
the broadest explanatory and predictive range. Central to ART’s predictive power is its ability to carry
out fast, incremental, and stable unsupervised and supervised learning in response to a changing world.
ART specifies mechanistic links between processes of consciousness, learning, expectation, attention,
resonance, and synchrony during both unsupervised and supervised learning. ARTprovides functional and
mechanistic explanations of such diverse topics as laminar cortical circuitry; invariant object and scenic
gist learning and recognition; prototype, surface, and boundary attention; gamma and beta oscillations;
learning of entorhinal grid cells and hippocampal place cells; computation of homologous spatial and
temporal mechanisms in the entorhinal–hippocampal system; vigilance breakdowns during autism and
medial temporal amnesia; cognitive–emotional interactions that focus attention on valued objects in
an adaptively timed way; item–order–rank working memories and learned list chunks for the planning
and control of sequences of linguistic, spatial, and motor information; conscious speech percepts that
are influenced by future context; auditory streaming in noise during source segregation; and speaker
normalization. Brain regions that are functionally described include visual and auditory neocortex;
specific and nonspecific thalamic nuclei; inferotemporal, parietal, prefrontal, entorhinal, hippocampal,
parahippocampal, perirhinal, and motor cortices; frontal eye fields; supplementary eye fields; amygdala;
basal ganglia: cerebellum; and superior colliculus. Due to the complementary organization of the brain,
ART does not describe many spatial and motor behaviors whose matching and learning laws differ from
those of ART. ART algorithms for engineering and technology are listed, as are comparisons with other
types of models.
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1. Introduction: the stability–plasticity dilemma and rapid
learning throughout life

1.1. Fast recognition learning without catastrophic forgetting

Adaptive Resonance Theory, or ART, is a cognitive and neural
theory of how the brain autonomously learns to categorize,
recognize, and predict objects and events in a changing world. The
problem of learning makes the unity of conscious experience hard
to understand, if only because humans are able to rapidly learn
enormous amounts of new information, on their own, throughout
life. How do humans integrate all this information into unified
experiences that cohere into a sense of self? One has only to see
an excitingmovie just once tomarvel at this capacity, since we can
then tell our friends many details about it later on, even though
the individual scenes flashed by very quickly. More generally, we
can quickly learn about new environments, even if no one tells us
how the rules of each environment differ. To a remarkable degree,
humans can rapidly learn new facts without being forced to just
as rapidly forget what they already know. As a result, we can
confidently go out into the world without fearing that, in learning
to recognize a new friend’s face, we will suddenly forget the faces
of our family and friends. This is sometimes called the problem of
catastrophic forgetting.

1.2. Some models that experience catastrophic forgetting

Many contemporary learning algorithms do experience catas-
trophic forgetting, particularly when they try to learn quickly
in response to a changing world. These include the competitive
learning, self-organizing map, back propagation, simulated an-
nealing, neocognitron, support vectormachine, regularization, and
Bayesian models. The brain solves a challenging problem that
many current biological and technological learning models have
not yet solved: It is a self-organizing system that is capable of rapid,
yet stable, autonomous learning in real time of huge amounts of
data from a changing environment that can be filled with unex-
pected events. Discovering the brain’s solution to this key problem
is as important for understanding ourselves as it is for developing
newpattern recognition and prediction applications in technology.

Grossberg (1980) has called the problem whereby the brain
learns quickly and stably without catastrophically forgetting
its past knowledge the stability–plasticity dilemma. The stabil-
ity–plasticity dilemma must be solved by every brain system that
needs to rapidly and adaptively respond to the flood of signals that
subserves even the most ordinary experiences. If the brain’s de-
sign is parsimonious, then similar design principles should operate
in all brain systems that can stably learn an accumulating knowl-
edge base in response to changing conditions throughout life. The
discovery of such principles should clarify how the brain unifies di-
verse sources of information into coherent moments of conscious
experience. ART has attempted to articulate these principles and
the neural mechanisms that realize them. The next sections sum-
marize aspects of how this is proposed to occur.

1.3. Linking consciousness, learning, expectation, attention, reso-
nance, and synchrony

ART clarifies key brain processes from which conscious experi-
ences emerge. It predicts a functional link between processes of
Consciousness, Learning, Expectation, Attention, Resonance, and
Synchrony (the CLEARS processes). ART predicted that all brain
representations that solve the stability–plasticity dilemma use
variations of CLEARSmechanisms (Grossberg, 1978a, 1980, 2007a).
Synchronous resonances are, in particular, expected to occur be-
tweenmultiple cortical and subcortical areas. Various data support

this prediction; e.g., see Buschman and Miller (2007), Engel, Fries,
and Singer (2001), Grossberg (2009b), and Pollen (1999).

Through these CLEARS connections, ART clarifies why many
animals are intentional beingswho pay attention to salient objects,
why ‘‘all conscious states are resonant states’’, and how brains
can learn both many-to-one maps (representations whereby many
object views, positions, and sizes all activate the same invariant
object category) and one-to-many maps (representations that
enable us to expertly know many things about individual objects
and events).

ART accomplishes these properties by proposing how top-
down expectations focus attention on salient combinations of
cues, and characterizes how attention may operate via a form
of self-normalizing ‘‘biased competition’’ (Desimone, 1998). ART
explains how such top-down attentive matching may help to
solve the stability–plasticity dilemma. In particular, when a good
enough match occurs, a synchronous resonant state emerges
that embodies an attentional focus and is capable of driving
fast learning of bottom-up recognition categories and top-down
expectations; hence the name adaptive resonance.

All of the main ART predictions have received increasing sup-
port from psychological and neurobiological data since ART was
introduced in Grossberg (1976a, 1976b). ART has undergone con-
tinual development to explain and predict increasingly large be-
havioral and neurobiological data bases, ranging from normal and
abnormal aspects of human and animal perception and cognition,
to the spiking and oscillatory dynamics of hierarchically-organized
laminar thalamocortical networks in multiple modalities. Indeed,
some ARTmodels explain and predict behavioral, anatomical, neu-
rophysiological, biophysical, and even biochemical data. In this
sense, they provide a growing set of examples capable of partially
solving the classical mind/body problem. All the author’s major ar-
ticles, including those that develop ART, may be downloaded from
http://cns.bu.edu/~steve.

1.4. Equations for short-term memory, medium-term memory, and
long-term memory

How does ART sit within the corpus of all neural models? In
particular, is the brain just a bag of tricks, as some authors have
proposed (e.g., Ramachandran (1990))? This article illustrates a
contrary view based on the author’s view after developing mod-
els of mind and brain for 55 years (Grossberg, 1988, http://cns.
bu.edu/Profiles/Grossberg/GrossbergNNeditorial2010.pdf). During
this period, I led the discovery and development of a small
number of equations (e.g., equations for short-term memory, or
STM; medium-term memory, or MTM; and long-term memory, or
LTM) and a somewhat larger number of modules or microcircuits
(e.g., shunting on-center off-surround networks, gated dipole op-
ponent processing networks, associative learning networks, rein-
forcement learning networks, spectral timing networks, and the
like), which have been specialized and assembled into modal ar-
chitectures, where the term ‘‘modal’’ stands for modality (e.g., ar-
chitectures for vision, audition, cognition, cognitive–emotional
interactions, sensory–motor control, and the like). Modal architec-
tures are less general than a Turing or von Neumann architecture
for general computing, but far more general than a traditional AI
algorithm. They are designed to be capable of general-purpose self-
organizing processing of a particular modality of biological intel-
ligence and their particular specializations of the basic equations
and modules have been selected over the millennia by evolution-
ary pressures.

ART networks form part of such modal architectures. Modal ar-
chitectures, in turn, embody new paradigms for brain computing
that I have called Complementary Computing (Grossberg, 2000b)
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and Laminar Computing (Grossberg, 1999). Complementary Com-
puting describes how the global brain is organized into comple-
mentary parallel processing streams whose interactions generate
biologically intelligent behaviors. Laminar Computing describes
how the cerebral cortex is organized into layered circuits whose
specializations can support all forms of higher-order biological in-
telligence. ART networks exhibit many complementary properties,
and are embodied in laminar cortical circuitry for vision and visual
object recognition; audition, speech, and language; and cognitive
information processing.

Grossberg (1968a, 1968b, 1968c, 1969a, 1969b, 1969c, 1972b)
introduced the laws of STM, MTM, and LTM that are used in
many contemporary neural models, including ART architectures,
andmathematically proved various of their basic properties. These
laws are specialized to cope with the evolutionary pressures that
are embodied in differentmodal architectures. One variant of these
equations is:
STM: fast activation dynamics

dxi
dt

= −Axi + (B − Cxi)


Ii +

n
k=1

fk(xk)ykDkizki



− (E + Fxi)


Ji +

n
k=1

gk(xk)YkGkiZki


. (1)

Eq. (1) describes the activity, xi, of the ith cell (population) in a net-
work of n interacting neurons. It includes both the Additive and
Shunting models. In the shunting model, the parameters C ≠ 0
and F ≠ 0, thereby enabling the automatic gain control and nor-
malization properties that shunting networks exhibit. The param-
eter E = 0 when there is ‘‘silent’’ shunting inhibition, whereas
E ≠ 0 describes the case of hyperpolarizing shunting inhibition.
In the Additive model, parameters C = F = 0. The excitatory in-
teraction term


Ii +

n
k=1 fk(xk)ykDkizki


describes an external in-

put Ii plus the total excitatory feedback signal
n

k=1 fk(xk)ykDkizki


that is a sum of signals from other populations via their output
signals fk(xk). The term Dki is a constant connection strength be-
tween cell populations k and i, whereas terms yk and zki describe
MTM and LTM variables, respectively. The inhibitory interaction
term


Ji +

n
k=1 gk(xk)YkGkiZki


has a similar interpretation. Eq. (1)

assumes ‘‘fast inhibition’’; that is, inhibitory interneurons respond
instantaneously to their inputs. Slower finite-rate inhibition with
activities Xi uses an equation like (1) to describe the temporal evo-
lution of the inhibitory activities. The output signals from these
inhibitory interneurons provide the feedback signals to the excita-
tory activities.With slow inhibition, the inhibitory feedback signals
would be gk(Xk) instead of gk(xk).
MTM: habituative transmitter gates and depressing synapses

dyi
dt

= H (K − yi) − Lfk(xk)yk. (2)

Eq. (2) describes how the strength yi of the habituative transmitter
gate, or depressing synapse, in the excitatory feedback term of (2)
accumulates at a fixed rate H to its maximum value K via term
H (K − yi) and is inactivated, habituated, or depressed via a mass
action interaction between the feedback signal fk(xk) and the gate
concentration yk. Themass action termmay bemore complex than
this in some situations; e.g., Gaudiano and Grossberg (1991, 1992).
The habituative transmitter gate Yk in the inhibitory feedback term
of (1) obeys a similar equation. It should be noted that not all
signals are habituative.
LTM: gated steepest descent learning

dzij
dt

= Mfi(xi)

hj(xj) − zij


(3)

and

dzij
dt

= Mfj(xj)

hi(xi) − zij


. (4)

Eq. (3) describes the outstar learning equation, by which the ith
source cell can sample and learn a distributed spatial pattern of
activation across a network of sampled cells. When the gating
signal fi(xi) is positive, the adaptive weights zij can sample the
activity-dependent signals hj(xj) across the sampled network of
cells. Eq. (4) describes the instar learning equation, bywhich the jth
target cell can sample and learn the distributed pattern of signals
that activated it. This is the learning equation that was used in the
competitive learning and self-organizingmapmodels in Grossberg
(1976a, 1978a), and later applied by Kohonen (1984). The learning
instabilities of competitive learning and self-organizing maps led
to the introduction of ART.

Instars and outstars were both used in Grossberg (1976a)
to show how to learn arbitrary maps from m-dimensional
to n-dimensional vectors, with instars first compressing the
m-dimensional input vectors at category cells, and the category
cells then sampling and learning the n-dimensional output vec-
tors. By showing how to dynamically self-stabilize instar learn-
ing, ART also showed how to learn self-stabilizing maps. This type
of instar–outstar map learning scheme was called counterprop-
agation by Hecht-Nielsen (1987). There are many variations of
these gated steepest descent equations (e.g., doubly-gated learn-
ing, spike-timing dependent learning, etc.). It should also be noted
that not all connections are adaptive.

1.5. Applications of ART to engineering and technology

Although ARTmodels are realizedmathematically by nonlinear
neural networks, this review focuses on heuristically summarizing
ART as a cognitive and neural theory. One part of themathematical
development of ART has been to develop algorithms that
computationally embody specific combinations of useful ART
design principles. An algorithmic form is used to enable the
model to run faster on the computer. These algorithms typically
embody a singular approximation to the full dynamics of an ART
system. For example, fast dynamics, such as STM activations (see
Eq. (1)), are often solved at equilibrium in these algorithms. By
simplifying computations, these algorithms have contributed to
the mathematical development of the cognitive and neural theory,
and are widely used in large-scale engineering and technological
applications, such as medical data base prediction, remote
sensing, airplane design, and the control of autonomous adaptive
robots.

A standard ART algorithm for applications is called Default
ARTMAP (Amis & Carpenter, 2007; Carpenter, 2003). Early
important ART algorithms for applications include ART 1, ART 2,
ARTMAP, fuzzy ART, and fuzzy ARTMAP (Carpenter & Grossberg,
1987; Carpenter, Grossberg, Markuzon, Reynolds, & Rosen, 1992;
Carpenter, Grossberg, & Reynolds, 1991; Carpenter, Grossberg, &
Rosen, 1991). More recent algorithms from Gail Carpenter and her
students include distributed ARTMAP, which combines distributed
coding with fast, stable, incremental learning (Carpenter, 1997;
Carpenter, Milenova, & Noeske, 1998); ARTMAP Information
Fusion, which can incrementally learn a cognitive hierarchy
of rules in response to probabilistic, incomplete, and even
contradictory data that are collected by multiple observers
(Carpenter, Martens, & Ogas, 2005; Carpenter & Ravindran, 2008;
Parsons & Carpenter, 2003); Self-supervised ART, which shows
how some supervised learning ‘‘in school’’ can lead to effective
knowledge acquisition later on by unsupervised learning ‘‘in the
real world’’ (Amis & Carpenter, 2009); and Biased ART, which
shows how attention can be selectively diverted from features that
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cause predictive errors (Carpenter & Gaddam, 2010). Computer
code for running various ART algorithms and related neuralmodels
that were discovered and developed at Boston University can be
found at http://techlab.bu.edu/resources/software/C51.

Many variants of ART have been developed and applied
to large-scale engineering and technological applications by
authors around the world (e.g., Akhbardeh, Junnila, Koivistoinen,
and Varri (2007), Anagnostopoulos and Georgiopoulos (2000),
Anton-Rodriguez et al. (2009), Brannon, Seiffertt, Draelos, and
Wunsch (2009), Cai, Wang, Tang, and Yang (2011), Caudell
(1992), Caudell, Smith, Johnson, Wunsch, and Escobedo (1991),
Cano-Izquierdo, Almonacid, Pinzolas, and Ibarrola (2009), Chao,
Hsiao, Su, Hsu, and Wu (2011), Cherng, Fang, Chen, and Chen
(2009), Demetgul, Tansel, and Taskin (2009), Dunbar (2012),
He, Caudell, Menicucci, and Mammoli (2012); He, Tan, and Tan
(2000), Healy, Caudell, and Smith (1993), Ho, Liou, Georgiopoulos,
Heileman, and Christodoulou (1994), Hsieh (2008), Hsieh and
Yang (2008), Hsu and Chien (2007), Kawamura, Takahashi,
and Honda (2008), Kaylani, Georgiopoulos, Mollaghasemi, and
Anagnostopoulos (2009), Keskin and Ozkan (2009), Liu, Huang,
Lai, and Ma (2009); Liu, Pang, and Lloyd (2008), Lopes, Minussi,
and Lotufo (2005), Marchiori, da Silveira, Lotufo, Minussi, and
Lopes (2011), Martin-Guerrero, Lisboa, Soria-Olivas, Palomares,
and Balaguer (2007), Massey (2009), Mulder and Wunsch (2003),
Owega, Khan, Evans, Jervis, and Fila (2006), Prasad and Gupta
(2008), Shieh, Yan, and Chen (2008), Sudhakara Pandian and
Mahapatra (2009), Takahashi, Murase, Kobayashi, and Honda
(2007), Tan (1997), Tan and Teo (1998), Tan, Quek, Ng, and
Razvi (2008), Wienke and Buydens (1995), Wunsch, Caudell,
Capps, Marks, and Falk (1993), Xu et al. (2009) and Zhang and
Kezunovic (2007)). A repository of some applications is found at
http://techlab.bu.edu/resources/articles/C5.

2. The varieties of learning algorithms

Many current learning algorithms do not emulate the way
in which humans and other animals learn. The power of
human and animal learning provides high motivation to discover
computational principleswherebymachines can learnwith similar
capabilities. Humans and animals experience the world on the fly,
and carry out incremental learning of sequences of episodes in real
time. Often such learning is unsupervised, with the world itself
as the teacher. Learning can also proceed with an unpredictable
mixture of unsupervised and supervised learning trials. Such
learning goes on successfully in aworld that is non-stationary; that
is, whose rules can change unpredictably through time. Moreover,
humans and animals can learn quickly, and their memories can
persist for a long time thereafter, even while new learning takes
place. ART’s solution of this stability–plasticity dilemma (Grossberg,
1980) predicts how brains may learn quickly without forcing
catastrophic forgetting of already learned, and still successful,
memories.

Thus, ART autonomously carries out fast, yet stable, incremental
learning under both unsupervised and supervised learning condi-
tions in response to a complex non-stationary world. In contrast,
many current learning algorithms use batch learning in which all
the information about the world to be learned is available at a
single time, such as support vector machines. Other algorithms
are not defined unless all learning trials are supervised, such as
back propagation. Most learning algorithms become unstable in a
non-stationary world, or cannot learn about important rare cases,
or become unstable if learning is fast; that is, if an event can
be fully learned on a single learning trial. ART overcomes these
problems.

Some machine learning algorithms are feedforward clus-
tering algorithms that undergo catastrophic forgetting in a
non-stationary world. These include competitive learning, self-
organizing maps, neocognitrons, and back propagation. The ART
solution of the stability–plasticity dilemma depends upon feed-
back, or top-down, learned expectations that are matched against
bottom-up data patterns and thereby focus attention upon those
combinations of features that are predictive in that context. A good
enoughmatchwith a critical feature pattern leads to a synchronous
resonance and fast learning. A big enough mismatch leads to hy-
pothesis testing, or memory search, that discovers, chooses, and
learns a more predictive category. Thus, ART is a self-organizing
expert system that avoids the brittleness of traditional expert sys-
tems.

The world is filled with uncertainty, so probability concepts
seem relevant to understanding how brains learn about uncertain
data. This fact has led some machine learning practitioners to
assume that brains obey Bayesian laws (e.g., Knill and Pouget
(2004) and Doya et al. (2007)). However, the Bayes rule is so
general that it can accommodate any system in Nature. This
generality makes Bayes a very useful statistical method. However,
in order for Bayes concepts to be part of a physical theory,
additional computational principles and mechanisms are needed
to augment the Bayes rule to distinguish a brain from, say, a
hydrogen atom or a hurricane. Because of the generality of the
Bayes rule, it does not, in itself, provide heuristics for discovering
what these distinguishing physical principles might be.

It is an empirical question whether a Bayesian formalism will
be part of the most successful physical theories. This is not true in
the physical sciences. It is also not true in the Adaptive Resonance
Theory models that the current article reviews. Although these
models may exhibit Bayesian properties, these properties emerge
from organization principles and mechanisms that do not invoke
Bayesian ideas.

Probabilistic models such as Bayesian statistics often use non-
local computations, that are needed to compute an entire proba-
bility distribution, and work best in dealing with stationary data.
ART uses only local computations to model how the brain may
embody a novel kind of real-time probability theory, hypothe-
sis testing, prediction, and decision-making whose local compu-
tations enable fast autonomous adaptation to a non-stationary
world whose rules can change through time, and in unexpected
ways. These ART principles and mechanisms go beyond Bayesian
analysis, and are embodied parsimoniously in the laminar cir-
cuits of cerebral cortex. Indeed, cerebral cortex embodies a kind
of Laminar Computing that embodies a revolutionary compu-
tational synthesis of the best properties of feedforward and
feedback processing, digital and analog processing, and data-
driven bottom-up processing and hypothesis-driven top-down
processing (Grossberg, 2003a, 2007a, see Section 30).

3. Thepredictive brain: learning andpredictionby complemen-
tary cortical streams for recognition and action

Biological learning includes both perceptual/cognitive and spa-
tial/motor processes. Accumulating experimental and theoretical
evidence show that perceptual/cognitive and spatial/motor pro-
cesses both need predictive mechanisms to control learning. Thus
there is an intimate connection between learning and predictive
dynamics in the brain. However, neural models of these processes
have proposed, and many experiments have supported, the hy-
pothesis that perceptual/cognitive and spatial/motor processes use
different types of predictive mechanisms to regulate the learning
that they carry out.
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Fig. 1. Complementary What andWhere cortical processing streams for spatially-
invariant object recognition and spatially-variant spatial representation and
action, respectively. Perceptual and recognition learning use top-down excitatory
matching andmatch-based learning that achieve fast learningwithout catastrophic
forgetting. Spatial and motor learning use inhibitory matching and mismatch-
based learning that enable rapid adaptation to changing bodily parameters. IT =

inferotemporal cortex, PPC = posterior parietal cortex. See text for details.
Source: Reprinted with permission from Grossberg (2009b).

3.1. Excitatory matching and match learning vs. inhibitory matching
and mismatch learning

The need for different predictive mechanisms is clarified
by accumulating theoretical and empirical evidence that brain
specialization is governed by computationally complementary
cortical processing streams that embody different predictive
and learning mechanisms (Grossberg, 2000b). As summarized in
Fig. 1, perceptual/cognitive processes in the What ventral cortical
processing stream often use excitatory matching and match-based
learning to create predictive representations of objects and events
in the world. Match-based learning solves the stability–plasticity
dilemma and is the kind of learning used in ART. This sort of
learning can occur quicklywithout causing catastrophic forgetting,
much as we quickly learn new faces without forcing rapid and
unselective forgetting of familiar faces. However, match learning,
and by extension ART, does not describe the only kind of learning
that the brain needs to accomplish autonomous adaptation to a
changing world. If only for this reason, ART is not a theory about
‘‘everything’’.

3.2. Learning to be an expert in a changing body

There are just as essential, but complementary, spatial/motor
processes in the Where dorsal cortical processing stream that
often use inhibitory matching and mismatch-based learning to
continually update spatial maps and sensory–motor gains as
our bodily parameters change through time (Bullock, Cisek,
& Grossberg, 1998; Bullock & Grossberg, 1988; Gaudiano &
Grossberg, 1991;Georgopoulos, Kalaska, Caminiti, &Massey, 1982;
Georgopoulos, Schwartz, & Kettner, 1986). Indeed, we would be
ill-served by spatial and motor learning processes that solve the
stability–plasticity dilemma, since we do not want the spatial
representations and motor gains that were suitable for controlling
our infant bodies to be remembered as we grow up and used to
control our adult bodies. In this sense, catastrophic forgetting is a
good property during spatial and motor learning.

As an example of inhibitory spatial matching, consider how
we make an arm movement. To make such a movement, a
representation of where the arm is now (its present position
vector) is subtracted from a representation of where we want
the arm to move (its target position vector), thereby computing
a difference vector that represents the direction and distance of
movement needed to attain the target. After moving to the target,

the target and present positions agree, so the difference vector is
zero. In other words, this sort of matching is inhibitory (Bullock &
Grossberg, 1988).

Neither type of matching and learning is sufficient to design
an adaptive autonomous agent, but each is necessary. By
combining these two types of processes together, our brains can
incrementally learn and stably remember perceptual and cognitive
representations of a changing world, leading to a self-stabilizing
front end that solves the stability–plasticity dilemma and enables
us to become increasingly expert in understanding the world and
predicting outcomes in the world. At the same time, our brains
can adaptively update their representations of where objects are
and how to act upon them using bodies whose parameters change
continuously through time due to development, exercise, illness,
and aging.

3.3. Why procedural memories are not conscious

Brain systems that use inhibitory matching and mismatch
learning cannot generate excitatory resonances. Hence, if ‘‘all
conscious states are resonant states’’, then spatial and motor
representations are not conscious. This way of thinking provides a
mechanistic reasonwhy declarativememories (or ‘‘learning that’’),
which are the sort of memories learned by ART, may be conscious,
whereas procedural memories (or ‘‘learning how’’), which are the
sort of memories that control spatial orienting and action, are not
conscious (Cohen & Squire, 1980).

3.4. Spatially-invariant recognition vs. spatially localized action

There is another basic reason why these complementary What
and Where processes need to work together. The What stream
attempts to learn spatially-invariant object categories, so that a
combinatorial explosion does not occur wherein every view of
every object at every position and distance needs to be represented
by a different category.

Indeed, learning in the What cortical stream leads to recogni-
tion categories that tend to be increasingly independent of object
size and position at higher cortical levels. The anterior inferotem-
poral cortex exhibits such invariance (Bar et al., 2001; Sigala & Lo-
gothetis, 2002; Tanaka, Saito, Fukada, & Moriya, 1991). Although
how this occurs needs careful discussion (e.g., Zoccolan, Kouh, Pog-
gio, and DiCarlo (2007)), such object invariance prevents a combi-
natorial explosion in memory of object representations that could
otherwise occur at every perceived size and position. Cao, Gross-
berg, and Markowitz (2011) and Grossberg, Markowitz, and Cao
(2011) have used ART to simulate recent neurophysiological data
about neurophysiologically observed properties of invariant cate-
gory learning and recognition in inferotemporal cortex.

In becoming spatially invariant, recognition categories lose
information about how to direct action towards the locations
in space where desired objects may be found. In contrast, the
Where stream learns spatial maps that do enable us to locate
such desired objects, as well as the movement gains that enable
us to accurately act with respect to them. On the other hand,
Where stream spatial processing gives up information aboutwhich
objects are in those spatial locations. Interactions between the
What and Where stream (‘‘What–Where fusion’’) overcome these
complementary deficiencies to enable spatially-invariant object
representations to control actions towards desired goals in space
(e.g., Brown, Bullock, and Grossberg (2004), Fazl, Grossberg, and
Mingolla (2009), Grossberg (2009b) and Grossberg and Vladusich
(2011)).

In summary, because of their different types of matching
and learning, perceptual and cognitive learning provide a self-
stabilizing front end to control the more labile spatial and motor
learning that enables changing bodies to effectively act upon
recognized objects in the world. The present article summarizes
how this may happen.
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4. Learning, expectation, attention, and intention

Humans are intentional beings who learn expectations about
the world and make predictions about what is about to happen.
Humans are also attentional beingswho focus processing resources
upon a restricted amount of incoming information at any time.
Why are we both intentional and attentional beings, and are
these two types of processes related? The stability–plasticity
dilemma and its solution using resonant states provides a unifying
framework for understanding these issues.

4.1. Top-down attentional priming

To clarify the role of sensory or cognitive expectations, and
of how a resonant state is activated, suppose you were asked
to ‘‘find the yellow ball as quickly as possible, and you will win
a $100,000 prize’’. Activating an expectation of a ‘‘yellow ball’’
enables its more rapid detection, and with a more energetic neural
response. Sensory and cognitive top-down expectations hereby
lead to excitatory matching with consistent bottom-up data. A
mismatch between top-down expectations and bottom-up data
can suppress the mismatched part of the bottom-up data, while
attention is focused upon the matched, or expected, part of the
bottom-up data.

