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ABSTRACTThe previous researh on luster-based servers has fousedon homogeneous systems. However, real-life lusters are al-most invariably heterogeneous in terms of the performane,apaity, and power onsumption of their hardware om-ponents. In this paper, we argue that designing eÆientservers for heterogeneous lusters requires de�ning an ef-�ieny metri, modeling the di�erent types of nodes withrespet to the metri, and searhing for request distributionsthat optimize the metri. To onretely illustrate this pro-ess, we design a ooperative Web server for a heterogeneousluster that uses modeling and optimization to minimize theenergy onsumed per request. Our experimental results for aluster omprised of traditional and blade nodes show thatour server an onsume 42% less energy than an energy-oblivious server, with only a negligible loss in throughput.The results also show that our server onserves 45% moreenergy than an energy-onsious server that was previouslyproposed for homogeneous lusters.
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1. INTRODUCTIONMost of the previous researh on luster-based servers (orsimply \server lusters") has foused on request distributionfor improved performane (e.g., [3, 4, 9, 21℄) and dynamiluster reon�guration for energy onservation without per-formane degradation [10, 15, 23, 24℄. Beause these worksfoused solely on homogeneous lusters, they found essen-tially that the luster on�guration should be the smallest(in number of nodes) needed to satisfy the urrent o�eredload, whereas requests should be evenly distributed arossthe nodes modulo loality onsiderations.However, real-life server lusters are almost invariably het-erogeneous in terms of the performane, apaity, and poweronsumption of their hardware omponents. For example,the Teoma/AskJeeves searh engine is supported by a highlyheterogeneous server luster with thousands of nodes. Infat, the di�erent servies involved in the searh engine,suh as the indexing and Web servies, are themselves sup-ported by heterogeneous nodes. The heterogeneity omesfrom nodes with di�erent proessor and network interfaespeeds, as well as di�erent numbers of proessors and mem-ory sizes [25℄.The reason for the heterogeneity of real-life server lus-ters is simple and at least three-fold: (1) failed or misbehav-ing omponents are usually replaed with di�erent (morepowerful) ones, as ost/performane ratios for o�-the-shelfomponents keep falling; (2) any neessary inreases in per-formane or apaity, due to expeted inreases in o�eredload, are also usually made with more powerful omponentsthan those of the existing luster; and (3) traditional, PC-style nodes are slowly being replaed by olletions of single-board \blade" nodes to save physial data enter spae andease management. The ombination of traditional and bladenodes makes for highly heterogeneous lusters, sine someblade systems exploit laptop tehnology to onsume signif-iantly less energy than traditional omputers. In essene,lusters are only homogeneous (if at all) when �rst installed.Heterogeneity raises the problem of how to distribute thelients' requests to the di�erent luster nodes for best perfor-mane. Furthermore, heterogeneity must be onsidered inluster reon�guration for energy onservation, raising theadditional problem of how to on�gure the luster for an



appropriate tradeo� between energy onservation and per-formane. None of the previous approahes to request dis-tribution and luster on�guration is ideal for heterogeneoussystems, sine they are oblivious to the harateristis of thedi�erent types of nodes and/or requests, an under-utilizeresoures, or do not onsider energy onsumption expliitly.In this paper, we design a server luster that an adjustits on�guration and request distribution to optimize power,energy, throughput, lateny, or some ombination of thesemetris. The partiular optimization funtion an be de�nedby the system administrator; for this paper, we selet theratio of luster-wide power onsumption and throughput, sothat our system an onsume the lowest energy per requestat eah point in time.Unfortunately, designing suh a server is a non-trivial taskwhen nodes are highly heterogeneous. To takle this de-sign task, we develop analytial models that use informa-tion about the expeted load on the luster to predit theoverall throughput and power onsumption, as a funtionof the request distribution. Using the models and an itera-tive optimization algorithm, we an evaluate a large spaeof on�gurations and distributions to �nd the one that min-imizes the power/throughput ratio for eah level of o�eredload intensity. Our approah is general and an implementall previous distribution and reon�guration approahes.As a proof-of-onept implementation, we apply our mod-els to a Web server luster serving both stati and dynamiontent. The servers ooperate to implement the requestdistribution found by the optimization algorithm. Sine theoptimization step is typially time-onsuming, we run it o�-line and store the best on�guration and request distributionfound for eah load intensity on the node that runs a masterproess. Periodially, the servers send their load informationto the master, whih then omputes the total load imposedon the system. With this information, the master looks upthe best request distribution and on�guration for the ur-rent load and ommands the nodes to adjust aordingly.Our validation experiments running on a luster of bladeand traditional nodes show that the models are auratefor a wide range of distributions; modeled throughputs arewithin 6% of the atual measurements, whereas modeledpowers are within 1.3% of the measured results. The exper-imental results with our model-based server running on theheterogeneous luster show that we an onsume 42% lessenergy than a traditional, energy-oblivious server with onlya 0.35% loss in throughput. The results also show that ourserver onserves 45% more energy than an energy-onsiousserver proposed for homogeneous lusters [23℄.Based on our results, we onlude that servers need toself-on�gure intelligently on heterogeneous lusters for anideal tradeo� between energy and performane.The remainder of the paper is organized as follows. Thenext setion details our motivation using a few simple ex-amples. Setion 3 desribes our modeling and optimizationapproah. Setion 4 desribes our model-based server andhow we use our analytial framework to guide the deisionsthe system makes. Setion 5 presents our methodology andexperimental results. Setion 6 disusses the related work.Finally, setion 7 draws our onlusions.
2. MOTIVATIONIn this setion, we motivate the need for a model-based ap-proah to designing performane and energy-eÆient server

