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ABSTRACTThe previous resear
h on 
luster-based servers has fo
usedon homogeneous systems. However, real-life 
lusters are al-most invariably heterogeneous in terms of the performan
e,
apa
ity, and power 
onsumption of their hardware 
om-ponents. In this paper, we argue that designing eÆ
ientservers for heterogeneous 
lusters requires de�ning an ef-�
ien
y metri
, modeling the di�erent types of nodes withrespe
t to the metri
, and sear
hing for request distributionsthat optimize the metri
. To 
on
retely illustrate this pro-
ess, we design a 
ooperative Web server for a heterogeneous
luster that uses modeling and optimization to minimize theenergy 
onsumed per request. Our experimental results for a
luster 
omprised of traditional and blade nodes show thatour server 
an 
onsume 42% less energy than an energy-oblivious server, with only a negligible loss in throughput.The results also show that our server 
onserves 45% moreenergy than an energy-
ons
ious server that was previouslyproposed for homogeneous 
lusters.
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1. INTRODUCTIONMost of the previous resear
h on 
luster-based servers (orsimply \server 
lusters") has fo
used on request distributionfor improved performan
e (e.g., [3, 4, 9, 21℄) and dynami

luster re
on�guration for energy 
onservation without per-forman
e degradation [10, 15, 23, 24℄. Be
ause these worksfo
used solely on homogeneous 
lusters, they found essen-tially that the 
luster 
on�guration should be the smallest(in number of nodes) needed to satisfy the 
urrent o�eredload, whereas requests should be evenly distributed a
rossthe nodes modulo lo
ality 
onsiderations.However, real-life server 
lusters are almost invariably het-erogeneous in terms of the performan
e, 
apa
ity, and power
onsumption of their hardware 
omponents. For example,the Teoma/AskJeeves sear
h engine is supported by a highlyheterogeneous server 
luster with thousands of nodes. Infa
t, the di�erent servi
es involved in the sear
h engine,su
h as the indexing and Web servi
es, are themselves sup-ported by heterogeneous nodes. The heterogeneity 
omesfrom nodes with di�erent pro
essor and network interfa
espeeds, as well as di�erent numbers of pro
essors and mem-ory sizes [25℄.The reason for the heterogeneity of real-life server 
lus-ters is simple and at least three-fold: (1) failed or misbehav-ing 
omponents are usually repla
ed with di�erent (morepowerful) ones, as 
ost/performan
e ratios for o�-the-shelf
omponents keep falling; (2) any ne
essary in
reases in per-forman
e or 
apa
ity, due to expe
ted in
reases in o�eredload, are also usually made with more powerful 
omponentsthan those of the existing 
luster; and (3) traditional, PC-style nodes are slowly being repla
ed by 
olle
tions of single-board \blade" nodes to save physi
al data 
enter spa
e andease management. The 
ombination of traditional and bladenodes makes for highly heterogeneous 
lusters, sin
e someblade systems exploit laptop te
hnology to 
onsume signif-i
antly less energy than traditional 
omputers. In essen
e,
lusters are only homogeneous (if at all) when �rst installed.Heterogeneity raises the problem of how to distribute the
lients' requests to the di�erent 
luster nodes for best perfor-man
e. Furthermore, heterogeneity must be 
onsidered in
luster re
on�guration for energy 
onservation, raising theadditional problem of how to 
on�gure the 
luster for an



appropriate tradeo� between energy 
onservation and per-forman
e. None of the previous approa
hes to request dis-tribution and 
luster 
on�guration is ideal for heterogeneoussystems, sin
e they are oblivious to the 
hara
teristi
s of thedi�erent types of nodes and/or requests, 
an under-utilizeresour
es, or do not 
onsider energy 
onsumption expli
itly.In this paper, we design a server 
luster that 
an adjustits 
on�guration and request distribution to optimize power,energy, throughput, laten
y, or some 
ombination of thesemetri
s. The parti
ular optimization fun
tion 
an be de�nedby the system administrator; for this paper, we sele
t theratio of 
luster-wide power 
onsumption and throughput, sothat our system 
an 
onsume the lowest energy per requestat ea
h point in time.Unfortunately, designing su
h a server is a non-trivial taskwhen nodes are highly heterogeneous. To ta
kle this de-sign task, we develop analyti
al models that use informa-tion about the expe
ted load on the 
luster to predi
t theoverall throughput and power 
onsumption, as a fun
tionof the request distribution. Using the models and an itera-tive optimization algorithm, we 
an evaluate a large spa
eof 
on�gurations and distributions to �nd the one that min-imizes the power/throughput ratio for ea
h level of o�eredload intensity. Our approa
h is general and 
an implementall previous distribution and re
on�guration approa
hes.As a proof-of-
on
ept implementation, we apply our mod-els to a Web server 
luster serving both stati
 and dynami

ontent. The servers 
ooperate to implement the requestdistribution found by the optimization algorithm. Sin
e theoptimization step is typi
ally time-
onsuming, we run it o�-line and store the best 
on�guration and request distributionfound for ea
h load intensity on the node that runs a masterpro
ess. Periodi
ally, the servers send their load informationto the master, whi
h then 
omputes the total load imposedon the system. With this information, the master looks upthe best request distribution and 
on�guration for the 
ur-rent load and 
ommands the nodes to adjust a

ordingly.Our validation experiments running on a 
luster of bladeand traditional nodes show that the models are a

uratefor a wide range of distributions; modeled throughputs arewithin 6% of the a
tual measurements, whereas modeledpowers are within 1.3% of the measured results. The exper-imental results with our model-based server running on theheterogeneous 
luster show that we 
an 
onsume 42% lessenergy than a traditional, energy-oblivious server with onlya 0.35% loss in throughput. The results also show that ourserver 
onserves 45% more energy than an energy-
ons
iousserver proposed for homogeneous 
lusters [23℄.Based on our results, we 
on
lude that servers need toself-
on�gure intelligently on heterogeneous 
lusters for anideal tradeo� between energy and performan
e.The remainder of the paper is organized as follows. Thenext se
tion details our motivation using a few simple ex-amples. Se
tion 3 des
ribes our modeling and optimizationapproa
h. Se
tion 4 des
ribes our model-based server andhow we use our analyti
al framework to guide the de
isionsthe system makes. Se
tion 5 presents our methodology andexperimental results. Se
tion 6 dis
usses the related work.Finally, se
tion 7 draws our 
on
lusions.
2. MOTIVATIONIn this se
tion, we motivate the need for a model-based ap-proa
h to designing performan
e and energy-eÆ
ient server