4.2. Learning of attended critical feature patterns

Excitatory matching and attentional focusing on bottom-
up data using top-down expectations generates resonant brain
states: When there is a good enough match between bottom-
up and top-down signal patterns between two or more levels of
processing, their positive feedback signals amplify, synchronize,
and prolong their mutual activation, leading to a resonant state
that focuses attention on a combination of features (the ‘‘critical
feature pattern’’) that are needed to correctly classify the input
pattern at the next processing level and beyond. Amplification,
synchronization, and prolongation of activity triggers learning
in the more slowly varying adaptive weights that control the
signal flow along pathways between the attended features and the
recognition category with which they resonate. Resonance hereby
provides a global context-sensitive indicator that the system is
processing data worthy of learning, hence the name Adaptive
Resonance Theory.

In summary, ART predicts a link between the mechanisms
which enable us to learn quickly and stably about a changingworld,
and the mechanisms that enable us to learn expectations about
such a world, test hypotheses about it, and focus attention upon
information that may predict desired consequences. ART clarifies
this link by asserting that, in order to solve the stability–plasticity
dilemma, only resonant states can drive fast new learning.

5. Linking brain to behavior: all conscious states are resonant
states

It is just a step from here to propose that those experiences
which can attract our attention and guide our future lives after
being learned are also among the ones that are conscious. Support
for the predicted link between resonance and consciousness comes
many modeling studies wherein the parametric properties of
brain resonances map onto parametric properties of conscious
behavioral experiences in the simulated experiments. Indeed,
without such a linking hypothesis between brain mechanisms
and behavioral functions, no theory of consciousness can be fully
tested.

Although it is predicted that ‘‘all conscious states are resonant
states’’, it is not predicted that ‘‘all resonant states are conscious

states’’. Indeed, some resonant states, such as the storage of a
sequence of events in working memory before rehearsal occurs
(see Sections 50–52), or the entorhinal–hippocampal resonances
that may dynamically stabilize the learning of entorhinal grid cells
and hippocampal place cells (see Section 40), are not accessible to
consciousness.

6. ART Matching Rule and biased competition: modulatory on-
center, off-surround network

6.1. Attention obeys the ART Matching Rule

How are What stream top-down expectations computed? How
do they focus attention on expected combinations of features?
Carpenter and Grossberg (1987) mathematically proved that the
simplest attentional circuit that solves the stability–plasticity
dilemma is a top-down,modulatory on-center, off-surround network,
which provides excitatory priming of critical features in the on-
center, and driving inhibition of irrelevant features in the off-
surround. Eq. (1) describes an on-center off-surround network
when the excitatory connections are spatially more localized than
the inhibitory connections. The modulatory on-center emerges
from a balance between top-down excitation and inhibition.
The neurons in the network obey the membrane equations of
neurophysiology. The entire attentional circuit is said to satisfy the
ART Matching Rule.

6.2. Solving the noise–saturation dilemma with shunting on-center
off-surround networks

It was first proved by Grossberg (1973) that the shunting,
or gain control, properties of membrane equation neurons in an
on-center off-surround network (Eq. (1)) enable them to self-
normalize their activities, and thereby solve a design problem that
is just as basic as the stability–plasticity dilemma. This design
problem is called the noise–saturation dilemma. Without suitable
interactions between neurons, their inputs can be lost in cellular
noise if they are too small, or can saturate cell activities at their
maximum values if they are too large. Moreover, input amplitudes
can vary greatly through time. What sort of network interactions
enable neurons to retain their sensitivities to the relative sizes of
their inputs across the network, even while these inputs may vary
in size through time over several orders of magnitude? The answer
is: an on-center off-surroundnetworkwhose cells exhibit shunting
properties.

Modeling studies clarify how a top-down, modulatory on-
center, off-surround network can participate in many different
types of brain processes (e.g., Dranias, Grossberg, and Bullock
(2008), Gove, Grossberg, and Mingolla (1995), Grossberg, Govin-
darajan, Wyse, and Cohen (2004), Grossberg and Kazerounian
(2011)). Models of how cerebral cortex embodies attention within
its layered circuits have discovered that identified cell types and
connections occur with the necessary properties to realize the
ART Matching Rule (Grossberg, 1999; Grossberg & Pearson, 2008;
Grossberg & Versace, 2008; Raizada & Grossberg, 2003).

6.3. Data support for the ART Matching Rule

Many anatomical and neurophysiological experiments have
provided support for the ART prediction of how attention
works, including data about modulatory on-center, off-surround
interactions; excitatory priming of features in the on-center;
suppression of features in the off-surround; and gain amplification
of matched data (e.g., Bullier, Hupé, James, and Girard (1996),
Caputo and Guerra (1998), Downing (1988), Hupé, James, Girard,
and Bullier (1997), Mounts (2000), Reynolds, Chelazzi, and
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Desimone (1999), Sillito, Jones, Gerstein, and West (1994),
Somers, Dale, Seiffert, and Tootell (1999), Steinman, Steinman, and
Lehmkuhle (1995) and Vanduffel, Tootell, and Orban (2000)). The
ART Matching Rule is often called the ‘‘biased competition’’ model
of attention by experimental neurophysiologists (Desimone, 1998;
Kastner & Ungerleider, 2001). The property of the ART Matching
Rule that bottom-up sensory activity may be enhanced when
matched by top-down signals is in accord with an extensive
neurophysiological literature showing the facilitatory effect of
attentional feedback (Luck, Chelazzi, Hillyard, & Desimone, 1997;
Roelfsema, Lamme, & Spekreijse, 1998; Sillito et al., 1994), but
not with models, such as Bayesian ‘‘explaining away’’ models, in
which matches with top-down feedback cause only suppression
(Mumford, 1992; Rao & Ballard, 1999).

The ART Matching Rule helps to explain the existence of
top-down modulatory connections at multiple stages of cortical
processing. For example, Zeki and Shipp (1988, p. 316) wrote that
‘‘backward connections seem not to excite cells in lower areas,
but instead influence the way they respond to stimuli’’; that is,
they are modulatory. Likewise, the data of Sillito et al. (1994,
pp. 479–482) on attentional feedback from cortical area V1 to
the Lateral Geniculate Nucleus (LGN) support an early prediction
that the ART Matching Rule should exist in this pathway as well
(Grossberg, 1976b). In this regard, Sillito et al. (1994) concluded
that ‘‘the cortico-thalamic input is only strong enough to exert
an effect on those dLGN cells that are additionally polarized by
their retinal input· · ·the feedback circuit searches for correlations
that support the ‘hypothesis’ represented by a particular pattern
of cortical activity’’. Their experiments demonstrated all of the
properties of the ART Matching Rule, since they also found that
‘‘cortically induced correlation of relay cell activity produces
coherent firing in those groups of relay cells with receptive-field
alignments appropriate to signal the particular orientation of the
moving contour to the cortex· · ·this increases the gain of the
input for feature-linked events detected by the cortex’’. In other
words, top-down priming, by itself, cannot fully activate LGN
cells; it needs matched bottom-up retinal inputs to do so; and
those LGN cells whose bottom-up signals support cortical activity
get synchronized and amplified by this feedback. In addition,
anatomical studies have shown that the V1-to-LGN pathway
realizes a top-down on-center off-surround network (Dubin &
Cleland, 1977; Sillito et al., 1994; Weber, Kalil, & Behan, 1989);
see Fig. 5(d) below. Nobuo Suga and colleagues have shown that
feedback from auditory cortex to the medial geniculate nucleus
(MGN) and the inferior colliculus (IC) also has an on-center off-
surround form Zhang, Suga, and Yan (1997), and Temereanca and
Simons (2001) have produced evidence for a similar feedback
architecture in the rodent barrel system.

6.4. Mathematical form of the ART Matching Rule

There is also a convergence across models of how to math-
ematically instantiate the ART Matching Rule attentional circuit.
For example, the ‘‘normalization model of attention’’ (Reynolds
& Heeger, 2009) simulates several types of experiments on at-
tention using the same equation for self-normalizing attention as
the distributed ARTEXture (dARTEX) model (Bhatt, Carpenter, &
Grossberg, 2007, Eq. (A5)) used to simulate human psychophysical
data about Orientation-Based Texture Segmentation (OBTS, (Ben-
Shahar & Zucker, 2004)).

7. Imagining, planning, and hallucinations: prediction without
action

A top-down expectation is not always modulatory. The
excitatory/inhibitory balance in themodulatory on-center of a top-
down expectation can be modified by volitional control from the

basal ganglia. If, for example, volitional signals inhibit inhibitory
interneurons in the on-center, then read-out of a top-down
expectation from a recognition category can fire cells in the
on-center prototype, not merely modulate them. Such volitional
control has been predicted to control mental imagery and the
ability to think and plan ahead without external action, a crucial
type of predictive competence in humans and other mammals. If
these volitional signals become tonically hyperactive, then top-
down expectations can fire without overt intention, leading to
properties like schizophrenic hallucinations (Grossberg, 2000a).
In summary, our ability to learn quickly without catastrophic
forgetting led to circuits that can be volitionally modulated
to enable imagination, internal thought, and planning. This
modulation, which brings a huge evolutionary advantage to those
who have it, also carries with it the risk of causing hallucinations.

A similar modulatory circuit, again modulated by the basal
ganglia, is predicted to controlwhen sequences of events are stored
in short-termworkingmemory in the prefrontal cortex (Grossberg
& Pearson, 2008, see Sections 50–52) and the span of spatial
attention (‘‘useful-field-of-view’’) in the parietal and prefrontal
cortex (Foley, Grossberg, & Mingolla, 2012, see Section 17). All
of these properties build upon the fundamental ability to learn
quickly throughout life without catastrophic forgetting by using
top-down expectations to stabilize learned memories.

8. Complementary attentional and orienting systems:
expected/unexpected, resonance/reset

8.1. The cycle of resonance and reset

As noted above, the type of learning within the sensory and
cognitive domain that ART mechanizes is match learning: Match
learning occurs only if a good enough match occurs between
bottom-up information and a learned top-down expectation that
is read out by an active recognition category, or code. When
such an approximate match occurs, a resonance can be triggered,
whereupon previous knowledge can be refined through learning.
It has been mathematically proved that match learning within an
ART model leads to stable memories of arbitrary events presented
in any order (e.g., Carpenter and Grossberg (1987, 1991)).

However,match learning also has a serious potential weakness:
If you can only learn when there is a good enough match between
bottom-up data and learned top-down expectations, then how
do you ever learn anything that is really novel? ART proposes
that this problem is solved by the brain by using an interaction
between complementary processes of resonance and reset that are
predicted to control properties of attention and memory search,
respectively. These complementary processes help our brains to
balance between the complementary demands of processing the
familiar and the unfamiliar, the expected and the unexpected.

This problem raises the following basic questions: How does a
brain learn to balance between expected and unexpected events?
How does a brain learn to incorporate unexpected and unfamiliar
events within the corpus of previously learned events, and do
so without causing catastrophic forgetting? ART proposes that,
when novel inputs cannot match a known recognition category,
a memory search, or hypothesis testing, process is activated that
enables our brains to discover and learnnew recognition categories
that best match novel objects or events.

Organization of the brain into complementary processes is
predicted to be a general principle of brain design that is not just
found in ART (Grossberg, 2000b). A complementary process can
individually compute some properties well, but cannot, by itself,
process other complementary properties. In thinking intuitively
about complementary properties, one can imagine puzzle pieces
fitting together. Both pieces are needed to finish the puzzle.



Author's personal copy

8 S. Grossberg / Neural Networks 37 (2013) 1–47

Complementary brain processes are, however, more dynamic than
any such analogy: Pairs of complementary processes interact to
form emergent properties which overcome their complementary
deficiencies to compute complete information with which to
represent or control some aspect of intelligent behavior.

The resonance process in the complementary pair of resonance
and reset is predicted to take place in the What cortical stream,
notably in the sensory, temporal, and prefrontal cortices. Here
top-down expectations are matched against bottom-up inputs.
When a top-down expectation achieves a good enoughmatchwith
bottom-up data, this match process focuses attention upon those
feature clusters in the bottom-up input that are expected. If the
expectation is close enough to the input pattern, then a state of
resonance develops as the attentional focus takes hold, which is
often realized by oscillatory dynamics that synchronize the firing
properties of the resonant neurons. Such a resonance opens the
learning gates in the gated steepest descent learning laws (Eqs. (3)
and (4)).

However, as noted above, a sufficiently bad mismatch between
an active top-down expectation and a bottom-up input, say
because the input represents an unfamiliar type of experience,
can drive a memory search. Such a mismatch within the
attentional system is proposed to activate a complementary
orienting system, which is sensitive to unexpected and unfamiliar
events. ART suggests that this orienting system includes the
nonspecific thalamus and the hippocampal system. See Carpenter
and Grossberg (1993) and Grossberg and Versace (2008) for a
summary of data supporting this prediction. Output signals from
the orienting system rapidly reset the recognition category that
has been reading out the poorly matching top-down expectation.
The cause of the mismatch is hereby removed, thereby freeing the
system to activate a different recognition category. In this way, a
reset event triggers memory search, or hypothesis testing, which
automatically leads to the selection of a recognition category that
can better match the input.

If no such recognition category exists, say because the bottom-
up input represents a truly novel experience, then the search
process automatically activates an as yet uncommitted population
of cells, with which to learn about the novel information. In order
for a top-down expectation to match the features that activated a
new recognition category, its top-down adaptive weights initially
have large values, which are pruned by the learning of a particular
expectation; see Section 39.

8.2. ART search cycle

Fig. 2 illustrates these ART ideas in a two-level network.
Here, a bottom-up input pattern, or vector, I activates a pattern
X of activity across the feature detectors of the first level
F1. For example, a visual scene may be represented by the
features comprising its boundary and surface representations (see
Section 20). This feature pattern represents the relative importance
of different features in the inputs pattern I . In Fig. 2(a), the pattern
peaks represent more activated feature detector cells, the troughs
less activated feature detectors. This feature pattern sends signals
S through an adaptive filter to the second level F2 at which a
compressed representation Y (also called a recognition category,
or a symbol) is activated in response to the distributed input T .
Input T is computed by multiplying the signal vector S by a matrix
of adaptive weights, or long-term memory traces, that can be
altered through learning. The representation Y is compressed by
competitive interactions – in particular, shunting recurrent lateral
inhibition – across F2 that allow only a small subset of its most
strongly activated cells to remain active in response to T . These
active cells are the recognition category that represents the pattern
of distributed features across level F1. The pattern Y in the figure

Fig. 2. Search for a recognition code within an ART learning circuit: (a) Input
pattern I is instated across feature detectors at level F1 as an activity patternX , while
it nonspecifically activates the orienting system A with gain ρ, which is called the
vigilance parameter. Output signals from activity pattern X inhibits A and generates
output pattern S. S is multiplied by learned adaptive weights to form the input
pattern T . T activates category cells Y at level F2 . (b) Y generates the top-down
signals U which are multiplied by adaptive weights and added at F1 cells to form
a prototype V that encodes the learned expectation of active F2 categories. If V
mismatches I at F1 , then a new STM activity pattern X∗ (the hatched pattern) is
selected at F1 .X∗ is active at I features that are confirmed byV . Mismatched features
(white area) are inhibited. When X changes to X∗ , total inhibition decreases from
F1 to A. (c) If inhibition decreases sufficiently so that the total inhibition due to X∗ is
less than the total excitation due to I multiplied by the vigilance parameter ρ, then
A is activated and releases a nonspecific arousal burst to F2; that is, ‘‘novel events are
arousing’’. Arousal resets F2 by inhibiting Y . (d) After Y is inhibited, X is reinstated
and Y stays inhibited as X activates a different activity pattern Y ∗ . Search for better
F2 category continues until a better matching or novel category is selected. When
search ends, an attentive resonance triggers learning of the attended data.
Source: Adapted with permission from Carpenter and Grossberg (1993).

indicates that a small number of category cells may be activated to
different degrees.

These category cells, in turn, send top-down signals U to F1.
The vector U is converted into the top-down expectation V by
beingmultiplied by anothermatrix of adaptive weights. When V is
received by F1, a matching process takes place between the input
vector I and V which selects that subset X∗ of F1 features that were
‘‘expected’’ by the active F2 category Y . The set of these selected
features is the emerging ‘‘attentional focus’’ that is gain amplified
by the top-down match.

9. Synchronous binding of feature patterns and categories
during conscious resonances

If the top-down expectation is close enough to the bottom-up
input pattern, then the pattern X∗ of attended features reactivates
the category Y which, in turn, reactivates X∗. The network hereby
locks into a resonant state through a positive feedback loop that
dynamically links, or binds, the attended features across X∗ with
their category, or symbol, Y .
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9.1. Resonant synthesis of complementary categories and distributed
feature patterns

The resonance process itself embodies another type of com-
plementary processing. Indeed, there seem to be complementary
processes both within and between cortical processing streams
(Grossberg, 2000b). This particular complementary relation occurs
between distributed feature patterns and the compressed cate-
gories, or symbols, that selectively code them:

Individual features at F1 have no meaning on their own, just
like the pixels in a picture are meaningless one-by-one. The
category, or symbol, in F2 is sensitive to the global patterning
of these features, and can selectively fire in response to this
pattern. But it cannot represent the ‘‘contents’’ of the experience,
including their conscious qualia, due to the very fact that a category
is a compressed, or ‘‘symbolic’’ representation. Practitioners of
Artificial Intelligence have claimed that neural models can process
distributed features, but not symbolic representations. This is not,
of course, true in the brain. Nor is it true in ART.

Resonance between these two types of information converts
the pattern of attended features into a coherent context-sensitive
state that is linked to its category through feedback. Coherent
binding of the attended features to the category give them
a meaning as a context-sensitive ‘‘event’’ rather than as just
isolated pixels. Such coherent states between distributed features
and symbolic categories are often expressed dynamically as
synchronously oscillating activations across the bound cells, and
can enter consciousness.

9.2. Order-preserving limit cycles and synchronous oscillations

The original ART article (Grossberg, 1976b) predicted the
existence of such synchronous oscillations, which were there
described in terms of their mathematical properties as ‘‘order-
preserving limit cycles’’. The property of ‘‘order-preservation’’
means that the relative sizes, and thus importance, of the
feature activations should not reverse during the oscillation,
which could occur, for example, during a traveling wave.
Many neurophysiological experiments have been done confirming
the existence of synchronous oscillations since the original
confirmatory experimental reports of Eckhorn et al. (1988) and
Gray and Singer (1989). See Raizada and Grossberg (2003) and
Grossberg and Versace (2008) for reviews of confirmed ART
predictions, including predictions about synchronous oscillations.

10. Resonance links intentional and attentional information
processing to learning

In ART, the resonant state, rather than bottom-up activation
alone, is predicted to drive fast learning. The synchronous resonant
state persists long enough, and at a high enough activity level, to
activate the slower learning processes in the adaptive weights that
guide the flow of signals between bottom-up adaptive filter and
top-down expectation pathways between levels F1 and F2 in Fig. 2.
This viewpoint helps to explain how adaptive weights that were
changed through previous learning can regulate the brain’s present
information processing, without necessarily learning about the
signals that they are currently processing unless the network as
a whole can initiate a resonant state. Through resonance as a
mediating event, one can understand from a deeper mechanistic
view why humans are intentional beings who are continually
predicting what may next occur, and why we tend to learn about
the events to which we pay attention.

This match-based learning process stabilizes learned memories
both in the bottom-up adaptive filters that activate recognition
categories and in the top-down expectations that are matched

against feature patterns. It embodies a fundamental form of
prediction that can be activated either bottom-up by input data,
or top-down by an expectation that predictively primes a class of
events whose future occurrence is sought. Match-based learning
allows memories to change only when input from the external
world is close enough to internal expectations, or when something
completely new occurs.

11. Resonance vs. reset implies gamma vs. beta oscillations

The Synchronous Matching ART (SMART) model (Grossberg &
Versace, 2008) clarifies how ART processes may be embodied in
laminar thalamocortical circuits that experience spiking dynamics.
SMART demonstrates how a top-down attentive match may lead
to fast gamma oscillations that facilitate spike-timing dependent
plasticity (STDP), whereas mismatch and reset can lead to slower
beta oscillations that help to prevent mismatched events from
being learned. This match–mismatch gamma–beta story seems
to occur in quite a few brain systems, with examples of data
supporting theGrossberg–Versace prediction having recently been
reported in cortical area V1, hippocampus, and frontal eye fields
(see Section 38).

12. Mixing unsupervised with supervised learning

The ART category learning process works well under both
unsupervised and supervised conditions. Variants of the ARTMAP
architecture can carry out both types of learning (e.g., Carpenter
et al. (1992)). Unsupervised learning means that the system can
learn how to categorize novel input patterns without any external
feedback. Supervised learning uses predictive errors to let the
system knowwhether it has categorized the information correctly
or not.

Supervision can force a search for new categories that may
be culturally determined, and are not based on feature similarity
alone. For example, separating the featurally similar letters E and
F into separate recognition categories is culturally determined.
Such error-based feedback enables variants of E and F to learn
their own category and top-down expectation, or prototype. The
complementary, but interacting, processes of attentive-learning
and orienting-search together realize a type of error correction
through hypothesis testing that can build an ever-growing, self-
refining internal model of a changing world.

13. Mismatch-activated nonspecific arousal regulates reset and
search

13.1. Complementary attentional and orienting systems

The attentional and orienting systems in anARTnetwork (Fig. 2)
also experience complementary informational deficiencies. At the
momentwhen a predictive error occurs, the system does not know
why the currently active category was insufficient to predict the
correct outcome. In particular, when the orienting system gets
activated by a mismatch in the attentional system, the orienting
system has noway of knowingwhat went wrong in the attentional
system. Thus, the attentional system has information about how
inputs are categorized, but not whether the categorization is
correct, whereas the orienting system has information about
whether the categorization is correct, but not what is being
categorized. How, then, does the orienting system cope with the
daunting challenge of resetting and driving a memory search
within the attentional system in a way that leads to a better
outcome after the search ends.
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13.2. Novelty-sensitive nonspecific arousal: novel events are arous-
ing!

Because the orienting system does not know what cells in
the attentional system caused the predictive error, its activation
needs to influence all potential sources of the error equally. Thus,
mismatch triggers a burst of nonspecific arousal that activates all
cells in the attentional systemequally. In otherwords, novel events
are arousing! Said in amore philosophical way, a novelty-sensitive
burst of nonspecific arousal implements the principle of sufficient
reason. As illustrated in Fig. 2, the current state of activation of
the attentional system interacts with such an arousal burst to
selectively reset cells that caused the mismatch, and to thereby
drive a search leading to a better predictive outcome.

13.3. Medium-term memory: habituative transmitter gates in non-
stationary hypothesis testing

The search process exploits a type of medium-term memory
acting at category cells that is realized by activity-dependent
habituative transmitter gates (Carpenter & Grossberg, 1990;
Grossberg, 1968c, 1972b, 1976b). See Eq. (2). Such habituative
transmitter gates are sometimes called depressing synapses after
the work of Abbott, Varela, Sen, and Nelson (1997), which
experimentally confirmed predicted properties of such gates
in the visual cortex. Habituative transmitter gates have been
used to help explain a wide range of data about processes
other than category learning, including the dynamics of visual
perception, cognitive–emotional interactions, and sensory–motor
control (Francis & Grossberg, 1996; Francis, Grossberg, & Mingolla,
1994; Gaudiano & Grossberg, 1991, 1992; Grossberg, 1972b, 1980,
1984a, 1984b).

Due to habituative gating, recently active cells are more
habituated than inactive cells. Activity-dependent habituation
interacts with self-normalizing competition among the category
cells to help suppress cells that are most active when the
arousal burst is received. Once the maximally activated cells are
suppressed by this combination of habituation and competition
during the search cycle, the self-normalizing network activity is
available to enable other cells, which got smaller inputs than the
original winning cells, to become active in the next time interval.
This cycle of mismatch–arousal–reset continues until resonance
can again occur.

The ability of the category cell network to self-normalize
its total activity enables the activities of these categories to be
interpreted as a kind of real-time probability distribution, and
the ART search cycle to be interpreted as a kind of probabilistic
hypothesis testing and decision making that works in response to
non-stationary time series of input patterns.

14. Vigilance regulates the content of conscious experiences:
exemplars and prototypes

14.1. Vigilance controls whether concrete or general categories are
learned

What combinations of features or other information are bound
together into conscious object or event representations? One
popular view in cognitive psychology is that exemplars, or
individual experiences, are learned, because humans can have
very specific memories. For example, we can all recognize the
faces of our friends. On the other hand, storing every remembered
experience as an exemplar could lead to a combinatorial explosion
of memory, as well as to unmanageable problems of memory
retrieval. A possible way out is suggested by the fact that
humans can learn prototypes which represent general properties

of the environment (Posner & Keele, 1968). For example, we
can recognize that everyone has a face. But then how do we
learn specific episodic memories? ART provides an answer to this
question that overcomes problems faced by earlier models.

ART prototypes are not merely averages of the exemplars
that are classified by a category, as is often assumed in classical
prototype models. Rather, they are the actively selected critical
feature patterns upon which the top-down expectations of the
category focus attention. The generality of the information that
is coded by these critical feature patterns is controlled by a gain
control process, called vigilance control, which can be influenced
by environmental feedback or internal volition (Carpenter &
Grossberg, 1987). Low vigilance permits the learning of general
categories with abstract prototypes. High vigilance forces a
memory search to occur for a new category when even small
mismatches exist between an exemplar and the category that it
activates. As a result, in the limit of high vigilance, the category
prototype may encode an individual exemplar.

14.2. Vigilance is computed in the orienting system

Vigilance is computed within the orienting system of an ART
model (Fig. 2(b)–(d)). It is here that bottom-up excitation from
all the active features in an input pattern I are compared with
inhibition from all the active features in a distributed feature
representation across F1. If the ratio of the total activity across
the active features in F1 (that is, the ‘‘matched’’ features) to the
total activity due to all the features in I is less than a vigilance
parameter ρ (Fig. 2(b)), then a nonspecific reset wave is activated
(Fig. 2(c)), which can drive the search for another category with
which to classify the exemplar. This can be accomplished by letting
ρ multiply the bottom-up inputs I to the orienting system; that is,
ρ is the gain of the inputs to the orienting system. The orienting
system is then activated when the total excitatory input ρI is
greater than the total inhibition from the features X∗ across F1
that survive top-down matching; that is, when ρ |I| − |X∗| >
0, where |·| denotes the number of positive inputs or matched
features. This inequality can be rewritten as ρ > |X∗| |I|−1 to
show that the orienting system is activated whenever ρ is chosen
higher than the ratio of active X∗ matched features in F1 to total
features in I . In other words, the vigilance parameter controls how
bad a match can be before search for a new category is initiated.
If the vigilance parameter is low, then many exemplars can all
influence the learning of a shared prototype, by chipping away
at the features that are not shared with all the exemplars. If the
vigilance parameter is high, then even a small difference between
a new exemplar and a known prototype (e.g., F vs. E) can drive the
search for a new category with which to represent F .