Type Metri Resoure 1 Resoure 2A Max Throughput 3200 units/s 20000 units/sB Max Throughput 800 units/s 50000 units/sA Max Power 120 Watts 5 WattsB Max Power 25 Watts 10 WattsTable 1: Example throughputs and powers per nodetype. The values are representative of two real systems,assuming resoure 1 is the CPU and resoure 2 is thedisk: node A represents a Fujitsu RX 100 Monoproessorsystem (3.2 GHz Pentium 4 and 7200 rpm IDE disk),whereas node B represents one of our own mahines (800MHz Pentium 3 and 2 10K rpm SCSI disks).Type Resoure 1 Resoure 2 Fration of Requests� 1 100 0.87� 20 1 0.13Table 2: Example resoure needs and fration of re-quests per request type. Requests of type � aess �les,whereas requests of type � exeute small CGI sripts.lusters. We organize the setion around the key questionsinvolved in request distribution and luster on�guration.Throughout the setion, we use a simple example to demon-strate why our design approah is appropriate. For larity,we disregard several overheads.Question 1: How should we distribute requests tooptimize throughput? The most ommon approah torequest distribution is to have ontent-oblivious front-enddevies that distribute the lients' requests aross the serverluster using a poliy suh as round-robin, weighted round-robin, or least-onnetions. The two latter approahes re-ognize that the luster nodes may be heterogeneous. How-ever, even these two approahes distribute requests basedsolely on the relative performane of the bottlenek resoure(e.g., the CPU or the disk subsystem) at eah node. Thesame resoures at other nodes may be severely under-utilized.For the most eÆient resoure usage (and, thus, highestthroughput), their request distribution would have to on-sider the di�erent request types and their approximate re-soure requirements. Systems that use ontent-aware front-ends an onsider request types, but typially only do soto segregate requests into separate luster partitions, againunder-utilizing resoures.We argue that the best (in terms of throughput and gen-erality) approah to request distribution in heterogeneousserver lusters involves taking the harateristis of di�er-ent node and request types into aount expliitly. Usingthis information, the set of individual luster resoures anbe pooled together and sheduled at a �ne grain, at the re-quest level. The request distribution an be e�eted eitherby (1) ontent-aware front-ends that implement a possiblydi�erent request distribution for eah request type or (2)ontent-oblivious front-ends that implement a single requestdistribution sheme with re-distribution by the server nodesthemselves. We favor approah (2) beause it avoids thelower performane of ontent-aware front-end devies, whihneed to aept TCP onnetions and inspet requests beforethey an be forwarded to bak-end nodes. We illustrate ap-proah (2) with the following example.The top part of table 1 lists the throughput of two re-soures of two types of nodes. The resoures are generi,



so let us assume that the throughput is in \units"/seond.Think of resoure 1 as the CPU and resoure 2 as the disk,for example. In this ase, the throughput of resoure 1 ouldbe measured in instrutions/seond and the throughput ofresoure 2 ould be measured in KBytes/seond. Let usfurther assume that there are two types of requests, � and�, eah of whih is responsible for a fration of the requeststream. The resoure needs of the di�erent request types aredesribed in table 2. So, for example, eah request of type� requires 1 unit of resoure 1 and 100 units of resoure 2.You an think of type � as requests for a large �le and type� as requests for a small CGI sript; both �le and sript arerepliated at the two nodes.For a system with a ontent-oblivious, round-robin front-end and one node of eah type, we an only get a maximumthroughput of 460 requests/seond, sine the performaneof nodes A and B is limited by resoure 2 and 1, respe-tively. If we now have node B send all requests of type� that it reeives to node A, and node A send 43.1% re-quests of type � that it reeives to node B, we an improvethe luster throughput to 803 requests/seond. This showshow intra-luster ooperation has the potential for betterresoure utilization in heterogeneous systems.Question 2: How should we distribute requests andon�gure the luster to optimize power/throughput?The request distribution approah we just disussed seeks tooptimize throughput, but disregards power and energy al-together. Previous work has onsidered request distributionoptimizing both throughput and energy [10, 15, 23, 24℄, butin the ontext of homogeneous lusters. Their approah is toreon�gure the luster to the smallest size (by turning someof the nodes o�) needed to satisfy the urrent o�ered loadand distribute the requests evenly aross the ative nodes.Beause all nodes and resoures are treated as onsumingthe same amount of power, this approah an obviously beineÆient for heterogeneous systems.Our own luster of traditional and blade nodes is a goodexample of power heterogeneity. Eah traditional node on-sumes from 70 to 94 Watts, whereas eah blade onsumesfrom 40 to 46 Watts, depending on utilization. To ompli-ate deisions further, the �rst blade to be turned on on-sumes an extra 150 Watts, as it inurs the overhead of three(underloaded) power supplies, three fans, and other infras-truture shared by the other blades.Another simple approah that may lead to ineÆieniesis to reon�gure the luster under light load by turningo� nodes with dereasing \power eÆieny", i.e. maxi-mum power/maximum throughput ratios. Properly order-ing nodes with respet to power eÆieny is diÆult for tworeasons: (1) nodes an exhibit di�erent relative orderingsdepending on the harateristis of the workload (partiu-larly, the resoure requirements and the load intensity); and(2) the ordering may depend on the rest of the on�gura-tion, as in the ase of our own system (having a blade onis more power eÆient than having a traditional node on,unless it is the �rst blade). Finally, even when it is possibleto determine a proper node ordering, an even distribution ofrequests aross the ative nodes an under-utilize resouresas we argued above.We an eliminate the possibility of ineÆienies by ex-tending our approah to onsider the power harateristisof the di�erent types of nodes (and resoures) expliitly. Wean see this by going bak to the example of tables 1 and 2.