Type Metri
 Resour
e 1 Resour
e 2A Max Throughput 3200 units/s 20000 units/sB Max Throughput 800 units/s 50000 units/sA Max Power 120 Watts 5 WattsB Max Power 25 Watts 10 WattsTable 1: Example throughputs and powers per nodetype. The values are representative of two real systems,assuming resour
e 1 is the CPU and resour
e 2 is thedisk: node A represents a Fujitsu RX 100 Monopro
essorsystem (3.2 GHz Pentium 4 and 7200 rpm IDE disk),whereas node B represents one of our own ma
hines (800MHz Pentium 3 and 2 10K rpm SCSI disks).Type Resour
e 1 Resour
e 2 Fra
tion of Requests� 1 100 0.87� 20 1 0.13Table 2: Example resour
e needs and fra
tion of re-quests per request type. Requests of type � a

ess �les,whereas requests of type � exe
ute small CGI s
ripts.
lusters. We organize the se
tion around the key questionsinvolved in request distribution and 
luster 
on�guration.Throughout the se
tion, we use a simple example to demon-strate why our design approa
h is appropriate. For 
larity,we disregard several overheads.Question 1: How should we distribute requests tooptimize throughput? The most 
ommon approa
h torequest distribution is to have 
ontent-oblivious front-enddevi
es that distribute the 
lients' requests a
ross the server
luster using a poli
y su
h as round-robin, weighted round-robin, or least-
onne
tions. The two latter approa
hes re
-ognize that the 
luster nodes may be heterogeneous. How-ever, even these two approa
hes distribute requests basedsolely on the relative performan
e of the bottlene
k resour
e(e.g., the CPU or the disk subsystem) at ea
h node. Thesame resour
es at other nodes may be severely under-utilized.For the most eÆ
ient resour
e usage (and, thus, highestthroughput), their request distribution would have to 
on-sider the di�erent request types and their approximate re-sour
e requirements. Systems that use 
ontent-aware front-ends 
an 
onsider request types, but typi
ally only do soto segregate requests into separate 
luster partitions, againunder-utilizing resour
es.We argue that the best (in terms of throughput and gen-erality) approa
h to request distribution in heterogeneousserver 
lusters involves taking the 
hara
teristi
s of di�er-ent node and request types into a

ount expli
itly. Usingthis information, the set of individual 
luster resour
es 
anbe pooled together and s
heduled at a �ne grain, at the re-quest level. The request distribution 
an be e�e
ted eitherby (1) 
ontent-aware front-ends that implement a possiblydi�erent request distribution for ea
h request type or (2)
ontent-oblivious front-ends that implement a single requestdistribution s
heme with re-distribution by the server nodesthemselves. We favor approa
h (2) be
ause it avoids thelower performan
e of 
ontent-aware front-end devi
es, whi
hneed to a

ept TCP 
onne
tions and inspe
t requests beforethey 
an be forwarded to ba
k-end nodes. We illustrate ap-proa
h (2) with the following example.The top part of table 1 lists the throughput of two re-sour
es of two types of nodes. The resour
es are generi
,



so let us assume that the throughput is in \units"/se
ond.Think of resour
e 1 as the CPU and resour
e 2 as the disk,for example. In this 
ase, the throughput of resour
e 1 
ouldbe measured in instru
tions/se
ond and the throughput ofresour
e 2 
ould be measured in KBytes/se
ond. Let usfurther assume that there are two types of requests, � and�, ea
h of whi
h is responsible for a fra
tion of the requeststream. The resour
e needs of the di�erent request types aredes
ribed in table 2. So, for example, ea
h request of type� requires 1 unit of resour
e 1 and 100 units of resour
e 2.You 
an think of type � as requests for a large �le and type� as requests for a small CGI s
ript; both �le and s
ript arerepli
ated at the two nodes.For a system with a 
ontent-oblivious, round-robin front-end and one node of ea
h type, we 
an only get a maximumthroughput of 460 requests/se
ond, sin
e the performan
eof nodes A and B is limited by resour
e 2 and 1, respe
-tively. If we now have node B send all requests of type� that it re
eives to node A, and node A send 43.1% re-quests of type � that it re
eives to node B, we 
an improvethe 
luster throughput to 803 requests/se
ond. This showshow intra-
luster 
ooperation has the potential for betterresour
e utilization in heterogeneous systems.Question 2: How should we distribute requests and
on�gure the 
luster to optimize power/throughput?The request distribution approa
h we just dis
ussed seeks tooptimize throughput, but disregards power and energy al-together. Previous work has 
onsidered request distributionoptimizing both throughput and energy [10, 15, 23, 24℄, butin the 
ontext of homogeneous 
lusters. Their approa
h is tore
on�gure the 
luster to the smallest size (by turning someof the nodes o�) needed to satisfy the 
urrent o�ered loadand distribute the requests evenly a
ross the a
tive nodes.Be
ause all nodes and resour
es are treated as 
onsumingthe same amount of power, this approa
h 
an obviously beineÆ
ient for heterogeneous systems.Our own 
luster of traditional and blade nodes is a goodexample of power heterogeneity. Ea
h traditional node 
on-sumes from 70 to 94 Watts, whereas ea
h blade 
onsumesfrom 40 to 46 Watts, depending on utilization. To 
ompli-
ate de
isions further, the �rst blade to be turned on 
on-sumes an extra 150 Watts, as it in
urs the overhead of three(underloaded) power supplies, three fans, and other infras-tru
ture shared by the other blades.Another simple approa
h that may lead to ineÆ
ien
iesis to re
on�gure the 
luster under light load by turningo� nodes with de
reasing \power eÆ
ien
y", i.e. maxi-mum power/maximum throughput ratios. Properly order-ing nodes with respe
t to power eÆ
ien
y is diÆ
ult for tworeasons: (1) nodes 
an exhibit di�erent relative orderingsdepending on the 
hara
teristi
s of the workload (parti
u-larly, the resour
e requirements and the load intensity); and(2) the ordering may depend on the rest of the 
on�gura-tion, as in the 
ase of our own system (having a blade onis more power eÆ
ient than having a traditional node on,unless it is the �rst blade). Finally, even when it is possibleto determine a proper node ordering, an even distribution ofrequests a
ross the a
tive nodes 
an under-utilize resour
esas we argued above.We 
an eliminate the possibility of ineÆ
ien
ies by ex-tending our approa
h to 
onsider the power 
hara
teristi
sof the di�erent types of nodes (and resour
es) expli
itly. We
an see this by going ba
k to the example of tables 1 and 2.

