Energy Conservation in Heterogeneous Server Clusters’

Taliver Heath
Dept. of Computer Science
Rutgers University
Piscataway, NJ

taliver@cs.rutgers.edu

Wagner Meira Jr.
Dept. of Computer Science
Federal Univ. of Minas Gerais
Belo Horizonte, Brazil

meira@dcc.ufmg.br

ABSTRACT

The previous research on cluster-based servers has focused
on homogeneous systems. However, real-life clusters are al-
most invariably heterogeneous in terms of the performance,
capacity, and power consumption of their hardware com-
ponents. In this paper, we argue that designing efficient
servers for heterogeneous clusters requires defining an ef-
ficiency metric, modeling the different types of nodes with
respect to the metric, and searching for request distributions
that optimize the metric. To concretely illustrate this pro-
cess, we design a cooperative Web server for a heterogeneous
cluster that uses modeling and optimization to minimize the
energy consumed per request. Our experimental results for a
cluster comprised of traditional and blade nodes show that
our server can consume 42% less energy than an energy-
oblivious server, with only a negligible loss in throughput.
The results also show that our server conserves 45% more
energy than an energy-conscious server that was previously
proposed for homogeneous clusters.

Categories and Subject Descriptors
D.4 [Operating systems|: Organization and Design

General Terms

Design, experimentation, measurement

Keywords

Energy conservation, server clusters, heterogeneity

*This research has been supported by NSF under grants
#ETA-0224428, #CCR-0100798, and #CCR-0238182 (CAREER
award), and CNPq/Brazil under grants #680.024/01-8 and
#380.134/97-7.

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

PPoPP’ 05, June 15-17, 2005, Chicago, lllinois, USA.

Copyright 2005 ACM 1-59593-080-9/05/000685.00.

Bruno Diniz
Dept. of Computer Science
Federal Univ. of Minas Gerais
Belo Horizonte, Brazil

diniz@dcc.ufmg.br

Enrique V. Carrera
Dept. of Computer Science
Univ. San Francisco of Quito
Quito, Ecuador

vinicioc@usfq.edu.ec

Ricardo Bianchini
Dept. of Computer Science
Rutgers University
Piscataway, NJ

ricardob@cs.rutgers.edu

1. INTRODUCTION

Most of the previous research on cluster-based servers (or
simply “server clusters”) has focused on request distribution
for improved performance (e.g., [3, 4, 9, 21]) and dynamic
cluster reconfiguration for energy conservation without per-
formance degradation [10, 15, 23, 24]. Because these works
focused solely on homogeneous clusters, they found essen-
tially that the cluster configuration should be the smallest
(in number of nodes) needed to satisfy the current offered
load, whereas requests should be evenly distributed across
the nodes modulo locality considerations.

However, real-life server clusters are almost invariably het-
erogeneous in terms of the performance, capacity, and power
consumption of their hardware components. For example,
the Teoma/AskJeeves search engine is supported by a highly
heterogeneous server cluster with thousands of nodes. In
fact, the different services involved in the search engine,
such as the indexing and Web services, are themselves sup-
ported by heterogeneous nodes. The heterogeneity comes
from nodes with different processor and network interface
speeds, as well as different numbers of processors and mem-
ory sizes [25].

The reason for the heterogeneity of real-life server clus-
ters is simple and at least three-fold: (1) failed or misbehav-
ing components are usually replaced with different (more
powerful) ones, as cost/performance ratios for off-the-shelf
components keep falling; (2) any necessary increases in per-
formance or capacity, due to expected increases in offered
load, are also usually made with more powerful components
than those of the existing cluster; and (3) traditional, PC-
style nodes are slowly being replaced by collections of single-
board “blade” nodes to save physical data center space and
ease management. The combination of traditional and blade
nodes makes for highly heterogeneous clusters, since some
blade systems exploit laptop technology to consume signif-
icantly less energy than traditional computers. In essence,
clusters are only homogeneous (if at all) when first installed.

Heterogeneity raises the problem of how to distribute the
clients’ requests to the different cluster nodes for best perfor-
mance. Furthermore, heterogeneity must be considered in
cluster reconfiguration for energy conservation, raising the
additional problem of how to configure the cluster for an

appropriate tradeoff between energy conservation and per-
formance. None of the previous approaches to request dis-
tribution and cluster configuration is ideal for heterogeneous
systems, since they are oblivious to the characteristics of the
different types of nodes and/or requests, can under-utilize
resources, or do not consider energy consumption explicitly.

In this paper, we design a server cluster that can adjust
its configuration and request distribution to optimize power,
energy, throughput, latency, or some combination of these
metrics. The particular optimization function can be defined
by the system administrator; for this paper, we select the
ratio of cluster-wide power consumption and throughput, so
that our system can consume the lowest energy per request
at each point in time.

Unfortunately, designing such a server is a non-trivial task
when nodes are highly heterogeneous. To tackle this de-
sign task, we develop analytical models that use informa-
tion about the expected load on the cluster to predict the
overall throughput and power consumption, as a function
of the request distribution. Using the models and an itera-
tive optimization algorithm, we can evaluate a large space
of configurations and distributions to find the one that min-
imizes the power/throughput ratio for each level of offered
load intensity. Our approach is general and can implement
all previous distribution and reconfiguration approaches.

As a proof-of-concept implementation, we apply our mod-
els to a Web server cluster serving both static and dynamic
content. The servers cooperate to implement the request
distribution found by the optimization algorithm. Since the
optimization step is typically time-consuming, we run it off-
line and store the best configuration and request distribution
found for each load intensity on the node that runs a master
process. Periodically, the servers send their load information
to the master, which then computes the total load imposed
on the system. With this information, the master looks up
the best request distribution and configuration for the cur-
rent load and commands the nodes to adjust accordingly.