14.3. Minimax learning via match tracking: learning themost general
predictive categories

One way to control vigilance is by a process of match tracking
(Carpenter & Grossberg, 1991; Carpenter et al., 1992). Here, in
response to a predictive error (e.g., D is predicted in response to
F ), the vigilance parameter ρ increases just enough to trigger reset
and search for a better-matching category.Match tracking gives up
the minimum amount of generalization in the learned categories
to search for a better-matching category. In other words, vigilance
‘‘tracks’’ the degree ofmatch between input exemplar andmatched
prototype. Because match tracking increases vigilance by the
minimum amount to trigger a reset and search for a new category,
it realizes a Minimax Learning Rule that conjointly maximizes
category generality while it minimizes predictive error. Match
tracking thus uses the least memory resources that can correct
errors in classification.
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Because the baseline level of vigilance is initially set at the
lowest level that has led to predictive success in the past, ART
models try to learn the most general category that is consistent
with the data. This tendency can, for example, lead to the type
of overgeneralization that is seen in young children until further
learning leads to category refinement. However, because vigilance
can vary during match tracking in a manner that reflects current
predictive success, recognition categories capable of encoding
widely differing degrees of generalization or abstraction can be
learned by a single ART system. Low vigilance leads to broad
generalization and abstract prototypes. High vigilance leads to
narrow generalization and to prototypes that represent fewer
input exemplars, even a single exemplar. Thus a single ART
system may be used, say, to learn abstract prototypes with which
to recognize abstract categories of faces and dogs, as well as
‘‘exemplar prototypes’’ with which to recognize individual views
of faces and dogs, depending on task requirements.

15. Memory consolidation and the emergence of rules: direct
access to globally best match

As sequences of inputs are practiced over learning trials, the
search process eventually converges upon stable categories. It
has been mathematically proved (e.g., Carpenter and Grossberg
(1987)) that familiar inputs directly access the categorywhose pro-
totype provides the globally best match, without undergoing any
search, while unfamiliar inputs engage the orienting subsystem to
trigger memory searches for better categories until they become
familiar. In other words, ART provides a solution of the local min-
imum problem that various other algorithms, such as back propa-
gation (Baldi & Hornik, 1989; Gori & Tesi, 1992), do not solve. This
process of search and category learning continues until the mem-
ory capacity, which can be chosen arbitrarily large, is fully utilized.

15.1. Memory consolidation and medial temporal amnesia

The process whereby search is automatically disengaged is
a form of memory consolidation that emerges from network
interactions. The first example of memory consolidation that
was described by ART concerns cortico-hippocampal interactions,
and proposed how a hippocampal ablation may cause symptoms
of medial temporal amnesia (Carpenter & Grossberg, 1993).
Emergent consolidation does not preclude structural consolidation
at individual cells, since the amplified and prolonged activities
that subserve a resonancemay be a trigger for learning-dependent
cellular processes, such as protein synthesis, synapse formation,
and transmitter production.

15.2. Learning of fuzzy IF-THEN rules by a self-organizing production
system

It has been proved that the adaptive weights which are learned
by some ART models can, at any stage of learning, be translated
into fuzzy IF-THEN rules (Carpenter et al., 1992). Thus the ART
model is a self-organizing rule-discovery production system as
well as a neural network. These examples show that the claims of
some cognitive scientists and AI practitioners that neural network
models cannot learn rule-based behaviors are as incorrect as the
claims that neural models cannot learn symbols.

16. Where’s Waldo? Positionally-invariant recognition codes
and positionally precise actions

What kind of categories can an ART system learn? How
can such learning be incorporated into the kinds of percep-

Fig. 3. Where’s Waldo: the position in a scene of a valued target can be located
by linking What stream recognition to Where stream action. Interactions between
cortical areas ITp, ITa, amygdala, orbitofrontal cortex (ORB), and posterior parietal
cortex (PPC) can bridge between positionally-invariant ITa object categories that
are selected by motivated attention, and parietal cortical representations of object
positions. The numbers indicate the order of pathway activations. If there are two
numbers, the larger one represents the stagewhen feedback activates that pathway.
See text for details.
Source: Reprinted with permission from Grossberg (2009b).

tion–cognition–emotion–action cycles that are characteristic of
many mammalian behaviors? Actions directed towards valued
goal objects cannot bemade until goal objects are recognized, their
currently perceived value used to help direct attention towards
them, and their spatial locations specified. As noted in Fig. 1, the
What cortical stream learns object representations that are in-
creasingly independent of object position and size, whereas the
Where cortical stream represents object positions and how to
move. Interactions between the What and Where streams over-
come these complementary informational deficiencies to generate
actions towards recognized objects that are currently valued.

Whereas object representations in posterior inferotemporal
cortex (ITp) combine feature and positional information, object
representations in anterior inferotemporal cortex (ITa) are more
positionally invariant. These two types of representations are
linked by reciprocal learned connections, as described by ART.
ITp representations also project to the posterior parietal cortex
(PPC) as target locations of an object. Given this background,
consider what happens when multiple objects in a scene all try to
activate their corresponding ITp and ITa representations. Suppose
that a particular ITa category represents a valued goal object in
that situation. As explained in Section 42, the ITa representation
can get amplified by an inferotemporal–amygdala–orbitofrontal
resonance. When this happens, the amplified ITa representation
can better compete for object attention, and can send larger
top-down priming signals to its ITp representations. The ITp
representation that corresponds to the valued object is thereby
selectively amplified, and sends an amplified signal to the parietal
cortex, where its target location canwin the competition forwhere
the nextmovementwill go. See Fig. 3. This scheme canhelp to solve
the Where’s Waldo problem, or the rapid discovery of a desired
goal object in a cluttered scene.

17. ARTSCAN: learning invariant object categories using atten-
tional shrouds

17.1. Solving the View-to-Object Binding Problem while scanning a
scene

One crucial part of this behavioral cycle is the learning of view-
invariant and positionally-invariant categories by the brain. To
understand how this happens, several basic questions need to be
answered:What is an object? How canmultiple views of an object
that is seen in different positions and distances with respect to an
observer all activate an invariant object category at a sufficiently
high processing level? How does the brain learn invariant object
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properties under both unsupervised and supervised learning
conditions? How does the brain learn to bind multiple views of
an object into a view-invariant and positionally-invariant object
category while freely scanning a scene with eye movements?

To answer these questions, one also needs to solve the following
basic View-to-Object Binding Problem: As eyes scan a scene, two
successive eye movements may focus on different parts of the
same object or on different objects. How does the brain avoid
erroneously classifying views of different objects together, even
before the brain knows what the object is? One cannot say that
the brain does this by knowing that some views belong together
whereas others do not, because this can happen even before the
brain has a concept of what the object is. Indeed, such scanning
eyemovementsmay be used to learn the object concept in the first
place.

17.2. Coordinating spatial and prototype attention during invariant
category learning

The ARTSCAN model (Fig. 4) clarifies how the brain uses
scanning saccadic eye movements to learn view-invariant object
categories (Cao et al., 2011; Fazl et al., 2009; Foley et al., 2012;
Grossberg, 2007b, 2009b; Grossberg et al., 2011). The discussion
about ART above considered only one form of object attention
(Posner, 1980) in the What cortical stream, the kind that focuses
attention upon the critical feature pattern of a category prototype.
ARTSCAN explains how this kind of object attention, called
prototype attention, interacts with spatial attention (Duncan, 1984)
in theWhere cortical stream to direct eyemovements that explore
object surfaces. ARTSCAN makes a major new prediction about
how spatial and object attention are related; namely, spatial
attention coordinates the learning of invariant object categories
during free viewing conditions. The ART dynamics schematized in
Fig. 2 learn the view-specific categories that are bound together
through such coordination into view-invariant and positionally-
invariant object categories.

The process begins when a view-specific category of a novel
object is learned, and activates cells at a higher cortical level that
will become a view-invariant object category as multiple view
categories are associated with it. Indeed, as the eyes move around
an object surface, multiple view-specific categories are learned
of the object (e.g., in ITp; see Fig. 4) and are associated with the
emerging invariant object category (e.g., in ITa; see Fig. 4). How
does the brain know how to prevent the invariant object category
from being reset while it is getting associated with multiple view-
specific categories of a single object, each of whichmust be reset to
enable the next view-specific category to be activated and learned?

17.3. Attentional shroud inhibits reset of an invariant object category
during object search

ARTSCAN predicts that a pre-attentively formed surface rep-
resentation activates an attentional shroud (Tyler & Kontsevich,
1995), or form-fitting distribution of spatial attention, even before
the brain can recognize the surface as representing a particular ob-
ject. This shroud persists within the Where Stream during active
scanning of an object. The shroud protects the view-invariant cat-
egory from getting reset, even while view-specific categories are
reset, as the eyes explore an object. The shroud does this by inhibit-
ing the ITa reset mechanism (see inhibition from Spatial Attention
to Category Reset in Fig. 4).

How does the shroud persist during active scanning of an
object? A surface-shroud resonance arises due to positive feedback
interactions between a surface representation (e.g., in cortical area
V4) and spatial attention (e.g., in posterior parietal cortex, or
PPC), and focuses spatial attention upon the object to be learned

(Fig. 4). When the shroud collapses, the Category Reset stage is
disinhibited, giving rise to a transient burst of inhibition that resets
the active invariant object category. The collapse of the shroud also
enables the eyes tomove to another surface,whereuponnewview-
specific and view-invariant object categories can be learned. The
cycle can then repeat itself.

17.4. Human and monkey data support shroud reset properties

Chiu and Yantis (2009) used rapid event-relatedMRI in humans
to provide evidence for the ARTSCAN prediction of how a surface-
shroud resonance in the Where stream protects an emerging
view-invariant category from being prematurely reset in the
What stream when each of the view-specific categories that are
associatedwith it is reset. These authors found that a shift of spatial
attention evokes a transient signal in the medial superior parietal
lobule that corresponding to a shift in categorization rules. In
ARTSCAN, collapse of an attentional shroud (spatial attention shift)
disinhibits the parietal reset mechanism (transient signal) that
leads to collapse of the previous view-invariant object category and
instatement of a new one (shift in categorization rules).

Cao et al. (2011) have used the positional ARTSCAN (pARTSCAN)
extension of the ARTSCAN model to simulate neurophysiological
data of Li and DiCarlo (2008; see also Li and DiCarlo (2010))
showing that views from different objects can be merged within
inferotemporal categories when monkeys are presented with an
object that is swapped with another object during eye movements
to foveate the original object. Why does not such a merging
of recognition categories occur all the time, thereby leading to
catastrophic forgetting of learned recognition categories? The
model quantitatively simulates the swapping data by showing
how the swapping procedure fools the spatial attention reset
mechanism by instating the swap before the animal can shift its
spatial attention.

This result, among others, may be used to develop newways to
test how humans and animals learn to pay attention to important
targets while they learn invariant object categories with which
to recognize and predict them. As noted above, Chiu and Yantis
(2009) used rapid event-related MRI in humans to support the
model’s prediction that reset is mediated by a transient burst of
activation in the parietal cortex which is activated by a shift of
spatial attention, also in the parietal cortex. One new experiment
in humanswould be to repeat the swapping experiment in humans
and use MRI to test if there is a transient parietal burst during the
swap. The prediction is that there would not be a burst when there
is rapidmerging of the second object into the category. As the delay
between the initial target and the swap increases, a reset should
occur when merged categories are no longer learned.

Many other paradoxical data may also be explained by
these concepts, including how spatial attention can increase the
perceived brightness of a surface (Carrasco, Penpeci-Talgar, &
Eckstein, 2000; Reynolds & Desimone, 2003), how predictive
remapping of eye position occurs (Duhamel, Colby, & Goldberg,
1992; Gottlieb, Kusunoki, & Goldberg, 2005; Melcher, 2007), how
the eyes can prefer to move within the same object for awhile
(Theeuwes, Mathot, & Kingstone, 2010), and what sort of category
invariance can be learned (Grossberg et al., 2011; Zoccolan et al.,
2007).

17.5. Conscious perception of surface-shroud resonances: linking
perception to recognition

ARTSCAN also provides new insights into basic issues such
as: What do we consciously see? How is seeing related to
recognition, and how does recognition of individual objects fail
during conditions of perceptual crowding (Green & Bavelier, 2007;
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Fig. 4. ARTSCAN model: an active attentional shroud in PPC inhibits otherwise tonically active Category Reset inhibition. This enables the emerging view-invariant object
category in ITa to stay active while view-specific categories in ITp are associated with it as the eyes scan a scene. Interactions between object boundaries and surfaces via a
surface contour process are proposed to control eye movements on a surface whose shroud amplifies the corresponding object surface.
Source: Reprinted with permission from Fazl et al. (2009).

He, Cavanagh, & Intriligator, 1996; Intriligator & Cavanagh, 2001;
Levi, 2008)? ARTSCAN provides a deceptively simple answer to
the first question: ARTSCAN predicts that we consciously see
surface-shroud resonances; that is, we see the visual qualia of
a surface when they are synchronized and amplified within a
surface-shroud resonance (see Section 20). Such a resonance can
propagate both top-down to lower cortical levels, such as V1,
where finer features of seen representations may be computed, as
well as bottom-up to higher cortical areas. ARTSCAN also provides
a simple explanation of crowding (Foley et al., 2012): The cortical
magnification factor, among other variables, can cause multiple,
peripherally-viewed, object surfaces to share a single surface-
shroud resonance. Since surface-shroud resonances create a link
between conscious perception and recognition, objects that share
a single resonance cannot be individually recognized.

If it is true that a surface-shroud resonance enables selective
binding of view-specific categories to a view-invariant category
when a surface-shroud category of that object is active, then
how do we see the rest of a scene at this time? If spatial
attention focuses on the object to be learned, then why doesn’t
everything but the surface that is bound in the resonance go dark?
Understanding this latter issue requires an analysis of how spatial
and object attention within the parietal and prefrontal cortices
interact with visual representations. Towards this goal, Foley et al.
(2012) have refined ARTSCAN to propose answers to the following
kinds of questions: How do prefrontal priming and parietal spatial
mechanisms interact to determine the reaction time costs of intra-
object attention shifts, inter-object attention shifts, and shifts
between visible objects and covertly cued locations? What factors
underlie individual differences in the timing and frequency of
such attentional shifts? How do transient and sustained spatial
attentional mechanisms work and interact? How can volition,
mediated via the basal ganglia, influence the span of spatial

attention by varying the strength of competition for attention (see
Section 44)?

When these additional processes of prefrontal priming, tran-
sient attention, and parietal control of attentional span are also
modeled, ARTSCAN can explain how a surface-shroud resonance
can focus attention on one object at a time to be learned, yet spa-
tial attention can also prime multiple objects at the same time.
This proposal is supported by simulations of psychological data
about the dynamics of covert attention priming and switching re-
quiring multifocal attention. For example, the relative strength
of sustained surface-driven and fast-transient motion-driven spa-
tial attention controls individual differences in reaction time for
invalid cues in the two-object cueing paradigm (Brown & Den-
ney, 2007; Egly, Driver, & Rafal, 1994; Roggeveen, Pilz, Bennett,
& Sekuler, 2009), and competition between surface-driven atten-
tional shrouds controls individual differences in detection rate of
peripheral targets in useful-field-of-view tasks, as exemplified by
video game players (Green & Bavelier, 2003).

18. Bottom-up, horizontal, and top-down laminar cortical
circuits: joining ART and FACADE

As illustrated by the ARTSCAN model, ART has undergone
continual development as a cognitive and neural theory since
it was introduced in Grossberg (1976a, 1976b). Another major
development was to show how predicted ART mechanisms may
be embodied within known laminar microcircuits of the cerebral
cortex, starting in Grossberg (1999). This laminar version of ART
is called LAMINART (Fig. 5). The LAMINART embedding is not a
mere relabeling of the previous ART theory. Rather, it has resolved
a long-standing conceptual problem and enabled the explanation
and prediction of much more cognitive and brain data. In so doing,
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Fig. 5. The LAMINART model clarifies how bottom-up, horizontal, and top-down
interactions within and across cortical layers in V1 and V2 interblob and pale stripe
regions, respectively, carry out bottom-up adaptive filtering, horizontal grouping,
and top-down attention. Similar interactions seem to occur in all six-layered
cortices. See text for details.
Source: Reprinted with permission from Raizada and Grossberg (2001).

it unified two major streams of research activity. The two streams
of research activity are:

(1) ART as a theory of category learning and prediction.
This stream emphasized bottom-up and top-down interactions
within higher-level cortical circuits, such as cortical areas V4,
inferotemporal cortex, and prefrontal cortex, during the learning
of visual recognition categories;

(2) FACADE (Form-And-Color-And-DEpth) as a theory of 3D vi-
sion and figure–ground perception (Cao & Grossberg, 2005; Fang
& Grossberg, 2009; Grossberg, 1994, 1997; Grossberg, Bullock, &
Dranias, 2008;Grossberg&McLoughlin, 1997;Grossberg& Swami-
nathan, 2004; Grossberg & Yazdanbakhsh, 2005; Grossberg, Yaz-
danbakhsh, Cao, & Swaminathan, 2008). This stream emphasized
bottom-up and horizontal interactions for completion of bound-
aries during perceptual grouping, and for filling-in of surface
brightness and color. These interactions were proposed to occur
in lower cortical processing areas such as V1, V2, and V4.

19. Laminar vision, speech, and cognition models: LAMINART,
cARTWORD, LIST PARSE

The unification of these two research streams in LAMINART
proposed how all cortical areas combine bottom-up, horizontal,
and top-down interactions, thereby beginning to functionally
clarify why all granular neocortex has a characteristic architecture
with six main cell layers (Felleman & Van Essen, 1991), and how
these laminar circuits may be specialized to carry out different
types of biological intelligence. In particular, this unification
suggested how variations of a shared laminar cortical design could
be used to explain psychological and neurobiological data about
vision, speech, and cognition:

Vision. LAMINART integrates bottom-up and horizontal pro-
cesses of 3D boundary formation and perceptual grouping, surface
filling-in, and figure–ground separationwith top-down attentional
matching in cortical areas such as V1, V2, and V4 (Cao & Grossberg,
2005; Grossberg, 1999; Grossberg & Raizada, 2000; Grossberg &
Swaminathan, 2004; Grossberg & Yazdanbakhsh, 2005; Raizada &
Grossberg, 2001).

Speech. cARTWORD models how bottom-up, horizontal, and
top-down interactions within a hierarchy of laminar cortical
processing stages, modulated by the basal ganglia, can generate
a conscious speech percept that is embodied by a resonant wave
of activation that occurs between acoustic features, acoustic item
chunks, and list chunks (Grossberg & Kazerounian, 2011, see
Sections 55–56). Chunk-mediated gating allows speech to be heard
in the correct temporal order, even when what is consciously
heard depends upon using future context to disambiguate noise-
occluded sounds, as occurs during phonemic restoration.

Cognition. LIST PARSE models how bottom-up, horizontal,
and top-down interactions within the laminar circuits of lateral
prefrontal cortex may carry out working memory storage of event
sequences within layers 6 and 4, how unitization of these event
sequences through learning into list chunks may occur within
layer 2/3, and how these stored sequences can be recalled at
variable rates that are under volitional control by the basal ganglia
(Grossberg & Pearson, 2008, see Sections 50–52). In particular,
the model uses variations of the same circuitry to quantitatively
simulate human cognitive data about immediate serial recall
and free recall, and monkey neurophysiological data from the
prefrontal cortex obtained during sequential sensory–motor
imitation and planned performance.

This emerging unified theory of how variations of a shared
laminar neocortical design can carry out multiple types of
biological intelligence is also of interest in technology, where
having a unified VLSI chip set for multiple types of biological
intelligence would revolutionize computer science in general, and
the design of autonomous adaptivemobile robots in particular. The
DARPA SyNAPSE program is currently pursuing such a possibility
(http://en.wikipedia.org/wiki/SyNAPSE).

20. Invisible boundaries, conscious visibility, surface-shroud
resonance, and parietal neglect

While on the topic of boundaries and surfaces, it is instructive
to mention some basic properties of perceptual boundaries and
surfaces that are relevant to the ART prediction that ‘‘all conscious
states are resonant states’’ (Sections 1 and 5). A basic discovery and
prediction about perceptual boundaries and surfaces is that they
obey complementary computational laws (Grossberg, 1994):

Boundaries are completed inwardly between pairs of similarly
oriented and collinear cell populations (the so-called bipole
grouping property; see Section 28). This inward and oriented
boundary process enables boundaries to complete across partially
occluded object features. Boundaries also pool inputs from
opposite contrast polarities, so are insensitive to contrast polarity.
This pooling process enables boundaries to form around objects
that are seen in front of backgrounds whose contrast polarities
with respect to the object reverse around the object’s perimeter.

In contrast, surface brightness and color fill-in outwardly in an
unoriented manner until they reach object boundaries or dissipate
due to their spread across space (Grossberg & Todorovic, 1988).
This filling-in process is sensitive to individual contrast polarities.
These computational properties of boundaries and surfaces are
manifestly complementary.

Boundaries form within the cortical stream that goes through
interblobs in cortical area V1 to pale stripes in V2 and beyond to
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V4. Surfaces formwithin the cortical stream through blobs in V1 to
thin stripes in V2 and beyond to V4.

Because boundaries pool inputs from opposite contrast polari-
ties, they do not carry a visible brightness or color signal. All bound-
aries are invisible, or amodal, within the boundary cortical stream.
Visibility is a property of surfaces, which do not pool over contrast
polarities. Given the ART prediction that ‘‘all conscious states are
resonant states’’, this fact raises the question: What sort of reso-
nance supports a conscious percept of surface brightness or color?
As noted above, I havepredicted that such a consciously visible per-
cept is supported by a surface-shroud resonance between visual cor-
tical areas and the parietal cortex that is predicted to play a role in
learning invariant object categories (Section 17). This prediction il-
lustrates how ART clarifies mechanistic relationships between the
CLEARS processes of consciousness, learning, expectation, atten-
tion, resonance, and synchrony.

This prediction also clarifies how, for example, parietal neglect
may occur (Driver & Mattingley, 1998; Mesulam, 1999); that is,
how a parietal lesion leads a patient to consciously ignore the
corresponding region of space. ART proposes that this happens
because, despite the fact that the lesionmay leave the visual cortex
intact, the corresponding surface-shroud resonances cannot form
to support conscious percepts of object surfaces. The predicted link
between surface-shroud resonances and the control of saccadic
eye movements for searching and learning about object surfaces
is consistent with the expectation that abnormal search with
saccadic eyemovementsmay occur during parietal neglect. Husain
et al. (2001) reported a failure to remember which locations
have already been examined through saccadic movements in a
patient with left neglect following a right parietal infarction,
leading to repeated re-fixation of locations. Understanding such
results in detail would require an analysis of whether the
parietal reset mechanism was also damaged, and whether other
parietally-linked mechanisms for accumulating evidence over eye
movements were also affected by the lesion (Huang & Grossberg,
2010, Section 54).

21. ART Matching Rule in laminar cortex: folded feedback

Fig. 5 summarizes how the ART Matching Rule is proposed
to be realized within the laminar circuits of visual cortex, and
by extension within all granular neocortical circuits. As noted
in Fig. 5(b), corticocortical feedback axons tend preferentially to
originate in layer 6 of a higher cortical area (e.g., V2) and to
terminate in layer 1 of the lower cortex (e.g., V1) (Pandya &
Yeterian, 1985; Salin & Bullier, 1995). This pathway activates layer
1 apical dendrites of layer 5 cells, which relay them to layer 6 cells
in V1 (Cauller & Connors, 1994; Rockland, 1994). The triangle in
Fig. 5(b) represents such a layer 5 pyramidal cell. Several other
routes through which feedback can pass into V1 layer 6 exist (see
Raizada and Grossberg (2001) for a review). Having arrived in layer
6, the feedback is then ‘‘folded’’ back up into layer 4 by feedforward
connections that form an on-center off-surround pathway from
layers 6 to 4 (Bullier et al., 1996). The on-center in this pathway
is predicted to be modulatory. In support of this hypothesis, Hupé
et al. (1997, p. 1031) note: ‘‘feedback connections from area V2
modulate but do not create center–surround interactions in V1
neurons’’. Thus top-down feedback from layer 6 of V2 is predicted
to be able to supraliminally activate layer 6 of V1 but not layer 4
of V1. This hypothesis is consistent with neurophysiological data
from ferret visual cortex showing that the layer 6-to-4 circuit is
functionally weak (Wittmer, Dalva, & Katz, 1997).

In summary, top-down attention may be realized by an inter-
cortical, top-down, modulatory on-center, off-surround network
that projects from layer 6 in a higher cortical area to layer 6 in a
lower cortical area before being ‘‘folded’’ back into layer 4 via a
modulatory on-center, off-surround network from layers 6 to 4.

22. Attention–Preattention Interface: a decisionnetwork in the
cortical deeper layers

LAMINART circuits illustrate how bottom-up, horizontal, and
top-down interactions may all interact with the modulatory on-
center, off-surround networks that exist within and between
cortical layers 6 and 4. Fig. 5 schematizes these circuits for the
first few stages of visual processing: the lateral geniculate nucleus
(LGN) and cortical areas V1 and V2.

22.1. Bottom-up contrast normalization

Fig. 5(a) shows that the LGN provides bottom-up activation to
layer 4 via two routes. Any engineer or VLSI chip designer would
immediately ask why two routes are needed. Why waste ‘‘extra
wire’’? LAMINART proposes the following answer: One connection
from LGN to layer 4 is via layer 6, which activates layer 4 via
the modulatory on-center, off-surround network. This route is not
sufficient to activate layer 4 fromLGNbecause the on-center is only
modulatory. Hence, a driving connection exists directly from LGN
to layer 4. Taken together, these connections form a driving on-
center off-surround network that contrast-normalizes the inputs
that layer 4 receives from LGN (Grossberg, 1973, 1980; Grossberg
& Mingolla, 1985; Heeger, 1992).

22.2. Top-down intercortical attention

As noted above and diagrammed in Fig. 5(b), (e), folded
feedback can carry attentional signals from layer 6 of higher
cortical areas to layer 4 of lower cortical areas via the layer 6-to-
4 modulatory on-center, off-surround network, thereby realizing
the ART Matching Rule. Fig. 5(d) shows that such a network also
exists top-down from layer 6 of V1 to the LGN. Here, the on-center
feedback selectively enhances LGN cells that are consistent with
the activation that they cause (Sillito et al., 1994), and the off-
surround contributes to length-sensitive (endstopped) responses
that facilitate grouping perpendicular to line ends.

22.3. Horizontal interlaminar feedback

As shown in Fig. 5(c), layer 2/3 possesses long-range horizontal
connections that are used for perceptual grouping of contours,
textures, and shading (see Section 28). These layer 2/3 cells
are activated by the deeper cortical layers, In particular, like-
oriented layer 4 simple cells that are sensitive to opposite
contrast polarities compete (not shown) before generating half-
wave rectified outputs that converge onto layer 2/3 complex cells
in the column above them. Because the complex cells pool inputs
across opposite contrast polarities, they are the earliest cortical
stage that ensure ‘‘boundaries are invisible’’ (Section 20). Just like
attentional signals from higher cortex, groupings that form within
layer 2/3 also send activation into the folded feedback path, to
enhance their own positions in layer 4 beneath them via the layer
6-to-4 on-center, and to suppress input to other groupings via the
layer 6-to-4 off-surround. There exist direct connections from layer
2/3 to 6 in macaque V1, as well as indirect routes via layer 5.

22.4. A hierarchical design: hierarchical propagation of priming

Fig. 5(e) shows that V2 repeats the laminar pattern of V1
circuitry, but at a larger spatial scale. In particular, the horizontal
layer 2/3 connections have a longer range in V2, allowing above-
threshold perceptual groupings between more widely-spaced
inducing stimuli to form (Amir, Harel, & Malach, 1993). V1 layer
2/3 projects up to V2 layers 6 and 4, just as LGN projects to
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layers 6 an 4 of V1. Higher cortical areas send feedback into V2
which ultimately reaches layer 6, just as V2 feedback acts on layer
6 of V1 (Sandell & Schiller, 1982). Feedback paths from higher
cortical areas straight into V1 (not shown) can complement and
enhance feedback from V2 into V1. Top-down attentional signals
to layer 1 may also directly modulate groupings via the apical
dendrites in layer 1 of excitatory and inhibitory layer 2/3 cells
(Lund & Wu, 1997; Rockland & Virga, 1989). By activating both
excitatory and inhibitory cells in layer 2/3 (Fig. 5(e)), the inhibitory
cells may balance the excitatory cell activation, thereby creating a
modulatory attentional response of grouping cells in layer 2/3 via
another modulatory on-center off-surround attentional network.
Roelfsema et al. (1998) and Wanning, Stanisor, and Roelfsema
(2011) have demonstrated this kind of attentional spreading along
perceptual groupings (see Section 27).