The bottom part of table 1 lists sample maximum power
onsumptions for ea
h resour
e. Let us assume that theresour
e power 
onsumption varies linearly with utilization.Under heavy load and the best request distribution we foundfor throughput, the power/throughput ratio would be 0.145Joules/request (116 Watts/803 requests/se
ond). However,given that resour
e 1 in node A is power-hungry, we 
an geta better ratio by redu
ing the number of requests sent fromnode B to node A. For example, if we 
hange the above 
on-�guration so that ma
hine B does not forward any requests,the ratio be
omes 0.137 Joules/request (57 Watts/416 re-quests/se
ond). This shows that optimizing for energy andperforman
e is not straightforward.
3. ANALYTICAL MODELSIn this se
tion, we des
ribe the analyti
al models and op-timization pro
edure that allow us to determine the best
luster 
on�guration and request distribution for a hetero-geneous Web server 
luster. This ma
hinery works for homo-geneous 
lusters as well but is unne
essary for these systems,sin
e 
on�guration and distribution are well-understood is-sues for them.As we have mentioned, to determine the best 
on�gura-tion and distribution for heterogeneous 
lusters, we needto 
onsider all resour
es, their performan
e and power 
on-sumptions, at the same time. We 
ast this as an optimiza-tion problem: �nd the request distribution (1) from 
lientsto servers and (2) among servers, in su
h a way that thedemand for ea
h resour
e is not higher than its bandwidth,and we minimize a parti
ular metri
 of interest. The 
lus-ter 
on�guration 
omes out from the request distribution;we 
an turn o� nodes that are not sent any requests.In this paper we de�ne the metri
 of interest to be 
luster-wide power 
onsumption divided by throughput. Thus, therequest distributions, the total power, and the maximumthroughput for ea
h 
luster 
on�guration are the unknownsin the models, whereas the resour
es and o�ered workload
hara
teristi
s are the inputs to the models. In parti
ular,the resour
e-related inputs are the bandwidth of ea
h re-sour
e, the power 
onsumed by ea
h node when it is idle,and a linear fa
tor des
ribing how the power 
onsumption
hanges as a fun
tion of resour
e utilization. The resour
etypes we 
onsider are pro
essor, network interfa
e (dividedinto in
oming and outgoing bandwidth), disk, and a softwareresour
e representing the maximum number of so
kets ea
hserver 
an 
on
urrently open with its 
lients. Obviously,this software resour
e does not 
onsume power. For sim-pli
ity, we assume that ea
h node 
ontains a single resour
eof ea
h type. The workload-related inputs are the expe
ted�le popularity, the expe
ted average size of requested �les,the fra
tion of requests for stati
 �les in the workload, the
hara
teristi
s of the dynami
ally generated 
ontent, andthe resour
e 
onsumptions per request type as well. Theseinputs 
an be determined from a sample tra
e of requestsand an analysis of the programs that generate the dynami

ontent. Table 3 summarizes the unknowns and inputs ofour models.In the next few subse
tions, we des
ribe our models forestimating throughput and power, as a fun
tion of the re-quest distributions. We also des
ribe how to instantiate theinputs to the models. Finally, we des
ribe the optimizationpro
edure that solves the equations that de�ne the models.



Des
ription Representation in modelsInputs Bandwidth of ea
h resour
e C matrixResour
e 
ost for performing a request lo
ally L matrixResour
e 
ost for sending remote requests S matrixResour
e 
ost for a

epting remote requests A matrixIdle power of ea
h node B ve
torPower fa
tor of ea
h resour
e M matrixPartition of request stream into types F matrixUnknowns Request distributions D ve
tor and R matrixMaximum system throughput max thruputTotal system power overall powerTable 3: Summary of model inputs and unknowns.
3.1 Modeling Request DistributionsTo formalize the problem, we will represent the distribu-tions using a ve
tor and multiple matri
es. We use a distri-bution ve
tor, D, to represent the fra
tion of the requests
oming from the 
lients that will be sent to a 
ertain node.Thus, Di is the fra
tion of the requests from 
lients thatserver i will re
eive.Requests 
an be of di�erent types as well. For example,a Web server 
an get requests for �les that are in memory,�les that are on disk, or dynami
ally generated 
ontent. Wede�ne a matrix F to des
ribe the partitioning of the requeststream into these request types for ea
h node. Thus, F ti isthe fra
tion of requests of type t that are dire
ted to node iby the front-end devi
es.When nodes 
ooperate, we must also take the intra-
lusterrequest distribution into a