Our validation experiments running on a cluster of blade
and traditional nodes show that the models are accurate
for a wide range of distributions; modeled throughputs are
within 6% of the actual measurements, whereas modeled
powers are within 1.3% of the measured results. The exper-
imental results with our model-based server running on the
heterogeneous cluster show that we can consume 42% less
energy than a traditional, energy-oblivious server with only
a 0.35% loss in throughput. The results also show that our
server conserves 45% more energy than an energy-conscious
server proposed for homogeneous clusters [23].

Based on our results, we conclude that servers need to
self-configure intelligently on heterogeneous clusters for an
ideal tradeoff between energy and performance.

The remainder of the paper is organized as follows. The
next section details our motivation using a few simple ex-
amples. Section 3 describes our modeling and optimization
approach. Section 4 describes our model-based server and
how we use our analytical framework to guide the decisions
the system makes. Section 5 presents our methodology and
experimental results. Section 6 discusses the related work.
Finally, section 7 draws our conclusions.

2. MOTIVATION

In this section, we motivate the need for a model-based ap-
proach to designing performance and energy-efficient server

[Type | Metric | Resource I | Resource 2 |
A Max Throughput | 3200 units/s | 20000 units/s
B Max Throughput | 800 units/s | 50000 units/s
A Max Power 120 Watts 5 Watts
B Max Power 25 Watts 10 Watts

Table 1: Example throughputs and powers per node
type. The values are representative of two real systems,
assuming resource 1 is the CPU and resource 2 is the
disk: node A represents a Fujitsu RX 100 Monoprocessor
system (3.2 GHz Pentium 4 and 7200 rpm IDE disk),
whereas node B represents one of our own machines (800

MHz Pentium 3 and 2 10K rpm SCSI disks).

[Type | Resource 1 | Resource 2 | Fraction of Requests

o 1 100 0.87
B 20 1 0.13

Table 2: Example resource needs and fraction of re-
quests per request type. Requests of type a access files,
whereas requests of type 5 execute small CGI scripts.

clusters. We organize the section around the key questions
involved in request distribution and cluster configuration.
Throughout the section, we use a simple example to demon-
strate why our design approach is appropriate. For clarity,
we disregard several overheads.

Question 1: How should we distribute requests to
optimize throughput? The most common approach to
request distribution is to have content-oblivious front-end
devices that distribute the clients’ requests across the server
cluster using a policy such as round-robin, weighted round-
robin, or least-connections. The two latter approaches rec-
ognize that the cluster nodes may be heterogeneous. How-
ever, even these two approaches distribute requests based
solely on the relative performance of the bottleneck resource
(e.g., the CPU or the disk subsystem) at each node. The
same resources at other nodes may be severely under-utilized.
For the most efficient resource usage (and, thus, highest
throughput), their request distribution would have to con-
sider the different request types and their approximate re-
source requirements. Systems that use content-aware front-
ends can consider request types, but typically only do so
to segregate requests into separate cluster partitions, again
under-utilizing resources.

We argue that the best (in terms of throughput and gen-
erality) approach to request distribution in heterogeneous
server clusters involves taking the characteristics of differ-
ent node and request types into account explicitly. Using
this information, the set of individual cluster resources can
be pooled together and scheduled at a fine grain, at the re-
quest level. The request distribution can be effected either
by (1) content-aware front-ends that implement a possibly
different request distribution for each request type or (2)
content-oblivious front-ends that implement a single request
distribution scheme with re-distribution by the server nodes
themselves. We favor approach (2) because it avoids the
lower performance of content-aware front-end devices, which
need to accept TCP connections and inspect requests before
they can be forwarded to back-end nodes. We illustrate ap-
proach (2) with the following example.

The top part of table 1 lists the throughput of two re-
sources of two types of nodes. The resources are generic,

so let us assume that the throughput is in “units” /second.
Think of resource 1 as the CPU and resource 2 as the disk,
for example. In this case, the throughput of resource 1 could
be measured in instructions/second and the throughput of
resource 2 could be measured in KBytes/second. Let us
further assume that there are two types of requests, a and
(3, each of which is responsible for a fraction of the request
stream. The resource needs of the different request types are
described in table 2. So, for example, each request of type
a requires 1 unit of resource 1 and 100 units of resource 2.
You can think of type a as requests for a large file and type
[as requests for a small CGI script; both file and script are
replicated at the two nodes.

For a system with a content-oblivious, round-robin front-
end and one node of each type, we can only get a maximum
throughput of 460 requests/second, since the performance
of nodes A and B is limited by resource 2 and 1, respec-
tively. If we now have node B send all requests of type
B that it receives to node A, and node A send 43.1% re-
quests of type « that it receives to node B, we can improve
the cluster throughput to 803 requests/second. This shows
how intra-cluster cooperation has the potential for better
resource utilization in heterogeneous systems.

Question 2: How should we distribute requests and
configure the cluster to optimize power/throughput?
The request distribution approach we just discussed seeks to
optimize throughput, but disregards power and energy al-
together. Previous work has considered request distribution
optimizing both throughput and energy [10, 15, 23, 24], but
in the context of homogeneous clusters. Their approach is to
reconfigure the cluster to the smallest size (by turning some
of the nodes off) needed to satisfy the current offered load
and distribute the requests evenly across the active nodes.
Because all nodes and resources are treated as consuming
the same amount of power, this approach can obviously be
inefficient for heterogeneous systems.

Our own cluster of traditional and blade nodes is a good
example of power heterogeneity. Each traditional node con-
sumes from 70 to 94 Watts, whereas each blade consumes
from 40 to 46 Watts, depending on utilization. To compli-
cate decisions further, the first blade to be turned on con-
sumes an extra 150 Watts, as it incurs the overhead of three
(underloaded) power supplies, three fans, and other infras-
tructure shared by the other blades.

Another simple approach that may lead to inefficiencies
is to reconfigure the cluster under light load by turning
off nodes with decreasing “power efficiency”, i.e. maxi-
mum power/maximum throughput ratios. Properly order-
ing nodes with respect to power efficiency is difficult for two
reasons: (1) nodes can exhibit different relative orderings
depending on the characteristics of the workload (particu-
larly, the resource requirements and the load intensity); and
(2) the ordering may depend on the rest of the configura-
tion, as in the case of our own system (having a blade on
is more power efficient than having a traditional node on,
unless it is the first blade). Finally, even when it is possible
to determine a proper node ordering, an even distribution of
requests across the active nodes can under-utilize resources
as we argued above.