Because the ART Matching Rule is realized by a circuit with a
modulatory on-center, and top-down signals can jump from layer
6 of a higher cortical level to layer 6 of a lower cortical level, a top-
down signal from a much higher cortical level (e.g., the prefrontal
cortex) can modulate, or prime, all the cortical levels below it
(e.g., V4, V2, V1, LGN) with a task-selective processing constraint,
albeit possibly to different degrees (Fig. 5(e)). The entire hierarchy
is then ‘‘ready’’ to process incoming inputs constrained by the
processing bias embodied in the prime.

23. Three kinds of object-based attention: boundary, proto-
type, and surface attention

The manner in which top-down attention and pre-attentive
perceptual grouping are interfaced within the cortical layers
(Fig. 5(e)) enables attention to focus on an entire object boundary,
thereby not only influencingwhat objects are selectively attended,
but also what groupings may be perceived. This is true because
the same layer 6-to-4 competition, or selection, circuit may be
activated by pre-attentive grouping cells in layer 2/3 (Fig. 5(c)),
as well as by top-down attentional pathways (Fig. 5(b)). Layer
4 cells can then, in turn, activate the layer 2/3 cells where
perceptual groupings are initiated (Fig. 5(c)). In all, a top-down
attentional prime can enhance the activation of layer 4 cells
whose features are attended; the layer 4 cells can enhance the
grouping in layer 2/3 that is starting to form above them; and
feedback from layer 2/3 to layers 6-then-4-then-2/3 can enable
this attentional advantage to propagate along the entire grouping.
In summary, when ambiguous and complex scenes are being
processed, intracortical but interlaminar folded feedback enables
stronger groupings that are starting to form in layer 2/3 to inhibit
weaker groupings, whereas intercortical folded feedback from top-
downattention enables higher-order processing constraints to bias
which groupings will be selected.

The kind of attention that was just summarized may be
called boundary attention.The kind of attention whereby ART
categorization networks prime a learned critical feature pattern
may be called prototype attention. Both of these kinds of attention
tend to operate within the cortical What stream. A third kind of
attention also exists, namely surface attention, which clarifies how
the brain orients and attends to the spatial location of objects as
part of surface-shroud resonances.

A general conclusion of this summary is that using the phrase
‘‘object attention’’ is insufficient to distinguish the functional
and mechanistic differences between boundary, prototype, and
surface attention. ART and LAMINART provide precise functional
distinctions between these different types of attention, and shows
how they may interact during perception and recognition.

24. The link between attention and learning

Various experiments have provided data supporting the ART
prediction that top-down feedback can modulate plasticity.
Psychophysically, the role of attention in controlling adult
plasticity during perceptual learning was demonstrated by Ahissar
and Hochstein (1993). Gao and Suga (1998) reported physiological
evidence that acoustic stimuli cause plastic changes in the inferior
colliculus (IC) of bats onlywhen the IC received top-down feedback
from auditory cortex. These authors also reported that plasticity
is enhanced when the auditory stimuli were made behaviorally
relevant, consistentwith the ART proposal that top-down feedback
allows attended, and thus relevant, stimuli to be learned, while
suppressing unattended irrelevant ones. Evidence that cortical
feedback controls thalamic plasticity in the somatosensory system
has been reported by Krupa, Ghazanfar, and Nicolelis (1999) and
by Parker and Dostrovsky (1999). These findings are reviewed by
Kaas (1999).

Models of intracortical grouping-activated feedback and inter-
cortical attention-activated feedback have shown that either type
of feedback can rapidly synchronize the firing patterns of higher
and lower cortical areas (Grossberg & Grunewald, 1997; Grossberg
& Somers, 1991). ART puts this result into a larger perspective by
suggesting how resonance may lead to attentive synchronization,
whichmay, in turn, trigger cortical learning by enhancing the prob-
ability that ‘‘cells that fire together wire together’’. An excellent
discussion of top-down cortical feedback, synchrony, and their
possible relations to the ART model is given by Engel et al. (2001).

25. How can early development and perceptual learning occur
without attention?

LAMINART solves a basic design problem that early non-
laminar versions of ART did not handle. The problem is called the
Attention–Preattention Interface Problembecause itmay be solved
by the way in which laminar circuits combine pre-attentive and
attentive processing constraints, as summarized above (Grossberg,
1999). This problem may be stated in several ways.

Oneway is to ask how early cortical development can occur in a
stable way through time. The hypothesis that attentional feedback
exerts a controlling influence over plasticity in sensory cortex does
not imply that unattended stimuli can never be learned. Indeed,
plasticity can take place during early development, before top-
down attentional circuits may have developed between cortical
areas. Grossberg (1999) noted that, were this not possible, an
infinite regress could be created, since a lower cortical level
like V1 might then not then be able to stably develop unless it
received attentional feedback from V2, but V2 itself could not
develop unless it had received reliable bottom-up signals from V1.
How do the laminar circuits of visual cortex avoid this infinite
regress, without causing massive instability, in response to stimuli
that occur with high statistical regularity in the environment
(e.g., Grossberg and Williamson (2001))? How does this process
continue to fine-tune sensory representations in adulthood even
in cases where focused attention may not be explicitly allocated,
and slow perceptual learning may take place without conscious
awareness (Pilly, Grossberg, & Seitz, 2010; Seitz &Watanabe, 2003;
Watanabe, Nanez, & Sasaki, 2001)?

26. Reconciling visual boundary completion with the ART
Matching Rule

26.1. Attention–Preattention Interface Problem

Another way to state the Attention–Preattention Interface
Problem is to note that, despite experimental and mathematical
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support for the ART Matching Rule, basic data about visual per-
ception, at least at first glance, seem to conflict with its proper-
ties. In particular, the ART Matching Rule says that top-down at-
tention typically has a modulatory on-center, so that bottom-up
input to cells in the on-center is needed to fire them above thresh-
old. However, if the ART Matching Rule holds, then how can pre-
attentive groupings, such as illusory contours, form over positions
that receive no bottom-up inputs? Moreover, these illusory con-
tours are formed via horizontal connections in visual cortex that
develop through a process that includes visually-driven learning,
and thus need to solve the stability–plasticity dilemma (see Gross-
berg andWilliamson (2001) for a review). If the ARTMatching Rule
is necessary to prevent catastrophic forgetting, then how can we
see illusory contours without destabilizing cortical development
and learning?

This issue is so important that it is worth stating it in greater de-
tail. The ART Matching Rule has three aspects: first, incoming sen-
sory signals that receive matching top-down excitatory feedback
are enhanced; second, non-matching inputs that do not receive ex-
citatory feedback are suppressed; and third, top-down feedback on
its own is modulatory; that is, unable to produce above-threshold
activity in the lower area in the absence of incoming bottom-up
signals. The conceptual challenge is this: If ARTmatching is needed
to stabilize cortical development and learning, and if ART match-
ing requires that suprathreshold activation can occur only where
there are bottom-up inputs, then does not the existence of illusory
contours contradict the ART Matching Rule, since such groupings
form over positions that receive no bottom-up inputs, and yet do
not seem to destabilize cortical development or learning? If the
brain had not solved this problem, anyone could roam through the
streets of a city and destabilize pedestrians’ visual systems simply
by showing them images of Kanizsa squares! The absurdity of this
possibility indicates the fundamental nature of this issue.

26.2. When top-down signals are driving: volitional control by the
basal ganglia

Before going on, it should also be noted that top-down signals
can drive their target cells to suprathreshold activation during
percepts of visual imagery or internal thought and planning. This
property is consistent with the ART Matching Rule, because a
volitional signal from the basal ganglia can change the balance
between excitation and inhibition within the modulatory on-
center to favor excitation. How this may happen has been
described in Grossberg (2000a); also see Sections 7 and 44. As
noted in Section 7, a similar basal ganglia volitionalmechanismhas
been predicted to determine when sequences of events are stored
in a prefrontal cognitive working memories (Grossberg & Pearson,
2008) and how the span of spatial attention may be volitionally
altered during visual search tasks (Foley et al., 2012).

27. A pre-attentive grouping is its own attentional prime

The LAMINART model proposes how the brain uses its laminar
circuits to solve the Attention–Preattention Interface Problem
in an ingenious, parsimonious, and simple way. Here is where
the laminar cortical circuit that combines pre-attentive and
attentive processing constraints plays a key role: Both intercortical
attentional feedback and intracortical grouping feedback share the
same competitive selection circuit from layer 6-to-4. In particular,
when a horizontal grouping starts to form in layer 2/3, it activates
the intracortical feedback pathway from layer 2/3-to-6, which
activates the modulatory on-center off-surround network from
layer 6-to-4. This feedback pathway helps to select which cells
will remain active to participate in a winning grouping. But
this is the same network that realizes the ART Matching Rule

when it stabilizes cortical development and learning using top-
down attention from a higher cortical area. In other words, the
layer 6-to-4 selection circuit, which in the adult helps to choose
winning groupings via intercortical top-down attentional signals,
also helps to assure in the developing brain, using intracortical
but inter laminar grouping feedback, that the ART Matching Rule
holds at every position along a grouping. Because theARTMatching
Rule holds, only the correct combinations of cells can ‘‘fire together
and wire together’’, and hence stability is achieved. Intracortical
feedback via layers 2/3-to-6-to-4-to-2/3 can realize this selection
process even before intercortical attentional feedback can develop.
This property is sometimes summarizedwith the phrase: ‘‘The pre-
attentive grouping is its own attentional prime’’ (Grossberg, 1999).

In summary, by joining together bottom-up (interlaminar)
adaptive filtering, horizontal (intralaminar) grouping, top-down
intracortical (but interlaminar) pre-attentive feedback, and
top-down intercortical (and interlaminar) attentive feedback, the
LAMINART model shows how some developmental and learning
processes can occur without top-down attention, by using in-
tracortical feedback processes that computationally realize the
same stabilizing effects that top-down intercortical attentional
processeswere earlier predicted to realize. Because of this intimate
link between intracortical and intercortical feedback processes, at-
tention can modulate and thereby enhance pre-attentive group-
ings as they unfold, as reported in neurophysiological experiments
for real contour inputs by Roelfsema et al. (1998) and for illusory
contour inputs byWanning et al. (2011), and simulated using LAM-
INART by Grossberg and Raizada (2000) for real contours and by
Raizada and Grossberg (2001) for illusory contours.

28. Balancing excitation and inhibition: contrast normaliza-
tion, grouping, and attention

Within the cortical circuits that realize these grouping and
attentional processes, there needs to be a balance between
excitatory and inhibitory interactions (see Eq. (1)). In particular,
a balance between excitation and inhibition within layer 2/3 is
needed to carry out perceptual grouping. Perceptual groupings
can start to form within layer 2/3 due to direct excitatory
interactions among cells with long-range horizontal connections,
and short-range disynaptic inhibitory interneurons (Fig. 5(c), (e)).
The balance between these excitatory and inhibitory inputs helps
to ensure that perceptual groupings can form inwardly between
pairs or greater numbers of (almost) like-oriented and (almost)
co-linear inducers, but not outwardly from a single inducer. This
combination of properties is called bipole grouping (Grossberg &
Mingolla, 1985; Grossberg & Raizada, 2000). In general, a bipole
cell in layer 2/3 fires under one of the following circumstances
(Fig. 5(c), (e)): it gets direct bottom-up input; or (almost) co-linear
intralaminar inputs from pairs (or greater numbers) of bipole cell
populations with similar orientational tuning on both sides of the
cell; or bottom-up input plus input from one or both sides of the
cell.

A balance between excitation and inhibition is also required in
the on-center of the circuit from layers 6-to-4 so that it can provide
excitatory modulation of cell activities in layer 4, but cannot fire
them fully. The layers 6-to-4 on-center off-surround circuit helps
to do several things: it achieves contrast-normalization of bottom-
up inputs (Fig. 5(a), (e)); it helps to choose the strongest grouping
in layer 2/3 via the 2/3-to-6-to-4 feedback loop (Fig. 5(c), (e)); and
it enables top-down attention, via the folded feedback circuit, from
layer 6 in a higher cortical level to layers 6-to-4 in a lower cortical
level, to be modulatory at layer 4 (Fig. 5(b), (d), (e)).
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29. Balancing excitation and inhibition: the road to synchrony

29.1. Without inputs, balanced circuits spike intermittently

The existence of balanced excitation and inhibition in various
kinds of brain circuits makes intuitive sense: If inhibition is too
weak, then cells can saturate their activities and excitation can
propagate uncontrollably (see Section 6). If inhibition is too strong,
then cells cannot get sufficiently activated to process anything.
Grossberg and Williamson (2001) modeled how such balanced
circuits can develop within the laminar circuits of visual cortex,
and showed how the developed circuits could simulate properties
of perceptual grouping found in neurobiological data from animals
and in psychophysical data fromhuman adult observers. Grossberg
and Raizada (2000) and Raizada and Grossberg (2001) went on
to simulate more neurobiological data about perceptual grouping,
as well as data about attention, using the interaction kernels that
developed in the Grossberg and Williamson (2001) model.

The success of these simulations presents us with a paradox,
since neural circuits with balanced excitatory and inhibitory
connections have also been used to explain the observed
sparseness and variability in the number and temporal distribution
of spikes emitted by cortical neurons (Shadlen & Newsome, 1998;
van Vreeswijk & Sompolinsky, 1998). These spiking patterns are
quite inefficient in firing cortical cells. Given the LAMINARTmodel
proposal that such variability may reflect mechanisms that are
needed to ensure stable development and learning by cortical
circuits – that is, ‘‘stability implies variability’’ – the cortex is faced
with the difficult problem of how to overcome the inefficiency
of variable spiking patterns in driving responses from cortical
neurons.

29.2. With inputs, balanced circuits rapidly synchronize: on the cusp
of excitability

The LAMINARTmodel showshow these balanced excitatory and
inhibitory connections overcome the inefficiency of intermittent
spiking when they are driven by inputs. They can then rapidly
resynchronize desynchronized signals that belong to the same
object, thereby enabling the cortex to process them efficiently.
In other words, the process that enables cortical cells to respond
selectively to input patterns – namely, balanced excitation and
inhibition – allows the cortex to exist at a ‘‘cusp of excitability’’
in the resting state, from which cortical cells can fire vigorously
and synchronously in response to input patterns that are selected
by cortical bottom-up filtering, horizontal grouping, and top-down
attention processes. Rather than think of sparse, intermittent
spiking as a problem of inefficiency, it seems more appropriate to
view is as one that keeps the cortex ready to fire until driven to
do so, while also providing enough activity in the resting state to
support activity-dependent homeostatic processes.

30. A newway to compute: digital and binary, feedforward and
feedback, analog coherence

As illustrated by the above comments, LAMINART models
represent a breakthrough in computing that identifies new
principles and processes that embody novel computational
properties with revolutionary implications. LAMINART models
embody a new type of hybrid between feedforward and feedback
computing, and also between digital and analog computing for
processing distributed data (Grossberg, 2003a). These properties
go beyond the types of Bayesian models that are so popular
today. They underlie the fast but stable self-organization that is
characteristic of cortical development and life-long learning.

30.1. Fast feedforward vs. slower feedback processing of unambiguous
vs. ambiguous data

The LAMINART synthesis of feedback and feedback processing
can be understood from the following example: When an
unambiguous scene is processed, the LAMINARTmodel can quickly
group the scene in a fast feedforward sweep of activation that
passes directly through layers 4 to 2/3 and then on to layers 4
to 2/3 in subsequent cortical areas (Fig. 5(c), (e)). This property
clarifies how recognition can be so fast in response to unambiguous
scenes; e.g., Thorpe, Fize, and Marlot (1996). On the other hand, if
there are multiple possible groupings in a scene, say in response
to a complex textured scene, then competition among these
possibilities due to inhibitory interactions in layers 4 and 2/3
(black cells and synapses in Fig. 5) can cause all cell activities to
become smaller. This happens because the competitive circuits
in the model are self-normalizing; that is, they tend to conserve
the total activity of the circuit. As noted in Section 6, this self-
normalizing property is related to the ability of the shunting on-
center off-surround networks that realize the competitive circuits
to process input contrasts over a large dynamic range without
saturation (Douglas, Koch, Mahowald, Martin, & Suarez, 1995;
Grossberg, 1973, 1980; Heeger, 1992).

30.2. Real-time probabilities that run as fast as they can

In other words, these self-normalizing circuits carry out a type
of real-time probability theory in which the amplitude of cell
activity covaries with the certainty of the network’s selection,
or decision, about a grouping. Amplitude, in turn, is translated
into processing speed and coherence of cell activations. Low
activation slows down feedforward processing in the circuit
because it takes longer for cell activities to exceed output threshold
and to activate subsequent cells above threshold. In the model,
network uncertainty is resolved through feedback: Active layer
2/3 grouping cells feed back signals to layers 6-then-4-then-2/3 to
close a cortical feedback loop that contrast-enhances and amplifies
the winning grouping to a degree and at a rate that reflect the
amount of statistical evidence for that grouping. As the winner is
selected, and weaker groupings are suppressed, its cells become
more active and synchronous, hence can again rapidly send the
cortical decision to subsequent processing stages.

In summary, the LAMINART circuit ‘‘runs as fast as it can’’: it
behaves like a real-time probabilistic decision circuit that oper-
ates as quickly as possible, given the evidence. It operates in a fast
feedforward mode when there is little uncertainty, and automat-
ically switches to a slower feedback mode when there is uncer-
tainty. Feedback selects a winning decision that enables the circuit
to speed up again, since activation amplitude, synchronization, and
processing speed both increase with certainty.

30.3. Combining the stability of digital with the sensitivity of analog

The LAMINART model also embodies a novel kind of hybrid
computing that simultaneously realizes the stability of digital
computing and the sensitivity of analog computing. This is true
because the feedback loop between layers 2/3-6-4-2/3 that selects
or confirms a winning grouping (Fig. 5(c), (e)) has the property of
analog coherence (Grossberg, 1999; Grossberg, Mingolla, & Ross,
1997; Grossberg & Raizada, 2000); namely, this feedback loop
can synchronously choose and store a winning grouping without
losing analog sensitivity to amplitude differences in the input
pattern. The coherence that is derived from synchronous storage
in the feedback loop provides the stability of digital computing
– the feedback loop exhibits hysteresis that can preserve the
stored pattern against external perturbations – while preserving
the sensitivity of analog computation.
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Fig. 6. The SMART model clarifies how laminar neocortical circuits in multiple cortical areas interact with specific and nonspecific thalamic nuclei to regulate learning on
multiple organizational levels, ranging from spikes to cognitive dynamics. The thalamus is subdivided into specific first-order and second-order nuclei, nonspecific nucleus,
and thalamic reticular nucleus (TRN). The first-order thalamicmatrix cells (shown as an open ring) provide nonspecific excitatory priming to layer 1 in response to bottom-up
input, priming layer 5 cells and allowing them to respond to layer 2/3 input. This allows layer 5 to close the intracortical loop and activate the pulvinar (PULV). V1 layer 4
receives inputs from two parallel bottom-up thalamocortical pathways: a direct LGN → 4 excitatory input, and a 6I

→ 4 modulatory on-center, off-surround network that
contrast-normalizes the pattern of layer 4 activation via the recurrent 4 → 2/3 → 5 → 6I

→ 4 loop. V1 activates the bottom-up V1 → V2 corticocortical pathways from
V1 layer 2/3 to V2 layers 6I and 4, as well as the bottom-up corticothalamocortical pathway from V1 layer 5 to the PULV, which projects to V2 layers 6I and 4. In V2, as in
V1, the layer 6I

→ 4 pathway provides divisive contrast normalization to V2 layer 4 cells. Corticocortical feedback from V2 layer 6II reaches V1 layer 1, where it activates
apical dendrites of layer 5 cells. Layer 5 cells, in turn, activate the modulatory 6I

→ 4 pathway in V1, which projects a V1 top-down expectation to the LGN. TRN cells of the
two thalamic sectors are linked via gap junctions, which synchronize activation across the two thalamocortical sectors when processing bottom-up stimuli. The nonspecific
thalamic nucleus receives convergent bottom-up excitatory input from specific thalamic nuclei and inhibition from the TRN, and projects to layer 1 of the laminar cortical
circuit, where it regulates mismatch-activated reset and hypothesis testing in the cortical circuit. Corticocortical feedback connections from layer 6II of the higher cortical
area terminate in layer 1 of the lower cortical area, whereas corticothalamic feedback from layer 6II terminates in its specific thalamus and on the TRN. This corticothalamic
feedback is matched against bottom-up input in the specific thalamus.
Source: Reprinted with permission from Grossberg and Versace (2008).

31. SMART: spikes, synchrony, and attentive learning in lami-
nar thalamocortical circuits

The SynchronousMatchingART (SMART)model (Fig. 6) predicts
how finer details about CLEARS processes may be realized
by multiple levels of brain organization. In particular, SMART
incorporates spiking dynamics and hierarchical thalamocortical
and corticocortical interactions into the LAMINART model. SMART
hereby provides a unified functional explanation of single cell
properties, such as spiking dynamics, spike-timing-dependent
plasticity (STDP), and acetylcholine modulation; hierarchical
laminar thalamic and cortical circuit designs and their interactions;
aggregate cell recordings, such as current-source densities and
local field potentials; and single cell and large-scale inter-areal
oscillations in the gamma and beta frequency domains.

SMART embodies attentive category learning requirements
into a hierarchy of laminar neocortical circuits interacting
with first-order (e.g., LGN) and higher-order (e.g., the pulvinar
nucleus; Sherman and Guillery (2001) and Shipp (2003)) specific
thalamic nuclei, and nonspecific thalamic nuclei (van Der Werf,
Witter, & Groenewegen, 2002). As illustrated in the SMART
macrocircuit, corticothalamocortical pathways work in parallel
with corticocortical routes (Maunsell & Van Essen, 1983; Salin
& Bullier, 1995; Sherman & Guillery, 2002). Specific first-order
thalamic nuclei (e.g., LGN) relay sensory information to the
cerebral cortex (e.g., V1), whereas specific second-order thalamic
nuclei (e.g., pulvinar) receive their main input from lower-order
cortical areas (e.g., V1), notably from layer 5, and relay this

information to higher-order cortical areas (Rockland, Andresen,
Cowie, & Robinson, 1999; Sherman&Guillery, 2002). Terminations
arising from layer 5 are similar to retinogeniculate driving
connections, and are often found inmore proximal segments of the
dendrites. This pattern of connectivity seems to be constant across
species (Rouiller & Welker, 2000).

32. Top-downmatch, gamma oscillations, and STDP in laminar
thalamocortical circuits

The SMART model clarifies how a match between cortical
and thalamic inputs at the level of specific first-order and
higher-order thalamic nuclei might trigger fast stable learning of
neural representations in the thalamocortical system. In particular,
suppose that, at a specific thalamic nucleus, a sufficiently good
match occurs between a bottom-up input pattern and a top-
down expectation from layer 6 of its corresponding cortical area.
In SMART, such a match can trigger fast synchronized gamma
oscillations (γ , 20–70Hz) in the shunting activation equations (see
Eq. (1)), whose short period enables synchronized spikes to drive
learning via a spike-timing-dependent plasticity (STDP; Levy and
Steward (1983), Markram, Lubke, Frotscher, and Sakmann (1997)
and Bi and Poo (2001)) learning rule. STDP is maximal when pre-
andpost-synaptic cells firewithin 10–20msof each other, and thus
favors learning inmatch stateswhose synchronous fast oscillations
fall within the temporal constraints of STDP (Traub et al., 1998;
Wespatat, Tennigkeit, & Singer, 2004). In contrast, mismatched
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cells undergo slower beta oscillations (β , 4–20 Hz), whose spikes
do not fall within the STDP learning window.

SMART hereby brings the new features of synchronized
oscillation frequency and STDP into the discussion of how learning
may be selectively regulated by ART dynamics. Aggregate and
single-cell recordings from multiple thalamic and cortical levels
of mammals have shown high- and low-frequency rhythmic
synchronous activity correlated with cognitive, perceptual and
behavioral tasks, and large-scale neuronal population models
have been proposed to model oscillatory dynamics (Bazhenov,
Timofeev, Steriade, & Sejnowski, 1998; Destexhe, Contreras, &
Steriade, 1999; Lumer, Edelman, & Tononi, 1997; Siegel, Körding, &
König, 2000). However, these models have not linked brain spikes,
oscillations, and STDPwith the brain states that subserve cognitive
information processing.

33. Corticocortical and thalamocortical laminar circuits realize
the ART Matching Rule

Fig. 6 summarizes how laminar circuits in the SMART model
embody the ART Matching Rule in multiple brain areas, and
thereby allow laminar circuits of multiple cortical and thala-
mic areas to carry out attentive visual learning and information
processing. In particular, ART top-down modulatory on-center,
off-surround networks occur in both corticocortical and corti-
cothalamic circuits.

Corticocortical top-down attentive matching in SMART refines
the explanation by LAMINART of the cortical layers that participate
in this process by subdividing layer 6 into sublamina: layer 6II of
cortical area V2 sends top-down outputs to cortical area V1 via
layer 1,where they activate apical dendrites of layer 5 cells. Layer 5,
in turn, activates layer 6I of V1, which sendsmodulatory on-center,
off-surround signals to layer 4, thereby realizing the ARTMatching
Rule in V1.

As an example of corticothalamic top-down matching, first
consider V1-to-LGN matching: layer 5 cells in V1 activate layer 6II,
which sends top-downmodulatory on-center, off-surround signals
to LGN, thereby realizing the ART Matching Rule in LGN. These
pathways help to regulate stable learning between LGN and V1.

As an example of corticothalamic top-downmatching inhigher-
order specific thalamic nuclei, consider how V2 interacts with the
pulvinar: A top-down expectation from layer 6II of V2 ismatched in
the pulvinar against the output pattern from layer 5 of V1, similar
to the way in which retinal inputs to the LGN are matched by
top-down signals from layer 6II of V1. If a sufficiently good match
occurs, then synchronized gamma oscillations can be triggered in
the pulvinar and V2, leading to learning of the critical features that
are part of the matched pattern.

34. Thalamocortical mismatch, nonspecific thalamic nucleus,
and layer 1 mediated reset

If the match is not good enough in visual cortical areas such
as V1 and V2, then the nonspecific thalamic nucleus, which is
part of the orienting system, gets activated. Mismatch-activated
outputs from the nonspecific thalamus carry out arousal and reset
functions similar to those summarized in the ART search cycle of
Fig. 2. How thisworks is anatomicallymore precisely characterized
in the SMART circuit diagram of Fig. 6. Nonspecific thalamic
activation is broadcast as an arousal signal to many cortical areas
via diffuse inputs across layer 1. Apical dendrites in layer 1 of layer
5 cells receive this arousal input. If some of these layer 5 cells are
active when the arousal burst occurs, their firing rate is enhanced
in response to the arousal input. This enhancement of layer 5 cell
firing triggers a selective reset of cortical and thalamic cells in the
following way:

Layer 5 cells project to layer 4 via layer 6 (Fig. 6). The
signals from layer 6 to 4 are gated by habituative transmitters
(see Section 13). Habituation occurs in the pathways associated
with layer 4 cells that are active just prior to the arousal burst.
When the arousal burst occurs, these previously active cells are
disadvantaged relative to cells that were not active. A reset event
that is caused by the arousal burst inhibits the previously active
cells as it selects new cells with which to better code the novel
input, as in the ART memory search cycle of Fig. 2.