ount. We represent this dis-tribution with one matrix, Rt, per request type t. Ea
helement Rtij represents the fra
tion of requests on node iof request type t that are servi
ed by node j. In a non-
ooperative server environment, 8iRtii = 1, while all otherterms would be 0.The resour
e 
onsumptions for ea
h request type are rep-resented with 3 other matri
es. We represent the amountof resour
e r used by a request of type t that node i mustexpend if the request is servi
ed lo
ally as Lrti . Even if nodei sends the request to node j, it may still expend some re-sour
es, denoted by Srtij . If node i instead re
eives a requestfrom node j, the resour
e usage is represented as Artji .The 
osts in the S, A, and L matri
es are average num-bers of bytes per request for all devi
es. The ex
eptions arethe CPU devi
e and the software resour
e. The CPU 
ostper request 
an be represented in average number of instru
-tions, average number of memory bytes used, or some otherrelevant metri
. The software resour
e 
osts 
an also be ar-bitrarily represented. For example, we 
an represent the 
ostper request of 
onsuming a so
ket as the average number ofinstru
tions exe
uted or the average time elapsed betweenthe opening and 
losing of the so
ket.
3.2 Modeling Resource UtilizationTo determine the utilization Uri (in bytes/se
ond) of ea
hresour
e r at ea
h node i, we need to sum the 
ost due tothe fra
tion of requests servi
ed lo
ally, the 
ost of sendingrequests to other nodes, and the 
ost of servi
ing requests onbehalf of other nodes. This sum then needs to be multipliedby the total number of requests being served per se
ond (the
urrent throughput of the server 
luster, thruput). This isexpressed as:

uri = typesXt  DiF tiRtiiLrti +DiF ti nodesXj RtijSrtij+nodesXj DjF tjRtjiArtji!Uri = thruput� uri (1)
3.3 Determining Max Throughput and PowerWe 
an use U to determine the maximum throughput andoverall power 
onsumption of a 
on�guration.Maximum throughput. We �nd the maximum through-put a
hievable by the server 
luster by determining the bot-tlene
k resour
e(s) in the system. The bottlene
k(s) willbe su
h that Uri = Cri under maximum throughput, whereea
h element Cri is the 
apa
ity of resour
e type r on nodei. Thus, we de�ne the maximum throughput as:max thruput = min8r;i Criuri (2)Overall power. The power 
onsumed by ea
h hardwareresour
e generally relates to the utilization of the resour
e.We use a linear model of resour
e power, su
h that the power
onsumed by ea
h node i is:Pi = Bi +Xr Mri ��UriCri � (3)where Bi is the base power 
onsumed by node i when it isidle, and Mri is the measure of power of the resour
e r atfull utilization.Finally, we de�ne the power 
onsumed by the server 
lus-ter, overall power, as the sum of the power 
onsumed by allhardware resour
es in the system:overall power =Xi Pi (4)
3.4 Instantiating the Inputs to the ModelsThe C, L, S, A, B, and M matri
es are inputs to ourmodels. Determining the 
orre
t values for them is not al-ways simple. To determine the Cr, Lr, Sr, and Ar matri
es,we run mi
roben
hmarks on two ma
hines to exer
ise theresour
e with requests of di�erent types and/or sizes andmeasure their performan
e.



Cdisk is perhaps the hardest ve
tor to instantiate. Morespe
i�
ally, our disk mi
roben
hmark goes through severalrounds of random reads of �xed size, going from 4-KByte a
-
esses to 128-KByte a

esses (the largest 
hunk our serverwill read at on
e from disk) in steps of 4 KBytes. We runthis mi
roben
hmark for ea
h of the di�erent disks in theheterogeneous 
luster. Besides these data, we also need theaverage size of disk a

esses on ea
h di�erent node. Unfor-tunately, the average size of disk a

esses (and the memory
a
he hit ratios) is not readily available o�-line. To approx-imate that size, we use information about the memory sizeand the expe
ted �le popularity 
oming from a represen-tative request tra
e. In more detail, we rank the �les indes
ending order of popularity and add the �le sizes untilthe 
ombined size ex
eed the memory size. A

esses to �lesthat are more popular than this threshold are (optimisti-
ally) expe
ted to be 
a
he hits. With information aboutthe �les that 
ause misses, we 
an easily 
ompute the aver-age disk a

ess size. We have su

essfully taken this sameapproa
h to approximating hit rates and disk a

ess sizes inour previous Web server modeling work (e.g., [6, 9℄).Instantiating the B ve
tor involves measuring the power
onsumed by ea
h di�erent node when it is 
ompletely idle.Determining the Mr ve
tors is somewhat more involved.For ea
h di�erent node i we determine Mdiski , MCPUi , andMneti by running several mi
roben
hmarks, ea
h of whi
hexer
ises one of these three resour
es in di�erent ways. Forea
h mi
roben
hmark, we re
ord average disk, CPU, andnetwork interfa
e utilization statisti
s, as well as averageoverall power. The utilization data forms an m� 3 matrix
alled E, where m is the number of mi
roben
hmarks. Thepower data (a
tually, the subtra
tion of the power data bythe base power of the node) forms an m � 1 ve
tor 
alledW . We then 
ompute a least-squares �t to determine the1 � 3 ve
tor X for whi
h EX = W . The resulting X1; X2;and X3 are Mdisk, MCPU , and Mnet, respe
tively, for thenode. This same approa
h has been used su