We can eliminate the possibility of inefficiencies by ex-
tending our approach to consider the power characteristics
of the different types of nodes (and resources) explicitly. We
can see this by going back to the example of tables 1 and 2.

The bottom part of table 1 lists sample maximum power
consumptions for each resource. Let us assume that the
resource power consumption varies linearly with utilization.
Under heavy load and the best request distribution we found
for throughput, the power/throughput ratio would be 0.145
Joules/request (116 Watts/803 requests/second). However,
given that resource 1 in node A is power-hungry, we can get
a better ratio by reducing the number of requests sent from
node B to node A. For example, if we change the above con-
figuration so that machine B does not forward any requests,
the ratio becomes 0.137 Joules/request (57 Watts/416 re-
quests/second). This shows that optimizing for energy and
performance is not straightforward.

3. ANALYTICAL MODELS

In this section, we describe the analytical models and op-
timization procedure that allow us to determine the best
cluster configuration and request distribution for a hetero-
geneous Web server cluster. This machinery works for homo-
geneous clusters as well but is unnecessary for these systems,
since configuration and distribution are well-understood is-
sues for them.

As we have mentioned, to determine the best configura-
tion and distribution for heterogeneous clusters, we need
to consider all resources, their performance and power con-
sumptions, at the same time. We cast this as an optimiza-
tion problem: find the request distribution (1) from clients
to servers and (2) among servers, in such a way that the
demand for each resource is not higher than its bandwidth,
and we minimize a particular metric of interest. The clus-
ter configuration comes out from the request distribution;
we can turn off nodes that are not sent any requests.

In this paper we define the metric of interest to be cluster-
wide power consumption divided by throughput. Thus, the
request distributions, the total power, and the maximum
throughput for each cluster configuration are the unknowns
in the models, whereas the resources and offered workload
characteristics are the inputs to the models. In particular,
the resource-related inputs are the bandwidth of each re-
source, the power consumed by each node when it is idle,
and a linear factor describing how the power consumption
changes as a function of resource utilization. The resource
types we consider are processor, network interface (divided
into incoming and outgoing bandwidth), disk, and a software
resource representing the maximum number of sockets each
server can concurrently open with its clients. Obviously,
this software resource does not consume power. For sim-
plicity, we assume that each node contains a single resource
of each type. The workload-related inputs are the expected
file popularity, the expected average size of requested files,
the fraction of requests for static files in the workload, the
characteristics of the dynamically generated content, and
the resource consumptions per request type as well. These
inputs can be determined from a sample trace of requests
and an analysis of the programs that generate the dynamic
content. Table 3 summarizes the unknowns and inputs of
our models.

In the next few subsections, we describe our models for
estimating throughput and power, as a function of the re-
quest distributions. We also describe how to instantiate the
inputs to the models. Finally, we describe the optimization
procedure that solves the equations that define the models.

Description Representation in models
Inputs Bandwidth of each resource C' matrix

Resource cost for performing a request locally L matrix

Resource cost for sending remote requests S matrix

Resource cost for accepting remote requests A matrix

Idle power of each node B vector

Power factor of each resource M matrix

Partition of request stream into types F matrix

Unknowns | Request distributions

Total system power

Maximum system throughput

D vector and R matrix
maz_thruput
overall_power

Table 3: Summary of model inputs and unknowns.

3.1 Modeling Request Distributions

To formalize the problem, we will represent the distribu-
tions using a vector and multiple matrices. We use a distri-
bution vector, D, to represent the fraction of the requests
coming from the clients that will be sent to a certain node.
Thus, D; is the fraction of the requests from clients that
server ¢ will receive.

Requests can be of different types as well. For example,
a Web server can get requests for files that are in memory,
files that are on disk, or dynamically generated content. We
define a matrix F' to describe the partitioning of the request
stream into these request types for each node. Thus, F} is
the fraction of requests of type ¢ that are directed to node i
by the front-end devices.

When nodes cooperate, we must also take the intra-cluster
request distribution into account. We represent this dis-
tribution with one matrix, R', per request type . Each
element Rf]- represents the fraction of requests on node i
of request type ¢ that are serviced by node j. In a non-
cooperative server environment, ViR!, = 1, while all other
terms would be 0.

The resource consumptions for each request type are rep-
resented with 3 other matrices. We represent the amount
of resource r used by a request of type ¢ that node i must
expend if the request is serviced locally as L}’. Even if node
¢ sends the request to node 7, it may still expend some re-
sources, denoted by S{;. If node 7 instead receives a request
from node j, the resource usage is represented as A;f

The costs in the S, A, and L matrices are average num-
bers of bytes per request for all devices. The exceptions are
the CPU device and the software resource. The CPU cost
per request can be represented in average number of instruc-
tions, average number of memory bytes used, or some other
relevant metric. The software resource costs can also be ar-
bitrarily represented. For example, we can represent the cost
per request of consuming a socket as the average number of
instructions executed or the average time elapsed between
the opening and closing of the socket.

3.2 Modeling Resource Utilization

To determine the utilization U] (in bytes/second) of each
resource 7 at each node i, we need to sum the cost due to
the fraction of requests serviced locally, the cost of sending
requests to other nodes, and the cost of servicing requests on
behalf of other nodes. This sum then needs to be multiplied
by the total number of requests being served per second (the
current throughput of the server cluster, thruput). This is
expressed as:

types nodes
u o=y (DiF:RfiLmDiF: > RS+

t J

nodes
> DjFJFR;iA;Z?)
J

U = thruput x u; (1)

3.3 Determining Max Throughput and Power

We can use U to determine the maximum throughput and
overall power consumption of a configuration.