35. Slower beta oscillations initiated in lower cortical layers
during mismatch reset

As noted above, SMART predicts that thalamocortical mis-
matches may cause cortical reset via the deeper cortical layers
6 and 4. Model simulations show that such mismatches lead to
slower beta oscillations. Putting these two properties together
leads to the prediction that the deeper layers of neocortex may ex-
press beta oscillations more frequently than the superficial layers.
Such a property has been experimentally reported (Buffalo, Fries,
Landman, Buschman, & Desimone, 2011); also see Section 38. It re-
mains to test whether the observed experimental property is re-
lated to the SMART reset prediction.

35.1. Does varying novelty change the amount of beta?

Two issues may be noted in this regard. One concerns how the
prediction may be tested: One possible test would be to carry out
a series of experiments on the same animal in which the animal is
exposed to environments with progressively more novel events.
More novel events should cause more cortical resets. Do more
cortical resets per unit time cause more beta oscillations in the
lower cortical layers and thereby decrease the ratio of gamma to
beta power per unit time?

35.2. Do superficial and deeper layers synchronize and desynchronize
during resonance and reset?

The second issue notes that the differences between the
oscillation frequencies in the deeper and more superficial cortical
layers are averages over time. It is also predicted that interlaminar
intracortical feedback loops synchronize all the cortical layers
during a match event (Yazdanbakhsh & Grossberg, 2004). Indeed,
these are the intracortical feedback loopswhereby ‘‘a pre-attentive
grouping is its own attentional prime’’, and thus enable neocortex
to develop its circuits, without a loss of stability, even before
intercortical attentional circuits can develop. Do the cortical layers
desynchronize into superficial-layer gamma and deeper-layer beta
during a reset, and then resynchronize into gamma during an
attentive resonance?

36. Vigilance control by acetylcholine release from the nucleus
basalis of Meynert

As in all ART models, the generality of learned recognition
codes in SMART is proposed to be controlled by a vigilance
process. SMART predicts how vigilance may be altered by
acetylcholine when the nucleus basalis of Meynert is activated via
the nonspecific thalamus (Kraus, McGee, Littman, Nicol, & King,
1994; van Der Werf et al., 2002) which, in turn, is activated by
corticothalamic mismatches with one or more specific thalamic
nuclei (Fig. 6). In general, it is known that cholinergic modulation
is an essential ingredient in cortical plasticity (e.g., Kilgard and
Merzenich (1998)). Saar, Grossman, and Barkai (2001) have shown,
in addition, that ACh release reduces the after-hyperpolarization
(AHP) current and increases cell excitability in layer 5 cortical
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cells. In SMART, this increased layer 5 excitability due to predictive
mismatch may cause reset via the layer 5-to-6I-to-4 circuit, even
in cases where top-down feedback may earlier have sufficiently
matched bottom-up input, which is a key property of vigilance
control. The increase of AChmight hereby promote search for finer
recognition categories in response to environmental feedback,
even when bottom-up and top-down signals have a pretty good
match in the nonspecific thalamus based on similarity alone.

While ACh is often considered to boost plasticity simply via
excitability, recent evidence suggests that fluctuations in cortical
ACh are not necessary for simple associative learning, but are
necessary for learning mainly when there is featural overlap
during perceptual categorization (Atri et al., 2004; Botly & De
Rosa, 2007, 2009; Chiba, Bucci, Holland, & Gallagher, 1995; Hata,
Kumai, & Okaichi, 2007; Winters, Bartko, Saksida, & Bussey,
2007), consistent with the idea that it can increase vigilance to
achieve better categorical separation. Further support for this idea
comes from lesions in rats of the nucleus basalis of Meynert
which have little impact on learning rate, except when there
is a high degree of interference between the categories to be
learned; that is, when categories share the same features in
a certain dimension (Botly & De Rosa, 2007, 2009). Similarly,
studies in humans show that scopolamine, by competitively
binding muscarinic receptors, diminishes learning of overlapping
word pairs more than non-overlapping pairs (Atri et al., 2004).
Associative learning studies in rats with combinations of light and
tone has shown that the concentration of released ACh increases
more during discrimination learning experiments in which an
individual stimulus (A; e.g., light) signals reward and a compound
stimulus (AB; e.g., light + tone) signals no reward, than during
elemental discrimination, in which one stimulus (A; e.g., light)
signals reward and another stimulus (B; e.g., tone) signals no
reward (Hata et al., 2007). Finally, donepezil, which increases
cortical ACh by inhibiting its degradation by Acetylcholinesterase
(AChE), has been shown by fMRI to reduce the expanse of
response in V1 from a pulsating visual stimulus (Silver, Shenhav,
& D’Esposito, 2008).

Taken together, these data suggest that increased ACh (and
attention) refines perceptual representations by adding specificity.
Palma, Grossberg, and Versace (submitted for publication) have
carried out simulations of recurrent on-center off-surround
networks composed of spiking shunting neurons to illustration
how ACh may modulate the transformation and STM storage of
input patterns in a manner compatible with vigilance control.

37. Vigilance diseasesmay include autismandmedial temporal
amnesia

ART has been used to explain how symptoms of some mental
disorders may be due to vigilance being stuck at either too high or
too low values.

37.1. High vigilance and hyperspecific category learning in autism

High vigilance has been predicted to cause symptoms of
hyperspecific category learning and attentional deficits in some
autistic individuals (Grossberg & Seidman, 2006). Psychophysical
experiments have been done to test this prediction in high-
functioning autistic individuals (Church et al., 2010; Vladusich,
Lafe, Kim, Tager-Flusberg, & Grossberg, 2010). It is also known
that there is abnormal cholinergic activity in the parietal and
frontal cortices of autistic individuals that is correlated with
abnormalities in the nucleus basalis (Perry et al., 2001), consistent
with the predicted role of the nucleus basalis and ACh in regulating
vigilance.

37.2. Low vigilance without memory search during medial temporal
amnesia

Low vigilance has been predicted in individuals with medial
temporal amnesia. A hippocampal lesion removes the orienting
system during cortico-hippocampal interactions (Fig. 2). By
preventing memory search, the ability to learn new categories is
degraded. Such a lesion, in effect, keeps vigilance equal to zero, and
any learning that can occur without mismatch-mediated reset and
memory search can only form very general categories (Carpenter
& Grossberg, 1993). Relevant data from amnesic individuals have
been reported by Knowlton and Squire (1993), who showed that
amnesic subjects and normal subjects perform equally well on
easy categorization tasks, but the performance of amnesic subjects
drops significantly for more demanding tasks.

Knowlton and Squire (1993) posited that two separate memory
systems are needed to explain these data. In contrast, Zaki,
Nosofsky, Jessup, and Unversagt (2003) quantitatively fit these
data with a single exemplar-based model whose sensitivity
parameter was chosen lower for amnesic than for normal subjects.
This exemplarmodel, which is usually expressed in terms of formal
algebraic equations, may be interpreted as a real-time dynamic
process undergoing only locally defined interactions. Such an
interpretation shows that the model implicitly posits prototypes
and top-down processes akin to ART. A low sensitivity parameter
c in this exemplar model (see their Eq. (4)) plays a role similar to
that played by a low vigilance parameter ρ in an ARTmodel (Amis,
Carpenter, Ersoy, & Grossberg, submitted for publication).

38. Gamma and beta oscillations during attentive resonance
and mismatch reset

38.1. Shared gamma/beta oscillatory dynamics in visual cortex,
frontal eye fields, and hippocampus

As noted in Section 32, one of the SMART predictions
concerns howbrain oscillationsmay contribute to learning. SMART
demonstrates through computer simulations that sufficiently
good top-down matches may cause fast gamma oscillations
that support attention, resonance, learning, and consciousness,
whereas sufficiently bad mismatches inhibit learning by causing
slower beta oscillations while triggering attentional reset and
hypothesis testing that are predicted to be initiated in the deeper
cortical layers. The predicted use of ART Matching Rule top-down
circuits across all brain systems that solve the stability–plasticity
dilemma suggests that this gamma/beta dichotomy may occur in
multiple brain systems. At least three kinds of recent data currently
support this prediction:

(1) Buffalo et al. (2011) have reported more gamma oscillations
in the superficial layers of visual cortex and more beta oscillations
in deeper layers of the cortex.

(2) Buschman andMiller (2009) have reported beta oscillations
during spatial attention shifts in the frontal eye fields of monkeys.
In fact, this discovery was made after Earl Miller was told
the SMART prediction. These investigators then reanalyzed their
spatial attention data, aligning them in time with respect to the
attention shifts, and thereby found theunderlying beta oscillations.

(3) Berke, Hetrick, Breck, and Green (2008) have reported
beta oscillations during hippocampal place cell learning in novel
environments.

The Berke et al. (2008) results nicely illustrate how beta
oscillations may be related to ART category learning. Place cells in
the hippocampus fire when an animal or human is in a particular
location, or ‘‘place’’, in a spatial environment. Place cells hereby
play a critical role in spatial navigation. Place cell receptive field
selectivity can develop as an animal navigates within seconds
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to minutes, and can remain stable for months (Frank, Stanley, &
Brown, 2004; Muller, 1996; Thompson & Best, 1990; Wilson &
McNaughton, 1993). Place cell learning thus seems to solve the
stability–plasticity dilemma.

39. Inverted-U in beta power through time during hippocam-
pal place cell learning

Are place cells learned using ART dynamics? The Berke et al.
(2008) data are consistent with this hypothesis. They showed that,
paradoxically, beta power was very low as a mouse traversed
a lap for the first time in a novel environment, grew to full
strength on the second and third laps, became low again after
two minutes of exploration, and remained low on subsequent
days. Beta oscillation power also correlated with the rate at which
place cells became spatially selective, and did not correlate with
theta oscillations. Given the rapidity withwhich place cell learning
occurred, and the sharp increase in beta activity during the second
exposure to the environment, it would seem that a highly selective
learning mechanism is at work.

These data can be explained as follows (Grossberg, 2009a): In
any ART system, the top-down adaptive weights that represent
learned expectations need to be broadly distributed before
learning occurs, so that they canmatchwhatever input pattern first
initiates learning of a new category (Carpenter & Grossberg, 1987).
Indeed, when a new category is first activated, it is not known at
the category level what pattern of features caused the category
to be activated. Whatever feature pattern was active needs to be
matched by the top-down expectation on the first learning trial,
so that resonance and weight learning can begin. Hence the need
for the initial values of top-down weights to be sufficiently large
and broadly distributed tomatch any feature pattern. The low beta
power on the first lap of exploration can be explained by the initial
top-down match.

Given that top-down weights are initially broadly distributed,
the learning of top-down expectations is a process of pruning
weights on subsequent learning trials, and uses mismatch-based
reset events to discover categories capable of representing the
environment. Beta power on subsequent laps can be explained by
mismatch reset events that correlate with the rate at which place
cells become spatially selective. After learning stabilizes, there are
no more mismatches, so beta power subsides.

Such an inverted-U in beta power through time is thus a
signature of ART category learning in any environment.

40. Entorhinal grid cell and hippocampal place cell learning as
an ART system

Is there additional evidence that hippocampal place cells are
learned as part of an ART system? In order to understand how such
learning happens, we need to know what sorts of inputs activate
place cells. Hafting, Fyhn,Molden,Moser, andMoser (2005)made a
remarkable discovery that has greatly enhanced the understanding
of how place cells may form. Grid cells in the superficial layers
of medial entorhinal cortex (MEC) provide inputs to hippocampal
place cells. Grid cells are so called because each of them, unlike
a place cell, fires at multiple spatial positions that form a regular
hexagonal grid during navigation in an open field. Grid cells also
exhibit a gradient of spatial scales along the dorsoventral axis of
the MEC, with anatomically neighboring cells sharing similar grid
spacings and orientations but having different spatial phases that
are not topographically organized.

40.1. Grid and place cells are learned from most frequent co-
activations in self-organizing maps

TheGridPlaceMapmodel (Pilly&Grossberg, in press) has shown
how a hierarchy of self-organizing maps, each obeying the same
laws, can respond to realistic rat trajectories by learning grid cells
with hexagonal grid firing fields of multiple spatial scales, and
place cells with unimodal firing fields (see also Gorchetchnikov
and Grossberg (2007) and Mhatre, Gorchetchnikov, and Grossberg
(2012)). These learned receptive fields fit neurophysiological data
about grid and place cells and their development in juvenile rats
(Langston et al., 2010; Wills, Cacucci, Burgess, & O’Keefe, 2010).
Due to the inputs from multiple scales of developing grid cells,
the learned hippocampal place fields can represent much larger
spaces than the grid cells, indeed spaces whose spatial scale may
be the least common multiple of grid cell scales. These least
commonmultiple scales are large enough to let place cells support
navigational behaviors. Despite their difference appearances, both
grid cell and place cell receptive fields are learned by the same
self-organizingmap equations in the GridPlaceMapmodel. At both
the grid and place cell levels, the self-organizing maps amplify and
learn to categorize the most energetic and frequent co-activations
of their inputs.

In this conception, place cells are spatial category cells that
are activated by multiple scales of entorhinal grid cells in a self-
organizing map. However, it is known that self-organizing maps
cannot solve the stability–plasticity dilemma (Section 1). Indeed,
when Grossberg (1976a, 1978a) introduced the modern laws for
competitive learning and self-organizing maps, he proved that
they can learn well in response to sparse input environments,
indeedwith Bayesian properties, but that they exhibit catastrophic
forgetting in response to dense non-stationary environments.
Grossberg (1976b) introduced ART as an enhanced model capable
of dynamically stabilizing category learning in a self-organizing
map that can be learn from arbitrary environments.

40.2. Stabilizing grid and place cell learning using top-down attentive
ART feedback

If, in fact, grid and place cell learning occur in self-organizing
maps, then, as in all self-organizing map models, one expects
that grid cell and place cell learning are dynamically stabilized by
ART top-down attentive matching mechanisms. Such matching is
already indirectly supported by the Berke et al. (2008) data on how
beta power changes through timewhen place cells are learned in a
novel environment. Are there anatomical and neurophysiological
data that more directly support this hypothesis?

The anatomy of the hippocampal system supports the possibil-
ity that such attentive feedback exists, since feedback pathways
exist from the hippocampal CA1 region to the entorhinal cor-
tex. Neurophysiological data also support the predicted role of at-
tention in hippocampal learning. For example, Kentros, Agniotri,
Streater, Hawkins, and Kandel (2004) showed that ‘‘conditions that
maximize place field stability greatly increase orientation to novel
cues. This suggests that storage and retrieval of place cells is mod-
ulated by a top-down cognitive process resembling attention and
that place cells are neural correlates of spatial memory’’ (p. 283).
In like manner, it has been proposed that learning of place cell re-
ceptive fields reflects an ‘‘automatic recording of attended expe-
rience’’ (Morris & Frey, 1997, p. 1489). These experiments clarify
that cognitive processes like attention play a role in hippocampal
learning and memory stability, and interact with NMDA receptors
to mediate long-lasting hippocampal place field memory in novel
environments (Kentros et al., 1998). Thus, the learning of entorhi-
nal grid cells and hippocampal place cells may be viewed as part of
a specialized ART system for learning spatial categories as an ani-
mal or human navigates in its environment.



Author's personal copy

S. Grossberg / Neural Networks 37 (2013) 1–47 23

41. The ART of cognitive–emotional interactions: the feeling of
what happens

41.1. Cognitive–emotional resonances link knowing to feeling and
motivation

ART recognition categories can be activated when objects
are experienced but, without further processing, the amount of
attention that they attract does not reflect the emotional value
of these objects through time. The first adaptive resonance to
be discovered was, in fact, a cognitive–emotional resonance that
links cognitive representations to the emotional representations
that select and maintain motivated attention upon them as
valued actions are carried out (Grossberg, 1975). This resonance
was discovered during an analysis of how attentional blocking
and unblocking may occur during learning (Grossberg, 1975,
1982, 1984b; Pavlov, 1927). How such a cognitive–emotional
resonance may arise is outlined below as part of the CogEM,
or Cognitive–Emotional–Motor model (Dranias et al., 2008;
Grossberg, 1971, 1972a, 1972b, 1982, 1984b; Grossberg, Bullock
et al., 2008), that combines cognitive and emotional mechanisms
within ART. Such a cognitive–emotional resonance clarifies
how cognitive and emotional constraints may be harmonized
during decision-making. When this resonance was first described,
cognitive science and Artificial Intelligence focused almost entirely
on propositional calculations and affective neuroscience did not
exist. Today, such a cognitive–emotional resonance may be used
to clarify how cognitive science and affective neuroscience may be
unified to form a more comprehensive theory.

41.2. The feeling of what happens arises from a CogEM resonance:
core consciousness

In The Feeling of What Happens, Damasio (1999, p. 178, Fig.
6.1) derived from his clinical data a heuristic circuit that is very
similar to rigorously defined CogEM circuits that are described
in Section 42. Damasio used his circuit to explain how ‘‘core
consciousness’’ arises. In his schematic model, the first sensory
stage is called the ‘‘map of object x’’ and the second sensory stage
is called the ‘‘second-order map’’. The CogEM drive representation
is called the ‘‘proto-self’’. As in CogEM, conjoint inputs from the
‘‘map of object’’ and ‘‘proto-self’’ activate the ‘‘second-order map’’
which, in turn, attentionally enhances the ‘‘map of object’’ via top-
down feedback. Damasio also noted that these structures combine
processes of homeostasis, emotion, attention, and learning (see
pp. 272–273) that the CogEM model had proposed twenty years
before. The Damasio (1999) discussions of how core consciousness
may be altered in clinical patients may be translated into how the
cognitive–emotional resonances that support normal behaviors in
the CogEM model are altered in various mental disorders. CogEM
may also be used to explain symptoms of mental disorders such as
schizophrenia (Grossberg, 1984a, 2000c) and autism (Grossberg &
Seidman, 2006). Indeed, autistic individualsmay exhibit emotional
symptoms in addition to cognitive symptoms such as hyperspecific
categorization (Section 37).

42. CogEM model: unifying recognition, emotion, motivated
attention, and action

42.1. The amygdala is a drive representation

Because of its spatially compact representation, a view- and
spatially-invariant object category can be associated through
reinforcement learning with one or more drive representations,
which are brain regions, such as the amygdala and hypothalamus

Fig. 7. The START model combines the reinforcement learning and motivated
attention and action processes of the Cognitive–Emotional–Motor (CogEM) model
with the adaptively timed modulation by Spectral Timing of ART recognition
learning and search. Adaptively timed learning maintains motivated attention
(pathway D → S(2)

i → S(1)
i → D) while it inhibits activation of the orienting

system (pathway D → A). See text for details.
Source: Reprinted with permission from Grossberg and Merrill (1992).

(Aggleton, 1993; LeDoux, 1993), that represent internal drive
states and emotions. Activation of a drive representation by
an invariant object category can, in turn, trigger emotional
reactions and motivational feedback that can amplify the activity
of the valued category, thereby drawing motivated attention to
it, facilitating its competition with other possible categories for
selection, and influencing its ability to control behavioral outputs.
Because a single invariant object category can be activated by a
wide range of input exemplars, all these input exemplars can, via
the invariant category, trigger the choice and release of actions that
realize valued goals in a context-sensitive way.

42.2. Conditioned reinforcer and incentive motivational learning

In Fig. 7, visually perceived objects are called conditioned
stimuli (CSi; see Ii in Fig. 7). The invariant object categories
that they activate are called sensory representations (SCSi; de-
noted S(1)

i in Fig. 7) which, in turn, activate drive represen-
tations (D). Reinforcement learning can convert an event or
object (say CS1) that activates an invariant object category
(S(1)

CS1
) into a conditioned reinforcer by strengthening associa-

tive links in the inferotemporal-to-amygdala pathways from the
category to the drive representation (D). In addition to its amyg-
dala projections, the invariant object category can also send ex-
citatory projections to regions of prefrontal cortex (S(1)

CS2
), such as

orbitofrontal cortex. The amygdala (D) also sends projections to
orbitofrontal cortex (Barbas, 1995; Grossberg, 1975, 1982). When
these orbitofrontal cells receive converging inferotemporal and
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amygdala inputs during reinforcement learning, the corresponding
amygdala-to-orbitofrontal pathways can be selectively strength-
ened. This kind of conditioned input from the amygdala is said to
provide incentive motivation to the orbitofrontal representations.
Both conditioned reinforcer learning and incentive motivational
learning obey gated steepest descent learning laws (Eqs. (3) and
(4)).

42.3. Orbitofrontal object–value cells

Orbitofrontal representations fire most vigorously when they
receive convergent inputs from inferotemporal categories and
amygdala incentive motivation (Baxter, Parker, Lindner, Izquierdo,
& Murray, 2000; Schoenbaum, Setlow, Saddoris, & Gallagher,
2003), that is, they are object–value cells. The incentive outputs
from the amygdala are sensitive to the drive state of the individ-
ual, and become desensitized when the corresponding drive is sat-
isfied. In this way, an object that represents a valued goal object
can vigorously activate its orbitofrontal representation through
the combination of direct inferotemporal-to-orbitofrontal connec-
tions and indirect, value-sensitive inferotemporal-to-amygdala-
to-orbitofrontal connections. The latter connections withdraw
their support of orbitofrontal firingwhen the corresponding amyg-
dala drive state is satisfied.

42.4. Cognitive–emotional inferotemporal–amygdala–orbitofrontal
resonances

Orbitofrontal cells (S(1)
CS2

), in turn, send top-down feedback

to sensory cortex (S(1)
CS1

) to enhance sensory representations
that are motivationally salient (Fig. 7). Competition among
inferotemporal categories chooses those with the best combi-
nation of sensory and motivational support. An inferotempo-
ral–amygdala–orbitofrontal feedback loop is then activated which
supports a cognitive–emotional resonance that supports learn-
ing of conditioned reinforcer and incentive motivational adaptive
weights, core consciousness of goals and feelings (Damasio, 1999;
Grossberg, 1975, 2000a), and releases learned action commands
from prefrontal cortex via downstream circuitry (S(1)

CS2
→ M)

to achieve valued goals. The interactions that are schematically
summarized above constitute the main processes of the CogEM,
or Cognitive–Emotional–Motor, model. CogEM was progressively
developed to functionally explain and predict behavioral and neu-
robiological data about these processes with increasing precision
since its introduction in Grossberg (1972a, 1972b, 1975, 1982).
In particular, CogEM top-down prefrontal-to-sensory cortex feed-
back was the first example to be discovered of ART top-down
attentive matching, one that clarifies data about attentional block-
ing and unblocking (Grossberg, 1975; Grossberg & Levine, 1987;
Kamin, 1969; Pavlov, 1927).When this CogEMcircuit functions im-
properly, symptoms of various mental disorders result. For exam-
ple, hypoactivity of the amygdala or orbitofrontal cortex can cause
failures in Theory of Mind processes that may occur in both autism
and schizophrenia (Grossberg, 2000c; Grossberg& Seidman, 2006).
In addition, when top-down predictive matching processes be-
come driving rather than modulatory, say due to abnormal tonic
basal ganglia activity, then properties similar to schizophrenic hal-
lucinations may emerge (Grossberg, 2000a).

43. MOTIVATOR: complementary roles of amygdala and basal
ganglia regulate resonance

43.1. Complementary roles of amygdala and basal ganglia in
reinforcement learning and action

TheMOTIVATORmodel (Dranias et al., 2008; Grossberg, Bullock
et al., 2008) further develops the CogEM model, just as SMART
further develops ART; see Fig. 8. The MOTIVATOR model unifies

Fig. 8. The MOTIVATOR model: brain areas in the MOTIVATOR circuit can be
divided into four regions that process information about conditioned stimuli
(CSs) and unconditioned stimuli (USs): Object Categories represent visual or
gustatory inputs, in anterior inferotemporal (ITA) and rhinal (RHIN) cortices. Value
Categories represent the value of anticipated outcomes on the basis of hunger and
satiety inputs, in amygdala (AMYG) and lateral hypothalamus (LH). Object–Value
Categories resolve the value of competing perceptual stimuli in medial (MORB)
and lateral (ORB) orbitofrontal cortex. The Reward Expectation Filter involves basal
ganglia circuitry that responds to unexpected rewards.
Source: Reprinted with permission from Dranias et al. (2008).

the CogEM and TELOS models (Section 44; Brown, Bullock,
& Grossberg, 1999; Brown et al., 2004). MOTIVATOR includes
the cognitive–emotional inferotemporal–amygdala–orbitofrontal
resonances of the CogEMmodel, but also incorporatesmechanisms
from TELOS that model how the basal ganglia interact with these
brain regions. The roles of the amygdala and basal ganglia in
processing valued expected and unexpected events are often
complementary.

TELOS models how the dopaminergic cells of the substantia ni-
gra pars compacta (SNc) of the basal ganglia respond to unexpected
rewards (Brown et al., 1999; Schultz, 1998), thereby regulating
associative learning in neuronal connections that support percep-
tual, cognitive, and cognitive–emotional resonances and the ac-
tions that they control. TELOS also proposes how a different part
of the basal ganglia (e.g., the substantia nigra pars reticulata, or
SNr), gates selection and release of these learned plans and actions.
In this way, the basal ganglia work together with the amygdala to
provide motivational support, focus attention, and release contex-
tually appropriate actions to achieve valued goals.

43.2. Amygdala and basal ganglia responses to expected vs. unex-
pected events

In particular, the amygdala contains value categories that are
learned in response to autonomic hypothalamic input patterns
(Fig. 8). These amygdala categories interact with sensory and pre-
frontal, notably orbitofrontal, cortex during cognitive–emotional
resonances to maintain motivated attention on the prefrontal cat-
egories that control actions aimed at acquiring valued goals that
are expected in a given environment. In contrast, cells in the sub-
stantia nigra pars compacta (SNc) of the basal ganglia generate
dopamine bursts or dips in response to unexpected rewarding sig-
nals (Brown et al., 1999; Hollerman & Schultz, 1998; Ljungberg,
Apicella, & Schultz, 1992; Mirenowicz & Schultz, 1994; Schultz,
1998; Schultz, Apicella, & Ljungberg, 1993; Schultz et al., 1995).
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These bursts and dips generate widespread, or nonspecific, acti-
vations of dopaminergic inputs to many brain regions, where they
act as Now Print signals to facilitate learning or unlearning, respec-
tively, of currently active associative linkages. As this learning leads
to expected consequences, the Now Print signals ebb away, leaving
strong learned connections, such as the conditioned reinforcer and
incentivemotivation pathways among sensory cortices, amygdala,
and orbitofrontal cortex (Figs. 7 and 8), to direct sustained moti-
vated attention and action to achieve expected goals.

44. TELOS balances reactive and planned behaviors: frontal–
parietal resonance opens gates

The basal ganglia also play a role during the processing of
expected events. This function helps the brain to balance between
reactive and planned behaviors. The complementary orienting vs.
attentional systems in ART interact to discover and learn new
recognition codes. They are subsumed by a larger complementary
brain system that balances reactive vs. planned behaviors.