essfully byother groups [19℄.
3.5 Finding the Best DistributionsTo optimize power 
onsumption and throughput, we needto �nd the request distributions D and Rt for ea
h type t(and 
onsequently the best 
luster 
on�guration), su
h thatUri � Cri 8r; i and we minimize some metri
 that 
ombinesthroughput and power. In this work, we de
ided to giveequal emphasis to throughput and power, so our optimiza-tion pro
edure attempts to minimize overall power=thruput,under the 
onstraint that max thruput � thruput. Thus,a de
rease in power 
onsumption (with �xed throughput)has the same e�e
t as an equal in
rease in throughput (with�xed power). If the o�ered load ever be
omes greater thanthe maximum a
hievable throughput by any 
on�gurationand distribution, our goal be
omes to maximizemax thruputso that we lose the fewest requests possible.We 
ould attempt to solve the system of equations de-�ned by our model dire
tly. Unfortunately, this is a 
omplexproposition, be
ause to determine utilizations we need tomultiply unknown distributions, making the problem non-linear. Moreover, 
luster power and throughput are fun
-tions of these distributions and vi
e-versa, so the problem isalso re
ursive. These 
hara
teristi
s suggest that a numeri-
al and iterative optimization te
hnique, su
h as simulatedannealing or geneti
 algorithms, is appropriate.

We use simulated annealing. The annealing works by try-ing to iteratively optimize a \
urrent solution", i.e. valuesfor the distributions D and R, starting from initial guess val-ues for these matri
es. The initial distributions are set su
hthat the Di are all the same and the Rt matri
es spe
ify nointra-
luster 
ooperation.A 
andidate solution is generated by modifying two el-ements of the same (randomly 
hosen) ve
tor/matrix ata time; one element is de
reased by a randomly 
hosenamount, while another is in
reased by the same amount.The rows are then normalized. A 
andidate also has to sat-isfy the 
onstraint that Uri � Cri 8r; i.Evaluating a 
andidate solution involves 
omputing itsoverall power=thruput measure and 
omparing it to the
orresponding measure of the 
urrent solution. If the 
an-didate solution produ
es a measure that is smaller than the
urrent minimum, it be
omes the new 
urrent solution. Ifit does not, it might still be
ome the new 
urrent solution,but with a de
reasing probability. After evaluating ea
h
andidate solution, a new one is generated and the pro
essis repeated. The number of iterations is determined by a\temperature" parameter to the annealing algorithm. Moredetails about simulated annealing 
an be found in [17℄.Finally, we speed up the sear
h pro
ess signi�
antly bytreating all nodes of the same type together. This makesthe number of 
al
ulations proportional to the square of thenumber of node types, as opposed to the square of the a
tualnumber of nodes in the 
luster.
4. MODEL-BASED COOPERATIVE SERVERWe developed a 
ooperative Web server that uses the re-sults of our modeling and optimization approa
h to 
on�gurethe 
luster and distribute requests.Requests are sent to the individual Web servers a

ordingto the D ve
tor 
omputed by our model and optimizationpro
edure. Ea
h server either serves a requests it re
eives lo-
ally or forwards it to another server over a persistent TCP
onne
tion. Requests for stati
 
ontent are always served lo-
ally. The R matrix determines where to serve the dynami
-
ontent requests. On
e a forwarded request 
ompletes, thereply is sent ba
k to the server that re
eived the originalrequest. This server then replies to the 
lient.Ea
h server sends its delivered load information to a mas-ter pro
ess every 10 se
onds. The master pro
ess a

umu-lates this information and smooths it by 
omputing an Ex-ponentially Weighted Moving Average (EWMA) of the formavg load = �� 
urrent load+(1��)�previous load. OurEWMA uses an � value of 0.4. Periodi
ally, the master de-
ides whether the request distribution (and 
on�guration)needs to be 
hanged. We refer to the �xed time in betweende
isions as the re
on�guration interval. The master's de-
ision is based on its predi
tion of what the average loadwill be in the end of the next re
on�guration interval. Thepredi
tion uses a �rst order derivative of the 
urrent averageload and the last average load of the previous interval, i.e.predi
ted load = avg load+ (avg load� last avg load). Toavoid undershooting and losing requests, the system neverpredi
ts load that is lower than the 
urrent value. Basedon the predi
ted load, the master 
an determine the bestrequest distributions, as predi
ted by our model and opti-mization pro
edure. If the request distribution needs to be
hanged, the master pro
ess 
ommands the servers and/orthe front-end devi
es to adjust a

ordingly.



Be
ause our optimization pro
edure is time-
onsuming,the best distributions for ea
h amount of load are 
om-puted o�-line. We store a large pre-
omputed table of bestdistributions (D and R arrays) and throughputs entries,fthruput; best distributiong, on the lo
al disk of the noderunning the master pro
ess. The master �nds the best dis-tributions for a 
ertain load by looking up the entry listingthe lowest throughput that is higher than the load.
5. EXPERIMENTAL RESULTSIn this se
tion, we des
ribe our experimental methodology,validate the models, and 
ompare di�erent server systems.
5.1 MethodologyCluster hardware. Our 
luster is 
omprised of 4 Linux-based PCs (ea
h with an 800-MHz Pentium III pro
essor,lo
al memory, two SCSI disks, and a Fast Ethernet inter-fa
e) and 4 Linux-based blade servers (ea
h with a 1.2-GHzCeleron pro
essor, lo
al memory, an IDE disk, and a FastEthernet interfa
e) from Nex
om [20℄. The two sets of ma-
hines are 
onne
ted by a Fast Ethernet swit
h.The PCs (herein also 
alled traditional nodes) 
onsumeabout 70 Watts when idle and about 94 Watts when fullyutilized. In 
ontrast, ea
h blade 
onsumes about 40 Wattswhen idle and 46 Watts when fully utilized. However, thebase power 
onsumption of the blade 
hassis is substan-tially higher, 150 Watts, due to three power supplies, thepower ba
kplane, three fans, and the KVM (keyboard-video-mouse) 
ontroller.All PCs and the blade system are 
onne
ted to a powerstrip that allows for remote 
ontrol of its outlets. The sys-tems 
an be turned on and o� by sending 
ommands to theIP address of the power strip. The blades 
an be 
ontrolledindependently as well, by sending 
ommands to the KVM
ontroller. Shutting a node down takes 45 se
onds (tradi-tional nodes) and 21 se
onds (blades); bringing any nodeba
k up takes about 80 se
onds.The total amount of power 
onsumed by the 
luster ismonitored by a multimeter 
onne
ted to the power strip.The multimeter 
olle
ts instantaneous power measurements(several thousand per se
ond) and sends these measurementsto another 
omputer, whi
h stores them in a log for lateruse. We obtain the power 
onsumed by di�erent 
luster
on�gurations by aligning the log and our systems' statisti
s.Server software. We experiment with three servers: (1) a
onventional, energy-oblivious server; (2) an energy-
ons
i-ous server that was developed for homogeneous 
lusters; and(3) our energy-
ons
ious, model-based Web server for het-erogeneous 
lusters. The 
onventional server, 
alled \Ener-gy-Oblivious", is similar to Flash [22℄ and involves no 
oop-eration between nodes.The energy-
ons
ious server for homogeneous 
lusters, \A-daptive", is based on the same 
ode as Energy-Oblivious,but in
ludes a master pro
ess that 
olle
ts load informationfrom the servers and de
ides on the minimum 
luster 
on-�guration that 
an satisfy the o�ered load. The master usesa PID feedba
k 
ontroller to determine how to 
hange the
on�guration. When there are enough spare resour
es, themaster for
es a node to turn o�. When more resour
es areneeded, the master turns a node on. Be
ause the server as-sumes a homogeneous 
luster, the master randomly sele
tswhi
h nodes to turn on and o�. In addition, requests are dis-