Maximum throughput. We find the maximum through-
put achievable by the server cluster by determining the bot-
tleneck resource(s) in the system. The bottleneck(s) will
be such that U; = C; under maximum throughput, where
each element C] is the capacity of resource type r on node
i. Thus, we define the maximum throughput as:

r

maz_thruput = min -~ 2
p Vrioug (2)

Overall power. The power consumed by each hardware
resource generally relates to the utilization of the resource.
We use a linear model of resource power, such that the power
consumed by each node i is:

P=Bi+ Y M x (g_) 3)

where B; is the base power consumed by node ¢ when it is
idle, and M; is the measure of power of the resource r at
full utilization.

Finally, we define the power consumed by the server clus-
ter, overall_power, as the sum of the power consumed by all
hardware resources in the system:

overall _power = Z P; (4)

i

3.4 Instantiating the Inputs to the Models

The C, L, S, A, B, and M matrices are inputs to our
models. Determining the correct values for them is not al-
ways simple. To determine the C", L™, S", and A" matrices,
we run microbenchmarks on two machines to exercise the
resource with requests of different types and/or sizes and
measure their performance.

C%5* is perhaps the hardest vector to instantiate. More
specifically, our disk microbenchmark goes through several
rounds of random reads of fixed size, going from 4-KByte ac-
cesses to 128-KByte accesses (the largest chunk our server
will read at once from disk) in steps of 4 KBytes. We run
this microbenchmark for each of the different disks in the
heterogeneous cluster. Besides these data, we also need the
average size of disk accesses on each different node. Unfor-
tunately, the average size of disk accesses (and the memory
cache hit ratios) is not readily available off-line. To approx-
imate that size, we use information about the memory size
and the expected file popularity coming from a represen-
tative request trace. In more detail, we rank the files in
descending order of popularity and add the file sizes until
the combined size exceed the memory size. Accesses to files
that are more popular than this threshold are (optimisti-
cally) expected to be cache hits. With information about
the files that cause misses, we can easily compute the aver-
age disk access size. We have successfully taken this same
approach to approximating hit rates and disk access sizes in
our previous Web server modeling work (e.g., [6, 9]).

Instantiating the B vector involves measuring the power
consumed by each different node when it is completely idle.

Determining the M" vectors is somewhat more involved.
For each different node i we determine M{** MEFU and
M** by running several microbenchmarks, each of which
exercises one of these three resources in different ways. For
each microbenchmark, we record average disk, CPU, and
network interface utilization statistics, as well as average
overall power. The utilization data forms an m X 3 matrix
called E, where m is the number of microbenchmarks. The
power data (actually, the subtraction of the power data by
the base power of the node) forms an m x 1 vector called
W. We then compute a least-squares fit to determine the
1 x 3 vector X for which EX = W. The resulting X, X,
and X3 are M%% MOPY and M™®, respectively, for the
node. This same approach has been used successfully by
other groups [19].

3.5 Finding the Best Distributions

To optimize power consumption and throughput, we need
to find the request distributions D and R’ for each type ¢
(and consequently the best cluster configuration), such that
U < C; Vr,i and we minimize some metric that combines
throughput and power. In this work, we decided to give
equal emphasis to throughput and power, so our optimiza-
tion procedure attempts to minimize overall_power /thruput,
under the constraint that max_thruput > thruput. Thus,
a decrease in power consumption (with fixed throughput)
has the same effect as an equal increase in throughput (with
fixed power). If the offered load ever becomes greater than
the maximum achievable throughput by any configuration
and distribution, our goal becomes to maximize max_thruput
so that we lose the fewest requests possible.

We could attempt to solve the system of equations de-
fined by our model directly. Unfortunately, this is a complex
proposition, because to determine utilizations we need to
multiply unknown distributions, making the problem non-
linear. Moreover, cluster power and throughput are func-
tions of these distributions and vice-versa, so the problem is
also recursive. These characteristics suggest that a numeri-
cal and iterative optimization technique, such as simulated
annealing or genetic algorithms, is appropriate.

We use simulated annealing. The annealing works by try-
ing to iteratively optimize a “current solution”, i.e. values
for the distributions D and R, starting from initial guess val-
ues for these matrices. The initial distributions are set such
that the D; are all the same and the R' matrices specify no
intra-cluster cooperation.

A candidate solution is generated by modifying two el-
ements of the same (randomly chosen) vector/matrix at
a time; one element is decreased by a randomly chosen
amount, while another is increased by the same amount.
The rows are then normalized. A candidate also has to sat-
isty the constraint that U] < C; Vr,i.

Evaluating a candidate solution involves computing its
overall_power [thruput measure and comparing it to the
corresponding measure of the current solution. If the can-
didate solution produces a measure that is smaller than the
current minimum, it becomes the new current solution. If
it does not, it might still become the new current solution,
but with a decreasing probability. After evaluating each
candidate solution, a new one is generated and the process
is repeated. The number of iterations is determined by a
“temperature” parameter to the annealing algorithm. More
details about simulated annealing can be found in [17].

Finally, we speed up the search process significantly by
treating all nodes of the same type together. This makes
the number of calculations proportional to the square of the
number of node types, as opposed to the square of the actual
number of nodes in the cluster.

4. MODEL-BASED COOPERATIVE SERVER

We developed a cooperative Web server that uses the re-
sults of our modeling and optimization approach to configure
the cluster and distribute requests.

Requests are sent to the individual Web servers according
to the D vector computed by our model and optimization
procedure. Each server either serves a requests it receives lo-
cally or forwards it to another server over a persistent TCP
connection. Requests for static content are always served lo-
cally. The R matrix determines where to serve the dynamic-
content requests. Once a forwarded request completes, the
reply is sent back to the server that received the original
request. This server then replies to the client.