The bottom part of table 1 lists sample maximum poweronsumptions for eah resoure. Let us assume that theresoure power onsumption varies linearly with utilization.Under heavy load and the best request distribution we foundfor throughput, the power/throughput ratio would be 0.145Joules/request (116 Watts/803 requests/seond). However,given that resoure 1 in node A is power-hungry, we an geta better ratio by reduing the number of requests sent fromnode B to node A. For example, if we hange the above on-�guration so that mahine B does not forward any requests,the ratio beomes 0.137 Joules/request (57 Watts/416 re-quests/seond). This shows that optimizing for energy andperformane is not straightforward.
3. ANALYTICAL MODELSIn this setion, we desribe the analytial models and op-timization proedure that allow us to determine the bestluster on�guration and request distribution for a hetero-geneous Web server luster. This mahinery works for homo-geneous lusters as well but is unneessary for these systems,sine on�guration and distribution are well-understood is-sues for them.As we have mentioned, to determine the best on�gura-tion and distribution for heterogeneous lusters, we needto onsider all resoures, their performane and power on-sumptions, at the same time. We ast this as an optimiza-tion problem: �nd the request distribution (1) from lientsto servers and (2) among servers, in suh a way that thedemand for eah resoure is not higher than its bandwidth,and we minimize a partiular metri of interest. The lus-ter on�guration omes out from the request distribution;we an turn o� nodes that are not sent any requests.In this paper we de�ne the metri of interest to be luster-wide power onsumption divided by throughput. Thus, therequest distributions, the total power, and the maximumthroughput for eah luster on�guration are the unknownsin the models, whereas the resoures and o�ered workloadharateristis are the inputs to the models. In partiular,the resoure-related inputs are the bandwidth of eah re-soure, the power onsumed by eah node when it is idle,and a linear fator desribing how the power onsumptionhanges as a funtion of resoure utilization. The resouretypes we onsider are proessor, network interfae (dividedinto inoming and outgoing bandwidth), disk, and a softwareresoure representing the maximum number of sokets eahserver an onurrently open with its lients. Obviously,this software resoure does not onsume power. For sim-pliity, we assume that eah node ontains a single resoureof eah type. The workload-related inputs are the expeted�le popularity, the expeted average size of requested �les,the fration of requests for stati �les in the workload, theharateristis of the dynamially generated ontent, andthe resoure onsumptions per request type as well. Theseinputs an be determined from a sample trae of requestsand an analysis of the programs that generate the dynamiontent. Table 3 summarizes the unknowns and inputs ofour models.In the next few subsetions, we desribe our models forestimating throughput and power, as a funtion of the re-quest distributions. We also desribe how to instantiate theinputs to the models. Finally, we desribe the optimizationproedure that solves the equations that de�ne the models.



Desription Representation in modelsInputs Bandwidth of eah resoure C matrixResoure ost for performing a request loally L matrixResoure ost for sending remote requests S matrixResoure ost for aepting remote requests A matrixIdle power of eah node B vetorPower fator of eah resoure M matrixPartition of request stream into types F matrixUnknowns Request distributions D vetor and R matrixMaximum system throughput max thruputTotal system power overall powerTable 3: Summary of model inputs and unknowns.
3.1 Modeling Request DistributionsTo formalize the problem, we will represent the distribu-tions using a vetor and multiple matries. We use a distri-bution vetor, D, to represent the fration of the requestsoming from the lients that will be sent to a ertain node.Thus, Di is the fration of the requests from lients thatserver i will reeive.Requests an be of di�erent types as well. For example,a Web server an get requests for �les that are in memory,�les that are on disk, or dynamially generated ontent. Wede�ne a matrix F to desribe the partitioning of the requeststream into these request types for eah node. Thus, F ti isthe fration of requests of type t that are direted to node iby the front-end devies.When nodes ooperate, we must also take the intra-lusterrequest distribution into aount. We represent this dis-tribution with one matrix, Rt, per request type t. Eahelement Rtij represents the fration of requests on node iof request type t that are servied by node j. In a non-ooperative server environment, 8iRtii = 1, while all otherterms would be 0.The resoure onsumptions for eah request type are rep-resented with 3 other matries. We represent the amountof resoure r used by a request of type t that node i mustexpend if the request is servied loally as Lrti . Even if nodei sends the request to node j, it may still expend some re-soures, denoted by Srtij . If node i instead reeives a requestfrom node j, the resoure usage is represented as Artji .The osts in the S, A, and L matries are average num-bers of bytes per request for all devies. The exeptions arethe CPU devie and the software resoure. The CPU ostper request an be represented in average number of instru-tions, average number of memory bytes used, or some otherrelevant metri. The software resoure osts an also be ar-bitrarily represented. For example, we an represent the ostper request of onsuming a soket as the average number ofinstrutions exeuted or the average time elapsed betweenthe opening and losing of the soket.
3.2 Modeling Resource UtilizationTo determine the utilization Uri (in bytes/seond) of eahresoure r at eah node i, we need to sum the ost due tothe fration of requests servied loally, the ost of sendingrequests to other nodes, and the ost of serviing requests onbehalf of other nodes. This sum then needs to be multipliedby the total number of requests being served per seond (theurrent throughput of the server luster, thruput). This isexpressed as:

uri = typesXt  DiF tiRtiiLrti +DiF ti nodesXj RtijSrtij+nodesXj DjF tjRtjiArtji!Uri = thruput� uri (1)
3.3 Determining Max Throughput and PowerWe an use U to determine the maximum throughput andoverall power onsumption of a on�guration.Maximum throughput. We �nd the maximum through-put ahievable by the server luster by determining the bot-tlenek resoure(s) in the system. The bottlenek(s) willbe suh that Uri = Cri under maximum throughput, whereeah element Cri is the apaity of resoure type r on nodei. Thus, we de�ne the maximum throughput as:max thruput = min8r;i Criuri (2)Overall power. The power onsumed by eah hardwareresoure generally relates to the utilization of the resoure.We use a linear model of resoure power, suh that the poweronsumed by eah node i is:Pi = Bi +Xr Mri ��UriCri � (3)where Bi is the base power onsumed by node i when it isidle, and Mri is the measure of power of the resoure r atfull utilization.Finally, we de�ne the power onsumed by the server lus-ter, overall power, as the sum of the power onsumed by allhardware resoures in the system:overall power =Xi Pi (4)
3.4 Instantiating the Inputs to the ModelsThe C, L, S, A, B, and M matries are inputs to ourmodels. Determining the orret values for them is not al-ways simple. To determine the Cr, Lr, Sr, and Ar matries,we run mirobenhmarks on two mahines to exerise theresoure with requests of di�erent types and/or sizes andmeasure their performane.



Cdisk is perhaps the hardest vetor to instantiate. Morespei�ally, our disk mirobenhmark goes through severalrounds of random reads of �xed size, going from 4-KByte a-esses to 128-KByte aesses (the largest hunk our serverwill read at one from disk) in steps of 4 KBytes. We runthis mirobenhmark for eah of the di�erent disks in theheterogeneous luster. Besides these data, we also need theaverage size of disk aesses on eah di�erent node. Unfor-tunately, the average size of disk aesses (and the memoryahe hit ratios) is not readily available o�-line. To approx-imate that size, we use information about the memory sizeand the expeted �le popularity oming from a represen-tative request trae. In more detail, we rank the �les indesending order of popularity and add the �le sizes untilthe ombined size exeed the memory size. Aesses to �lesthat are more popular than this threshold are (optimisti-ally) expeted to be ahe hits. With information aboutthe �les that ause misses, we an easily ompute the aver-age disk aess size. We have suessfully taken this sameapproah to approximating hit rates and disk aess sizes inour previous Web server modeling work (e.g., [6, 9℄).Instantiating the B vetor involves measuring the poweronsumed by eah di�erent node when it is ompletely idle.Determining the Mr vetors is somewhat more involved.For eah di�erent node i we determine Mdiski , MCPUi , andMneti by running several mirobenhmarks, eah of whihexerises one of these three resoures in di�erent ways. Foreah mirobenhmark, we reord average disk, CPU, andnetwork interfae utilization statistis, as well as averageoverall power. The utilization data forms an m� 3 matrixalled E, where m is the number of mirobenhmarks. Thepower data (atually, the subtration of the power data bythe base power of the node) forms an m � 1 vetor alledW . We then ompute a least-squares �t to determine the1 � 3 vetor X for whih EX = W . The resulting X1; X2;and X3 are Mdisk, MCPU , and Mnet, respetively, for thenode. This same approah has been used suessfully byother groups [19℄.
3.5 Finding the Best DistributionsTo optimize power onsumption and throughput, we needto �nd the request distributions D and Rt for eah type t(and onsequently the best luster on�guration), suh thatUri � Cri 8r; i and we minimize some metri that ombinesthroughput and power. In this work, we deided to giveequal emphasis to throughput and power, so our optimiza-tion proedure attempts to minimize overall power=thruput,under the onstraint that max thruput � thruput. Thus,a derease in power onsumption (with �xed throughput)has the same e�et as an equal inrease in throughput (with�xed power). If the o�ered load ever beomes greater thanthe maximum ahievable throughput by any on�gurationand distribution, our goal beomes to maximizemax thruputso that we lose the fewest requests possible.We ould attempt to solve the system of equations de-�ned by our model diretly. Unfortunately, this is a omplexproposition, beause to determine utilizations we need tomultiply unknown distributions, making the problem non-linear. Moreover, luster power and throughput are fun-tions of these distributions and vie-versa, so the problem isalso reursive. These harateristis suggest that a numeri-al and iterative optimization tehnique, suh as simulatedannealing or geneti algorithms, is appropriate.