tributed evenly a
ross the a
tive nodes. More details aboutAdaptive 
an be found in [23℄.Our model-based 
ooperative Web server, \Model Adap-tive", is based on the same 
ode as Adaptive, but in
ludesdynami
-
ontent request forwarding and uses our modelingand optimization ma
hinery, as des
ribed in the previousse
tion. For a fair 
omparison, the frequen
y of load infor-mation ex
hanges and re
on�guration de
isions in our ex-periments is kept the same in both adaptive systems.The master pro
ess in the adaptive systems remains blo
k-ed most of the time, so it 
an run on any a
tive node withouta noti
eable in
rease in energy 
onsumption. For simpli
ity,we run it alone on a 9th node.Clients. Besides our main 
luster, we use 7 x86-based ma-
hines to generate load for the servers. These 
lients 
onne
tto the 
luster using TCP over the Fast Ethernet swit
h.In our experiments with the Energy-Oblivious and Adap-tive servers, the 
lient requests are distributed a
ross 
lus-ter nodes in one of two ways: (1) randomly to mimi
 alarge number of users and a Round-Robin DNS poli
y; or(2) a

ording to a Least-Conne
tions poli
y that 
ontinu-ously tries to balan
e the load by sending ea
h request tothe node with the smallest number of open 
onne
tions atthe time. We refer to these approa
hes as \RR" and \LC",respe
tively. Model Adaptive distributes the 
lient requestsa

ording to the D ve
tor (and forwards requests internallya

ording to R).For simpli
ity, we did not use a front-end devi
e thatwould enfor
e the RR, LC, and D distributions. Instead, the
lient themselves distribute their requests a

ording to thepoli
ies. Note that, although the 
lients do not 
oordinatetheir requests in the LC poli
y, the load is still properly bal-an
ed, sin
e the 
lients' lo
al views approximate the nodes'behaviors in steady state. In our Model Adaptive experi-ments, when the request distribution needs to 
hange, themaster pro
ess sends the D ve
tor to ea
h 
lient over pre-established so
ket 
onne
tions. The 
lients send requests tothe available nodes in randomly, but obey the ve
tor.The 
lients issue their requests a

ording to a tra
e ofthe a

esses to the World Cup '98 site from June 23rd toJune 24th, 1998 (WC'98). We run two types of experi-ments with this tra
e: validations of our models and self-
on�guration experiments. In our model validation exper-iments, the 
lients disregard the timing information in thetra
e and issue new requests as soon as possible. In ourself-
on�guration experiments, the 
lients take the timingsof the tra
e into a

ount, but a

elerate the replay of thetra
e 20 times to shorten the experiments to 7500 se
onds.Regardless of the type of experiment, requests that are notservi
ed within 10 se
onds are 
onsidered lost.We also modi�ed the tra
e in two other ways. The �rstmodi�
ation repla
es 30% of the stati
 requests issued withdynami
 requests to simulate a CGI load. For simpli
ity, weused a single CGI s
ript that does nothing else but produ
ea short reply. The a

esses to this s
ript drasti
ally redu
ethe throughput of our server 
luster, so we also attenuatedthe tra
e by a fa
tor of 50. (This was done so that we 
ouldstill observe the load 
hanges in the tra
e while keeping therun time to approximately 2 hours.) Under these assump-tions, the CPU and the software resour
e be
ome the mainbottlene
ks in the system.Given our a

elerated tra
e, we set the re
on�guration in-terval of the adaptive servers to a minimum of 120 se
onds
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Figure 1: Modeling and experimental results forthroughput and power, as a fun
tion of D.  0
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Figure 2: Modeling and experimental results forthroughput and power, as a fun
tion of R.between 
hanges. This relatively short interval allows timefor a rebooted node to settle and the servers to rea
t qui
klyto variations in o�ered load. In pra
ti
e, the re
on�gurationinterval 
an be substantially longer however, sin
e real-lifevariations in load intensity o