Each server sends its delivered load information to a mas-
ter process every 10 seconds. The master process accumu-
lates this information and smooths it by computing an Ex-
ponentially Weighted Moving Average (EWMA) of the form
avg_load = a x current_load + (1 — a) X previous load. Our
EWMA uses an « value of 0.4. Periodically, the master de-
cides whether the request distribution (and configuration)
needs to be changed. We refer to the fixed time in between
decisions as the reconfiguration interval. The master’s de-
cision is based on its prediction of what the average load
will be in the end of the next reconfiguration interval. The
prediction uses a first order derivative of the current average
load and the last average load of the previous interval, i.e.
predicted load = avg_load + (avg_load — last_avg_load). To
avoid undershooting and losing requests, the system never
predicts load that is lower than the current value. Based
on the predicted load, the master can determine the best
request distributions, as predicted by our model and opti-
mization procedure. If the request distribution needs to be
changed, the master process commands the servers and/or
the front-end devices to adjust accordingly.

Because our optimization procedure is time-consuming,
the best distributions for each amount of load are com-
puted off-line. We store a large pre-computed table of best
distributions (D and R arrays) and throughputs entries,
{thruput, best_distribution}, on the local disk of the node
running the master process. The master finds the best dis-
tributions for a certain load by looking up the entry listing
the lowest throughput that is higher than the load.

5. EXPERIMENTAL RESULTS

In this section, we describe our experimental methodology,
validate the models, and compare different server systems.

5.1 Methodology

Cluster hardware. Our cluster is comprised of 4 Linux-
based PCs (each with an 800-MHz Pentium III processor,
local memory, two SCSI disks, and a Fast Ethernet inter-
face) and 4 Linux-based blade servers (each with a 1.2-GHz
Celeron processor, local memory, an IDE disk, and a Fast
Ethernet interface) from Nexcom [20]. The two sets of ma-
chines are connected by a Fast Ethernet switch.

The PCs (herein also called traditional nodes) consume
about 70 Watts when idle and about 94 Watts when fully
utilized. In contrast, each blade consumes about 40 Watts
when idle and 46 Watts when fully utilized. However, the
base power consumption of the blade chassis is substan-
tially higher, 150 Watts, due to three power supplies, the
power backplane, three fans, and the KVM (keyboard-video-
mouse) controller.

All PCs and the blade system are connected to a power
strip that allows for remote control of its outlets. The sys-
tems can be turned on and off by sending commands to the
IP address of the power strip. The blades can be controlled
independently as well, by sending commands to the KVM
controller. Shutting a node down takes 45 seconds (tradi-
tional nodes) and 21 seconds (blades); bringing any node
back up takes about 80 seconds.

The total amount of power consumed by the cluster is
monitored by a multimeter connected to the power strip.
The multimeter collects instantaneous power measurements
(several thousand per second) and sends these measurements
to another computer, which stores them in a log for later
use. We obtain the power consumed by different cluster
configurations by aligning the log and our systems’ statistics.

Server software. We experiment with three servers: (1) a
conventional, energy-oblivious server; (2) an energy-consci-
ous server that was developed for homogeneous clusters; and
(3) our energy-conscious, model-based Web server for het-
erogeneous clusters. The conventional server, called “Ener-
gy-Oblivious”, is similar to Flash [22] and involves no coop-
eration between nodes.

The energy-conscious server for homogeneous clusters, “A-
daptive”, is based on the same code as Energy-Oblivious,
but includes a master process that collects load information
from the servers and decides on the minimum cluster con-
figuration that can satisfy the offered load. The master uses
a PID feedback controller to determine how to change the
configuration. When there are enough spare resources, the
master forces a node to turn off. When more resources are
needed, the master turns a node on. Because the server as-
sumes a homogeneous cluster, the master randomly selects
which nodes to turn on and off. In addition, requests are dis-

tributed evenly across the active nodes. More details about
Adaptive can be found in [23].

Our model-based cooperative Web server, “Model Adap-
tive”, is based on the same code as Adaptive, but includes
dynamic-content request forwarding and uses our modeling
and optimization machinery, as described in the previous
section. For a fair comparison, the frequency of load infor-
mation exchanges and reconfiguration decisions in our ex-
periments is kept the same in both adaptive systems.

The master process in the adaptive systems remains block-
ed most of the time, so it can run on any active node without
a noticeable increase in energy consumption. For simplicity,
we run it alone on a 9th node.

Clients. Besides our main cluster, we use 7 x86-based ma-
chines to generate load for the servers. These clients connect
to the cluster using TCP over the Fast Ethernet switch.
In our experiments with the Energy-Oblivious and Adap-
tive servers, the client requests are distributed across clus-
ter nodes in one of two ways: (1) randomly to mimic a
large number of users and a Round-Robin DNS policy; or
(2) according to a Least-Connections policy that continu-
ously tries to balance the load by sending each request to
the node with the smallest number of open connections at
the time. We refer to these approaches as “RR” and “LC”,
respectively. Model Adaptive distributes the client requests
according to the D vector (and forwards requests internally
according to R).

For simplicity, we did not use a front-end device that
would enforce the RR, LC, and D distributions. Instead, the
client themselves distribute their requests according to the
policies. Note that, although the clients do not coordinate
their requests in the LC policy, the load is still properly bal-
anced, since the clients’ local views approximate the nodes’
behaviors in steady state. In our Model Adaptive experi-
ments, when the request distribution needs to change, the
master process sends the D vector to each client over pre-
established socket connections. The clients send requests to
the available nodes in randomly, but obey the vector.

The clients issue their requests according to a trace of
the accesses to the World Cup ’98 site from June 23rd to
June 24th, 1998 (WC’98). We run two types of experi-
ments with this trace: validations of our models and self-
configuration experiments. In our model validation exper-
iments, the clients disregard the timing information in the
trace and issue new requests as soon as possible. In our
self-configuration experiments, the clients take the timings
of the trace into account, but accelerate the replay of the
trace 20 times to shorten the experiments to 7500 seconds.
Regardless of the type of experiment, requests that are not
serviced within 10 seconds are considered lost.