44.1. How does the brain know before it knows: gating reactive
behaviors during plan selection

Rapid reactive movements are needed to ensure survival in
response to unexpected dangers. Plannedmovements, that involve
focused attention, often take longer to select and release. How
does the brain prevent reactive movements from being triggered
prematurely in situations where a more slowly occurring planned
movement would be more adaptive? Movement gates can prevent
the reactive movement from being launched until the planned
movement can effectively compete with it. All movement gates
tonically inhibit movement commands. When a specific gate is
inhibited, the cells that control the corresponding movement
command can be activated. Thus, the brain needs to keep the
movement gate active that would otherwise be inhibited by a
reactive cue until an appropriate plan can be chosen. Then the
winning planned movement command can open its gate and
launch its movement. The substantia nigra pars reticulata (SNr)
regulates this sort of gating process.

These gates need to cope with the following challenging
problem: When a cue occurs, the fastest response would be an
orienting response to look at it. For this to happen, the cue needs
to open the appropriate basal ganglia gate to enable the reactive
movement to occur. However, if the cue is a discriminative cue
to do a different action, especially an action that requires rapid
execution, then the reactive response is not adaptive. However,
as noted above, it may take longer to fully process the cue to
determine the adaptive conditional response that it would to
activate the reactive response. How does the brain know that a
plan is being elaborated, even before it is chosen, so that the
reactive gate can be kept shut? How does the brain know before
it knows? The brain must prevent a reactive movement command
from opening its gate before a planned movement command is
ready to open a different gate, yet also allow a reactive movement
command to open its gate as rapidly as possible when no planned
movement command is being formed.

Brown et al. (2004) developed the TELOS model to explain and
simulate how the brain may achieve this sort of balance between
reactive and planned movements as it controls the learning and
performance of saccadic eye movements (Fig. 9). The name TELOS
is from the ancient Greek telos for goal, end, or completion of a plan,
but is also an acronym for the model’s full name of TElencephalic
Laminar Objective Selector. Similar circuits would be expected in
the control of other movements as well.

44.2. Frontal–parietal resonance marks plan choice and leads to
planned gate opening

According to TELOS, the brain ‘‘knows before it knows’’ in
the following way: The model predicts how the distribution of
excitation and inhibition that converges on the basal ganglia
when a plan is being elaborated keeps the reactive gate closed.
When a movement plan is finally chosen, there is agreement
between cells in the frontal eye fields (FEF) and the parietal cortex
representation of target position. This agreement changes the
excitatory–inhibitory balance and is expressed by a synchronous
FEF–parietal resonance. This resonance is predicted to signal
attentive consistency between a finally selected movement plan
and the location of the corresponding target location. When this
happens, the balance of excitation and inhibition enables the
appropriate basal ganglia movement gate to open and release
the context-appropriate action. Buschman and Miller (2007) have
reported such prefrontal–parietal resonances during movement
control, and Pasupathy and Miller (2004) have reported that the
different time courses of activity in the prefrontal cortex and basal
ganglia are consistent with how basal ganglia-mediated gating of
prefrontal cortex may be learned.

In further support of this proposal, TELOS model simulations
emulate how SNc dopaminergic reward and non-reward signals
guide monkeys to learn and perform saccadic eye movements
in the fixation, single saccade, overlap, gap, and delay (memory-
guided) saccade tasks. After learning occurs, model cell activation
dynamics quantitatively simulate, and predict functional roles for,
the dynamics of seventeen types of identified neurons during
performance of these tasks.

45. How value categories interact with the subjective value of
objects

The MOTIVATOR model explains and simulates how cogni-
tive–emotional resonances may occur between higher-order sen-
sory cortices, such as inferotemporal and rhinal cortices, and an
evaluative neuraxis composed of the hypothalamus, amygdala,
basal ganglia, and orbitofrontal cortex. Given a conditioned stimu-
lus (CS), the model amygdala and lateral hypothalamus interact to
calculate the expected current value of the subjective outcome that
the CS predicts, constrained by the current state of deprivation or
satiation. The amygdala relays the expected value information to
orbitofrontal cells that receive inputs from anterior inferotempo-
ral cells, and to medial orbitofrontal cells that receive inputs from
rhinal cortex. The activations of these orbitofrontal cells during a
cognitive–emotional resonance code the subjective values of ob-
jects. These values guide behavioral choices.

The model basal ganglia detect errors in CS-specific predictions
of the value and timing of rewards. Excitatory inputs from
the pedunculopontine nucleus interact with timed inhibitory
inputs from model striosomes in the ventral striatum to regulate
dopamine burst and dip responses from cells in the substantia
nigra pars compacta and ventral tegmental area. As noted in
Section 43, learning and unlearning in cortical and striatal regions
is modulated by the widespread broadcast of these dopaminergic
bursts and dips.

The MOTIVATOR model has, to the present, been used to
simulate tasks that examine food-specific satiety, Pavlovian
conditioning, reinforcer devaluation, and simultaneous visual dis-
crimination. Model simulations successfully reproduce neuro-
physiological properties of known cell types, including signals that
predict saccadic reaction times and CS-dependent changes in sys-
tolic blood pressure. The model hereby illustrates how cognitive
processes in prefrontal cortex can influence both bodily processes
such as blood pressure, and actions such as eye movements to-
wards a valued goal object.
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Fig. 9. The TELOS model proposes how the basal ganglia interacts with the laminar circuits of the frontal eye fields (FEF) and the superior colliculus (SC) to learn, plan, and
control saccadic eye movements: separate gray-shaded blocks highlight the major anatomical regions whose roles in planned and reactive saccade generation are treated in
themodel. Excitatory links are shown as arrowheads and inhibitory links as ballheads. Filled semi-circles terminate cortico-striatal and cortico-cortical pathwaysmodeled as
subject to learning, which is modulated by reinforcement-related dopaminergic signals (dashed arrows). In the FEF block, Roman numerals I–VI label cortical layers; Va and
Vb, respectively, are superficial and deep layers V . Subscripts xy index retinotopic coordinates, whereas subscript i denotes an FEF zone gated by an associated BG channel. All
variables for FEF activities use the symbol F . Processed visual inputs I(p)xyi and I(d)xyi emerging from visual areas including V4 and posterior IT feed into the model FEF input cells
and affect activations F (I)

xyi . Such inputs are predicted to synapse on cells in layer III (and possibly layers II and IV). Visual input also excites the PPC, Pxy , and anterior IT, Tk . A
PFCmotivational signal I(M) arouses PFCworkingmemory activity Ci , which in turn provides a top-down arousal signal tomodel FEF layer VI cells, with activities F (G)

i . The FEF
input cell activities F (I)

xyi excite FEF planning cells F (P)
xyi , which are predicted to reside in layers III/Va (and possibly layer II). Distinct plan layer activities represent alternative

potential motor responses to input signals, e.g. a saccade to an eccentric target or to a central fixation point. FEF layer VI activities F (G)
i excite the groups/categories of plans

associated with gatable cortical zones i and associated thalamic zones k. The BG decide which plan to execute and send a disinhibitory gating signal that allows thalamic
activation Vk , which excites FEF layer Vb output cell activities F (O)

xyi to execute the plan. The model distinguishes (Kemel et al., 1988) a thalamus-controlling BG pathway,

whose variables are symbolized by B, and a colliculus-controlling pathway, whose variables are symbolized by G. Thus, the striatal direct (SD) pathway activities B(SD)
k and

G(SD)
xy respectively inhibit GPi activities B(GPi)

k and SNr activities G(SNr)
xy , which respectively inhibit thalamic activities Vk and collicular activities Sxy . If the FEF saccade plan

matches the most salient sensory input to the PPC, then the basal ganglia disinhibit the SC to open the gate and generate the saccade. However, if there is conflict between
the bottom-up input to PPC and the top-down planned saccade from FEF, then the BG-SC gate is held shut by feedforward striatal inhibition (note BG blocks labeled GABA)
until the cortical competition resolves. When a plan is chosen, the resulting saccade-related FEF output signal F (O)

xyi activates PPC, the STN and the SC (Sxy). The SC excites

FEF postsaccadic cell activities F (X)
xy , which delete the executed FEF plan activity. The STN activation helps prevent premature interruption of plan execution by a subsequent

plan or by stimuli engendered by the early part of movement.
Source: Reprinted with permission from Brown et al. (2004).

46. Adaptively timed resonances: distinguishing expected vs.
unexpected disconfirmations

46.1. Balancing consummatory vs. exploratory behaviors

The cognitive–emotional resonances that support reinforce-
ment learning must be adaptively timed, since rewards are often
delayed in time relative to actions aimed at acquiring them. On the
one hand, if an animal or human could not inhibit its exploratory
behavior, then it could starve to death by restlessly moving from
place to place, unable to remain in one place long enough to obtain
delayed rewards there, such as food. On the other hand, if an an-
imal inhibited its exploratory behavior for too long while waiting
for an expected reward, such as food, then it could starve to death if
food was not forthcoming. Thus, the survival of a human or animal
may depend on its ability to accurately time the delay of a goal ob-
ject based upon its previous experiences in a given situation. Being
able to predict when desired consequences occur is often as im-
portant as predicting that they will occur. Indeed, to control pre-

dictive action, the brain needs to coordinate theWhat,Why,When,
Where, and How of desired consequences by combining recogni-
tion learning, reinforcement learning, adaptively timed learning,
spatial learning, and sensory–motor learning, respectively.

Adaptive timing, just like amygdala and basal ganglia interac-
tions, requires balancing between reactive and planned behaviors;
notably, between exploratory behaviors, whichmay discover novel
sources of reward, and consummatory behaviors, which may ac-
quire expected sources of reward. A human or animal needs to sup-
press exploratory behavior and focus attention upon an expected
source of reward when the reward is expected. The Spectral Tim-
ing model (Brown et al., 1999; Fiala, Grossberg, & Bullock, 1996;
Grossberg & Merrill, 1992, 1996; Grossberg & Schmajuk, 1989) ac-
complishes this by predicting how the brain distinguishes expected
non-occurrences, or disconfirmations, of rewards, which should
not interfere with acquiring the delayed goal, from unexpected
non-occurrences, or disconfirmations, of rewards, which can trig-
ger consequences of predictive failure, including reset of working
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memory, attention shifts, emotional rebounds, and exploratory be-
haviors.

46.2. Distinguishing expected vs. unexpected disconfirmations

The following example illustrates this distinction: Suppose that
a pigeon in a Skinner box is learning to press a lever for food
on a variable-interval reinforcement schedule. Suppose that the
pigeon is rewarded, on average, ten seconds after it presses the
lever. If the pigeon presses the lever and looks immediately at
the place where the food reward will be delivered, it will see
no food. Why does the pigeon not treat the non-occurrence of
reward as a predictive failure, and thereby become frustrated,
shift attention to other activities, unlearn the cognitive–emotional
connections that triggered the action, and explore other parts of
the Skinner box, rather than remain ten seconds near the food
source until the food appears? If the pigeon always treated delayed
rewards as predictive failures, then it could only realize immediate
gratifications, and could not learn to adaptively time its behaviors
to optimize its ability to earn rewards. Somehow the pigeon
learns to discount the fact that reward does not occur before ten
seconds elapse. This is an example of an expected non-occurrence,
or disconfirmation, of reward. On the other hand, suppose that
the reward is expected after ten seconds and never occurs. This is
an unexpected non-occurrence, or disconfirmation, of reward, and
should be treated as a predictive failure that can free the pigeon
from perseverating on a behavior that no longer leads to reward.

If in this situation, reward did come before ten seconds elapsed,
then the pigeon could see it and eat it. Thus, adaptive timing
does not interfere with the ability to perceptually and cognitive
process sensory inputs. Rather, it modulates how mismatched
expectations reset ongoing processing, as in ART. In particular, a
big enough mismatch in ART can activate the orienting system,
and thereby cause category reset and attention shifts, as well
as emotional rebounds from drive states that support positive
emotions to drive states that support negative drive states, such
as frustration. These rebounds can force unlearning, or extinction,
of cognitive–emotional connections that support the behavior, and
also disinhibit exploratory behaviors (Grossberg & Merrill, 1992).

47. START: spectral timing in the cerebellum, hippocampus,
and basal ganglia

47.1. How do neurons code large temporal durations?

How do little nerve cells learn to bridge big time intervals?
How do they manage to bridge a temporal interval of hundreds
of milliseconds or even several seconds? This problem is similar
to the one asked about how little nerve cells, such as hippocampal
place cells, manage to represent big spatial regions (Section 40).
As will be seen in Section 49, the apparent similarity of these two
problems is reflected by a deeper similarity in their temporal and
spatial mechanisms.

It is proposed that large temporal intervals can be bridged using
a mechanism of spectral timing whereby a population ‘‘spectrum’’
of cells, or cell sites, with different reaction rates can learn tomatch
the statistical distribution of expected delays in reinforcement
over hundreds of milliseconds or even seconds. Although each
of these cells, or cell sites, reacts briefly at different times,
their population response as a whole can bridge a much longer
time interval, ranging from hundreds of milliseconds to seconds,
that can be tuned by learning to match external experimental
contingencies. Fiala et al. (1996) have proposed that the brain uses
the metabotropic glutamate receptor (mGLuR) system to bridge
over such long time intervals.

Fig. 10. Adaptively timed cerebellar learning circuit: adaptively timed Long Term
Depression at Purkinje cells depresses the level of tonic inhibitory firing of these
cells to cerebellar nuclei, thereby disinhibiting nuclear cells and allowing them to
express their learned gains in an adaptively timed way. See text for details.
Source: Reprinted with permission from Grossberg and Merrill (1996).

The Spectral Timing model clarifies many different aspects
of adaptively timed learning, ranging from normal adaptively
timed reinforcement learning, motivated attention, and action,
via circuits involving basal ganglia, hippocampus, and cerebellum,
to abnormal adaptive timing due to cerebellar lesions or autism,
during which behaviors may be prematurely released in a context-
inappropriate manner that can prevent these behaviors from
receiving normal social rewards (Grossberg & Seidman, 2006;
Grossberg & Vladusich, 2011; Sears, Finn, & Steinmetz, 1994).
The ability to focus motivated attention for an adaptively timed
interval is controlled by an adaptively timed cognitive–emotional
resonance.

47.2. Adaptively timed learning in the hippocampus and cerebellum

Evidence for adaptive timing occurs during several types of
reinforcement learning. For example, classical conditioning is
optimal at a range of positive interstimulus intervals (ISI) between
the conditioned stimulus (CS) and unconditioned stimulus (US)
that are characteristic of the animal and the task. Such conditioning
is greatly attenuated at zero and long ISIs. Within this range,
learned responses are timed to match the statistics of the learning
environment (Smith, 1968). Although the amygdala is a primary
site for emotion and stimulus-reward association, the amygdala
does not carry out adaptively timed learning. Instead, brain regions
such as the hippocampus and cerebellum have been implicated in
adaptively timed processing of cognitive–emotional interactions.
For example, Thompson et al. (1987) distinguished two types of
learning that go on during conditioning of the rabbit nictitating
membrane response: Adaptively timed ‘‘conditioned fear’’ learning
that is linked to the hippocampus, and adaptively timed ‘‘learning
of the discrete adaptive response’’ that is linked to the cerebellum.

A unified explanation of why both hippocampus and cerebel-
lumuse adaptively timed learning is given by the START (Spectrally
Timed ART) model (Fig. 7), which unifies the ART and CogEMmod-
els (Fiala et al., 1996; Grossberg & Merrill, 1992, 1996; Grossberg
& Schmajuk, 1989). As noted above, CogEM predicts how salient
conditioned cues can rapidly focus attention upon their sensory
categories (S) via a cognitive–emotional resonancewith their asso-
ciated drive (D) representations. However, what then prevents the
actions (M) that they control from being prematurely released?



Author's personal copy

28 S. Grossberg / Neural Networks 37 (2013) 1–47

For example, suppose that a conditioned stimulus (CS), say
via the motor output pathway M in Fig. 7, activates pathways
both to a subcortical cerebellar nucleus and to cerebellar cortex
parallel fibers that synapse on Purkinje cells (Fig. 10). Suppose
that the parallel fibers let the CS activate pathways that respond
with a spectrum of differently timed intracellular processes. The
unconditioned stimulus (US) activates climbing fibers to provide a
teaching signal that converges upon these parallel fiber/Purkinje
cell synapses. This teaching signal causes the active synapses
within the parallel fiber spectrum to become weaker (Long Term
Depression) if they are activated by the CS at times when the
US teaching signal is active. Synapses whose CS-activated spectral
activity does not overlap the climbing fiber signals become
stronger (Long Term Potentiation, or LTP). Because the Purkinje
cells tonically inhibit their subcortical target cells, their adaptively
timed LTD disinhibits the tonic inhibition by Purkinje cell of
cerebellar nuclear cells. In other words, an adaptively timed gate
opens and allows the subcortical cells to fire at appropriate times.
The model proposes that climbing fibers also control learning of
adaptive gains along subcortical pathways through the nuclear
cells. Thus, when the adaptively timed Purkinje cell gate opens, the
learned gains can be expressed at the correct times and with the
correct amplitude to cause a correctly calibrated motor response.

47.3. Adaptively timed learning by the metabotropic glutamate
receptor system

Fiala et al. (1996) have developed and simulated a detailed
Spectral Timing model of cerebellar adaptive timing. This model
builds on Eqs. (1)–(4), linking biochemistry, neurophysiology,
neuroanatomy, and behavior to predict how the metabotropic
glutamate (mGluR) receptor system may create a spectrum of
delays during cerebellar adaptively timed learning. Spectral timing
in the hippocampus also presumably has an mGluR realization
(Brown et al., 1999; Grossberg & Merrill, 1992, 1996). The Fiala
et al. (1996) prediction of a role for mGluR in adaptively timed
learning is consistentwith data about calcium signaling andmGluR
in cerebellar adaptive timing (Finch & Augustine, 1998; Ichise
et al., 2000; Miyata et al., 2000; Takechi, Eilers, & Konnerth, 1998).
The model simulates both normal adaptively timed conditioning
data and premature responding when cerebellar cortex is lesioned
(Perret, Ruiz, & Mauk, 1993), thereby eliminating the adaptively
timed gating process. Indeed, various individuals with autism,
who are known to have cerebellar deficiencies, also perform
short-latency responses in the eye-blink paradigm (Grossberg &
Seidman, 2006; Sears et al., 1994). The prediction of a role for
mGluR in adaptively timed learning raises the question of whether
the mGluR system is not functioning normally in some autistic
individuals.

48. Adaptively timed attentive resonance and action

48.1. Reconciling fast motivated attention with adaptively timed
motivated attention and action

The combination of cerebellar and hippocampal adaptive
timing reconciles three important behavioral properties: Fast al-
location of attention to motivationally salient events via a cortico-
amygdala resonance, maintenance of motivated attention for an
adaptively timed duration via a cortico-amygdala–hippocampal
resonance, and adaptively timed responding via a cortico-
cerebellar circuit during this adaptively timed duration. Indeed, for
motivated attention to be effective, it needs to be activated as soon
as important motivationally salient cues are detected. However,

for adaptively timed responding to be effective, motivated atten-
tion needs to persist long enough to support the read-out of adap-
tively timed motor commands, and to prevent irrelevant events
from prematurely resetting these commands. The START model
(Grossberg & Merrill, 1992, 1996) proposes how dentate–CA3 cir-
cuits in the hippocampus can regulate the duration of a CogEM
cognitive–emotional resonance that includes cortex (S ji in Fig. 7),
amygdala (D in Fig. 7), and hippocampus (T in Fig. 7).

Without such adaptively timedmaintenance of cortical activity,
an unexpected event could prematurely reset motor commands
that are being read out by the cortex. As noted in Section 46,
if a top-down prototype and bottom-up sensory input mismatch
too much for resonance to occur, then the orienting system A
can reset the active categories that are controlling read-out of the
motor command (Fig. 2). The hippocampal system and nonspecific
thalamus are proposed to be part of this mismatch-activated
orienting system. These mismatches are not, however, sensitive to
whether the novel event that caused themismatch is task-relevant,
andwhether it is important enough interrupt the ongoing task. The
STARTmodel clarifies how suchmismatchesmay bemodulated by
task-relevance in an adaptively timedway. In particular, inhibition
from the adaptive timing circuit can prevent a mismatch from
causing premature category reset, as explained below.

Figs. 7 and 11 suggest how adaptively timed learningwithin the
dentate–CA3 circuits (T in Fig. 7) of the hippocampus is proposed
to inhibit the activation of the orienting system A during an
interval wherein a valued and predictable goal is being acted upon.
Indeed, dentate–CA3 cell firing reflects the learneddelays observed
during the rabbit nictitating membrane response (Berger, Berry,
& Thompson, 1986). The START model proposes how adaptively
timed inhibition of the hippocampal orienting system (Figs. 7 and
11) and adaptively timed disinhibition of cerebellar nuclear cells
(Fig. 10) may be coordinated to enable motivated attention to
be maintained on a goal while adaptively timed responses are
released to obtain a valued goal.

48.2. Interacting contributions of amygdala, hippocampus, and
cerebellum during conditioning

The START circuitry that is summarized in Fig. 7 combines Co-
gEM, ART, and Spectral Timing properties in the following way: As
noted in Section 42, processing stages S(1) and S(2) in Fig. 7 play the
role of sensory cortex and orbitofrontal cortex, respectively. Stage
D is an emotional center, or drive representation, like the amyg-
dala. Stage M schematizes motor output pathways. The feedback
pathways D → S(2)

→ S(1) from a particular drive representa-
tion to sensory representations are capable of focusing attention on
motivationally consistent events in theworld. The excitatory path-
ways from S(1)

→ D learn the conditioned reinforcer properties of
a sensory cue, such as a CS, whereas the pathways D → S(2) learn
the incentive motivational properties of cues. Representations in
S(2) can fire vigorously only if they receive convergent signals from
S(1) and D, corresponding to the sensitivity of orbitofrontal cortex
cells to converging sensory and reinforcing properties of cues. Once
activated, these orbitofrontal cells deliver positive feedback to S(1)

and bias the competition among sensory representations to focus
attention on valued events while attentionally blocking inhibited
features.

Prior to conditioning, a CS can be stored at S(1) and can prime
D and S(2) without firing these representations. After conditioning,
the CS can trigger strong conditioned S(1)

→ D → S(2)
→ S(1)

feedback and rapidly draw attention to itself as it activates the
emotional representations and motivational pathways controlled
by D. Representation D can also inhibit the orienting system A
as it focuses attention upon motivationally valued sensory events
(Figs. 7 and 11). Here is thus one way in which the CogEM and
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Fig. 11. Mismatch and Spectral Timing circuits both inhibit the orienting system:
when a big enough mismatch occurs between distributed features at level F1 and
the top-down expectation from the category level F2 , then inhibition is reduced at
the orienting system (Fig. 2) enough to trigger activation of the orienting system
A. However, if adaptively timed inhibition from the cognitive–emotional sensory-
drive (S − D) resonance also inhibits A, then the orienting system cannot fire until
the adaptively timed signal is removed.

ART models interact: Emotionally salient goal objects can inhibit
the orienting system and thus prevent irrelevant distractors from
attracting attention even when there is an ART mismatch.

This inhibition of the orienting system becomes adaptively
timed as follows: The sensory representations S(1) send pathways
to a spectral timing circuit T , assumed to be in the dentate–CA3
region of the hippocampus, whose adaptive weights w are trained
by a Now Print, or teaching signal, N . The teaching signal N
is transiently activated by changes in the activity of the drive
representation D that occur when a reinforcing event activates D.
Weight learning can also be modulated by dopamine signals from
the SNr in the basal ganglia (Brown et al., 2004).

After conditioning of T takes place, adaptively timed read-
out from T can enables attention to focus on task-relevant cues
by maintaining their cortical representations S(2) in a cortico-
amygdala–hippocampal resonance while T inhibits the orienting
system A for an adaptively timed duration. In Figs. 7 and 11, the
simplest inhibitory path from T -to-D-to-A is depicted. A more
complex set of pathways exists in vivo.

In summary, the START model enables three behaviorally
important properties to coexist:

Fast motivated attention. Rapid focusing of attention on moti-
vationally salient cues occurs from regions like the amygdala to
prefrontal cortex (pathway D → S(2) in Fig. 7). Without further
processing, fast activation of the CS-activated S(2) sensory repre-
sentations could prematurely release motor behaviors (pathway
S(2)

→ M in Fig. 7).
Adaptively timed responding. Adaptively timed read-out of

responses via cerebellar circuits (pathway M in Fig. 10) enables
learned responses to be released at task-appropriate times, despite
the fact that CS representations which activate cerebellum can be
quickly activated by fast motivated attention.

Adaptively timed duration of motivated attention and inhibition of
orienting responses. Premature reset of active CS representations by
irrelevant cues during task-specific delays is prevented by adap-
tively timed inhibition of mismatch-sensitive cells in the orient-
ing system of the hippocampus (pathway T → D → A in Fig. 7).
This inhibition is part of the competition between consummatory
and orienting behaviors (Staddon, 1983). Adaptively timed incen-
tive motivational feedback (D → S(2)

→ S(1) in Fig. 7) simulta-
neously maintains CS activation in short-termmemory, so that the
CS can continue to read-out adaptively-timed responses until they
are complete.

The Contingent Negative Variation, or CNV, event-related
potential is predicted to be a neural marker of adaptively timed
motivational feedback. Many additional data have been explained

using these circuits, including data from delayed non-match
to sample (DNMS) experiments wherein both temporal delays
and novelty-sensitive recognition processes are involved (Gaffan,
1974; Mishkin & Delacour, 1975).

49. Neural relativity: spectral timing and spectral spacing in the
hippocampus

As noted in the discussions of Sections 39, 40 and 46–48, the
hippocampus processes spatial as well as temporal information.
This observation raises the question: Why are both space and
time both processed in the hippocampus? The fact of this
convergence is consistent with data and hypotheses about a
possible role of hippocampus in episodic learning and memory,
since episodic memories typically combine both spatial and
temporal information about particular autobiographical events;
e.g., Eichenbaum and Lipton (2008).

As noted in Sections 39–40, multiple scales of entorhinal grid
cells can cooperate in a self-organizing map to form place cell
receptive fields. These multiple scales form along a dorsoventral
spatial gradient in the entorhinal cortex such that grid cells
have increasingly large spatial scales (that is, larger spatial
intervals between activations in a hexagonal grid) in the ventral
direction. Grid cells with several different spatial scales along
the dorsoventral gradient can cooperate to form place cells that
can represent spaces much larger than those represented by
individual grid cells, indeed place cells capable of representing the
lowest common multiple of the grid cell scales that activate them
(Gorchetchnikov & Grossberg, 2007; Pilly & Grossberg, in press).

With this background, we can begin to see a similarity in
how the entorhinal–hippocampal system deal with both time and
space. In the case of temporal representation by Spectral Timing,
a spectrum of small time scales can be combined to represent
much longer and behaviorally relevant temporal times. In the case
of spatial representation by grid cells, a ‘‘spectrum’’ of small grid
cell spatial scales can be combined to represent much larger and
behaviorally relevant spaces. This homology has led to the name
Spectral Spacing for the mechanism whereby grid cells give rise to
place cells.

The Spectral Timing model reflects the part of entorhi-
nal–hippocampal dynamics that is devoted to representing ob-
jects and events, and includes lateral entorhinal cortex. The
Spectral Spacing model reflects a complementary part of entorhi-
nal–hippocampal dynamics that is devoted to representing spa-
tial representations, and includes medial entorhinal cortex. Both
of these processing streams are joined in the hippocampus to sup-
port spatial navigation as well as episodic learning and memory
(Eichenbaum & Lipton, 2008).