ur over periods of tens of min-utes, i.e. mu
h more slowly than in our experiments. ForWC'98, for example, we 
ould have an interval of 2400 se
-onds in real time. In fa
t, we expe
t the energy and timeoverheads of re
on�gurations to be small in pra
ti
e.
5.2 Validation of the ModelsFigures 1 and 2 show our validation results for the WC'98tra
e running on our 8-node heterogeneous 
luster, as afun
tion of 
hanges in the D and R distributions, respe
-tively. Both �gures show modeled and measured server 
lus-ter throughput (in requests/se
ond) and power 
onsumption(in Watts). Ea
h point in the �gures is an average of tworuns; the verti
al bars show the ranges of values we observedin the di�erent runs. In �gure 1, ea
h point on the X-axisrepresents a di�erent weighting of the distributions of therequests sent from the 
lients to the servers. For example,at \2:10", 2 requests are sent to the traditional nodes forevery 10 requests that are sent to the blades. In this 
ase,the R matrix determines no 
ooperation between nodes.In �gure 2, ea
h point on the X-axis represents the fra
-tion of dynami
 requests in the WC'98 tra
e that the bladesexe
ute lo
ally; the others are sent to the traditional nodes.For example, at X=0, 100% of CGI requests re
eived bythe blades are sent to the traditional nodes. The requests
oming from the 
lients are distributed to all nodes evenly.These �gures demonstrate that our models are very a
-
urate for WC'98. The modeled throughput has an averageerror of 6% as 
ompared to the measured results, with amaximum error of 18%. We 
an also see that varying re-quest distributions has a signi�
ant e�e
t on throughput,but only a minor e�e
t on power. Power does not vary no-ti
eably for two reasons: (1) all nodes are a
tive (and highlyutilized) throughout the experiments; and (2) resour
e uti-lization has a small e�e
t on power, sin
e most of the power
onsumed by the nodes and their resour
es is �xed, i.e. thebase power. This leads to a small average and maximumerror of 1.3% and 2.7%, respe
tively.
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Figure 3: Throughput and power of Energy-Oblivious-LC.
5.3 Comparing Server SystemsFigures 3 to 5 show throughput and power for Energy-Oblivious-LC, Adaptive-LC, and Model Adaptive, as a fun
-tion of time.Let us dis
uss energy �rst. Figure 3 shows that Energy-Oblivious-LC 
onsumes roughly the same amount of powerthroughout the experiment; non-trivial variations only o
-
ur during the three load peaks. In 
ontrast, �gures 4 and5 demonstrate that the Adaptive-LC and Model Adaptivesystems 
an ni
ely adjust the 
luster 
on�guration, a

ord-ing to the o�ered load. For instan
e, during the load valleys,only 2 or 3 nodes are required to serve the o�ered load; theother nodes 
an be turned o�. As a result of the re
on�gu-ration, the two systems a

rue substantial energy savings.Note though that Adaptive-LC leads to substantially high-er power 
onsumption than Model Adaptive during the loadvalleys. As a result, Model Adaptive 
onsumes 42% less en-ergy than Energy-Oblivious during this experiment, whereasAdaptive-LC only 
onsumes 29% less energy. Comparingthe amount of energy saved by Adaptive-LC (1.30 MJ) andModel Adaptive (1.89 MJ) dire
tly, we �nd that the lattersystem 
onserves 45% more energy than the former.The reason for the ineÆ
ient behavior of Adaptive is thatit treats a heterogeneous system as if it were homogeneous.
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Figure 4: Throughput and power of Adaptive-LC.  0
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Figure 5: Throughput and power of Model Adaptive.For instan
e, it treats a single-node blade system with anidle power 
onsumption of 190 Watts the same as a tradi-tional node that 
onsumes only 70 Watts when idle. In ef-fe
t, Adaptive sele
ts the nodes to be part of the 
luster 
on-�guration randomly, using feedba
k 
ontrol to a
hieve therequired throughput. In this experiment, the 3-node 
on�g-uration of Adaptive-LC during the load valleys in
ludes onlyone blade and, hen
e, in
urs the unamortized �xed power
onsumption of the entire blade system.The transitions between 
on�gurations are also markedlydi�erent between Adaptive-LC and Model Adaptive. Adapt-ive-LC 
hanges the 
luster 
on�guration one node at a time.In 
ontrast, Model Adaptive may de
ide to 
hange the 
on-�guration 
ompletely, by turning several nodes o� and sev-eral nodes on. These transitions are marked with lettersA, B, C, and D in �gure 5. The high energy 
onsumed atthese points results from having to turn the new nodes on,before the nodes in the 
urrent 
on�guration 
an be turnedo�. At point A, for example, Model Adaptive needs to turnon 3 traditional nodes before turning o� the 4 blades that
omprise the 
urrent 
on�guration.Figure 6 shows the 
omplete list of 
luster 
on�gurationsthat Model Adaptive goes through, as a fun
tion of time.The sta
ked symbols illustrate the a
tual 
on�gurations,with ea
h \+" representing a traditional node and ea
h \X"representing a blade node. The verti
al lines illustrate thetimes when the transitions are performed. When two 
on-se
utive sta
ks are the same, the only 
hange is in the dis-tribution of requests (D and R).The most interesting observation from this �gure is thatseveral of the transitions only a�e
ted the request distribu-tion. More spe
i�
ally, as the o�ered load approa
hes themaximum throughput a
hievable by a 
on�guration, the sys-tem tends to redu
e the amount of inter-node 
ooperationsin
e the bottlene
k 
omponents will be highly utilized lo-
ally at all nodes. When the o�ered load is de
reasing, thesystem tends to in
rease 
ooperation by shifting requests tothe 
omponents that are most power-eÆ
ient.In terms of performan
e, we see in table 4 that Adaptive-LC drops more than twi
e as many requests as Model Adap-tive, due to the overhead of re
on�gurations. Nevertheless,both systems drop a negligible per
entage of the requests. In
ontrast, Adaptive-RR drops more than 30% of the requestsdue to the re
on�gurations, making it e�e
tively useless. Forthis reason, we do not show �gures for Adaptive-RR.
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Figure 6: Throughput and 
on�guration of ModelAdaptive.Dis
ussion. Model Adaptive behaves well in terms of en-ergy 
onservation and performan
e. The energy savings ita
hieves are mostly due to sele
ting the best 
luster 
on�g-uration for ea
h load intensity level. However, signi�
ant
on�guration 
hanges 
an 
onsume substantial energy andde
rease savings. In our experiments, the impa
t of the en-ergy asso
iated with these transitions is a
tually magni�ed,as we a