We also modified the trace in two other ways. The first
modification replaces 30% of the static requests issued with
dynamic requests to simulate a CGI load. For simplicity, we
used a single CGI script that does nothing else but produce
a short reply. The accesses to this script drastically reduce
the throughput of our server cluster, so we also attenuated
the trace by a factor of 50. (This was done so that we could
still observe the load changes in the trace while keeping the
run time to approximately 2 hours.) Under these assump-
tions, the CPU and the software resource become the main
bottlenecks in the system.

Given our accelerated trace, we set the reconfiguration in-
terval of the adaptive servers to a minimum of 120 seconds

Varying Distribution of Load

600 T T T T 1000
Model Power —+—
Measured Power -----!
Modeled Throughput ---*---
500 Measured Throughput &
- 800
@ =
S 400 B
2 Sl — S %600 8
s : :
: g e
g ol o c-n
£ P Z
é g Ja0 3
£ P [}
X 200 _.-% 2
; o
- 200
100
| | | | | | | | | 0

0
01 110 210 310 410 510 6:10 7:10 810 910 L1

Relative Reguest Distributions
To Each Half of the Cluster

Figure 1: Modeling and experimental results for
throughput and power, as a function of D.

between changes. This relatively short interval allows time
for a rebooted node to settle and the servers to react quickly
to variations in offered load. In practice, the reconfiguration
interval can be substantially longer however, since real-life
variations in load intensity occur over periods of tens of min-
utes, i.e. much more slowly than in our experiments. For
WC’98, for example, we could have an interval of 2400 sec-
onds in real time. In fact, we expect the energy and time
overheads of reconfigurations to be small in practice.

5.2 Validation of the Models

Figures 1 and 2 show our validation results for the WC’98
trace running on our 8-node heterogeneous cluster, as a
function of changes in the D and R distributions, respec-
tively. Both figures show modeled and measured server clus-
ter throughput (in requests/second) and power consumption
(in Watts). Each point in the figures is an average of two
runs; the vertical bars show the ranges of values we observed
in the different runs. In figure 1, each point on the X-axis
represents a different weighting of the distributions of the
requests sent from the clients to the servers. For example,
at “2:10”, 2 requests are sent to the traditional nodes for
every 10 requests that are sent to the blades. In this case,
the R matrix determines no cooperation between nodes.

In figure 2, each point on the X-axis represents the frac-
tion of dynamic requests in the WC’98 trace that the blades
execute locally; the others are sent to the traditional nodes.
For example, at X=0, 100% of CGI requests received by
the blades are sent to the traditional nodes. The requests
coming from the clients are distributed to all nodes evenly.

These figures demonstrate that our models are very ac-
curate for WC’98. The modeled throughput has an average
error of 6% as compared to the measured results, with a
maximum error of 18%. We can also see that varying re-
quest distributions has a significant effect on throughput,
but only a minor effect on power. Power does not vary no-
ticeably for two reasons: (1) all nodes are active (and highly
utilized) throughout the experiments; and (2) resource uti-
lization has a small effect on power, since most of the power
consumed by the nodes and their resources is fixed, i.e. the
base power. This leads to a small average and maximum
error of 1.3% and 2.7%, respectively.

Varying Shared Fraction of Dynamic Requests

600 T T 1000
Model Power —+—
Measured Power -----!
Modeled Throughput ---*---
500 Measured Throughput &
@ =
S 400 . B
g':’ J S g 5
£ 300F i
= >
€ <
3 4400 T
£ 200 ?1;)
% L
o]
2 o
- 200
100
0 | | | | 0
0 20 40 60 80 100

Percentage of Dynamic Requests Done Locally
By Half of the Cluster

Figure 2: Modeling and experimental results for
throughput and power, as a function of R.

500

Throughput
Power ——

700

400 -

Y N R T

o ki ol f
gt ™

- 600

300

Throughput (r/s)
I
IS
8
3
Power (W)

200

100

0 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000
Time (s)

Figure 3: Throughput and power of Energy-Oblivious-
LC.

5.3 Comparing Server Systems

Figures 3 to 5 show throughput and power for Energy-
Oblivious-LC, Adaptive-LC, and Model Adaptive, as a func-
tion of time.

Let us discuss energy first. Figure 3 shows that Energy-
Oblivious-LC consumes roughly the same amount of power
throughout the experiment; non-trivial variations only oc-
cur during the three load peaks. In contrast, figures 4 and
5 demonstrate that the Adaptive-LC and Model Adaptive
systems can nicely adjust the cluster configuration, accord-
ing to the offered load. For instance, during the load valleys,
only 2 or 3 nodes are required to serve the offered load; the
other nodes can be turned off. As a result of the reconfigu-
ration, the two systems accrue substantial energy savings.

Note though that Adaptive-LC leads to substantially high-
er power consumption than Model Adaptive during the load
valleys. As a result, Model Adaptive consumes 42% less en-
ergy than Energy-Oblivious during this experiment, whereas
Adaptive-LC only consumes 29% less energy. Comparing
the amount of energy saved by Adaptive-LC (1.30 MJ) and
Model Adaptive (1.89 MJ) directly, we find that the latter
system conserves 45% more energy than the former.

The reason for the inefficient behavior of Adaptive is that
it treats a heterogeneous system as if it were homogeneous.

Throughput (r/s)
Power (W)

0 L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000

Time (s)

Figure 4: Throughput and power of Adaptive-LC.

For instance, it treats a single-node blade system with an
idle power consumption of 190 Watts the same as a tradi-
tional node that consumes only 70 Watts when idle. In ef-
fect, Adaptive selects the nodes to be part of the cluster con-
figuration randomly, using feedback control to achieve the
required throughput. In this experiment, the 3-node config-
uration of Adaptive-LC during the load valleys includes only
one blade and, hence, incurs the unamortized fixed power
consumption of the entire blade system.

The transitions between configurations are also markedly
different between Adaptive-LC and Model Adaptive. Adapt-
ive-LC changes the cluster configuration one node at a time.
In contrast, Model Adaptive may decide to change the con-
figuration completely, by turning several nodes off and sev-
eral nodes on. These transitions are marked with letters
A B, C, and D in figure 5. The high energy consumed at
these points results from having to turn the new nodes on,
before the nodes in the current configuration can be turned
off. At point A, for example, Model Adaptive needs to turn
on 3 traditional nodes before turning off the 4 blades that
comprise the current configuration.