This heuristic homology between spatial and temporal repre-
sentations is supported by rigorous mathematical modeling and
data simulations. Grossberg and Pilly (in press) have developed the
Spectral Spacingmodel to show that neuralmechanismswhich en-
able a dorsoventral gradient of grid cell spatial scales to be learned
are formally the same as mechanisms that enable a gradient of
temporal scales to form in the Spectral Timing model. Grossberg
and Pilly (in press) support this claim by quantitatively simulating
challenging data about parametric properties of grid cells along the
dorsoventral gradient. Thus, it may be that space and time are both
in the hippocampus because they both exploit a shared set of com-
putational mechanisms. Briefly said: Space and Time are One. The
phrase ‘‘neural relativity’’ tries to celebrate this predicted property
of the entorhinal–hippocampal system.
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50. ART in time: working memory, list chunks, and sequential
performance

The above mechanisms do not explain how the brain responds
selectively to sequences of events. Predictive behavior depends
upon the capacity to think about, plan, execute, and evaluate
such event sequences. In particular, multiple events in a specific
temporal order can be stored temporarily in working memory.
As event sequences are temporarily stored, they are grouped,
or chunked, through learning into unitized plans, or list chunks,
and can later be performed at variable rates under volitional
control. Examples of list chunks include unitized representations
of familiar words and motor skills. Here, the term working
memory is used to describe brain processes that temporarily
store the temporal order of several events, not merely persistence
of individual events. ART categorization mechanisms are used
to learn such list chunks, as would be expected from the fact
that sequential behaviors must also solve the stability–plasticity
dilemma.

50.1. Item and order working memories and learned list chunks

Grossberg (1978a, 1978b) introduced a model of working
memory and of list chunking, which proposed how working
memories are designed to enable list chunks of variable length to
be quickly learned and stably remembered. Inputs to this working
memory are unitized item categories of individual events or objects
(e.g., invariant object categories, acoustically processed letter
categories, simple motor synergies) that have enough adaptively
timed, incentive motivational support to be persistently stored
before being transferred intoworkingmemory. Sequences of items
are stored in working memory as a temporally evolving spatial
pattern of activity across item-selective cells. The relative activities
of different cell populations code the temporal order in which
the items will be rehearsed, with the largest activities rehearsed
earliest; hence, the name Item and Order working memory for
this class of models. A more recent name is competitive queuing
(Houghton, 1990).

50.2. All workingmemories obey the LTM Invariance Principle and the
Normalization Rule

Grossberg (1978a, 1978b) derived Item and Order working
memories from two postulates: the LTM Invariance Principle and
the Normalization Rule. The LTM Invariance Principle is the main
postulate. It makes precise the idea that there is no point in
storing novel sequences of events in working memory if the
brain cannot learn to unitize the sequences for future skillful
performance. The LTM Invariance Principle claims that working
memories are designed to enable such stable list chunking to occur.
In particular, it demands that all working memories enable a
novel superset list chunk (up to a certain maximal length) to be
learned without forcing catastrophic forgetting of familiar subset
chunks. For example, the LTM Invariance Principle ensures that a
novel superset word like MYSELF can be learned without forcing
forgetting of the familiar subwords MY, SELF, and ELF. As a result,
as new items are stored through time in working memory, subset
list chunks can continue to activate their familiar list chunks until
they are inhibited by contextually more predictive superset list
chunks; e.g., until MY is supplanted by competition from MYSELF
through time. The learning of chunkMYwithin its bottom-up filter
is not undermined, but the current activation of the chunk MY can
be inhibited by MYSELF. Mathematically, this boils down to the
following property: Activities of items in working memory tend to
preserve their relative activations, or ratios, throughout the time
that they are stored in workingmemory, even if the storage of new

items through time might change the absolute amount of activity
with which each item is stored. This property enables the adaptive
filter that converts the distributed pattern of stored items into list
chunks (see Fig. 2(a)) to activate already learned list chunks in
response to the individual sublists in working memory.

The Normalization Rule assumes that the total activity of the
workingmemory network has amaximum that is (approximately)
independent of the total number of actively stored items. In other
words, working memory has a limited capacity and activity is
redistributed, not just added, when new items are stored.

50.3. Item and order working memories are recurrent shunting on-
center off-surround networks

How can brain evolution be smart enough to discover the laws
of something so seemingly sophisticated as a working memory?
Remarkably, an Item and Order working memory that satisfies
the LTM Invariance Principle and Normalization Rule can be
realized by an on-center off-surround network whose cells obey
the shunting, or membrane, equations of neurophysiology and
which interact via recurrent on-center off-surround connections
(see Eq. (1)). Recurrent shunting on-center off-surround networks
are ubiquitous in the brain, as they provide a solution of the
noise–saturation dilemma (Section 6). Recurrence is needed
because the positive feedback from a cell population to itself in the
recurrent on-center stores the evolving input pattern, while the
recurrent competition contrast-normalizes the stored activities
across the network. The shunting, or multiplicative, properties
of the membrane equations, combined with the on-center off-
surround interactions, enable the network to compute ratios of cell
activities across the network, as is required by the LTM Invariance
Principle.

What sets an Item and Order working memory apart from
just any recurrent shunting on-center off-surround network?
Such a recurrent network behaves like an Item and Order
working memory model when it is equipped with a volitionally-
activated nonspecific rehearsal wave to initiate read-out of stored
activity patterns, and output-contingent self-inhibitory feedback
to prevent perseverative performance of the most active stored
item, and thereby achieve inhibition of return (Fig. 12).

The fact that an Item and Order working memory can be
realized by a recurrent shunting on-center off-surround network
is consistent with the ART Matching Rule. When a list chunk reads
out a learned top-down expectation into a working memory, the
modulatory on-center of the ART Matching Rule is converted into
a driving on-center by volitional control from the basal ganglia,
and the off-surround is just what is needed to compute the ART
Matching Rule; see Section 7.

51. Why primacy and bowed serial properties in human and
animal working memory data?

51.1. Stable chunking implies primacy, recency, or bowed gradients in
working memory

Why are there limits to the number of items that can be
stored in working memory in the correct temporal order? In
an Item and Order working memory, it can be mathematically
proved that, under constant attentional conditions, the pattern of
activation that evolves in an Item and Order working memory is
one of following types, depending on how network parameters are
chosen (Bradski, Carpenter, & Grossberg, 1992, 1994; Grossberg,
1978a, 1978b):

Primacy gradient. Here, the first item to be stored has the largest
activity and the last item to be stored has the smallest activity. A



Author's personal copy

S. Grossberg / Neural Networks 37 (2013) 1–47 31

Fig. 12. Schematic of an item and order working memory: a temporal sequence of
inputs creates a spatial activation pattern among STM activations, often a primacy
gradient (height of hatched rectangles is proportional to cell activity). Relative
activation levels among stored items codes both which items are stored and the
temporal order in which they are stored. A nonspecific rehearsal wave allows item
activations to be rehearsed, with the largest activity being read out first. The output
signal from this item also activates a self-inhibitory interneuron that inhibits the
item, and thereby enables the next most active item to be performed. The process
then repeats itself.
Source: Reprinted with permission from Grossberg and Pearson (2008).

primacy gradient allows the stored items to be rehearsed in their
presented order.

Recency gradient. Here the first item is stored with the smallest
activity and the last item with the largest activity. Rehearsal of a
recency gradient recalls themost recent item first and the first item
last.

Bowed gradient. Here, the first and last items to be stored have
larger activities, and thus are earlier rehearsed, than items in the
middle of the list.

From primacy to bowed gradient. It was also proved that, asmore
and more items are stored, a primacy gradient becomes a bowed
pattern whose recency part becomes increasingly dominant.

This last result predictswhy bowed gradients are found inmany
types of serially ordered behavior: The property of stable learning
and memory of list chunks imposes a severe limitation on the
number of items that can be recalled in the correct temporal order
from working memory, because a bow necessarily occurs in the
stored gradient of sufficiently long lists.

51.2. Psychological and neurophysiological data support predicted
item and order properties

The properties of Item and Order working memories have
been supported by subsequent psychological and neurobiological
experiments. For example, Farrell and Lewandowsky (2002)
concluded from their human psychophysical data: ‘‘Several
competing theories of short-termmemory can explain serial recall
performance at a quantitative level. However,most theories to date
have not been applied to the accompanying pattern of response
latencies· · · these data rule out three of the four representational
mechanisms. The data support the notion that serial order
is represented by a primacy gradient that is accompanied by
suppression of recalled items’’. Page and Norris (1998) adapted the
Item and Order working memory to describe a ‘‘primacy model’’
which they used to fit data about immediate serial recall, notably
the effects of word length, list length, and phonological similarity.

The LTM Invariance Principle should be obeyed in all working
memories, whether they store verbal, spatial, or motor items, so

that all working memories should exhibit similar data properties,
such as error distributions. Jones, Farrand, Stuart, and Morris
(1995) reported similar performance characteristics to those
of verbal working memory for a spatial serial recall task, in
which visual locations were remembered. Agam, Bullock, and
Sekuler (2005) reported psychophysical evidence of Item and
Order working memory properties in humans as they performed
sequential copying movements. Averbeck, Chafee, Crowe, and
Georgopoulos (2002); Averbeck, Crowe, Chafee, and Georgopoulos
(2003a, 2003b) reported the first neurophysiological evidence in
monkeys that a primacy gradient, together with inhibition of
the most active cell after its command is read out, governs the
sequential performance of sequential copying movements.

Agam, Galperin, Gold, and Sekuler (2007) reported data
consistent with the formation of list chunks as movement
sequences are practiced, thereby supporting the prediction that
working memory networks are designed to interact closely with
list chunking networks. A number of psychophysics experiments
have been carried out to successfully test this hypothesis during
speech perception (e.g., Auer and Luce (2008), Goldinger and
Azuma (2003),McLennan, Conor, and Luce (2005),McLennan, Luce,
and Charles-Luce (2003), Luce andMcLennan (2008), and Vitevitch
and Luce (1999)).

The fact that verbal, spatial, and motor sequences, in both
humans and monkeys, seem to obey the same working memory
laws provides accumulating evidence for the Grossberg (1978a,
1978b) prediction that all workingmemories have a similar design
to enable stable list chunks to form by ART learning mechanisms.

52. Free recall and the magical numbers four and seven in
item–order–rank working memory

The prediction that primacy gradients become bows for longer
lists provides a conceptually satisfying explanation of the well-
known immediate memory span of 7 + / − 2 items (Miller, 1956).
This property of Item and Order working memories was originally
used to explain data about free recall (the recall of a once-heard
list in any order) and related paradigms in which bowing effects
are observed (Grossberg, 1978b). Indeed, because relative activity
translates into both relative order and probability of recall (bigger
activities can provide earlier and more reliable recall in a noisy
brain), such amodel helps to explainwhy items from the beginning
and end of a list in free recall may be recalled earlier and with
larger probability (Murdock, 1962). Transposition errors also have a
natural explanation in such a working memory, since stored items
with similar activity levels will transpose their relative activities,
and thus their rehearsal order, more easily than items with very
different activity levels if noise perturbs these levels through time.
Grossberg (1978a, 1978b) also proved that, if attention varies
across items, then multi-modal bows, or Von Restorff (1933)
effects, also called isolation effects (Hunt & Lamb, 2001), occur
when an item in a list ‘‘stands out like a sore thumb’’ and is thus
more likely to be remembered than other list items. Von Restorff
effects can also be caused by rate and feature-similarity differences
across items, factors which also influence bowing in the present
modeling framework. Associative and competitive mechanisms
that are consistent with the Item and Order working memory
model have also been used to explain Von Restorff effects during
serial verbal learning (Grossberg, 1969c, 1974).

52.1. Transient and immediate memory spans

The Grossberg (1978a) analysis distinguished between the
classical immediate memory span (IMS) of Miller (1956) and the
model-derived new concept of transient memory span (TMS). The
TMSwas predicted to be the result of short-termworkingmemory
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storage recall, without a significant top-down long-term memory
(LTM) component from ART mechanisms. The TMS is, accordingly,
the longest list length for which a working memory can store
a primacy gradient. The IMS was predicted to be the result of
combining bottom-up inputs and top-down read-out of list chunk
learned expectations at the working memory. How do top-down
learned signals alter the relative activities stored in working
memory, and thus the temporal order that is recalled? The read-
out of list chunk top-down expectations intoworkingmemorywas
mathematically proved to generate an extended primacy gradient
in working memory, and thus a longer list that could be recalled in
the correct order.

Thus, ART top-down feedback to an Item and Order working
memory leads to an IMS that is longer than the TMS. Estimating
the IMS at seven, Grossberg (1978a) predicted that the TMS would
be around four. Subsequent data, reviewed by Cowan (2001), sup-
port the existence of a four plus-or-minus one working memory
capacity limit when learning and grouping influences are mini-
mized. Indeed, long-termmemory (LTM) does bias working mem-
ory towards more primacy dominance (e.g. Knoedler, Hellwig, and
Neath (1999)), and its influence can be difficult to limit. Cowan
(2001) reviewed proposals for limiting LTM influence, such as us-
ing novel sequence orderings of well-learned items that are diffi-
cult to group.

52.2. LIST PARSE: laminar cortical circuits for working memory and
list chunk learning

The LIST PARSE (Laminar Integrated Storage of Temporal
Patterns for Associative Retrieval, Sequencing and Execution)
model (Grossberg & Pearson, 2008) built on this foundation to
predict how laminar circuits in ventrolateral prefrontal cortex
may embody a cognitive Item and Order working memory and
list chunk learning network that interacts with a motor working
memory in dorsolateral prefrontal cortex, and a basal ganglia
adaptively-timed volitional control system (Fig. 13). LIST PARSE is
able to store and learn event sequences of variable length and to
perform them at variable speeds under volitional control. The LIST
PARSE cognitive model uses a variation of the laminar circuits that
are used in the LAMINART vision model (Section 19).

Accumulating neurobiological data support the view that
visual and verbal object categories may be learned in temporal
and ventromedial prefrontal (e.g., orbitofrontal cortex) cortex.
As predicted by the CogEM model (Section 42), orbitofrontal
cortex responds best to the combination of item and motivational
signals. These attended item representations are then loaded
into a sequential working memory that codes temporal order
information in ventrolateral and/or dorsolateral prefrontal cortex
(e.g., Barbas (2000), Goldman-Rakic (1987), Petrides (2005) and
Ranganath and D’Esposito (2005)). The temporally evolving
working memory patterns are, in turn, categorized by list chunks,
or sequential plans, which can be used to predict subsequent
expected events.

Grossberg and Pearson (2008) provide a full review of the LIST
PARSEmodel, relevant data, and othermodels of workingmemory.
Here it suffices to note that LIST PARSE unifies the explanation of
cognitive, neurophysiological, and anatomical data from humans
and monkeys concerning how predictive, sequentially organized
behaviors are controlled. Because its laminar cognitive prefrontal
circuits are variations of laminar circuits in visual cortex, both
cognition and vision seem to use variations of a shared laminar
cortical design to rapidly learn and stably remember, using ART
top-down attentive matching mechanisms, recognition categories
with which to predict a changing world. In particular, LIST PARSE
quantitatively simulates human cognitive data about immediate
serial recall and immediate, delayed, and continuous-distractor

Fig. 13. Circuit diagram of the LIST PARSE model. The item and order working
memory is realized by a recurrent shunting on-center off-surround network in
layers 4 and 6 of the Cognitive Working Memory, which is assumed to occur in
ventrolateral prefrontal cortex. The list chunks are learned in layer 2/3. Outputs
from the Cognitive Working Memory to the Motor Working Memory interact with
a Vector Integration to Endpoint (VITE) trajectory generator (Bullock & Grossberg,
1988), modulated by the basal ganglia, to perform sequences of variable length
at variable speeds. Solid arrows indicate fixed excitatory connections. Solid lines
with hemi-disks indicate modifiable (i.e., learned) connections. Dashed arrows
indicate fixed inhibitory connections. Only 1-item chunks (C) and their feedback
connections (M) within a single Cognitive Working Memory channel are shown,
whereas the model uses chunks of various sizes in layer 2/3 and feedback from
layers 2/3 to 5/6 of the Cognitive Working Memory is broadly distributed. Also,
only the excitatory projections from Cognitive Working Memory to the Motor Plan
Field (Y → F) are shown.
Source: Reprinted with permission from Grossberg and Pearson (2008).

free recall, as well as monkey neurophysiological data from
the prefrontal cortex obtained during sequential sensory–motor
imitation and planned performance. It hereby clarifies how both
spatial and non-spatial working memories may share the same
laminar cortical circuit design.

53. Item–order–rank working memory: from numerical to
positional coding

53.1. Storing sequences of repeated items

Working memory can store sequences of items that may be
repeated several times in the sequence; e.g., ABACBD. Howdoes the
brain correctly store different ordinal positions for the same item
in a sequence? Can an Item and Order working memory do this?
For example, how does working memory store multiple target
locations to control sequences of eye movements, particularly
when the same locations repeat at multiple list positions, or
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ranks, in the sequence? Both psychophysical and neural data
indicate that rank information may be explicitly coded by the
brain. For example, there is an increased likelihood of intrusions
from items at similar list positions across trials (reviewed in
Henson (1998)). Repetitive presentation of an item in the same
absolute serial position in lists across multiple trials with different
list orderings leads to a statistically significant increase in the
strength of learning of that item (Conway & Christiansen, 2001).
There is a statistically small, but significant, class of errors called
‘‘protrusions’’, in which interchanges between items in similar
serial positions of different temporal groupings in a list are
more common than interchanges between items in different
serial positions (Henson, 1998). That is, when presented with the
sequence ABC (pause) DEF , interchanges between items at B and E
aremore common than interchanges between items at B and F . The
well-known ‘‘slip of the tongue’’ error of ‘‘spoonerisms’’ illustrates
a similar effect. Here, phonemes or syllables in similar positions
in different words are selectively interchanged (e.g., ‘‘hissed my
mystery lesson’’). It is also known that there are cells in the brain
which are sensitive to rank. For example, a cell may respond to any
target in the initial, middle or final ordinal position in a sequence,
or the first, second, third, etc. positions. These cells are said to
exhibit rank order, also called temporal selectivity or position
specificity, while other cells may exhibit selectivity to conjunctive
coding of item and ordinal position. Such a cell may respond to a
specific target presented in a specific ordinal position (Averbeck
et al., 2003a; Funahashi, Inoue, & Kubota, 1997; Inoue & Mikami,
2006).

Positional theories (e.g., Burgess (1995), Burgess and Hitch
(1992), and Henson (1998)) posit that positional information is
explicitly maintained to establish recall order. Such positional
information may be absolute, or relative to the beginning and/or
endof lists. However, thesemodels all have conceptualweaknesses
and do not adequately treat item repetitions; see Grossberg and
Pearson (2008, Section 7.2.2) for a review.

53.2. From parietal numerical representations to prefrontal item–
order–rank working memory

Grossberg and Pearson (2008) proposed that one source of
positional information in the frontal cortex may be derived from
the cortical maps of numerical representation that are found in the
parietal cortex, with projections to the frontal cortex (Dehaene,
1997; Nieder & Miller, 2003, 2004). LIST PARSE predicts that
such numerical maps contribute positional coding signals to the
conjunctive coding of list item, order and rank that is found in
higher cortical areas.

These numerical maps are, for example, important in foraging
behaviors. They enable animals to make decisions about the total
number of food items that are available in different locations,
thereby guiding navigational and acquisitive behaviors (Buchanan
& Bitterman, 1998; Emmerton, Lohmann, & Niemann, 1997;
Washburn & Rumbaugh, 1991). They can also support an abstract
representation of number, which can represent the total number of
events across modalities; e.g., seeing and hearing (Church & Meck,
1984; Starkey, Spelke, & Gelman, 1983). They thus seem to have
been involved in planning sequential behaviors for a very long
time.

How do such numerical representations arise? Where do
numbers come from?! Grossberg and Repin (2003) developed
the Spatial Number Network, or SpaN model, to quantitatively
simulate psychophysical and neural properties of numerical
estimation using variations of more primitive cortical mechanisms
for motion perception and spatial localization that are ubiquitous
in the Where cortical stream, including the parietal cortex. In
the model’s parietal representation, distinct but overlapping cell

populations in an ordered cortical map are activated as an
increasing number of events is detected. Thus, as a sequence
is stored in working memory, each item in the sequence can
activate the numerical map and cause a shift in the location of
maximal map activity. These activated positions are projected to
prefrontal working memory networks, where they are combined
with item and order information to generate cells that are sensitive
to item–order–rank information; that is, cells for which activity
gradient of order information is spread over cells that are sensitive
to a conjunction of item-and-rank information.

53.3. lisTELOS: prefrontal item–order–rank working memories ex-
plain microstimulation data

Silver, Grossberg, Bullock, Histed, and Miller (2011) have
incorporated such an item–order–rank spatial working memory
into the lisTELOS model, which is a comprehensive model of how
sequences of eye movements, which may include repetitions, may
be planned and performed (Fig. 14). Similar mechanisms may be
expected to control other types of sequences as well, due to shared
workingmemory designs required by the LTM Invariance Principle
(Section 51).

The lisTELOS model’s name derives from the fact that it uni-
fies and further develops concepts about how item–order–rank
working memories store lists of items, and of how TELOS prop-
erties of the basal ganglia (Section 44) help to balance reactive
vs. planned movements by selectively gating sequences of actions
through time. Rank-related activity has been observed in many ar-
eas including the posterior parietal cortices (PPC), prefrontal cor-
tices (PFC) and supplementary eye fields (SEF). The lisTELOSmodel
shows how rank information, originating in PPC, may support
item–order–rank PFC working memory representations, and how
SEFmay select saccades stored inworkingmemory. Themodel also
proposes how SEF may interact with downstream regions such as
the frontal eye fields (FEF) during memory-guided sequential sac-
cade tasks, and how the basal ganglia (BG) may control the flow
of information. Model simulations reproduce behavioral, anatom-
ical and electrophysiological data under multiple experimental
paradigms, including visually- and memory-guided single and se-
quential saccade tasks. Simulations quantitatively reproduce be-
havioral data during two SEF microstimulation paradigms (Histed
& Miller, 2006; Yang, Heinen, & Missal, 2008). SEF microstimula-
tion altered the order in which eyemovements are carried out, but
not the target locations to which the eyes move. Quantitative sim-
ulations of such data provide strong evidence for item–order–rank
coding in spatial working memory; in particular, that item-and-
order information are encoded by an activity gradient whose
relative activities, and thus the order of recall, are perturbed by
microstimulation. The simulations also show how seemingly in-
consistent findings about saccade latency of different microstim-
ulation experiments can be given a unified explanation using the
model.

54. ARTSCENE search and recognizing scenes: accumulating
evidence using working memory

54.1. Searching scenes using contextual cueing

The prediction that all working memories obey the LTM
Invariance Principle implies that a similar workingmemory design
should be used in visual, auditory, spatial, and motor working
memories; see Section 51. In particular, both visual and spatial
working memories, and their learned list chunks, help the brain
to learn how to use context to efficiently search a scene for a
desired object. For example, humans can learn that a certain
combination of objects may define a context for a kitchen and
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Fig. 14. The lisTELOS model macrocircuit: each gray box represents a brain region within which fields of cells, represented by white inset boxes, share similar functional
roles, which are summarized in the box. Arrowheads denote excitatory connections between cells, and filled circles represent inhibitory connections. Curved branches at
the ends of connections represent one-to-many fan-out connections that impact all other cells in the field. Half-filled boxes at the ends of connections represent habituative
gates which exhibit activity-dependent changes in synaptic efficacy. White circles containing a multiplication sign (×) represent multiplicative interaction between two
signals. Boxes containing a sigma (Σ) represent the sum of outputs from all cells in the field that gave rise to the projection. Stacked field representations denote populations
of rank-sensitive cells. SC = superior colliculus; PPC = posterior parietal cortex; PFC = prefrontal cortex; BG = basal ganglia; FEF = frontal eye fields; SEF = supplementary
eye fields. Note the three BG loops gating the release of output signals from different brain regions.
Source: Reprinted with permission from Silver et al. (2011).

trigger a more efficient search for a typical object, such as a sink,
in that context. The ARTSCENE Search model (Figs. 15 and 16;
Huang and Grossberg (2010)) was developed to characterize the
neural mechanisms of such memory-based context learning and
guidance, which is often called contextual cueing (Chun, 2000;
Chun & Jiang, 1998).

54.2. Scenic gist as a large-scale texture category

ARTSCENE Search simulates challenging behavioral data on
positive/negative, spatial/object, and local/distant contextual cue-
ing effects during visual search, aswell as related neuroanatomical,
neurophysiological, and neuroimaging data. The model proposes
how the global scene layout, or gist of a scene, can be used at a
glance to rapidly form a hypothesis about the environment. Such a
gist can be learned as a large-scale ART texture category (Grossberg
& Huang, 2009). This hypothesis is then incrementally refined as a
scene is sequentially scanned with saccadic eye movements, and
the sequences of scanned objects and spatial positions are stored,

and unitized, to learn how to better predict target identity and po-
sition as the scene becomes familiar. The ARTSCENE Search model
hereby simulates the interactive dynamics of object and spatial
contextual cueing and attention in the cortical What and Where
streams starting from early visual areas through medial tempo-
ral lobe to prefrontal cortex. After learning, model dorsolateral
prefrontal cortex (area 46) in the model’s Where stream primes
possible target locations in posterior parietal cortex based on goal-
modulated percepts of spatial scene gist that are represented in
parahippocampal cortex. In parallel, model ventral prefrontal cor-
tex (area 47/12) in the model What stream primes possible tar-
get identities in inferior temporal cortex based on the history of
viewed objects represented in perirhinal cortex.

55. cARTWORD: conscious resonances of speech items,working
memory, and list chunks

Item and Order working memories and their list chunks play a
critical role in the learning of language. ART has been developed
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Fig. 15. Macrocircuit of the ARTSCENE search neural model for visual context
processing. V1= First visual area or primary visual cortex; V2= Second visual
area; V4= Fourth visual area; PPC= Posterior parietal cortex; ITp= Posterior
inferotemporal cortex; ITa = Anterior inferotemporal cortex; MTL= Medial
temporal lobe; PHC= Parahippocampal cortex; PRC= Perirhinal cortex; PFC=
Prefrontal cortex; DLPFC= Dorsolateral PFC; VPFC= Ventral PFC; SC= Superior
colliculus.
Source: Reprinted with permission from Huang and Grossberg (2010).

in the temporal domain to explain how list chunks resonate with
working memory speech items as they are stored through time,
thereby driving fast learning of speech and language, dynamically
stabilizing these learned memories, and explaining how conscious
speech percepts emerge from these resonant states (Grossberg,
1978a, 1986, 2003b; Grossberg & Kazerounian, 2011; Grossberg
et al., 1997; Grossberg & Myers, 2000; Kazerounian & Grossberg,
submitted for publication).

55.1. Temporal resonances during conscious speech and language
perception

Temporal processes such as speech and language provide a
particularly clear window into the temporal dynamics with which
resonances develop. As in all ART models, a speech or language
resonance develops when bottom-up signals that are activated
by environmental events interact with top-down expectations,
or prototypes, that have been learned from prior experiences.
The top-down expectations carry out a matching process that
evolves dynamically through time as it selects those combinations
of bottom-up features that are consistent with the active learned
prototypes while inhibiting those that are not. In this way, an
attentional focus concentrates processing on those feature clusters
that are deemed important on the basis of past experience. The
attended feature clusters, in turn, reactivate the cycle of bottom-
up and top-down signal exchange. This reciprocal exchange of
signals equilibrates in a resonant state that binds the attended
features together. Such resonant states, rather than the activations
that are due to bottom-up processing alone, are proposed to be
the brain events that regulate fast and stable learning of speech
and language, and that give rise to conscious speech and language
percepts.