We use simulated annealing. The annealing works by try-ing to iteratively optimize a \urrent solution", i.e. valuesfor the distributions D and R, starting from initial guess val-ues for these matries. The initial distributions are set suhthat the Di are all the same and the Rt matries speify nointra-luster ooperation.A andidate solution is generated by modifying two el-ements of the same (randomly hosen) vetor/matrix ata time; one element is dereased by a randomly hosenamount, while another is inreased by the same amount.The rows are then normalized. A andidate also has to sat-isfy the onstraint that Uri � Cri 8r; i.Evaluating a andidate solution involves omputing itsoverall power=thruput measure and omparing it to theorresponding measure of the urrent solution. If the an-didate solution produes a measure that is smaller than theurrent minimum, it beomes the new urrent solution. Ifit does not, it might still beome the new urrent solution,but with a dereasing probability. After evaluating eahandidate solution, a new one is generated and the proessis repeated. The number of iterations is determined by a\temperature" parameter to the annealing algorithm. Moredetails about simulated annealing an be found in [17℄.Finally, we speed up the searh proess signi�antly bytreating all nodes of the same type together. This makesthe number of alulations proportional to the square of thenumber of node types, as opposed to the square of the atualnumber of nodes in the luster.
4. MODEL-BASED COOPERATIVE SERVERWe developed a ooperative Web server that uses the re-sults of our modeling and optimization approah to on�gurethe luster and distribute requests.Requests are sent to the individual Web servers aordingto the D vetor omputed by our model and optimizationproedure. Eah server either serves a requests it reeives lo-ally or forwards it to another server over a persistent TCPonnetion. Requests for stati ontent are always served lo-ally. The R matrix determines where to serve the dynami-ontent requests. One a forwarded request ompletes, thereply is sent bak to the server that reeived the originalrequest. This server then replies to the lient.Eah server sends its delivered load information to a mas-ter proess every 10 seonds. The master proess aumu-lates this information and smooths it by omputing an Ex-ponentially Weighted Moving Average (EWMA) of the formavg load = �� urrent load+(1��)�previous load. OurEWMA uses an � value of 0.4. Periodially, the master de-ides whether the request distribution (and on�guration)needs to be hanged. We refer to the �xed time in betweendeisions as the reon�guration interval. The master's de-ision is based on its predition of what the average loadwill be in the end of the next reon�guration interval. Thepredition uses a �rst order derivative of the urrent averageload and the last average load of the previous interval, i.e.predited load = avg load+ (avg load� last avg load). Toavoid undershooting and losing requests, the system neverpredits load that is lower than the urrent value. Basedon the predited load, the master an determine the bestrequest distributions, as predited by our model and opti-mization proedure. If the request distribution needs to behanged, the master proess ommands the servers and/orthe front-end devies to adjust aordingly.



Beause our optimization proedure is time-onsuming,the best distributions for eah amount of load are om-puted o�-line. We store a large pre-omputed table of bestdistributions (D and R arrays) and throughputs entries,fthruput; best distributiong, on the loal disk of the noderunning the master proess. The master �nds the best dis-tributions for a ertain load by looking up the entry listingthe lowest throughput that is higher than the load.
5. EXPERIMENTAL RESULTSIn this setion, we desribe our experimental methodology,validate the models, and ompare di�erent server systems.
5.1 MethodologyCluster hardware. Our luster is omprised of 4 Linux-based PCs (eah with an 800-MHz Pentium III proessor,loal memory, two SCSI disks, and a Fast Ethernet inter-fae) and 4 Linux-based blade servers (eah with a 1.2-GHzCeleron proessor, loal memory, an IDE disk, and a FastEthernet interfae) from Nexom [20℄. The two sets of ma-hines are onneted by a Fast Ethernet swith.The PCs (herein also alled traditional nodes) onsumeabout 70 Watts when idle and about 94 Watts when fullyutilized. In ontrast, eah blade onsumes about 40 Wattswhen idle and 46 Watts when fully utilized. However, thebase power onsumption of the blade hassis is substan-tially higher, 150 Watts, due to three power supplies, thepower bakplane, three fans, and the KVM (keyboard-video-mouse) ontroller.All PCs and the blade system are onneted to a powerstrip that allows for remote ontrol of its outlets. The sys-tems an be turned on and o� by sending ommands to theIP address of the power strip. The blades an be ontrolledindependently as well, by sending ommands to the KVMontroller. Shutting a node down takes 45 seonds (tradi-tional nodes) and 21 seonds (blades); bringing any nodebak up takes about 80 seonds.The total amount of power onsumed by the luster ismonitored by a multimeter onneted to the power strip.The multimeter ollets instantaneous power measurements(several thousand per seond) and sends these measurementsto another omputer, whih stores them in a log for lateruse. We obtain the power onsumed by di�erent lusteron�gurations by aligning the log and our systems' statistis.Server software. We experiment with three servers: (1) aonventional, energy-oblivious server; (2) an energy-onsi-ous server that was developed for homogeneous lusters; and(3) our energy-onsious, model-based Web server for het-erogeneous lusters. The onventional server, alled \Ener-gy-Oblivious", is similar to Flash [22℄ and involves no oop-eration between nodes.The energy-onsious server for homogeneous lusters, \A-daptive", is based on the same ode as Energy-Oblivious,but inludes a master proess that ollets load informationfrom the servers and deides on the minimum luster on-�guration that an satisfy the o�ered load. The master usesa PID feedbak ontroller to determine how to hange theon�guration. When there are enough spare resoures, themaster fores a node to turn o�. When more resoures areneeded, the master turns a node on. Beause the server as-sumes a homogeneous luster, the master randomly seletswhih nodes to turn on and o�. In addition, requests are dis-