Figure 6 shows the complete list of cluster configurations
that Model Adaptive goes through, as a function of time.
The stacked symbols illustrate the actual configurations,
with each “+” representing a traditional node and each “X”
representing a blade node. The vertical lines illustrate the
times when the transitions are performed. When two con-
secutive stacks are the same, the only change is in the dis-
tribution of requests (D and R).

The most interesting observation from this figure is that
several of the transitions only affected the request distribu-
tion. More specifically, as the offered load approaches the
maximum throughput achievable by a configuration, the sys-
tem tends to reduce the amount of inter-node cooperation
since the bottleneck components will be highly utilized lo-
cally at all nodes. When the offered load is decreasing, the
system tends to increase cooperation by shifting requests to
the components that are most power-efficient.

In terms of performance, we see in table 4 that Adaptive-
LC drops more than twice as many requests as Model Adap-
tive, due to the overhead of reconfigurations. Nevertheless,
both systems drop a negligible percentage of the requests. In
contrast, Adaptive-RR drops more than 30% of the requests
due to the reconfigurations, making it effectively useless. For
this reason, we do not show figures for Adaptive-RR.

Power (W)

Throughput (r/s)

0 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000
Time (s)

Figure 5: Throughput and power of Model Adaptive.

500

Traditional +
Blade x
Throughput

400
@ 300
=
Z
2
5
g
£ 200
100 ffx] || x|
4 B K
X X
X i
e
e
e
He
o .
0 1000 2000 3000 4000 5000 6000 7000
Time (s)
Figure 6: Throughput and configuration of Model
Adaptive.

Discussion. Model Adaptive behaves well in terms of en-
ergy conservation and performance. The energy savings it
achieves are mostly due to selecting the best cluster config-
uration for each load intensity level. However, significant
configuration changes can consume substantial energy and
decrease savings. In our experiments, the impact of the en-
ergy associated with these transitions is actually magnified,
as we accelerate the trace and thus have less time to amor-
tize the transition overheads.

Cooperation does not provide substantial gains in our ex-
periments because the power consumption of our cluster
nodes is dominated by their base powers. In contrast, the
base power of more recent machines is a substantially smaller
fraction of their maximum power consumption. We expect
this trend to continue in future systems, especially as they
become more power-aware.

6. RELATED WORK

Energy conservation research for server clusters. A
few recent papers [8, 10, 15, 23, 24] deal with energy con-
servation for server clusters. Pinheiro et al. [23] and Chase
et al. [10] concurrently proposed cluster reconfiguration to
conserve energy. Elnozahy et al. [15] evaluated different
combinations of cluster reconfiguration and dynamic voltage
scaling. Rajamani and Lefurgy [24] studied how to improve
the cluster reconfiguration technique by using spare servers

System Energy | Requests | Requests | Drop Rate
(MJ) Serviced Lost (%)
Energy-Oblivious-RR 4.54 1264424 4117 0.32
Energy-Oblivious-L.C 4.54 1267475 0 0.00
Adaptive-RR 2.65 859320 408651 32.23
Adaptive-L.C 3.24 1256091 11436 0.90
Model 2.65 1262736 4417 0.35

Table 4: Summary of energy consumption and performance degradation for WC’98 trace.

and history information about peak server loads. Finally,
Elnozahy et al. [14] considered dynamic voltage scaling and
request batching in Web servers. A survey of power and
energy research for servers can be found in [7].

All of these previous works have been focused solely on
conserving energy in homogeneous clusters. An early version
of this paper [16] introduced our approach to dealing with
heterogeneous clusters. This paper extends the early work
by proposing more sophisticated models, the model-based
cooperative server, and experimenting with workloads that
include dynamic-content requests.

In a different environment, Kumar et al. [18] considered
conserving chip-multiprocessor energy by relying on hetero-
geneous cores. Their approach has a similar flavor to cluster
reconfiguration in that, depending on processor load (and
performance requirements), a different core may execute
each application or even each phase of a single application.

Modeling and optimization for servers. Carrera and
Bianchini [6, 9] have successfully modeled the throughput of
Web server clusters. Aron et al. [2] enforced resource shares
in shared hosting platforms using models and optimization.
Doyle et al. [13] have proposed a model-based approach to
adjusting resource allocations again in shared hosting plat-
forms. Hippodrome [1] applies modeling and optimization
to assign load to units of a storage system. Our work is the
first to use modeling and optimization to conserve energy in
servers.

Request distribution in server clusters. Several re-
quest distribution strategies for homogeneous server clus-
ters have been proposed, e.g. [11, 4, 21, 9]. One study
[12] considered request distribution for distributed hetero-
geneous servers. Their approach was to assign a different
TTL (time-to-live) to each DNS reply, according to the ca-
pacity of the selected node and/or the request rate of the
source domain of the DNS request. Our approach is to dis-
tribute requests intra-cluster (without help from DNS) for
energy conservation, as well as performance.

Load balancing in heterogeneous systems. A few pa-
pers do address job/task balancing/sharing in heterogeneous
systems, e.g. [26, 5]. The key differences between these stud-
ies and ours are: (1) they typically focus on coarse-grain
job/task scheduling, rather than on servers and request dis-
tribution; and (2) their goal is usually to improve running
time, rather than increase throughput or conserve energy.

7. CONCLUSIONS

In this paper we developed a model-based cooperative
Web server for heterogeneous clusters. The server is based
on modeling and optimization of configurations, request dis-
tributions, throughput and power. Our experimental results
demonstrated that (1) our modeling is accurate and (2) our

server conserves more energy than the previously proposed
system on a heterogeneous cluster, with a negligible effect
on throughput.