elerate the tra
e and thus have less time to amor-tize the transition overheads.Cooperation does not provide substantial gains in our ex-periments be
ause the power 
onsumption of our 
lusternodes is dominated by their base powers. In 
ontrast, thebase power of more re
ent ma
hines is a substantially smallerfra
tion of their maximum power 
onsumption. We expe
tthis trend to 
ontinue in future systems, espe
ially as theybe
ome more power-aware.
6. RELATED WORKEnergy 
onservation resear
h for server 
lusters. Afew re
ent papers [8, 10, 15, 23, 24℄ deal with energy 
on-servation for server 
lusters. Pinheiro et al. [23℄ and Chaseet al. [10℄ 
on
urrently proposed 
luster re
on�guration to
onserve energy. Elnozahy et al. [15℄ evaluated di�erent
ombinations of 
luster re
on�guration and dynami
 voltages
aling. Rajamani and Lefurgy [24℄ studied how to improvethe 
luster re
on�guration te
hnique by using spare servers



System Energy Requests Requests Drop Rate(MJ) Servi
ed Lost (%)Energy-Oblivious-RR 4.54 1264424 4117 0.32Energy-Oblivious-LC 4.54 1267475 0 0.00Adaptive-RR 2.65 859320 408651 32.23Adaptive-LC 3.24 1256091 11436 0.90Model 2.65 1262736 4417 0.35Table 4: Summary of energy 
onsumption and performan
e degradation for WC'98 tra
e.and history information about peak server loads. Finally,Elnozahy et al. [14℄ 
onsidered dynami
 voltage s
aling andrequest bat
hing in Web servers. A survey of power andenergy resear
h for servers 
an be found in [7℄.All of these previous works have been fo
used solely on
onserving energy in homogeneous 
lusters. An early versionof this paper [16℄ introdu
ed our approa
h to dealing withheterogeneous 
lusters. This paper extends the early workby proposing more sophisti
ated models, the model-based
ooperative server, and experimenting with workloads thatin
lude dynami
-
ontent requests.In a di�erent environment, Kumar et al. [18℄ 
onsidered
onserving 
hip-multipro
essor energy by relying on hetero-geneous 
ores. Their approa
h has a similar 
avor to 
lusterre
on�guration in that, depending on pro
essor load (andperforman
e requirements), a di�erent 
ore may exe
uteea
h appli
ation or even ea
h phase of a single appli
ation.Modeling and optimization for servers. Carrera andBian
hini [6, 9℄ have su

essfully modeled the throughput ofWeb server 
lusters. Aron et al. [2℄ enfor
ed resour
e sharesin shared hosting platforms using models and optimization.Doyle et al. [13℄ have proposed a model-based approa
h toadjusting resour
e allo
ations again in shared hosting plat-forms. Hippodrome [1℄ applies modeling and optimizationto assign load to units of a storage system. Our work is the�rst to use modeling and optimization to 
onserve energy inservers.Request distribution in server 
lusters. Several re-quest distribution strategies for homogeneous server 
lus-ters have been proposed, e.g. [11, 4, 21, 9℄. One study[12℄ 
onsidered request distribution for distributed hetero-geneous servers. Their approa
h was to assign a di�erentTTL (time-to-live) to ea
h DNS reply, a

ording to the 
a-pa
ity of the sele
ted node and/or the request rate of thesour
e domain of the DNS request. Our approa
h is to dis-tribute requests intra-
luster (without help from DNS) forenergy 
onservation, as well as performan
e.Load balan
ing in heterogeneous systems. A few pa-pers do address job/task balan
ing/sharing in heterogeneoussystems, e.g. [26, 5℄. The key di�eren
es between these stud-ies and ours are: (1) they typi
ally fo
us on 
oarse-grainjob/task s
heduling, rather than on servers and request dis-tribution; and (2) their goal is usually to improve runningtime, rather than in
rease throughput or 
onserve energy.
7. CONCLUSIONSIn this paper we developed a model-based 
ooperativeWeb server for heterogeneous 
lusters. The server is basedon modeling and optimization of 
on�gurations, request dis-tributions, throughput and power. Our experimental resultsdemonstrated that (1) our modeling is a

urate and (2) our

server 
onserves more energy than the previously proposedsystem on a heterogeneous 
luster, with a negligible e�e
ton throughput.Based on these results, we 
on
lude that Web servers needto self-
on�gure intelligently on heterogeneous 
lusters forhigher energy savings. We also 
on
lude that the style ofmodeling that allows our system to self-
on�gure should bemore widely applied in the systems 
ommunity, given thatmost real systems do exhibit varying degrees of heterogene-ity. In fa
t, our modeling framework may even be used inbuilding systems that are heterogeneous by design.We are 
urrently extending our server implementation todeal with brownouts, i.e. periods during whi
h the powerbudget is 
onstrained. During these periods, our goal is tomaximize throughput under the 
onstrained power budget.The new version of the server will then have two modes ofoperation: normal mode whi
h optimizes power/throughputmaking sure that the o�ered load is satis�ed, and 
onstrain-ed mode whi
h optimizes throughput within the availablepower budget. The new version will ni
ely leverage our mod-eling and optimization infrastru
tures.In our future work, we plan to develop a tool to automatethe pro
ess of instantiating our models. We also plan toexploit our modeling infrastru
ture to investigate whetherservers 
lusters should be designed heterogeneous.
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