tributed evenly aross the ative nodes. More details aboutAdaptive an be found in [23℄.Our model-based ooperative Web server, \Model Adap-tive", is based on the same ode as Adaptive, but inludesdynami-ontent request forwarding and uses our modelingand optimization mahinery, as desribed in the previoussetion. For a fair omparison, the frequeny of load infor-mation exhanges and reon�guration deisions in our ex-periments is kept the same in both adaptive systems.The master proess in the adaptive systems remains blok-ed most of the time, so it an run on any ative node withouta notieable inrease in energy onsumption. For simpliity,we run it alone on a 9th node.Clients. Besides our main luster, we use 7 x86-based ma-hines to generate load for the servers. These lients onnetto the luster using TCP over the Fast Ethernet swith.In our experiments with the Energy-Oblivious and Adap-tive servers, the lient requests are distributed aross lus-ter nodes in one of two ways: (1) randomly to mimi alarge number of users and a Round-Robin DNS poliy; or(2) aording to a Least-Connetions poliy that ontinu-ously tries to balane the load by sending eah request tothe node with the smallest number of open onnetions atthe time. We refer to these approahes as \RR" and \LC",respetively. Model Adaptive distributes the lient requestsaording to the D vetor (and forwards requests internallyaording to R).For simpliity, we did not use a front-end devie thatwould enfore the RR, LC, and D distributions. Instead, thelient themselves distribute their requests aording to thepoliies. Note that, although the lients do not oordinatetheir requests in the LC poliy, the load is still properly bal-aned, sine the lients' loal views approximate the nodes'behaviors in steady state. In our Model Adaptive experi-ments, when the request distribution needs to hange, themaster proess sends the D vetor to eah lient over pre-established soket onnetions. The lients send requests tothe available nodes in randomly, but obey the vetor.The lients issue their requests aording to a trae ofthe aesses to the World Cup '98 site from June 23rd toJune 24th, 1998 (WC'98). We run two types of experi-ments with this trae: validations of our models and self-on�guration experiments. In our model validation exper-iments, the lients disregard the timing information in thetrae and issue new requests as soon as possible. In ourself-on�guration experiments, the lients take the timingsof the trae into aount, but aelerate the replay of thetrae 20 times to shorten the experiments to 7500 seonds.Regardless of the type of experiment, requests that are notservied within 10 seonds are onsidered lost.We also modi�ed the trae in two other ways. The �rstmodi�ation replaes 30% of the stati requests issued withdynami requests to simulate a CGI load. For simpliity, weused a single CGI sript that does nothing else but produea short reply. The aesses to this sript drastially reduethe throughput of our server luster, so we also attenuatedthe trae by a fator of 50. (This was done so that we ouldstill observe the load hanges in the trae while keeping therun time to approximately 2 hours.) Under these assump-tions, the CPU and the software resoure beome the mainbottleneks in the system.Given our aelerated trae, we set the reon�guration in-terval of the adaptive servers to a minimum of 120 seonds



 0

 100

 200

 300

 400

 500

 600

1:19:108:107:106:105:104:103:102:101:100:1
 0

 200

 400

 600

 800

 1000
M

a
xi

m
u
m

 T
h
ro

u
g
h
p
u
t 
(r

/s
)

O
ve

ra
ll 

A
vg

. 
P

o
w

e
r 

(W
)