Based on these results, we conclude that Web servers need
to self-configure intelligently on heterogeneous clusters for
higher energy savings. We also conclude that the style of
modeling that allows our system to self-configure should be
more widely applied in the systems community, given that
most real systems do exhibit varying degrees of heterogene-
ity. In fact, our modeling framework may even be used in
building systems that are heterogeneous by design.

We are currently extending our server implementation to
deal with brownouts, i.e. periods during which the power
budget is constrained. During these periods, our goal is to
maximize throughput under the constrained power budget.
The new version of the server will then have two modes of
operation: normal mode which optimizes power/throughput
making sure that the offered load is satisfied, and constrain-
ed mode which optimizes throughput within the available
power budget. The new version will nicely leverage our mod-
eling and optimization infrastructures.

In our future work, we plan to develop a tool to automate
the process of instantiating our models. We also plan to
exploit our modeling infrastructure to investigate whether
servers clusters should be designed heterogeneous.

Acknowledgements

We would like to thank Gustavo Gama, Dorgival Guedes,
and Eduardo Pinheiro for their comments on the topic of
this paper.

8. REFERENCES

[1] E. Anderson, M. Hobbs, K. Keeton, S. Spence,

M. Uysal, and A. Veitch. Hippodrome: Running
Circles Around Storage Administration. In
Proceedings of the Conference on File and Storage
Technologies, January 2002.

[2] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster
Reserves: A Mechanism for Resource Management in
Cluster-Based Network Servers. In Proceedings of the
International Conference on Measurement and
Modeling of Computer Systems, June 2000.

[3] M. Aron, D. Sanders, P. Druschel, and
W. Zwaenepoel. Scalable Content-Aware Request
Distribution in Cluster-Based Network Servers. In
Proceedings of USENIX’00 Technical Conference, June
2000.

[4] A. Bestavros, M. Crovella, J. Liu, and D. Martin.
Distributed Packet Rewriting and its Application to
Scalable Server Architectures. In Proceedings of the
International Conference on Network Protocols,

October 1998.

[5]

[6]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. Bevilacqua. A Dynamic Load Balancing Method on
a Heterogeneous Cluster of Workstations. Informatica,
23(1):49 56, March 1999.

R. Bianchini and E. V. Carrera. Analytical and
Experimental Evaluation of Cluster-Based WWW
Servers. World Wide Web journal, 3(4), December
2000.

R. Bianchini and R. Rajamony. Power and Energy
Management for Server Systems. IEEE Computer,
37(11), November 2004.

P. Bohrer, E. Elnozahy, T. Keller, M. Kistler,

C. Lefurgy, C. McDowell, and R. Rajamony. The Case
for Power Management in Web Servers. In Grayhbill
and Melhem, editors, Power-Aware Computing.
Kluwer Academic Publishers, January 2002.

E. V. Carrera and R. Bianchini. Efficiency vs.
Portability in Cluster-Based Network Servers. In
Proceedings of the 8th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, June
2001.

J. Chase, D. Anderson, P. Thackar, A. Vahdat, and
R. Boyle. Managing Energy and Server Resources in
Hosting Centers. In Proceedings of the 18th Symposium
on Operating Systems Principles, October 2001.

Cisco LocalDirector. http://www.cisco.com/.

M. Colajanni, V. Cardellini, and P. S. Yu. Dynamic
Load Balancing in Geographically Distributed
Heterogeneous Web Servers. In Proceedings of the 18th
International Conference on Distributed Computing
Systems, May 1998.

R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and

A. M. Vahdat. Model-Based Resource Provisioning in
a Web Service Utility. In Proceddings of the 4th
USENIX Symposium on Internet Technologies and
Systems, March 2003.

E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy
Counservation Policies for Web Servers. In Proceedings
of the 4th USENIX Symposium on Internet
Technologies and Systems, March 2003.

E. N. Elnozahy, M. Kistler, and R. Rajamony.
Energy-Efficient Server Clusters. In Proceedings of the
2nd Workshop on Power-Aware Computing Systemns,
February 2002.

T. Heath, B. Diniz, E. V. Carrera, W. Meira Jr., and
R. Bianchini. Self-Configuring Heterogeneous Server
Clusters. In Proceedings of the Workshop on
Compilers and Operating Systems for Low Power,
September 2003.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by Simulated Annealing. Science,
Number 4598, 13 May 1983, 220, 4598:671 680, 1983.
R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan,
and D. Tullsen. Single-ISA Heterogeneous Multi-Core
Architectures: The Potential for Processor Power
Reduction. In Proceedings of the 36th International
Symposium on Microarchitecture, December 2003.

M. Martonosi, D. Brooks, and P. Bose.
Power-Performance Modeling and Validation. In
Tutorial given at the International Conference on
Measurement and Modeling of Computer Systems,
June 2001.

Nexcom International. http://www.nexcom.com.tw/.

21]

22]

23]

24]

[25]
[26]

V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-Aware
Request Distribution in Cluster-based Network
Servers. In Proceedings of the 8th ACM Conference on
Architectural Support for Programming Languages and
Operating Systems, October 1998.

V. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
Efficient and Portable Web Server. In Proceedings of
USENIX’99 Technical Conference, June 1999.

E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath.
Dynamic Cluster Reconfiguration for Power and
Performance. In L. Benini, M. Kandemir, and

J. Ramanujam, editors, Compilers and Operating
Systems for Low Power. Kluwer Academic Publishers,
August 2003. Earlier version published as ”Load
Balancing and Unbalancing for Power and
Performance” in Proceedings of the International
Workshop on Compilers and Operating Systems for
Low Power, September 2001.

K. Rajamani and C. Lefurgy. On Evaluating
Request-Distribution Schemes for Saving Energy in
Server Clusters. In Proceedings of the IEEE
International Symposium on Performance Analysis of
Systems and Software, March 2003.

Tao Yang. Personal communication. October 2003.

S. Zhou, X. Zheng, J. Wang, and P. Delisle. Utopia: a
Load Sharing Facility for Large, Heterogeneous
Distributed Computer Systems. Software - Practice
and Ezperience, 23(12), 1993.