The feedback dynamics of these resonances enable the brain
to incorporate both past and future contextual information, often
acting over hundreds of milliseconds, into the processing of
speech and language, without destroying the perceived temporal
order, from past to future, of consciously heard words. Such
contextual disambiguation and coherent processing helps humans
to understand speech and language during the multi-speaker
noisy environments that are characteristic of real-life speech and
language experiences.

55.2. Phonemic restoration: how future context influences conscious
percepts of past sounds

The conscious ARTWORD (cARTWORD)model of Grossberg and
Kazerounian (2011) proposes how the laminar circuits of neo-
cortex are organized to generate conscious speech and language
percepts using circuits that are variations of the LAMINART visual
circuits and the LIST PARSE cognitive circuits (Fig. 17; see Sec-
tion 19). cARTWORD simulates how the brain restores linguistic
information that is occluded by noise by integrating contextual in-
formation over many milliseconds to restore the noise-occluded
acoustical signals. It hereby demonstrates how speech and lan-
guage may be consciously heard in the correct temporal order, de-
spite the influence of contexts that may occur many milliseconds
before or after each perceived word. cARTWORD demonstrates
such contextual sensitivity by quantitatively simulating a critical
example of contextual disambiguation of speech and language;
namely, phonemic restoration (Miller & Licklider, 1950; Warren,
1970; Warren & Obusek, 1971; Warren & Sherman, 1974; Warren
& Warren, 1970).

Consider the following example of phonemic restoration
(Warren & Sherman, 1974). Suppose that broadband noise
replaces the phonemes /v/ and /b/ in the words ‘‘delivery’’
and ‘‘deliberation’’, respectively. Despite the initially identical
initial portion of these words (‘‘deli-’’), if the broadband noise is
immediately followed by ‘‘ery’’ or ‘‘eration’’, listeners hear the /v/
or /b/ as being fully intact and present in the signal. However, if the
noise is replaced by silence, then restoration does not occur. Thus,
there is a top-down process that can select from the broadband
noise those formants which are expected in that context, while
suppressing other noise components. But the top-down process,
by itself, is merely modulatory, so cannot restore the missing
phoneme from silence.

These experimental properties of phonemic restoration match
the mathematical properties of top-down matching by the mod-
ulatory on-center, off-surround circuits that embody the ART
Matching Rule, and which are necessary to solve the stabil-
ity–plasticity dilemma; that is, to enable fast learning without
catastrophic forgetting. Thus, phonemic restoration properties il-
lustrate attentive matching processes that enable speech and lan-
guage to be learned quickly and stably.

Phonemic restoration also provides an excellent example of
a resonance that emerges through time as items are stored in
working memory. In particular, why is the noise in ‘‘deli-noise-
[ery/eration]’’ not heard before the last portion of the word is even
presented? This may be explained by the fact that, if the resonance
has not developed fully before the last portion of the word is
presented, then this portion can influence the expectations that
determine the conscious percept. How then, does the expectation
convert the noise in ‘‘deli-noise-[ery/eration]’’ into a percept of
[/v/-/b/]? This occurs due to the top-downmatching process that
selects expected feature clusters for attentive processing while
suppressing unexpected ones. In the ‘‘deli-noise-[ery/eration]’’
example, spectral components of the noise are suppressed that are
not part of the expected consonant sound.

This attentive selection process is not merely a process of
symbolic inference. It directly influences phonetic percepts. For
example, if a reduced set of spectral components is used in the
noise, then a correspondingly degraded consonant sound is heard
(Samuel, 1981).

A related question concerns how future events can influence
past events without smearing over all the events that intervene.
This property is related to why, if the /v/ or /b/ in ‘‘deliv-
ery/deliberation’’ is replaced by silence, that silence is perceived
as silence despite the fact the disambiguating cue would have
influenced the percept were these phonemes to be replaced by
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Fig. 16. ARTSCENE search cycle. (a) Step 1: featuremaps in cortical areas V1/V2 code different features in the search display. Cortical areas V4/ITp undergo a local competition
within each feature map to produce feature-level saliency for each location. Feature-level saliencies are averaged over features into location-level saliencies in PPC. (b) Step
2: the spatial priority map in PPC is cached as a spatial context in PHC, which induces a context-sensitive expectation of target locations in DLPFC. The PPC–PHC–DLPFC–PPC
loop then primes possible target locations in PPC via spatial attention. (c) Step 3 (Where to What): PPC drives SC to direct an eye movement, namely overt attention, to the
most active location in the spatial priority map. All features at the fixated location are then selected for object recognition in ITa. (d) Step 4: the history of viewed objects
is stored in PRC, which builds up a context-induced expectation of target identities in VPFC. The ITa–PRC–VPFC–ITa loop primes possible target categories in ITa via object
attention. (e) Step 5 (What toWhere): object-attended ITa further primes featuremaps in ITp/V4 via feature-based ART attention, and thereby boosts PPC to highlight spatial
locations with target-like objects. If the currently fixated and recognized object is not a target, the model goes back to Step 2 for maintaining spatial cueing, and then to Step
3 for inspecting other objects based on the updated priority map in PPC.
Source: Reprinted with permission from Huang and Grossberg (2010).

noise. Here again the nature of the top-down matching process is
paramount. This matching process can select feature components
that are consistent with its prototype, but it cannot create some-
thing out of nothing.

The opposite concern is also of importance. How can sharp
word boundaries be perceived even if the sound spectrum that
represents the words exhibits no silent intervals between them?
The current theory proposes that silence will be heard between
wordswhenever there is a temporal break between the resonances
that represent the individual words. In other words, just as
conscious speech is a resonant wave, silence is a discontinuity in
the rate at which this resonant wave evolves.

There are many examples of the brain’s ability to use future
events to influence conscious percepts of earlier arriving inputs. An
even more striking example of phonemic restoration concerns the
fact that ‘‘the resolving context may be delayed for two or three,
or even more words following the ambiguous word fragment’’
(Warren & Sherman, 1974, p. 156). In the phrase ‘‘[noise]eel
is on the —’’, where the resolving context is given by the last
word (‘‘axle’’, ‘‘shoe’’, ‘‘orange’’ or ‘‘table’’), listeners ‘‘experience
the appropriate phonemic restoration [‘‘wheel’’, ‘‘heel’’, ‘‘peel’’, or
‘‘meal’’], apparently by storing the incomplete information until
the necessary context is supplied so that the required phoneme can
be synthesized’’ (Warren & Warren, 1970, p. 32). In this example,
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Fig. 17. The cARTWORD model describes a hierarchy of levels responsible for
the processes involved in speech and language perception. Each level is organized
into laminar cortical circuits, wherein deep layers (6 and 4) are responsible for
processing and storing inputs, and superficial layers (2/3) are proposed to group
distributed patterns across these deeper layers into unitized representations. The
lowest level is responsible for processing acoustic features (cell activities Fi and Ei)
and items (cell activities C (I)

i ), whereas the higher level is responsible for storing
of sequences of acoustic items in working memory (activities Yi and Xi), and
representing these stored sequences of these items as unitized, context-sensitive
representations by list chunks (activities C (L)

J ) in a network, called a masking field,
that is capable of selectively representing lists of variable length.
Source: Reprinted with permission from Grossberg and Kazerounian (2011).

the last word contextually disambiguates how the noisy part of
the first word is restored. Once again, the later occurring top-
down effect of meaning influences the phonemic structure which
is consciously perceived as coming earlier in time.

Yet another example of a backwards-in-time effect illustrates
how the individual words that we consciously hear may combine

sounds that are separated by 100 ms of silence and that are
temporally continuous to more than one word. For example,
increasing the silence duration between the words ‘‘gray’’ and
‘‘chip’’ in the phrase ‘‘gray chip’’may result in the conscious percept
‘‘great chip’’. Why should separating two words by more silence,
which might have been expected to make them more distinctive,
increase the probability that the fricative /


/ in ‘‘chip’’ will leap

backwards-in-time over the intervening silence to join the word
‘‘gray’’ and make it consciously sound like ‘‘great’’? Moreover, at
appropriate durations of the fricative noise /


/, listeners reliably

perceive ‘‘gray’’ as ‘‘great’’ and ‘‘chip’’ as ‘‘ship’’, even at the highest
tested silence durations of 100 ms (Repp, Liberman, Eccardt, &
Pesetsky, 1978). Howdoes a future noise in ‘‘chip’’ leap backwards-
in-time over 100 ms of silence to replace the word ‘‘gray’’ by a
conscious percept of ‘‘great’’? Such examples illustrate that our
conscious percepts ofwordsmay coherently bind together acoustic
sounds that are not necessarily presented contiguously in time.
Grossberg and Myers (2000) developed the ARTWORD model, a
non-laminar precursor of the cARTWORDmodel, to quantitatively
simulate such percepts using recurrent ART dynamics between an
Item and Order working memory and amasking field list chunking
level that can code words of variable length.

56. Item–list resonance and phonemic restoration: conscious
speech is a resonant wave

Due to the conceptual importance of phonemic restoration
properties towards understanding ART dynamics during conscious
speech perception, they are now summarized all together: During
phonemic restoration, a phoneme deleted from a speech stream
is perceptually restored when it is replaced by broadband noise,
even when the disambiguating context occurs after the phoneme
was presented. If the noise is replaced by silence, then restoration
does not occur. As noted above, this combination of properties
illustrates the ART Matching Rule operating during speech and
language perception and understanding. In particular, the top-
down expectation has a modulatory on-center. It can select
formants that are in its prototype from the broadband noise
and incorporate them into a resonance, but cannot by itself
fire its target cells, unless the modulatory top-down on-center
is converted into a driving on-center by basal ganglia control
(Sections 7 and 42), as during internal thought which uses
language.

The operation of the ART Matching Rule here reflects the
fact that speech and language may be learned quickly, without
catastrophic forgetting. The cARTWORD model describes how
ART-modulated laminar circuits within a hierarchy of cortical
processing stages (Fig. 17) may interact to generate a conscious
speech percept that is embodied by a resonant wave of activation
that occurs between acoustic features, acoustic item chunks, and
list chunks. Such a resonance is often called an item–list resonance,
for short. In cARTWORD, conscious speech is a resonant wave.
Perceived silence is a temporal discontinuity in the rate at which
this wave evolves through time. Signals from activated list chunks
in the prefrontal cortex (Fig. 16) can open basal ganglia gates
(Section 44) – that is, a context-sensitive ‘‘decision’’ is made –
thereby activating an item–list resonance that links the entire
coding hierarchy, and allowing speech to be consciously heard in
the correct temporal order, from past to future, even when what is
heard in the present depends upon future context.

57. Resonant auditory streams during source segregation: the
auditory continuity illusion

At a lower level of auditory processing than speech and
language understanding, ART mechanisms help to select and focus



Author's personal copy

38 S. Grossberg / Neural Networks 37 (2013) 1–47

attention upon and track individual acoustic sources, whether
these are human speakers or inanimate sounds in the environment.
The existence of resonant dynamics on multiple levels of the
auditory system, just as in the visual system (e.g., Section 31)
clarifies how conscious auditory percepts may be generated by the
synchronous dynamics of multiple brain levels acting together.

Multiple sound sources often contain harmonics that overlap
andmay be degraded by environmental noise. The auditory system
is capable of teasing apart these sources into distinct mental
sound sources, or streams, even in situationswheremultiple sound
sources share some of the same frequencies. In accomplishing
such an auditory scene analysis (Bregman, 1990), the brain solves
the so-called cocktail party problem, which arises every time one
tries to listen to a friend at a noisy cocktail party or other social
occasion. How does the brain separate overlapping frequencies
that are due to different acoustic sources into separate streams, so
that higher auditory processes, such as those involved in speech
and language, can understand the meaning of these streams? How
do these streams achieve the coherence that is needed to bridge
across spectrally ambiguous durations, including those wherein
noise occludes the acoustic signals? ART dynamics have proved
useful towards explaining how this may happen.

Are there experimental data about auditory streaming that
illustrate ART dynamics as vividly as phonemic restoration does
for speech? The auditory continuity illusion provides one class of
examples (Bregman, 1990). This illusion occurswhen a steady tone
occurs both before and after a burst of broadband noise. Under
appropriate temporal and amplitude conditions, a percept is heard
in which the tone appears to continue through the noise, and
the residual noise sounds like it occurs in a different stream. The
backwards-in-time process that determines this illusion is made
clear by the fact that, if a subsequent tone does not follow the
noise burst, then the tone does not continue through the noise.
Moreover, in the absence of noise, even if a tone is played before
and after a silence duration, the silence duration is perceived.

These are properties of theARTMatching Rule acting at the level
of auditory scene analysis. The fact that the tone is not completed
over silence is easily understood, since top-down expectations
are modulatory. But why does the tone continue through the
noise when the noise is followed by a subsequent tone, but not
otherwise? How does the brain operate backwards-in-time to
complete the tone through the noise only if there is a future tone?
This property may be explained by how the resonance develops
through time: It takes awhile for the resonance to develop in
response to the first tone, butmuch less time for the second tone to
boost the resonance and thereby enable it to continue selecting the
tone from the noise. The duration of the noise cannot be too long
for this future boost to have its influence before the noise interval
is perceived.

Given that the ART Matching Rule is at work, what is being
learned? As described in Section 58, representations of the pitch
of a sound – that is, pitch categories – are learned (among
other things) using ART bottom-up filters and top-down learned
expectations and attentional matching. Each pitch category can
group the sound frequencies corresponding to the pitch of a single
acoustic source.

58. Spectral-pitch resonances select auditory streams

The proposal that resonant dynamics helps to select auditory
streams raises another basic question as well: What is resonating?
In the case of visual perception, surface-shroud resonances support
percepts of conscious visual qualia (what we ‘‘see’’), and object-
feature resonances represent the objects to which we attend
(what we ‘‘know’’). In the case of conscious speech perception,
the cARTWORD model illustrates how an item–list resonance

between acoustic features, items in working memory, and list
chunks can support conscious percepts of speech (Sections 55–56).
The acoustic features that resonate in an item-list resonance
include frequency-dependent spectral components. How are these
acoustic features bound together to represent the heard sounds of
acoustic sources?

The ARTSTREAM model Grossberg et al. (2004, Fig. 18))
proposes how a spectral-pitch resonance can support both pitch
category learning and auditory streaming. ARTSTREAM describes,
in particular, how the frequency components that correspond to
a given acoustic source may be coherently grouped together into
a distinct auditory stream based on pitch and spatial location
cues. The model also clarifies how multiple streams may be
distinguished and separated by the brain. These streams are
formed as spectral-pitch resonances that emerge through feedback
interactions between frequency-specific spectral representations
of a sound source and categorical representations of pitch.
Resonance provides the coherence across frequency, pitch, and
time that allows one voice or instrument to be tracked through
a noisy multiple source environment. Various popular methods
of stream segregation in engineering and technology, such as
independent component analysis, do not exhibit this sort of
coherence (Comon, 1994; Hyvärinen & Oja, 2000).

In ARTSTREAM, acoustic input signals are first preprocessed
by multiple stages that together comprise the Spatial PItch
NETwork (SPINET) model (Cohen, Grossberg, & Wyse, 1995).
SPINET has been used to quantitatively simulate many human
psychophysical data about pitch perception. Critically, SPINET
provides a spatial representation of frequency and pitch, rather
than just an autocorrelation measure of these quantities. This
spatial representation can be exploited by the brain to break
sounds up intomultiple streamswhose frequencies are grouped by
pitch and location cues to separate and resonantly track multiple
sound sources.

The final SPINET preprocessing stage is called the Energy
Measure layer (Fig. 18). Each of its frequency-specific activities
generates output signals that are broadcast in a one-to-many
manner to an entire strip of cells in the Spectral Stream layer. This
strip is perpendicular to (or at least cuts across) the spatial layout
of the frequency spectrum. Since each frequency is represented
by an entire strip of cells, the frequency spectrum is redundantly
represented across the strips. Multiple streams can be chosen
within these strips. The activity within the Spectral Stream layer
is contrast-enhanced by a competition that acts within each
strip – that is, across streams – at each frequency. Only one
stream’s frequency will be able to survive the competition at any
time, thereby realizing ‘‘exclusive allocation’’ of that frequency
to a single stream (Bregman, 1990). However, which stream can
process a given frequency depends on top-down feedback from the
Pitch Stream layer.

The Pitch Stream layer gets activated by the Spectral Stream
layer via a bottom-up adaptive filter. The cells in this filter are
activated by the frequency harmonics of the currently active
sounds due to the way in which harmonics are peripherally
processed. The adaptive filter thus acts like a ‘‘harmonic sieve’’.
Because harmonics of a single sound highly correlate through time,
the adaptive filter can select and learn pitch-sensitive category
cells at the Pitch Stream layer. The Pitch Streams also compete
within a strip. This competition is asymmetric across streams to
break the following kind of symmetry: Other things being equal,
if the same frequency spectrum is redundantly activated across
multiple streams, its pitch category in the first stream will win
the asymmetric competition and inhibit the corresponding pitch
categories in the other streams.

The winning pitch category reads out a top-down expectation
that obeys the ART Matching Rule. In particular, the top-down
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Fig. 18. In the ARTSTREAM model, both pitch and spatial location cues cooperate to select auditory streams. See text for details.
Source: Reprinted with permission from Grossberg et al. (2004).

on-center activates the harmonics of the winning pitch in
the corresponding spectral stream. The winning pitch category
also activates a nonspecific inhibitory interneuron via the Pitch
Summation layer, which inhibits all the frequencies in the spectral
stream. Only frequencies that are harmonics of the winning pitch
can survive this competition. In this way, the winning pitch in a
pitch stream selects and amplifies those harmonics in its stream
that are consistent with it. When this happens, the amplified
spectral frequencies can inhibit the same frequencies in other
streams, thereby achieving ‘‘exclusive allocation’’ of frequencies to
one stream at a time (Bregman, 1990).

The first winning pitch also suppresses frequencies at the
Spectral Stream layer that are not among its harmonics. These
frequencies can then no longer inhibit the same frequencies in
other streams. The disinhibited frequencies can then select a pitch
in other streams. The asymmetric competition within the Pitch
Stream layer then enables a second stream, and only that stream,
to represent the pitch of a different sound source. The process
continues continue cyclically in this way. Multiple simultaneously
occurring spectral-pitch resonances can hereby emerge.

The stream selection process is also modulated by information
about source position using the f − τ plane (Colburn, 1973, 1977),
where individual frequencies f are assigned to a spatial location τ
that is defined by a radial direction. See Grossberg et al. (2004) for
details.

ARTSTREAM simulates streaming data from psychophysical
grouping experiments, such as how a tone sweeping upwards in
frequency creates a bounce percept by grouping with a downward
sweeping tone due to proximity in frequency, even if noise replaces
the tones at their intersection point. Illusory auditory percepts
are also simulated, such as the auditory continuity illusion of a
tone continuing through a noise burst even if the tone is not

present during the noise, and the scale illusion of Deutschwhereby
downward and upward scales presented alternately to the two
ears are regrouped based on frequency proximity, leading to a
bounce percept. Although these simulations are only a beginning
in tackling the rich literature on streaming, they illustrate how
pitch categories can help to define multiple coherent streams, and
how the streaming, speech, and language levels can all resonate
together in generating percepts of conscious speech and language
meaning.

59. Strip maps: auditory streaming and speaker-normalized
language learning

Auditory signals of speech are speaker-dependent, but rep-
resentations of language meaning are speaker-independent. The
transformation from speaker-dependent to speaker-independent
language representations enables speech to be learned and
understood from different speakers. The process whereby a
speaker-independent representation is formed is called speaker
normalization. Speaker normalization is a critical transformation
between the selection and attentive tracking of an auditory stream
that represents a speaker and the ability to understand what the
speaker is saying.

In particular, speaker normalization allows language learning
to get started. It enables a baby to begin to imitate sounds from
adult speakers, notably parents whose spoken frequencies differ
significantly from those that the baby can babble. A circular reaction
(Piaget, 1963) from endogenously babbled to heard sounds enables
a baby to learn a map between the auditory representations of its
own heard babbled sounds to the motor commands that caused
them. Speaker normalization enables sounds from adult caretakers
to be filtered by this learned map and to thereby enable the baby
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to begin to imitate and refine heard sounds in its own language
productions. Learning in such an imitative map needs to remain
active for many years in order to enable an individual’s changing
voice through puberty and adulthood to continue to activate and
update this map.

Speaker normalization also enables language meanings that
were learned from one teacher’s voice to be readily understood
when uttered by another speaker. More generally, speaker
normalization helps the brain to overcome a combinatorial
explosion that would otherwise occur if the brain needed to store
every instance of every speaker utterance in order to understand
language meaning.

Neural models of how such circular reactions are learned have
been used to explain many data about speech production and
arm reaching behaviors (Bullock, Grossberg, & Guenther, 1993;
Cohen, Grossberg, & Stork, 1988; Grossberg, 1978a; Guenther,
1995; Guenther, Ghosh, & Tourville, 2006). Indeed, the DIRECT
arm reaching model of Bullock and Grossberg (1988) and the DIVA
speech production model of Guenther (1995) use computationally
homologous model circuits.

How does speaker normalization occur in the brain? This ques-
tion faces us with the same kind of dilemma about how evo-
lution could be smart enough to design a working memory.
Section 50 proposed that working memories are just special-
ized recurrent shunting on-center off-surround networks, which
are ubiquitous in the brain because of the need to solve the
noise–saturation dilemma. A specialized recurrent shunting net-
work with a rehearsal wave and self-inhibitory interneurons can
act like a working memory. Is there a broadly used design that the
brain can also exploit to accomplish speaker normalization?

The Neural Normalization Network, or NormNet, model (Ames
& Grossberg, 2008) proposes that speaker normalization, just like
auditory streaming, depends upon strip maps and asymmetric
competition. Thus, the requirements of speaker normalization
may have arisen during evolution from an elaboration and
specialization of the more primitive requirements of auditory
streaming. This would clarify how speaker normalization can
transform source data, as soon as it is broken into separate
streams, for purposes of speech and language classification and
meaning extraction, yet how the frequency content of the streams
can be preserved for purposes of speaker identification. Towards
this former goal, NormNet learned speaker-normalized vowel
categories using an ART classifier. Its simulations used synthesized
steady-state vowels from the Peterson and Barney (1952) vowel
database, and achieved accuracy rates similar to those achieved by
human listeners.

By virtue of speaker normalization, the phonetic processing
within item–list resonances would not be expected to be
as sensitive to frequency harmonics as are the spectral-pitch
resonances which separate and track the speaker sources that
phonetic processing attempts to understand. Consistent with this
expectation, Remez and his colleagues have shown that harmonics
are more important during auditory streaming than during
phonetic perception (Remez, 2003; Remez, Pardo, Piorkowski, &
Rubin, 2001; Remez, Rubin, Berns, Pardo, & Lang, 1994).

Are there other brain processes that use strip maps? May strip
maps be thought of as a design principle that is opportunistically
specialized for different purposes? The SpaN model of Grossberg
and Repin (2003) shows how strip maps may be used to represent
place-value numbers in the brain; e.g., 10, 100, 1000, and so on;
see Section 53.

In all these cases, a given input feature can activate a strip, or
cluster, of cells that can then be differentiated into subclusters
which represent a transformation of the features that are repre-
sented at the base of the strip, whether this transformation gen-
erates a different auditory stream built out of the same auditory

frequencies, or a normalized frequency representation of a speaker,
or a different place-value number with the same base number
(e.g., ‘‘24’’ instead of ‘‘4’’). Indeed, redundant representations of
prescribed features are ubiquitous in the brain. They enable high-
dimensional information to be multiplexed within the thin, ap-
proximately two-dimensional (except for laminar specialization)
maps in the neocortex. Perhaps the most familiar example of this
redundancy is the ocular dominance columns in visual cortical area
V1 that are sensitive to inputs from one eye at each location, but
whose constituent cells may be tuned selectively to differently ori-
ented visual features that are seen by that eye at the corresponding
location.

60. Conclusion

60.1. ART is not a theory of everything: complementary computing
and inhibitory matching

This article provides a heuristic summary of various contribu-
tions to ART as a cognitive and neural theory. The summary sug-
gests howART has enhanced our understanding ofmany processes
of perception, attention, cognition, and cognitive–emotional dy-
namics. ART has also clarified brain processes that are not sum-
marized here. For example, the 3D FORMOTION model uses ART
top-down expectations, hypothesized to occur from cortical area
MST to cortical area MT, to select the perceived motion direc-
tion of an object, and to thereby solve the aperture problem
(e.g., Berzhanskaya, Grossberg, and Mingolla (2007) and Gross-
berg,Mingolla, andViswanathan (2001)). The SACCARTmodel clar-
ifies how the deeper layers of the superior colliculus select an at-
tended target position for a saccadic eye movement from audi-
tory, visual, and planned movement signals (Grossberg, Roberts,
Aguilar, & Bullock, 1997). Despite this diversity of applications,
ART is not a ‘‘theory of everything’’. As noted in Section 3 and
Fig. 1, ART-based learning of object representations in the What
stream uses excitatory matching and match-based learning to
solve the stability–plasticity dilemma. Where stream learning, in
contrast, often uses computationally complementary processes of
inhibitory matching and mismatch-based learning. Correspond-
ingly, the What stream learns object representations that strive to
become positionally-invariant, whereas the Where stream repre-
sents the positions and actions that enable recognized objects to
be manipulated.

Inhibitory matching often occurs between brain representa-
tions of a target position and the present position of amotor effector.
Inhibitory matching computes a difference vector that represents
the distance and direction of an intended movement. The differ-
ence vector is volitionally gated (see Sections 12 and 44) by a basal
ganglia GO signal that determines when and how fast the move-
ment will occur (Bullock et al., 1998; Bullock & Grossberg, 1988).

During motor learning, a difference vector can also generate
error signals when the same target position and present position
are encoded but not properly calibrated. These error signals
activate a form ofmismatch learning that eliminates themismatch
through time by recalibrating system maps and gains to be
consistent. Neural models predict how mismatch learning may
tune spatial representations and adaptive motor gains in basal
ganglia, cerebellum, motor cortex, parietal cortex, and prefrontal
cortex (Brown et al., 1999, 2004; Fiala et al., 1996; Grossberg &
Paine, 2000; Guenther, Bullock, Greve, & Grossberg, 1994). Models
that carry out computation and learning by difference vectors are
often called Adaptive Vector Integration to Endpoint (aVITE) or
Vector Associative Map (VAM) models (Gaudiano & Grossberg,
1991, 1992).
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60.2. Joining ART and VAM: self-stabilizing expertise in evolving
bodies

Inhibitory matching and mismatch learning exhibit catas-
trophic forgetting. However, catastrophic forgetting is a goodprop-
erty for learning sensory–motor maps and gains. In particular, it
would be maladaptive to remember for life the maps and gains
whereby our brains controlled our infant limbs. Continual recal-
ibration of maps and gains enables us to efficiently control our
changing bodies.

The proposal that ‘‘all conscious states are resonant states’’
clarifies why spatial/motor, also called procedural, processes are
unconscious: the inhibitorymatching process that supports spatial
and motor processes cannot lead to resonance. This distinction
provides a simple mechanistic explanation of why procedural
memories are not conscious, whereas declarativememories can be
conscious, as noted in Section 3.

In summary, perceptual/cognitive processes often use ART-
like excitatory matching and match-based learning to create
self-stabilizing representations of objects and events that enable
us to gain increasing expertise as we learn about the world.
Complementary spatial/motor processes often use VAM-like
inhibitory matching and mismatch-based learning to continually
update spatial maps and sensory–motor gains to compensate for
bodily changes throughout life. Together these complementary
predictive and learning mechanisms create a self-stabilizing
perceptual/cognitive front end for intelligently manipulating the
more labile spatial/motor processes which enable our changing
bodies to act effectively upon a changing world.
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