Relative Request Distributions
To Each Half of the Cluster

Varying Distribution of Load

Model Power
Measured Power

Modeled Throughput
Measured Throughput

Figure 1: Modeling and experimental results forthroughput and power, as a funtion of D.  0
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Figure 2: Modeling and experimental results forthroughput and power, as a funtion of R.between hanges. This relatively short interval allows timefor a rebooted node to settle and the servers to reat quiklyto variations in o�ered load. In pratie, the reon�gurationinterval an be substantially longer however, sine real-lifevariations in load intensity our over periods of tens of min-utes, i.e. muh more slowly than in our experiments. ForWC'98, for example, we ould have an interval of 2400 se-onds in real time. In fat, we expet the energy and timeoverheads of reon�gurations to be small in pratie.
5.2 Validation of the ModelsFigures 1 and 2 show our validation results for the WC'98trae running on our 8-node heterogeneous luster, as afuntion of hanges in the D and R distributions, respe-tively. Both �gures show modeled and measured server lus-ter throughput (in requests/seond) and power onsumption(in Watts). Eah point in the �gures is an average of tworuns; the vertial bars show the ranges of values we observedin the di�erent runs. In �gure 1, eah point on the X-axisrepresents a di�erent weighting of the distributions of therequests sent from the lients to the servers. For example,at \2:10", 2 requests are sent to the traditional nodes forevery 10 requests that are sent to the blades. In this ase,the R matrix determines no ooperation between nodes.In �gure 2, eah point on the X-axis represents the fra-tion of dynami requests in the WC'98 trae that the bladesexeute loally; the others are sent to the traditional nodes.For example, at X=0, 100% of CGI requests reeived bythe blades are sent to the traditional nodes. The requestsoming from the lients are distributed to all nodes evenly.These �gures demonstrate that our models are very a-urate for WC'98. The modeled throughput has an averageerror of 6% as ompared to the measured results, with amaximum error of 18%. We an also see that varying re-quest distributions has a signi�ant e�et on throughput,but only a minor e�et on power. Power does not vary no-tieably for two reasons: (1) all nodes are ative (and highlyutilized) throughout the experiments; and (2) resoure uti-lization has a small e�et on power, sine most of the poweronsumed by the nodes and their resoures is �xed, i.e. thebase power. This leads to a small average and maximumerror of 1.3% and 2.7%, respetively.
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Figure 3: Throughput and power of Energy-Oblivious-LC.
5.3 Comparing Server SystemsFigures 3 to 5 show throughput and power for Energy-Oblivious-LC, Adaptive-LC, and Model Adaptive, as a fun-tion of time.Let us disuss energy �rst. Figure 3 shows that Energy-Oblivious-LC onsumes roughly the same amount of powerthroughout the experiment; non-trivial variations only o-ur during the three load peaks. In ontrast, �gures 4 and5 demonstrate that the Adaptive-LC and Model Adaptivesystems an niely adjust the luster on�guration, aord-ing to the o�ered load. For instane, during the load valleys,only 2 or 3 nodes are required to serve the o�ered load; theother nodes an be turned o�. As a result of the reon�gu-ration, the two systems arue substantial energy savings.Note though that Adaptive-LC leads to substantially high-er power onsumption than Model Adaptive during the loadvalleys. As a result, Model Adaptive onsumes 42% less en-ergy than Energy-Oblivious during this experiment, whereasAdaptive-LC only onsumes 29% less energy. Comparingthe amount of energy saved by Adaptive-LC (1.30 MJ) andModel Adaptive (1.89 MJ) diretly, we �nd that the lattersystem onserves 45% more energy than the former.The reason for the ineÆient behavior of Adaptive is thatit treats a heterogeneous system as if it were homogeneous.
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Figure 4: Throughput and power of Adaptive-LC.  0
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Figure 5: Throughput and power of Model Adaptive.For instane, it treats a single-node blade system with anidle power onsumption of 190 Watts the same as a tradi-tional node that onsumes only 70 Watts when idle. In ef-fet, Adaptive selets the nodes to be part of the luster on-�guration randomly, using feedbak ontrol to ahieve therequired throughput. In this experiment, the 3-node on�g-uration of Adaptive-LC during the load valleys inludes onlyone blade and, hene, inurs the unamortized �xed poweronsumption of the entire blade system.The transitions between on�gurations are also markedlydi�erent between Adaptive-LC and Model Adaptive. Adapt-ive-LC hanges the luster on�guration one node at a time.In ontrast, Model Adaptive may deide to hange the on-�guration ompletely, by turning several nodes o� and sev-eral nodes on. These transitions are marked with lettersA, B, C, and D in �gure 5. The high energy onsumed atthese points results from having to turn the new nodes on,before the nodes in the urrent on�guration an be turnedo�. At point A, for example, Model Adaptive needs to turnon 3 traditional nodes before turning o� the 4 blades thatomprise the urrent on�guration.Figure 6 shows the omplete list of luster on�gurationsthat Model Adaptive goes through, as a funtion of time.The staked symbols illustrate the atual on�gurations,with eah \+" representing a traditional node and eah \X"representing a blade node. The vertial lines illustrate thetimes when the transitions are performed. When two on-seutive staks are the same, the only hange is in the dis-tribution of requests (D and R).The most interesting observation from this �gure is thatseveral of the transitions only a�eted the request distribu-tion. More spei�ally, as the o�ered load approahes themaximum throughput ahievable by a on�guration, the sys-tem tends to redue the amount of inter-node ooperationsine the bottlenek omponents will be highly utilized lo-ally at all nodes. When the o�ered load is dereasing, thesystem tends to inrease ooperation by shifting requests tothe omponents that are most power-eÆient.In terms of performane, we see in table 4 that Adaptive-LC drops more than twie as many requests as Model Adap-tive, due to the overhead of reon�gurations. Nevertheless,both systems drop a negligible perentage of the requests. Inontrast, Adaptive-RR drops more than 30% of the requestsdue to the reon�gurations, making it e�etively useless. Forthis reason, we do not show �gures for Adaptive-RR.
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Figure 6: Throughput and on�guration of ModelAdaptive.Disussion. Model Adaptive behaves well in terms of en-ergy onservation and performane. The energy savings itahieves are mostly due to seleting the best luster on�g-uration for eah load intensity level. However, signi�anton�guration hanges an onsume substantial energy andderease savings. In our experiments, the impat of the en-ergy assoiated with these transitions is atually magni�ed,as we aelerate the trae and thus have less time to amor-tize the transition overheads.Cooperation does not provide substantial gains in our ex-periments beause the power onsumption of our lusternodes is dominated by their base powers. In ontrast, thebase power of more reent mahines is a substantially smallerfration of their maximum power onsumption. We expetthis trend to ontinue in future systems, espeially as theybeome more power-aware.
6. RELATED WORKEnergy onservation researh for server lusters. Afew reent papers [8, 10, 15, 23, 24℄ deal with energy on-servation for server lusters. Pinheiro et al. [23℄ and Chaseet al. [10℄ onurrently proposed luster reon�guration toonserve energy. Elnozahy et al. [15℄ evaluated di�erentombinations of luster reon�guration and dynami voltagesaling. Rajamani and Lefurgy [24℄ studied how to improvethe luster reon�guration tehnique by using spare servers



System Energy Requests Requests Drop Rate(MJ) Servied Lost (%)Energy-Oblivious-RR 4.54 1264424 4117 0.32Energy-Oblivious-LC 4.54 1267475 0 0.00Adaptive-RR 2.65 859320 408651 32.23Adaptive-LC 3.24 1256091 11436 0.90Model 2.65 1262736 4417 0.35Table 4: Summary of energy onsumption and performane degradation for WC'98 trae.and history information about peak server loads. Finally,Elnozahy et al. [14℄ onsidered dynami voltage saling andrequest bathing in Web servers. A survey of power andenergy researh for servers an be found in [7℄.All of these previous works have been foused solely ononserving energy in homogeneous lusters. An early versionof this paper [16℄ introdued our approah to dealing withheterogeneous lusters. This paper extends the early workby proposing more sophistiated models, the model-basedooperative server, and experimenting with workloads thatinlude dynami-ontent requests.In a di�erent environment, Kumar et al. [18℄ onsideredonserving hip-multiproessor energy by relying on hetero-geneous ores. Their approah has a similar avor to lusterreon�guration in that, depending on proessor load (andperformane requirements), a di�erent ore may exeuteeah appliation or even eah phase of a single appliation.Modeling and optimization for servers. Carrera andBianhini [6, 9℄ have suessfully modeled the throughput ofWeb server lusters. Aron et al. [2℄ enfored resoure sharesin shared hosting platforms using models and optimization.Doyle et al. [13℄ have proposed a model-based approah toadjusting resoure alloations again in shared hosting plat-forms. Hippodrome [1℄ applies modeling and optimizationto assign load to units of a storage system. Our work is the�rst to use modeling and optimization to onserve energy inservers.Request distribution in server lusters. Several re-quest distribution strategies for homogeneous server lus-ters have been proposed, e.g. [11, 4, 21, 9℄. One study[12℄ onsidered request distribution for distributed hetero-geneous servers. Their approah was to assign a di�erentTTL (time-to-live) to eah DNS reply, aording to the a-paity of the seleted node and/or the request rate of thesoure domain of the DNS request. Our approah is to dis-tribute requests intra-luster (without help from DNS) forenergy onservation, as well as performane.Load balaning in heterogeneous systems. A few pa-pers do address job/task balaning/sharing in heterogeneoussystems, e.g. [26, 5℄. The key di�erenes between these stud-ies and ours are: (1) they typially fous on oarse-grainjob/task sheduling, rather than on servers and request dis-tribution; and (2) their goal is usually to improve runningtime, rather than inrease throughput or onserve energy.
7. CONCLUSIONSIn this paper we developed a model-based ooperativeWeb server for heterogeneous lusters. The server is basedon modeling and optimization of on�gurations, request dis-tributions, throughput and power. Our experimental resultsdemonstrated that (1) our modeling is aurate and (2) our

server onserves more energy than the previously proposedsystem on a heterogeneous luster, with a negligible e�eton throughput.Based on these results, we onlude that Web servers needto self-on�gure intelligently on heterogeneous lusters forhigher energy savings. We also onlude that the style ofmodeling that allows our system to self-on�gure should bemore widely applied in the systems ommunity, given thatmost real systems do exhibit varying degrees of heterogene-ity. In fat, our modeling framework may even be used inbuilding systems that are heterogeneous by design.We are urrently extending our server implementation todeal with brownouts, i.e. periods during whih the powerbudget is onstrained. During these periods, our goal is tomaximize throughput under the onstrained power budget.The new version of the server will then have two modes ofoperation: normal mode whih optimizes power/throughputmaking sure that the o�ered load is satis�ed, and onstrain-ed mode whih optimizes throughput within the availablepower budget. The new version will niely leverage our mod-eling and optimization infrastrutures.In our future work, we plan to develop a tool to automatethe proess of instantiating our models. We also plan toexploit our modeling infrastruture to investigate whetherservers lusters should be designed heterogeneous.
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